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Analysis of DIA proteomics data using
MSFragger-DIA and FragPipe computational
platform

Fengchao Yu 1 , Guo Ci Teo 1, Andy T. Kong1,2, Klemens Fröhlich 3,
Ginny Xiaohe Li1, Vadim Demichev4,5 & Alexey I. Nesvizhskii 1,2

Liquid chromatography (LC) coupled with data-independent acquisition (DIA)
mass spectrometry (MS) has been increasingly used in quantitative proteomics
studies. Here, we present a fast and sensitive approach for direct peptide
identification from DIA data, MSFragger-DIA, which leverages the unmatched
speed of the fragment ion indexing-based search engine MSFragger. Different
from most existing methods, MSFragger-DIA conducts a database search of
the DIA tandemmass (MS/MS) spectra prior to spectral feature detection and
peak tracing across the LC dimension. To streamline the analysis of DIA data
and enable easy reproducibility, we integrateMSFragger-DIA into the FragPipe
computational platform for seamless support of peptide identification and
spectral library building from DIA, data-dependent acquisition (DDA), or both
data types combined. We compare MSFragger-DIA with other DIA tools, such
as DIA-Umpire based workflow in FragPipe, Spectronaut, DIA-NN library-free,
andMaxDIA. We demonstrate the fast, sensitive, and accurate performance of
MSFragger-DIA across a variety of sample types and data acquisition schemes,
including single-cell proteomics, phosphoproteomics, and large-scale tumor
proteome profiling studies.

Liquid chromatography (LC) coupled to data-independent acquisition
(DIA) mass spectrometry (MS) strategy has emerged as a widely used
technological platform for quantitative protein profiling, especially in
large-scale studies1,2. Compared to the data-dependent acquisition
(DDA) MS strategy, in which a selected peptide ion population is iso-
lated and subjected to tandem MS (MS/MS) fragmentation, the frag-
ment ion information in DIA is acquired on all peptide ions within a
certain windowofm/z values, sequentially covering the entire relevant
range (e.g., 400–1200Da). This helps alleviate the stochastic nature of
peptide identification in DDA-based strategies, and DIA has been
shown to produce more complete (i.e., less missing values) peptide
and protein quantification matrices across multiple samples2. DIA has
been successfully used in a variety of proteomics applications,
including post-translational modification (PTM) analysis3–6,

protein–protein interaction7,8, immunopeptidomics9–11, and herit-
ability analysis12.

MSdata used as partof aDIAanalysisworkflowcanbe categorized
intoprimary and auxiliarydata. AuxiliaryMSdata is used solely tobuild
a spectral library for subsequent targeted extraction of quantification
for eachpeptide ion in the library from the primary DIA data. Examples
of such auxiliary, “library-only” MS data include data acquired from
pooled samples (e.g., all individual samples profiled in the study)
fractionated using offline LC and analyzed using DDA2, fractionated in
the gas phase and analyzed using narrow-window DIA (GPF-DIA)13,14.
For low-input proteomics, including single-cell proteomics, library-
only data can be acquired in DDA or DIAmode from samples prepared
from higher amounts of startingmaterial15–17. The primary DIA data are
DIA runs acquired on individual study samples, typically without
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fractionation, although the use of fractionation has been explored18.
The primary DIA data are used for extracting peptide ion quantifica-
tion, but they may also be used for building the spectral library, either
alone or in combination with auxiliary DDA or DIA data19.

The computational analysis of DIA data has two major compo-
nents: (1) creation of the target spectral library, a collection of peptide
ions that are targets for the subsequent quantification step, along with
their LC retention times (RT), as well as m/z values and intensities of
the corresponding fragment ions; (2) extraction of quantification from
the primary DIA data for all peptide ions in the target spectral library.
Quantification is performed using targeted extraction tools, such as
Skyline20, OpenSWATH21, EncyclopeDIA13, Spectronaut22, andDIA-NN23,
with additional intensity data normalization and peptide-to-protein
rollup24,25. The targeted quantification step depends on the quality of
the input spectral library26. An ideal library would be as experiment
specific as possible, that is, it would be complete (containing all pep-
tide ions that are likely to bedetectable in the analyzed samples) and as
specific (i.e., it would not contain unrelated peptides) as possible27,28.
Library information, such as the RT and fragment ion intensities,
should match the actual DIA data being analyzed well. Thus, building
spectral libraries via the direct identification of peptides from primary
DIA data19 has emerged as a widely used computational data analysis
strategy.

Direct identification of peptides fromDIA data was first proposed
and implemented in DIA-Umpire19, along with the concept of building
combined (hybrid) spectral libraries from primary DIA and auxiliary
(e.g., DDA) data. The “spectrum-centric” identification approach of
DIA-Umpire is based on feature detection in MS1 and MS/MS data,
followed by grouping precursor peptide and fragment ion signals
exhibiting similar LC elution profile to generate the so-called pseudo-
MS/MS spectra. These pseudo-MS/MS spectra can be searched using
tools developed for conventional DDA data, such as MSFragger29, X!
Tandem30, and Comet31, followed by peptide-spectrum match (PSM)
validation with PeptideProphet32 or Percolator33, protein inference
with ProteinProphet34, and target-decoy based false discovery (FDR)
filtering35. The DIA-Umpire strategy has been increasingly adopted in
other tools and pipelines, including Spectronaut’s directDIA. A draw-
back of this strategy is that the untargeted signal extraction of the
precursor and fragment ion peak curves from DIA MS1 and MS/MS
scans can be time-consuming. The sensitivity of the peptide identifi-
cation process may also be suboptimal compared to targeted peptide
detection methods. Other strategies for the direct identification of
peptides from DIA data have also emerged, often taking the peptide-
centric perspective36 to the same problem, as exemplified by tools
such as PECAN37 (Walnut in EncyclopeDIA13). Direct search of DIA MS/
MS spectra against repository-wide spectral libraries or sequence
databases has also been explored38,39. The ability to predict proteome-
wide spectral libraries using deep learning40–46, followed by the crea-
tion of more refined, experiment-specific libraries for targeted
extraction, has also been shown to be very useful47, and formed the
basis for the in silico library-based (also known as “library-free”) mode
of DIA-NN23,48, EncyclopeDIA13, and MaxDIA49. However, only peptides
with common modifications (such as oxidation, acetylation, and
phosphorylation) can typically be predicted using the current in silico
spectral library software. Furthermore, workflows based on proteome-
wide spectral library prediction suffer fromadditional limitations, such
as long prediction times or requirements for additional graphics pro-
cessing units (GPUs).

We develop a new approach for direct peptide identification from
DIA data, leveraging the unmatched search speed of fragment ion
indexing29. It is based on conducting a database search of DIA MS/MS
spectra prior to feature detection or peak tracing, blurring the differ-
ence between the analysis of DIA and DDA MS/MS spectra. It is
implemented as MSFragger-DIA, a separate module in the MSFragger
search engine29,50,51, and publicly available since MSFragger version 3.1

(released on September 30, 2020). UsingMSFragger software, one can
identify peptides from either DDAor DIA data, or fromboth data types
combined, allowing the seamless generation of a hybrid spectral
library for the most sensitive analysis. We compare MSFragger-DIA
with other tools, such as DIA-Umpire based workflow in FragPipe,
Spectronaut, DIA-NN library-free, and MaxDIA in MaxQuant. We
demonstrate the fast, sensitive, precise, and accurate performance of
MSFragger-DIA across a variety of sample types and acquisition
schemes, including single-cell proteomics and phosphoproteomics
applications. To lower the barrier of analyzing DIA data, we fully
integrate MSFragger-DIA into the FragPipe computational platform
(https://fragpipe.nesvilab.org/). In tandem with the spectral library
building module EasyPQP48 and the quantification tool DIA-NN,
MSFragger-DIA in FragPipe enables the complete analysis of DIA data,
from peptide identification to peptide and protein quantification.

Results
MSFragger-DIA algorithm
An overview of the algorithm and its implementation within the
FragPipe computational platform is shown in Fig. 1. MSFragger-DIA
starts with a direct search of MS/MS spectra against the entire protein
sequence database, before any peak tracing or feature detection pro-
cedures (Fig. 1a). MSFragger-DIA starts with deisotoping50 and
extraction of the isolation window information from the spectra.
Because no precursor charge information is available for DIA MS/MS
spectra, it enumerates all predefined charge states to calculate the
lower and upper precursor mass bounds for each spectrum. Each
spectrum is then searched against all database peptides within the
precursor mass range. To calibrate fragment masses, MSFragger-DIA
performs two searches: a fast calibration search and a full search. The
first, more restricted search (which considers peptides with precursor
charge states 2 and 3 only) is used to select high-quality spectra to
build a mass error profile and perform mass calibration, as described
previously51. MSFragger-DIA then performs a full search using the
calibrated data. The outcome of this step is a list of peptide candidates
(by default, 128 best-scoring peptides per spectrum in wide-window
DIA data; 32 in narrow-window GPF-DIA data), which is then further
refined as described below.

In the second step, MSFragger-DIA traces peaks, extracts ion
chromatograms, and detects features of all candidate peptides for
each spectrum determined as described above. This can be done
quickly using theMS1 andMS/MSspectral indexing technology thatwe
described previously52. For each peptide, MSFragger-DIA refines the
list ofmatched fragments that can contribute to the score. The apex LC
retention times of the fragments and precursor features are collected,
and the median retention time is calculated. Fragments with retention
times that differ from themedian bymore than a certain value (0.1min
by default) are filtered out. If a precursor ion is detected in the MS1
data and has an apex retention time outside the allowable range, the
PSM is filtered out. Note that if no precursor ion feature is detected in
theMS1 spectrum,MSFragger-DIA still retains the corresponding PSM,
as there are cases where fragment ion signals exist despite missing
(undetectable) precursor features.MSFragger-DIA alsofilters out PSMs
with aberrant isotope distributions53. After peak tracing and peptide
and fragment filtering, MSFragger-DIA normalizes and rescores pep-
tide matches using hyperscore29,30.

Since each MS/MS spectrum is matched against candidate pep-
tides independently, the same experimental peaks may match and
contribute to the score of multiple different peptides in the candidate
peptide list; a greedy method is used to prevent this from happening
(Fig. 1b). Given a spectrumand a list of candidate peptides,MSFragger-
DIA selects the highest-scoring peptide and removes matched frag-
ment peaks from the spectrum. Then, it normalizes the remaining
peaks and rescores the peptides on the candidate list to obtain the
second highest scoring PSM. The matched peaks are again removed,
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peptides are rescored, and the process continues until there are fewer
than four peaks left in the spectrum, or no peptide candidates
remained. Finally, MSFragger-DIA generates output files compatible
with PeptideProphet and Percolator for rescoring and FDR estimation.

MSFragger-DIA has been fully integrated into FragPipe, allowing
one-stop DIA data analysis (Fig. 1c and Supplementary Fig. 1). In
FragPipe, the output of MSFragger-DIA and MSFragger can be pro-
cessed by MSBooster54 to leverage additional scores using deep-
learning prediction. The output from MSBooster is fed to Percolator
for additional rescoring and posterior error probability calculation,
followed by ProteinProphet34 for protein inference, Philosopher55 for
false discovery rate (FDR) filtering, and spectral library building with
EasyPQP48. With FragPipe, users can build the libraries fromDDA (with
MSFragger), DIA (with MSFragger-DIA), or all data combined (hybrid
library). The resulting library is then used to extract peptide ion
quantification from the primary DIA data using DIA-NN, which is
available as a part of FragPipe.

Evaluating sensitivity and false discovery rates (FDR) using a
benchmark dataset
To evaluate the sensitivity and false discovery rates of the entire
workflow, we used the dataset from Fröhlich et al.56, consisting of four
conditions: “Lymphnode”, “1–25”, “1–12”, and “1–06”. The samples used
in the first condition contained peptides from Homo sapiens only. The
other three conditions have a mixture of peptides from H. sapiens and
Escherichia coli. E. coli to H. sapiens ratios in “1–25”, “1–12”, and “1–06”
are 1 to 25, 1 to 12, and 1 to 6, respectively. Four conditions have the
same H. sapiens amount. There are 92 wide-windowDIA runs (primary
DIA runs), and auxiliary MS files used for spectral library building: six
narrow-window GPF-DIA runs, and 20 DDA runs. We refer to this as
“benchmark” dataset. We performed two MSFragger-DIA based ana-
lyses (Fig. 2): (1) building the spectral library using theprimaryDIAdata

(FP-MSF workflow, seeMethods); (2) building the spectral library from
all available data, that is, also including the GPF-DIA and DDA data (FP-
MSF hybrid workflow, seeMethods). DIA-NN, which is available as part
of FragPipe, was used to quantify the precursors from the DIA runs
using these spectral libraries. The Spectronaut 14, 17, and DIA-NN
library-free results were used for comparison. The number of E. coli
precursors detected in the “Lymphnode” condition (that contained H.
sapiens proteins only) was used to estimate the false discover pro-
portion (FDP, a.k.a. actual FDR or empirical FDR, see Methods).

We also investigated replacing, when performing targeted quan-
tification in DIA-NN, empirically observed fragments and their inten-
sities in the FragPipe/MSFragger-DIA generated spectral libraries with
the in silico predicted values.Note that the list of peptide ions included
in the library and their retention time values remained unchanged.
Replacing the experimental fragment peaks with the predicted peaks
resulted in a lower FDP (Supplementary Data 2). The rationale behind
this approach is that, in the case of low-abundance peptides, the
experimental fragment peaks frequently appear incomplete, with
some peptides exhibiting only a few fragment peaks. Also, low-quality
peptides may contain interfering peaks, leading to an increased like-
lihood of false matches. The incompleteness and interference make it
challenging for the target-decoy modeling to accurately distinguish
true matches from false ones. By replacing the experimental fragment
peaks with the in silico predicted peaks, we address this issue of
incompleteness, thus improving themodel’s performance. This option
was enabled for all analyses reported in this work.

Figure 2a presents the upset plot illustrating the quantification of
precursors obtained from DIA runs. There is a substantial degree of
overlap between the precursors quantified by both the FP-MSF and
other workflows. Although Spectronaut 17 reported the highest num-
ber of precursors, it raised concerns by detecting many unique pre-
cursors that were not detected by any other tools, potentially leading
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Fig. 1 | Overview of MSFragger-DIA in FragPipe. a DIA spectra are searched by
MSFragger-DIA directly using precursor candidates determined from the isolation
window. MSFragger-DIA builds MS1 and MS/MS spectral indexes, which are then
used to detect extracted ion chromatogram (XIC) features for all fragment and
precursor peaks in a peptide-spectrum match (PSM). Noisy fragment peaks are
filtered out based on the XIC, PSMs are rescored, and only the top scoring PSM
from each feature is kept. bWithin each DIAMS/MS scan, a greedy method is used

to removematched peaks and iteratively rescore peptide candidates from the top-
N list. Finally, MSFragger-DIA generates pepXML and pin files for PeptideProphet
and Percolator to estimate the peptide probability in FragPipe. cHybrid (combined
DIAandDDA)data analysisworkflow in FragPipe (“FP-MSFhybrid” in themain text).
Both DDA and DIA data are used to build a combined spectral library. This spectral
library is used to quantify peptides from the DIA data using DIA-NN.
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to false positives. To assess false discovery rates, we analyzed the
number of E. coli precursors present in the “Lymphnode” condition, as
depicted in Fig. 2b. The E. coli box plots show that all tools control the
false positives well (all E. coli peptide detections in the “Lymphnode”
condition are assumed to be false), with slightly higher number of false
identifications observed for Spectronaut 14 and 17 (Supplementary
Data 2). The box plots from the other three conditions, for both H.
sapiens and E. coli precursors, show that the MSFragger-DIA based
workflows and DIA-NN library-free resulted in comparable number of
precursors. Including DDA and GPF-DIA data in the spectral library
building step (FP-MSF hybrid workflow) provided an additional small
boost in the number of quantified precursors.

Quantification precision and accuracy evaluation
We used the same “benchmark” dataset to evaluate the precision and
accuracy of DIA data quantification. Since the 23 runs in the same
condition have the same amount of E. coli spike-in peptides, we cal-
culated the coefficient of variation (CV) for each E. coli precursors in
the “1–06” condition. We compared our tools with Spectronaut 14, 17,
andDIA-NN library-free pipelines. Figure 2c shows the violin plot of the
CV distribution, with box plots illustrating the quartiles andmedian of
the CVs. The plots reveal that, except for Spectronaut 17, the tools
have comparable quantification precision. Spectronaut 17 exhibits
the noticeably high CVs, indicating the lowest precision among
all tools.

Spectronaut 17 DIA-NN lib-free FP-MSF

a

d

cb
Escherichia coli (strain K12) Homo sapiens

0 3000 6000 9000 0 20000 40000 60000

FP−MSF hybrid

FP−MSF

DIA−NN lib−free

Spectronaut 17

Spectronaut 14

Precursors

Condition
1−06
1−12
1−25
Lymphnode

Fig. 2 | Performance assessment of sensitivity, false discovery rate, precision,
and accuracy using a benchmark dataset. Source data are provided as a Source
Data file. a Upset plot illustrating the quantified precursors. The precursors are
from all four conditions of both H. sapiens and E. coli. b Box plots representing the
counts of quantified precursors under four distinct conditions, each with a unique
color. There are 4 independent conditions. Each condition consists of 23 single-
shot DIA runs from 23 biological independent samples. The “Lymphnode” condi-
tion comprises samples from H. sapiens, while the remaining three conditions
includebothH. sapiens and E. coli spike-in samples.H. sapiens and E. coliprecursors
are displayed in separate panels. E. coli precursors in the “Lymphnode” condition
are deemed false identifications. Thebox ineachboxplot captures the interquartile
range (IQR), with the bottom and top edges representing the first (Q1) and third
quartiles (Q3) respectively. The median (Q2) is marked by a horizontal line within

the box. The whiskers extend to the minima and maxima within 1.5 times the IQR
below Q1 or above Q3. Outliers, signified by individual dots, fall outside these
bounds. c Violin plots showcasing the coefficient of variation (CV) based on E. coli
precursors from the “1–06” condition. There are 23 replicates. Each violin plot
contains an embedded box plot. The box plots’ edges, median, and whiskers are
same as the previous ones. d Scatter plots depicting the relationship between
protein log2 ratio and intensity, using proteins from the “1–06” (condition A) and
“1–25” (condition B) conditions to compute log-ratios. There are 2 conditions. Each
condition contains 23 replicates. E. coli proteins are colored orange, while H.
sapiens proteins appear in green. Horizontal dashed lines indicate true log-ratios,
while adjacent box plots display the marginal distribution of log-ratios on the right
side of each scatter plot. Theboxplots’ edges,median, andwhiskers are sameas the
previous ones.
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We further assessed the quantification accuracy using proteins
from the “1–06” and “1–25” conditions. Between these conditions, the
H. sapiens proteins maintain the same quantity, while the E. coli pro-
teins have a 25 to 6 ratio. Figure 2d and Supplementary Fig. 2 show
scatter plots of the log-ratios versus the intensities in both protein and
precursor levels. Green dots represent H. sapiens proteins and orange
dots indicate E. coli proteins. The horizontal dashed lines signify the
true log-ratios, while the curved dashed lines indicate the trend of the
dots. Box plots on the right of each scatter plot demonstrate the
marginal distribution of the log-ratios. The figures reveal that FP-MSF,
FP-MSF hybrid, and DIA-NN library-free have comparable accuracy.
However, Spectronaut 14 and 17 exhibit lower quantification accuracy
due to noisier scatter plots and a higher number of outliers. This
analysis demonstrates that MSFragger-DIA in conjunction with Frag-
Pipe offers high precision and accuracy in quantifying DIA data, while
also maintaining low false discovery rates and comparable sensitivity
among state-of-the-art tools.

Staggered-windows DIA with gas phase fractionation (GPF)
We then tested the ability of MSFragger-DIA to identify peptides from
DIA data acquired using the “staggered” windows approach57,58, with
additional narrow-window GPF-DIA data acquired for spectral library
building. The first dataset, taken from Searle et al.13, contains six
narrow -window GPF-DIA runs plus three wide-window, single-
injection DIA runs (the primary DIA runs for quantification) from a
HeLa lysate, 130min gradient time. The isolation windows of the GPF-
DIA and single-injection DIA runs are 4 Th and 24 Th, respectively.
After demultiplexing the staggeredwindows using ProteoWizard59, the
effective isolation windows were halved. We refer to this dataset as
“2018-HeLa”. The second, similar dataset was taken from Searle et al.60

and contains six GPF-DIA runs, and four single-injection DIA runs of
Saccharomyces cerevisiae lysate,115min gradient time. The isolation
windows are 4 Th and 8 Th, respectively, with effective widths halved
after demultiplexing. We refer to this dataset as “2020-Yeast”. More
information regarding these data can be found in Supplemen-
tary Data 1.

We used the FP-MSF workflow to analyze these two datasets (in
each dataset, GPF-DIA and primary DIA data were processed together
using MSFragger-DIA). We also compared the results with that from
the original publication60, and with the results of running Spectronaut
17, EncyclopeDIA, and DIA-NN library-free pipelines (see Methods).
Figure 3a and Supplementary Fig. 3a show the numbers of quantified
peptides from single-injection DIA runs. Although the 2018-HeLa

dataset was published earlier13, Searle et al.60 re-analyzed the same
dataset using an optimized spectral library. Thus, we included the
results from Searle et al.60 in the Figure (labeled “Searle et al. 2020”).
Bar heights indicate the average number of quantified peptides, and
circles show the number of quantified peptides in each individual run.
Spectronaut 17 demonstrated the highest sensitivity among the com-
pared tools. To examine if those quantified peptides are true and have
highquality,wegeneratedboxplots to show thedistributions ofCVs in
Fig. 3b andSupplementary Fig. 3b. Theblue ones are from thepeptides
overlapped among all tools, and the brown ones are the unique pep-
tides from a specific tool. No CVs data were available from Searle
et al.60. Even though Spectronaut 17 quantified more peptides, the
quantification precision is much lower (high CVs) compared to the
peptides from other tools. EncyclopeDIA has the second highest CVs
for its unique peptides. DIA-NN library-free and FP-MSF (which also
uses DIA-NN, but for quantification only using the FP-MSF generated
library) yielded similarly low CVs. Overall, this analysis shows that
MSFragger-DIA works well with GPF-DIA and staggered window DIA
data, exhibiting both good precision and sensitivity.

Low-input and single-cell proteomics data
We then used a dataset published by Siyal et al.16 to demonstrate the
performance of MSFragger-DIA in analyzing low-input cell data. We
selected two experiments containing 0.75 ng and 7.5 ng of starting
material. Each experiment was performed in three replicates. A
detailed list of thesefiles is provided in Supplementary Data 1.We refer
to this dataset as “low-input-cell”. The authors also generated DIA data
on samples with higher amounts of starting material, 1.5 ng and 1 µg,
for the purpose of building spectral libraries. To compare with the
published result, weused the FP-MSFpipeline toperform twoanalyses.
The first analysis used the spectral files from the 0.75 ng samples
(primary DIA data for quantification) and the 1.5 ng samples (DIA data
used for spectral library building only). The second analysis used the
spectral files from the 7.5 ng and 1 µg samples. We also used FP-DIAU,
DIA-NN library-free, andMaxDIApipelines to analyze the samedata for
comparison (seeMethods). Figure 4a, b show the number of quantified
proteins from 0.75 ng and 7.5 ng samples, respectively. All the tools
were run using the same set of input DIA data. We used the MaxLFQ
approach61 for peptide–protein intensity roll-up in all workflows that
used DIA-NN quantification (see Methods). However, we used the
“Intensity” columns for MaxDIA because of a very high rate of missing
quantification values with the “LFQ Intensity” columns (MaxLFQ
approach, SupplementaryFig. 4a, b). Thefigures show that FP-MSF and

a b

Fig. 3 | Quantifiedpeptidesand coefficientof variation (CV) fromthe2018-HeLa
dataset. Source data are provided as a SourceDatafile. aBar plots of the quantified
peptides. The bar height is the average number of three replicates. The white dots
indicate the numbers from individual replicates. The results from the original
publication (obtained using EncyclopeDIA version 0.8.3) are shown. We also re-
analyzed the data using the latest EncyclopeDIA (version 2.12.30). b Box plots of
peptide CVs. There are 3 single-shot DIA runs from 3 replicates. Blue box plots

represent overlapping peptides shared among all tools, while brown box plots
depict unique peptides quantified exclusively by each specific tool. The box in each
box plot captures the IQR, with the bottom and top edges representing the Q1 and
Q3 respectively. The median is marked by a horizontal line within the box. The
whiskers extend to the minima and maxima within 1.5 times the IQR below Q1 or
above Q3.
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DIA-NN library-free pipelines have similar sensitivities that are higher
than those of the other tools.

We also used the single-cell dataset published by Gebreyesus et
al.15; we refer to this dataset as “single-cell”. We picked two experi-
ments with 1 cell and 117 cells. Each experiment has three replicates.
The authors also generated two sets of DIA runs to build two spectral
libraries, referred to as “small-sample-lib” and “large-sample-lib” (with
the latter generated using a higher amount of starting material, see
Methods and Supplementary Data 1). There are 9 DIA runs and 3 DDA
runs in the small-sample-lib list of files. There are 4DIA runs and 4DDA
runs used for large-sample-lib. We used FP-DIAU hybrid, MaxDIA, DIA-
NN library-free, FP-MSF, and FP-MSF hybrid (using DDA data in addi-
tion to the library-only DIA data) pipelines to analyze this dataset (see
Methods). Figure 4c, d show the number of quantified proteins from 1
cell and 117 cells experiments, respectively. As for the low-input-cell
dataset, for MaxDIA we used the “Intensity” instead of “LFQ Intensity”
because a significant fraction of the proteins had zero MaxLFQ inten-
sity (Supplementary Fig. 4c, d). The results show that FP-MSF hybrid
pipeline quantified more proteins than the other tools in the 1-cell
experiment. In the 117-cell experiment, the difference between differ-
ent pipelines was less noticeable.

Phosphoproteomics data
After showing that MSFragger-DIA performs well in global proteome
data, including single-cell data, we used a phosphopeptide-enriched
dataset62 (Supplementary Data 1) to evaluate the performance of
MSFragger-DIA in identifying phosphorylated peptides. The dataset
contains two single-injection replicates for six different melanoma cell
lines. We refer to this dataset as the “melanoma-phospho” dataset. The
data were acquired with variable-width isolation windows over a
120min gradient. Because no DDA data were generated in this
experiment, we used FP-DIAU, DIA-NN library-free, and FP-MSF pipe-
lines (seeMethods for details). Proteins withmore than 50% ofmissing

values were discarded. Although all pipelines produced similar num-
bers of quantified phosphopeptides (Fig. 5a), this dataset highlights
the speed advantage of MSFragger-DIA. We used a Windows desktop
and a Linux server (seeMethods) to compare the computational times
(Fig. 5b, c). Prior to analysis, the 12 raw files were converted to mzML
format, which took approximately 7min. For the sake of simplification,
we excluded this conversion time from the runtime comparison, as it
was a prerequisite for all three tools. The total runtime was broken
down into different steps. For FP-DIAUworkflow there are pseudo-MS/
MS extraction by DIA-Umpire, database search usingMSFragger in the
DDA mode, rescoring, FDR filtering, and DIA-NN quantification steps.
For DIA-NN library-free, there are in silico spectral library prediction,
identification, and quantification steps. For the FP-MSF pipeline there
are database searching using MSFragger-DIA, rescoring and FDR fil-
tering, and DIA-NN quantification steps. FragPipe with MSFragger-DIA
had the fastest overall speed; it is at least six times faster than that of
the DIA-NN library-free workflow for these data.

Large-scale DIA based quantification study
We used a clear cell renal cell carcinoma (ccRCC) cohort63 from a
recentClinical ProteomicTumorAnalysis Consortium (CPTAC)project
to demonstrate large-scale DIA analysis with MSFragger-DIA. This
dataset contains 187 single-injection DIA runs from normal and tumor
samples, plus 8 fractionated DDA runs from pooled samples, all
acquired with a 140min LC gradient. Detailed file lists are provided in
Supplementary Data 1. We used the FP-DIAU, FP-DIAU hybrid, DIA-NN
library-free, MaxDIA, FP-MSF, and FP-MSF hybrid pipelines to analyze
the data (see Methods). Figure 6a shows the numbers of proteins
quantified from the single-injection DIA runs. Proteins with more than
50% ofmissing values were discarded. Supplementary Fig. 5 shows the
numberswithout discarding any proteins.Without usingDDAdata, FP-
DIAU and FP-MSF performed similarly, quantifying ~6500 proteins,
followed by DIA-NN library-free andMaxDIA. Adding DDA data as part

a b

c d

Fig. 4 | The number of quantified proteins from the low-input-cell and the
single-cell datasets. Source data are provided as a Source Data file. a, b Bar plots
from analyzing the low-input-cell dataset with 0.75 ng and 7.5 ng of starting mate-
rial. Proteinswithmissing values (zero intensities) were discarded. The dark color is

from the proteins with CVs less than 20%, and the light color is from the proteins
with CVs greater than or equal to 20%. c, d Same as above, for the single-cell
dataset, for 1 cell and for 117 cell data.
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of the spectral library building step resulted in a small increase in the
identification numbers (FP-DIAU hybrid and FP-MSF hybrid), again
confirming the utility of using auxiliary data, such as fractionated DDA
data, when available.

Running FP-MSF hybrid pipeline took less than 20 h on the Linux
server, and MSFragger-DIA based analyses had the fastest run time.
Because it was impractical to time the entire dataset of 187 files unin-
terruptedly, a more detailed comparison between the pipelines was
carried out using a subset of 20 DIA runs. The jobs were run on the
same standard Windows desktop (Fig. 6b) and the same Linux server
(Fig. 6c), asmentioned in the previous section (seeMethods). The time
spent on predicting the in silico spectral library for MaxDIA was not
included because a previously generated library was used. For FP-
DIAU, DIA-NN, and FP-MSF, the raw files were converted to mzML
format, which took approximately 8min. To maintain clarity and
simplicity in the figures, we excluded this conversion time from the
runtime comparison. FP-MSF pipeline (including the quantification
using DIA-NN) was at least two times faster than DIA-NN library-free
analysis, and five times (Windows desktop) or ten times (Linux server)
faster than MaxDIA. We also compared the runtime between Spec-
tronaut 17 and FP-MSF pipelines on another Windows desktop (see
Methods). Spectronaut 17 took 337min and FP-MSF took 144min.

We also evaluated the FDR control using the entrapment database
approach64. The FDP for DIA-NN library-free, FP-MSF, and FP-MSF
hybrid pipelines are 1.2%, 1.9%, and 1.8%, respectively (see Methods).

Overall, these results show that FragPipe with MSFragger-DIA for
peptide identification directly from DIA data can be used to process
large-scale datasets, even with relatively standard desktop hardware.
In contrast, other pipelines for DIA analysis are likely to require the use
of cloud computing pipelines65, which can be harder for a typical user
to install and deploy.

Given the availability of tandemmass tag (TMT) DDA proteomics
data—the main quantitative proteomics platform used by the
CPTAC66–and RNA-seq data for the same ccRCC patients63, we per-
formed additional analyses across these data types. We used
OmicsEV67, a recently described tool for quality control and com-
parative evaluation of omics data tables. We used as input, in addition
to the RNA-seq (taken from ref. 63) and TMT-based quantification data
(mzML files from ref. 63, reprocessed as part of this work using the
default FragPipe TMT workflow), DIA protein quantification tables
from FP-DIAU, FP-DIAU hybrid, FP-MSF, FP-MSF hybrid, and DIA-NN
library-free pipelines. OmicsEV produces comprehensive visual and
quantitative plots that help evaluate data quality of individual data
tables and facilitate the comparisons (for the full output from Omic-
sEV, see Supplementary Data 3). Reassuringly, all quantitative pro-
teomics data tables produced similar results across all OmicsEV
metrics. Figure 6d shows the principal component analysis (PCA) plot
for the quantification tables from the FP-MSF hybrid pipeline. The
tumor and normal samples are well separated, as observed in the ori-
ginal study, based on the TMT DDA data. OmicsEV also calculated the
gene-wise correlation between the RNA and protein abundances, with
Spearman’s correlation for the FP-MSFhybrid pipeline results shown in
Fig. 6e. For comparison, the gene-wise correlation between the RNA
and TMT-based protein abundance data is shown in Fig. 6f. DIA and
TMT DDA-based protein quantification data have similar gene-wise
correlations with RNA abundances, albeit slightly higher for the TMT
DDA-based data. Furthermore, more proteins were quantified using
TMT DDA. This is not unexpected, however, given that the TMT DDA
data was generated on highly fractionated peptide samples (25 frac-
tions), whereas DIA data was acquired without fractionation. The
functional pathways identified as enriched in tumor vs. normal sam-
ples were nevertheless similar between the DIA and TMT-based data
(Supplementary Data 3). Overall, our analysis shows that DIA data is
comparable to that from the more established, TMT-based protein
quantification platform.

Discussion
We described a new method for identification of peptides directly
from DIA data. The MSFragger-DIA strategy differs from that of DIA-

a

b

c

Fig. 5 | The number of quantified phosphopeptide sequences and runtime for
the melanoma-phospho dataset. Source data are provided as a Source Data file.
a An upset plot of the number of quantified phosphopeptide sequences. b The
runtime analysis performed on a Windows desktop. c The runtime analysis per-
formed on a Linux server.
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Umpire by reversing the order in which the two key steps are per-
formed: detection and correlation of precursor and fragment ion
features, and peptide-spectrum matching. While DIA-Umpire starts
with untargeted feature detection, MSFragger-DIA first determines a
list of all meritorious candidate peptides for eachMS/MS scan without
spectral deconvolution. Feature detection and peak tracing across the
LC dimension are performed in MSFragger-DIA as a second step, in a
targeted manner, and for selected candidate peptide ions. Using sev-
eral common experimental DIA workflows, we demonstrated that
MSFragger-DIA is faster thanDIA-Umpire followedby the conventional
(DDA mode) MSFragger search. It also has a higher sensitivity for
peptide identification, in part due to improved feature detection and
peak tracing performed in MSFragger-DIA in the targeted mode.
However, we consider the MSFragger-DIA and DIA-Umpire workflows
to be complementary. One advantage of the DIA-Umpire is that
extraction of pseudo-MS/MS spectra needs to be done once; these
spectra can then be re-searched using MSFragger (in DDA mode)
multiple times, for example, using different sequence databases or

search parameters. In contrast, MSFragger-DIA needs to be run each
time, starting from the raw data. Furthermore, the speed advantage of
MSFragger over DIA-Umpire is less significant for searches containing
multiple variable modifications. For nonspecific searches (e.g., HLA
peptidome data), MSFragger-DIA is significantly slower; thus, the
default FragPipe workflow for nonspecific DIA searches is based on
DIA-Umpire.

MSFragger-DIA, with its direct database search-first approach,
essentially blurs the difference between the analysis of DIA and DDA
MS/MS spectra. Thus, we believe that MSFragger-DIA can be further
extended to the analysis of wide-window DDA data68,69, enabling
identification of chimeric (co-fragmented) peptides from such data.
The strategy described here is also different from those based on
peptide-centric searches using in silico predicted spectral libraries.
Using MSFragger-DIA, it is not necessary to predict the entire spectral
library in advance, and there is no restriction on the size of peptides,
peptide ion charge states, or modifications that can be considered.
However, our workflows in FragPipe (for both DDA and DIA data) do

da

eb

fc

Fig. 6 | Results fromthe ccRCCdataset. Source data are providedas a SourceData
file.aBar plots of the numberof quantifiedproteins in the ccRCCdataset. There are
187 independent biological samples. The bar height is the total number. The white
dots are the numbers from individual runs. Proteins with more than 50% missing
values are discarded. b The runtime of analyzing 20 runs of the ccRCC dataset on a
Windows desktop. c The runtime of analyzing 20 runs on a Linux server.d PCAplot
based on the FP-MSF hybrid results, showing tumor (blue) and normal (red)

samples. e Histogram of Spearman’s correlation coefficients between the RNA-Seq
and theDIAprotein abundancedata (FP-MSFhybrid pipeline). The adjusted p-value
is from the two-sided test followed by the Benjamini-Hochberg procedure.
f Histogram of the Spearman’s correlation coefficients between the RNA-Seq and
the TMTDDA-based protein abundance data. The adjusted p-value is from the two-
sided test followed by the Benjamini-Hochberg procedure.
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benefit from deep learning-based predictions at the subsequent,
rescoring stage with the help of MSBooster and Percolator54. Inter-
estingly, we observed some advantages of using predicted spectra
(instead of empirical ones) at the final targeted quantification extrac-
tion step. This indicates that while MSFragger-DIA has high sensitivity
for peptide identification, some fragment ions may not be detectable
in every MS/MS scan where the peptide was confidently identified.
Because the spectral library building step in EasyPQP considers each
MS/MS scan in isolation, some fragments that are detectable using
targeted peak tracing (in FragPipe, using DIA-NN) may be missing in
the empirical spectra in the library. Replacing the empirical spectra
with the predicted spectra improves the number of quantified pre-
cursors. Such a replacement, however, is not advised in all situations,
for example, when performing MSFragger-DIA searches with less
common variable modifications, because such spectra may not be
predicted well.

Since this study focuses on the peptide identification, we did not
thoroughly investigate other aspects of the DIA data analysis such as
modification localization. However, by integrating with FragPipe and
DIA-NN, we can perform site localization in the DIA-NN quantification
step5. Lou et al.70 demonstrated that the DIA-NN localization algorithm
was more conservative than Spectronaut’s but resulted in lower sen-
sitivity. Considering the modification localization for the DIA data is
still an open question, we will investigate it in the future work.

MSFragger coupled with FragPipe enables researchers to conduct
DIA data analysis using different approaches, including library-based,
library-free, and hybrid methods. The term “library” in this context
typically refers to DDA or GPF-DIA data obtained from fractionated
pooled samples. An in silico spectral library from deep-learning pre-
dictions is not considered a “library”, as it eliminates the need for extra
sample preparation and data acquisition. Within the FragPipe, the
library-based approach employs DDA or GPF-DIA data to create a
spectral library. The library-free approach directly searchesDIA data to
generate a library. The hybrid approach combines DDA/GPF-DIA and
DIA data to construct a spectral library. The library is then used as a
reference for targeted extraction and identification of peptides in DIA
data. This method utilizes the strengths of both library-based and
library-free methods, resulting in a more comprehensive library. Our
experiments have shown that the hybrid approach tends to result in
the quantification of more peptides and proteins in comparison to
library-based and library-free methods. One of the reasons is the
enhanced library coverage. By integrating both DDA/GPF-DIA and DIA
data, the hybrid approach generates a spectral library with a broader
range of peptide and protein entries. This increased coverage allows
for the identification of peptides thatmay not be present or detectable
in either library-based or library-free approaches alone. The deeply
fractionated DDA or GPF-DIA data can contribute low-abundance
peptides, and the DIA data can contribute unique peptides specific to
the experiment. Therefore, we propose to use the hybrid approach
when DDA or GPF-DIA data is available.

Recently, Bruker developed a timsTOF platform to couple ion
mobility separation with time-of-flight (TOF) mass spectrometer. To
generate DIA data using the timsTOF platform, researchers proposed
diaPASEF data acquisition strategy71, and demonstrated a very pro-
mising performance of this platform. diaPASEF data poses new chal-
lenges to data analysis, as it becomes necessary to accommodate an
additional dimension of ion mobility separation. To address some of
those challenges, researchers have been investigating different
approaches to generate the data. Three protocols, including Slice-
PASEF72, midiaPASEF73, and Synchro-PASEF74, have been proposed very
recently. Due to the new data structure and the rapid development,
support in MSF-DIA for diaPASEF data is beyond the scope of this
manuscript. In future work, we plan to leverage the fragment ion
indexing to support direct peptide identification from diaPASEF data
in MSFragger.

In summary, we have developed a new direct DIA peptide identi-
fication method and implemented it as a module of the MSFragger
search engine. By integrating MSFragger-DIA into the FragPipe com-
putational platform, users can perform one-stop DIA data analysis,
frompeptide identification to quantification, optionallywith the useof
auxiliary (e.g., DDA) data to achieve optimal performance. With
experiments covering various data acquisition schemes and sample
types, we show that MSFragger-DIA demonstrates high sensitivity,
fastest speed, and comparable quantification precision to other state-
of-the-art DIA analysis tools. Coupled with the ease of use of FragPipe,
we believe that this work describes an attractive computational solu-
tion for the analysis of a wide range of DIA datasets.

Methods
DIA data analysis pipelines
MSFragger and FragPipe can perform one-stop DIA data analysis with
and without the use of auxiliary DDA data to build the library. The
comparisons were done with the DIA-Umpire workflow in FragPipe
based on pseudo-MS/MS generation, Spectronaut directDIA (library-
free) analysis, DIA-NN library-free analysis (based on in silico spectral
library prediction), EncyclopeDIA in silico library-based analysis, and
MaxDIA in silico library-based analyses. We used DIA-Umpire (version
2.2.8), Spectronaut (version 14 and 17, Biognosys), DIA-NN (version
1.8.1), EncyclopeDIA (version 2.12.30), MaxDIA in MaxQuant (Max-
Quant version 2.1.3.0 for the runtime comparison and 2.2.0.0 for other
experiments), and MSFragger (version 3.5). The pipelines are briefly
described below.

FP-MSF: Only DIA data were used in this pipeline. MSFragger-DIA
was used to directly search the DIA data. The search results were
processed usingMSBooster for deep learning-based score calculation,
Percolator33 for rescoring and posterior error probability calculation,
ProteinProphet34 for protein inference, Philosopher55 for FDR filtering,
and EasyPQP for spectral library building. The peptide ions in the
spectral library were filtered with 1% global peptide and protein FDR.
The resulting library was passed to DIA-NN23 to extract and quantify
precursors, peptides, and proteins from the DIA data. For
peptide–protein quantification roll-up, MaxLFQ normalization was
performed using the R package available at https://github.com/
tvpham/iq.

FP-MSF hybrid: Both DIA and DDA data were used in this pipeline.
MSFragger in the DIA and DDAmodes was used to search the DIA and
DDA data, respectively. The subsequent steps are the same as those in
the FP-MSF pipeline.

FP-DIAU: Only DIA data was used in this pipeline. DIA-Umpire was
used to generate pseudo-MS/MS spectra from the DIA data. Then,
MSFragger in DDA mode was used to search these spectra. The
remaining steps are the same as those used in the FP-MSF pipeline.

FP-DIAUhybrid: BothDIA andDDAdatawere used in this pipeline.
MSFragger in the DDA mode was used to search the DIA extracted
pseudo-MS/MS spectra and DDA data. The remaining steps are the
same as those used in the FP-MSF pipeline.

Spectronaut: Only DIA data was used in this pipeline. The direct-
DIA from Spectronaut 14 and directDIA+ from Spectronaut 17 were
used to analyze the data. Due to the commercial license, our access to
the Spectronaut software is limited. Therefore, only a few experiments
use Spectronaut.

DIA-NN library-free: Only DIA data was used in this pipeline. DIA-
NN predicted an in silico spectral library from the protein sequence
database and then used the library to search and quantify theDIAdata.
This mode of DIA-NN is also known as DIA-NN library-free mode.
MaxLFQ normalization was used for peptide–protein quantification
roll-up.

MaxDIA: Only DIA data was used in this pipeline. MaxDIA49 inside
MaxQuant was used to analyze the DIA data using the in silico spectral
library downloaded from https://datashare.biochem.mpg.de/s/
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qe1IqcKbz2j2Ruf?path=%2FDiscoveryLibraries. This is also known as
the “MaxDIA discovery mode”49. Unless otherwise noted, MaxLFQ
intensity was used. Due to the limitation of the in silico spectral library,
experiments involving multiple species or phosphoproteomics do not
use MaxDIA.

EncyclopeDIA: This pipeline requires GPF-DIA data to build an
experiment-specific spectral library to analyze the single-injection DIA
data. Since not all datasets contain GPF-DIA data, EncyclopeDIA was
only used in some of the experiments. Prosit40 (https://www.
proteomicsdb.org/prosit/) was used to predict the in silico spectral
library from a provided fasta file. Subsequently, EncyclopeDIA used
six GPF-DIA runs to generate an experiment-specific spectral library by
searching against the in silico spectral library. This experiment-specific
spectral library was used to analyze the single-injection DIA runs
with EncyclopeDIA. These steps were recommended by Searle et al.60

and detailed in the supplementary documents of the original
publication.

To ensure a fair comparison, we used the iq R package75 to filter
the results and calculate the MaxLFQ61 intensity for FP-MSF, FP-MSF
hybrid, FP-DIAU, FP-DIAUhybrid, Spectronaut, andDIA-NN library-free
pipelines.MaxDIAandEncyclopeDIApipelines are not compatiblewith
the iq package; hence, their results were filtered using the tools
themselves. For FP-MSF, FP-MSF hybrid, FP-DIAU, FP-DIAUhybrid, DIA-
NN library-free, and EncyclopeDIA pipelines, the input data files were
converted tomzML format using ProteoWizard76 to facilitate a fair and
straightforward comparison. However, Spectronaut and MaxDIA per-
form better with raw format, so we used raw files for those two pipe-
lines. It is worth noting that both FP-MSF and FP-MSF hybrid pipeline
support raw format on Windows operating system. Converting to
mzML format is not mandatory. Additionally, there is no need to run
the iq R package in real applications, as our tools can carry out FDR
filtering and MaxLFQ intensity calculation.

Sensitivity and FDR evaluation
The dataset published by Fröhlich et al.56 was used to benchmark the
sensitivity and estimate the false discover proportion (FDP, a.k.a.
actual FDR or empirical FDR). There are 92 single-injection DIA runs, 6
GPF-DIA runs, and 20 DDA runs. Among single-injection DIA runs,
there are four conditions: “Lymphnode”, “1–25”, “1–12”, and “1–06”.
Each condition has 23 runs from different patients. Details of sample
preparation and data acquisition can be found from the original pub-
lication. We used the DIA runs in the Spectronaut, DIA-NN library-free,
and FP-MSF pipelines. We used all the DIA, GPF-DIA, and DDA runs in
the FP-MSF hybrid analysis. The FASTA file was a combination of H.
sapiens, E. coli, and common contaminant proteins (downloaded on
February 18, 2022, UP000005640 and UP000000625, 24750 pro-
teins). The enzyme was set to restricted trypsin (i.e., allowing cleavage
before Proline). Carbamidomethyl cysteine was set as a fixed mod-
ification. Protein N-terminal acetylation and oxidation of methionine
were set as the variable modifications. The maximum allowed number
of missed cleavages was set to 1. For DIA-NN library-free, FP-MSF, and
FP-MSF hybrid, the precursorswerefilteredwith the combination of 1%
run-specific precursor FDR, global precursor FDR, run-specific protein
FDR, and global protein FDR. For Spectronaut 14, the precursors were
filtered with the combination of 1% precursor FDR and global protein
FDR. There is no run-specificprotein FDRavailable. For Spectronaut 17,
the precursors were filtered with the combination of 1% precursor
FDR, run-specific protein FDR, and global protein FDR. The Zenodo
link to the detailed parameters can be found in the ”Data availability”
section.

There are only H. sapiens peptides in the “Lymphnode” experi-
ment. Thus, the FDP can be calculated as:

FDP=
nf t

nt
ð1Þ

where nft is the number of false H. sapiens peptides and nt is the total
number of detected H. sapiens peptides. To estimate the FDP, we first
have:

nd

Nd
≈

nf t

ðNt � nttÞ
ð2Þ

wherend is the number ofdetected E. colipeptides,Nd is the number of
E. coli peptides in the spectral library, Nt is the number of H. sapiens
peptides in the spectral library, and ntt is the number of detected true
H. sapiens peptides. Combining Eqs. (1) and (2), and assuming ntt ≈nt ,
we have:

FDP ≈
nd

nt
:
ðNt � nttÞ

Nd
≈
nd

nt
:
ðNt � ntÞ

Nd
ð3Þ

Quantification precision and accuracy evaluation
Weused the samedataset56 used in the previous section to evaluate the
precision and accuracy of quantification. In the “1–06” condition, each
run contains an equal amount of E. coli spike-in peptides. Those pep-
tides were used to calculate CV for benchmarking the precisions of the
tools. Between the “1–06” and “1–25” conditions, the H. sapiens pro-
teins maintain the same quantity, while the E. coli proteins are expec-
ted to have a 25 to 6 ratio. Therefore, we used the proteins intensities
from these conditions to evaluate the quantification accuracy.
LFQbench77 was used to generate the scatter plots. In those two eva-
luations, Spectronaut 14, 17, DIA-NN library-free, FP-MSF, and FP-MSF
hybrid pipelines were used. The database and parameters are the same
as the previous section.

Staggered isolation window data
We used two sets of DIA data acquired with staggered isolation win-
dows to demonstrate the performance of MSFragger-DIA. The first
dataset was published by Searle et al.13 fromHeLa samples acquired on
a Thermo Q Exactive HF mass spectrometer. It contains six GPF-DIA
runs with 4 Th isolation windows, and three single-injection DIA runs
with 24 Th isolation windows. After demultiplexing59, the effective
isolation windows were 2 Th and 12 Th, respectively. We refer to this
dataset as 2018-HeLa. The second dataset was published by Searle
et al.60 from S. cerevisiae strain BY4741 samples acquired on a Thermo
Fusion Lumos mass spectrometer. It contains six GPF-DIA runs with 4
Th isolation windows and four single-injection DIA runs with 8 Th
isolation windows. After demultiplexing, the effective isolation win-
dows are 2 Th and 4 Th, respectively. We refer to this dataset as 2020-
Yeast. The raw files were converted to mzML format using
ProteoWizard76 with the vendor’s peak picking and demultiplexing.
Details of the sample preparation and data acquisition can be found in
the original publications13,60.

Spectronaut 17, EncyclopeDIA, DIA-NN library-free, and FP-MSF
pipelines were used. The enzyme was set to restricted trypsin. Carba-
midomethyl cysteine was set as a fixed modification. Protein
N-terminal acetylation and oxidation of methionine were set as the
variable modifications. The maximum allowed number of missed
cleavages was set to 1. For Spectronaut 17, EncyclopeDIA, DIA-NN
library-free, and FP-MSF pipelines, reviewed H. sapiens proteins and
common contaminant sequences were downloaded from UniProt
(downloaded on March 23, 2021, UP000005640, 20431 proteins) for
2018-HeLa dataset. The reviewed S. cerevisiae proteins and common
contaminants were downloaded from UniProt (downloaded on March
16, 2021, UP000002311, 6164 proteins) for 2020-Yeast dataset. Decoy
(reversed) sequences were appended to the original database for
MSFragger-DIA analysis. For Spectronaut 17, the quantified peptides
were filtered with the combination of 1% precursor FDR, run-specific
protein FDR, and global protein FDR. For EncyclopeDIA, the quantified
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peptides were filtered with 1% global precursor FDR by the tool itself.
For DIA-NN library-free and FP-MSF pipelines, the quantified peptides
were filtered with the combination of 1% run-specific precursor FDR,
run-specific protein FDR, global precursor FDR, and global protein
FDR. The Zenodo link to the detailed parameters can be found in the
“Data availability” section.

Low-input-cell data
A dataset from Siyal et al.16 was used to demonstrate the performance
of MSFragger-DIA in analyzing low-input data. We picked two experi-
ments with 0.75 ng and 7.5 ng cells. Each experiment has three repli-
cates. The authors also generated two sets of auxiliary DIA runs
(“library runs”) for spectral library building, using samples with 1.5 ng
and 1 µg of starting material. The database was obtained from the
original publication (20387 proteins). FP-DIAU, DIA-NN library-free,
MaxDIA, and FP-MSF pipelines were used because no DDA data was
available. For MaxDIA, the H. sapiens spectral library named “mis-
sed_cleavages_1” from https://datashare.biochem.mpg.de/s/
qe1IqcKbz2j2Ruf?path=%2FDiscoveryLibraries was used. For FP-DIAU
and FP-MSF workflows, the primary DIA data from the low-input cell
runs and library DIA runswere used together to build a spectral library.
For FP-DIAU, DIA-NN library-free, and FP-MSF pipelines, the proteins
were filtered with the combination of 1% run-specific precursor FDR,
run-specific protein FDR, global precursor FDR, and global protein
FDR. For MaxDIA, proteins were filtered with 1% global PSM and pro-
tein FDR. The remaining parameters are the sameas thosedescribed in
the preceding section.

Single-cell data
A single-cell dataset published by Gebreyesus et al.15 was used in this
study.Wepicked twoexperiments,with 1 and 117 cells. Each experiment
has three replicates. The authors also generated two sets of auxiliary
runs for spectral library building. The first one has 9DIA runs and 3DDA
runs from low-input data. We refer to this library as small-sample-lib.
The second one has 4 DIA runs and 4 DDA runs from the bulk cells. We
refer to it as large-sample-lib. For the 1 cell experiment, we used the
small-sample-lib, as suggested by the authors. For the 117 cells experi-
ment, we used the large-sample-lib. The protein sequence databasewas
obtained from the original publication (20194 proteins). FP-DIAU
hybrid, DIA-NN library-free, MaxDIA, FP-MSF, and FP-MSF hybrid pipe-
lines were used. For the FP-DIAU and FP-MSF hybrid pipelines, both DIA
and DDA data from the single-cell and library runs were used to gen-
erate a spectral library. For theDIA-NN library-free, FP-MSF, andMaxDIA
pipelines, the DIA data from the single-cell and library runs were used.
The remaining parameters are the same as above.

Phosphoproteome data
Weused a phosphoproteome dataset obtained fromGaoet al.62. There
are six experiments from sixmelanoma cell lines. Each experiment has
two replicates. FP-DIAU, DIA-NN library-free, and FP-MSF pipelines
were used. MaxDIA was not used to analyze these data because no
phosphoproteome spectral library was available on the corresponding
tool website. The enzyme was set to restricted trypsin. Carbamido-
methyl cysteine was set as a fixed modification. Protein N-terminal
acetylation, oxidation of methionine, and phosphorylation of serine,
threonine, and tyrosine were set as variable modifications. The max-
imum allowed number of missed cleavage was set to 1. The H. sapiens
proteins and common contaminant sequences downloaded from
UniProt (downloaded on March 23, 2021, UP000005640, 20431 pro-
teins) were used as the target protein sequence database. The
remaining parameters are the same as above.

Clear cell renal cell carcinoma (ccRCC) data
In the clear cell renal cell carcinoma (ccRCC) cohort63, there are 187
single-injection DIA runs from normal and tumor tissues, and 8

fractionated DDA runs from pooled tissues generated for spectral
library building. We used FP-DIAU, FP-DIAU hybrid, DIA-NN library-
free, FP-MSF, and FP-MSF hybrid pipelines to analyze the data. The
enzyme was set to restricted trypsin. Carbamidomethyl cysteine
was set as a fixed modification. Protein N-terminal acetylation and
oxidation of methionine were set as variable modifications. The
maximum allowed number of missed cleavages was set to 1. The
database contains the reviewed H. sapiens proteins and common
contaminant sequences downloaded from UniProt (downloaded on
March 23, 2021, UP000005640, 20431 proteins). The Zenodo link to
the detailed parameters can be found in the “Data availability”
section.

False discovery rate evaluation using entrapment database
We used 20 DIA runs from the ccRCC cohort63 to evaluate the FDR
control with the entrapment database approach64. To ensure a
sufficient number of entrapment sequences, we combined data-
bases of H. sapiens, S. cerevisiae, E. coli, and Arabidopsis thaliana,
obtained from UniProt (downloaded on April 18, 2023,
UP000005640, UP000002311, UP000006548, and UP000000625,
47092 proteins). This includes 20407 H. sapiens proteins, 6060 S.
cerevisiae proteins, 4401 E. coli proteins, and 16224 A. thaliana
proteins. We analyzed 20 DIA runs using DIA-NN library-free, FP-
MSF, and FP-MSF hybrid pipelines with the custom fasta file.
Quantified H. sapiens proteins were considered true, while proteins
from other species were considered false. We calculated the FDP
using the following equation:

FDP=
Nh

No
� no

nh
ð4Þ

whereNh is the number ofH. sapiens proteins in the database,No is the
number of non-H. sapiens proteins in the database, no is the number of
quantified non-H. sapiens proteins in the results, and nh is the number
of quantified H. sapiens proteins in the results.

Speed benchmarks
The runtime for each pipeline was measured on three computers: (1)
Windows desktop: Intel Core i9-10900K, 3.70GHz, 10 cores, 20 logical
processors, 128GB ofmemory; (2) Linux server: Intel Xeon E5-2690 v4,
2.6 GHz, 28 cores, 56 logical processors, and 512 GB of memory. We
used 19 threads on Windows desktop and 56 threads on the Linux
server. And the third computer with aWindows desktop: Intel XeonW-
2175, 2.50GHz, 14 cores, 28 logical processors, 128GB ofmemory. The
third computer only ran Spectronaut 17 and FP-MSF pipelines to get
the runtime comparison.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The parameter, log, and resultfiles in this study are available in https://
doi.org/10.5281/zenodo.7261712. The raw mass spectrometry data
used in this study are available in the MassIVE under accession code
MSV000082805 and MSV000084000; in the ProteomeXchange
under accessioncodePXD022992, PXD023325, andPXD027679; in the
National Cancer Institute Proteomic Data Commons under accession
code PDC000200; and in the European Genome-phenome Archive
under accession code EGAD00010002223. The proteome database
files used in this study are available in the UniProt database under the
proteome IDUP000005640 (H. sapiens), UP000002311 (S. cerevisiae),
UP000000625 (E. coli), and UP000006548 (A. thaliana). The con-
taminant protein database used in this study are available in https://
www.thegpm.org/crap/. Source data are provided with this paper.
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Code availability
MSFragger-DIA and MSFragger can be downloaded as a single JAR
binary file at https://msfragger.nesvilab.org/. FragPipe is available on
GitHub at https://github.com/Nesvilab/FragPipe. The Python and R
scripts for summarizing the results and generating the figures is
available at https://github.com/Nesvilab/MSFragger-DIA-manuscript.
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