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Parsing altered gray matter morphology of
depression using a framework integrating
the normative model and non-negative
matrix factorization
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Bingqian Zhou1,2,3,4,5,6,7,8, Keke Fang11, Wei Sheng12, Baohong Wen1,2,3,4,5,6,7,8,
Liang Liu1,2,3,4,5,6,7,8, Yarui Wei1,2,3,4,5,6,7,8, Huafu Chen 1,12 ,
Yuan Chen 1,2,3,4,5,6,7,8 , Jingliang Cheng 1,2,3,4,5,6,7,8 &
Yong Zhang1,2,3,4,5,6,7,8

The high inter-individual heterogeneity in individuals with depression limits
neuroimaging studies with case-control approaches to identify promising
biomarkers for individualized clinical decision-making. We put forward a fra-
mework integrating the normative model and non-negative matrix factoriza-
tion (NMF) to quantitatively assess altered gray matter morphology in
depression from a dimensional perspective. The proposed framework parses
altered gray matter morphology into overlapping latent disease factors, and
assigns patients distinct factor compositions, thus preserving inter-individual
variability. We identified four robust disease factors with distinct clinical
symptoms and cognitive processes in depression. In addition, we showed the
quantitative relationship between the group-level gray matter morphological
differences and disease factors. Furthermore, this framework significantly
predicted factor compositions of patients in an independent dataset. The
framework provides an approach to resolve neuroanatomical heterogeneity in
depression.

It is well accepted that depression is a highly heterogeneous syn-
drome. Patients with depression show pronounced inter-individual
variations in symptom manifestation, clinical trajectories, etiologies,
and treatment responses1–4. Two patients diagnosed with depression
may experience very different (or even opposite) symptom profiles5,
have different monoamine levels6 and respond differently to
treatment7. Interindividual heterogeneity hampers neuroimaging stu-
dies with case-control approaches to identify promising biomarkers
for individualized clinical decision-making. This is because traditional
neuroimaging studies aim to detect group-level effects but ignoring
inter-individual heterogeneity8. Neuroimaging studies establish that

group-level differences essentially representing an “average patient”
are on behalf of a fraction of patients8 and miss important inter-
individual heterogeneity9. In this context, although studies using
structural magnetic resonance imaging (MRI) consistently recognize
structural brain abnormalities in distributed brain regions, their find-
ings are not uniform because they adopt almost exclusively case-
control approaches in depression10. Parsing neuroanatomical hetero-
geneity not only provides insights into the etiology, but also facilitates
individualized clinical decision-making in depression.

An increasing number of researchers have realized neuroanato-
mical heterogeneity and have proposed a series of approaches to
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resolve it. These approaches can be roughly summarized into two
categories: identifying more homogeneous subtypes and obtaining
subject-level differences. The former aims to uncover potential sub-
types. Clinically, patients with depression are usually divided into non-
overlapping/categorical subtypes according to symptomatology,
course trajectories, and treatment responses11. Alternatively, with
advances in machine learning and the availability of open datasets,
researchers have revealed potential subtypes using data-driven meth-
ods from objective data, such as biological and neuroimaging data12.
Although these approaches show promise in practical clinical applica-
tions to a certain extent, such as informing treatment responses13 and
treatment selection14, they also have limitations. Similar symptoms can
be introduced by distinct mechanisms, restricting the application of
them in distinguishing etiologically distinct patients15. Importantly,
some patients may not clearly belong to any subtype, and subtypes
according to symptoms is unstable over time16. Data-driven methods
also encounter a number of challenges, e.g., choosing clustering algo-
rithms and determining the optimal number of subgroups17,18. Findings
derived from subtypes still cannot be applied to an individual patient.
The latter obtains neuroimaging phenotype at subject level. Recently, a
normative model is proposed to evaluate subject-level imaging differ-
ences by measuring the deviation from the normal distribution18. With
the normative model, neuroimaging studies succeed in inferring
subject-level structural brain alterations in mental disorders8,19,20.
Nonetheless, the high- dimension results derived from the normative
model is difficult to deal with8,19. On the other hand, relevant neuroi-
maging studies dot not reconcile subject- to group-level findings, lim-
iting interpretability of subject-level results.

In this study, we propose a comprehensible framework to quan-
titatively estimate structural brain abnormalities from a dimensional
perspective in depression. In this framework, subject-level graymatter
morphological differences measured with voxel-based morphometry
analysis were derived using the normative model8,21. Then non-
negative matrix factorization (NMF), a widely used dimensionality
reduction algorithm in neuroimaging studies22,23, was conducted to
parse subject-level differences into latent disease factors. In this way,
subject-level morphological differences are expressed as a linear and
unique combination of disease factors (Fig. 1A). We then performed
functional annotation on identified disease factors to associate them
with functional/cognitive terms using probabilistic (activation) map-
pings provided by Neurosynth (https://neurosynth.org/)24. In this
study, we had two main hypotheses: (1) Individual differences in clin-
ical presentation could be reflected in the factor composition; (2) The
disease factors could quantitatively derive the group-level morpholo-
gical results. What’s more, we also investigated the reproducibility of
the framework in another independent dataset.

Results
Overall approach
This study included three independent datasets: a discovery dataset
and two validation datasets. The discovery dataset recruited 105
patients with depression. The validation dataset 1 included 76 patients
with depression and 68 HCs and the validation dataset 2 included 492
HCs. All reported results were based on the discovery dataset and
validated using the validation datasets.

The workflow of this study involved five steps (Fig. 1B). (1) Per-
forming the normative model to derive individualized gray matter
volume (GMV) differences. (2) Performing NMF to parse subject-level
GMV differences into disease factors and factor composition. In this
step a strategywas also proposed to automatically identify the optimal
number of disease factors (K). (3) Investigating the relationship
between factor composition and symptoms, and performing func-
tional annotation on disease factors. (4) Reproducibility analysis. (5)
Association between subject- and group-level differences were inves-
tigated Table 1.

Four disease factors are identified
We identified disease factors of subject-level differences using NMF. To
choose the appropriate number of disease factors, an index named
stability value was proposed with the assumption results of the optimal
number of disease factors were the most stable (see method). A larger
stability value indicates a more stable result. The stability values of the
increased and decreased parts of the two datasets are presented in
Fig. S1. As shown, the stability valuewas the largest when the number of
disease factors (K) = 2 (for increased and decreased differences), sug-
gesting there were two positive and two negative disease factors. The
permutation test results (see method) suggested that NMF would yield
more stable results and explain greater variance than chance (Supple-
mentary results). These four disease factors are shown in Fig. 2A. Only
the top5%of voxels according todisease factors (H) for visualization are
shown. The factor compositions (W) of patients are shown in Fig. 2B.
Positive disease factor 1 comprised the orbital frontal cortex, ven-
tromedial prefrontal cortex/anterior cingulate cortex, temporal pole,
and middle temporal gyrus. Positive disease factor 2 comprised the
striatum, ventromedial prefrontal cortex (vmPFC)/anterior cingulate
cortex (ACC), parahippocampal gyrus, thalamus, and amygdala. Nega-
tive disease factor 1 comprised the vmPFC/ACC, superior frontal gyrus,
bilateral anterior insula, thalamus, striatum, hippocampus, and pre-
central gyrus. Negative disease factor 2 comprised the bilateral tem-
poral gyrus, inferior frontal gyrus, and postcentral gyrus. The identified
four disease factors in the validation dataset 1 and their spatial corre-
lations with these in the discovery dataset were presented in Fig. S2.

Patients with depression showed large variation in factor com-
position (Fig. 2B). We embedded factor composition (four weight
values) into two-dimensional space with a dimensionality reduction
technique (t-distributed stochastic neighbor embedding method)25.
These results intuitively indicated that patients with depression
exhibited high heterogeneity in factor composition.

Functional annotation results
Functional annotation identified a series of cognitive/functional terms
for each disease factor from the 217 terms with clear biological sig-
nificance. Overall, positive factor 1 was mainly related to auto-
biographical memory, positive factor 2 was to mood and attentional
deficits, negative factor 1 was to pressure, and conscious and negative
factor 2 was to language comprehension and communication. Sig-
nificantly related terms (permutation p <0.05, FDR corrected) were
included in the word cloud (Fig. S3 and Table S1), where the size of the
word was proportional to 1/permutation p. The functional annotation
results of the validation dataset 1 are presented in Table S2.

Association between factor composition and clinical
characteristics
We did not observe any correlations between factor composition and
clinical symptoms (FDR corrected p values < 0.05). There was also no
significant correlation between educational level and the weight of
disease factors, further excluding the effect of educational level on the
results. Further, the weights of the disease factors demonstrated no
difference between male and female patients (Weights of positive
factor 1 (PW1): t =0.778, p =0.438; Weights of positive factor 2 (PW2):
t = 1.549, p =0.124; Weights of negative factor 1 (NW1): t = −0.137,
p =0.892; Weights of negative factor 2 (NW2): t = 1.567, p =0.120).
However, there were significant differences in NW2 (adult onset vs.
adolescent onset: t = 2.635, FDR corrected p =0.013, Cohen’s d =0.523,
Fig. 3A) and PW1 (adult onset vs. adolescent onset: t = −2.989, FDR
corrected p =0.013, Cohen’s d = −0.593, Fig. 3B) between adult-onset
patients (age >18 years) and adolescent-onset patients (age ≤18 years).

Robust analysis results
We also investigated the robustness of the identified disease factors
by running NMF 100 times on a randomly selected population
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of 90% of the patients. Spearman’s correlation coefficients
between the factors in the overall patients and in a patient
subgroup are shown in Fig. 4A. As we found that patients demon-
strated significantly lower IQR than HCs, to exclude the potential
effect of IQR on our results, we also calculated Spearman’s
correlation coefficients between IQR and factor composition. As a
result, no significant correlation was observed (uncorrected
p values > 0.05).

Framework prediction of factor composition of unseen patients
The framework could significantly predict the factor composition of
patients in the independent validation dataset 1 (r = 0.667, p <0.001
for PW1; r = 0.678, p <0.001 for PW2; r = 0.521, p <0.001 for NW1;
r = 0.165, p =0.154 for NW2) (Fig. 4C).

The quantitative relationship between group-level results and
disease factors
The group-level gray matter morphological differences of the dis-
covery dataset are shown in Fig. S4. Patients with depression
exhibited decreased GMV in certain brain regions, including
the thalamus, hippocampus, parahippocampus, and precentral
gyrus (p < 0.05, FDR corrected). These was a significantly associa-
tion between the group-level results and the identified 4 disease
factors using a linear regression model (R2 = 0.738, F = 2.355 × 105,
p < 0.001):

Group � level differences = 1:488× 103*factorp1 + 0:637× 10
3*factorp2

�1:412 × 103*factornl�0:663× 103*factorn2
ð1Þ

Fig. 1 | Study overview. A Illustration of categorical approach and dimensional
approach. B The flow chart of this study. The subject-level gray matter volume
(GMV) differences are obtained with the normative model and parsed into latent
disease factors (and factor composition) with the optimal number (K) using NMF.

Then, we associate factor composition (weights) with clinical symptoms and per-
form functional annotation on the identified disease factors. Robust analysis is
conducted. Finally, investigating the association between subject- and group-level
differences. Two t, two sample t test; NMF non-negative matrix factorization.
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Fig. 2 | The identified four latent disease factors (H) and the factor composition
(W). A The distribution of the identified four latent disease factors (K). The top 5%
voxels according to H values are shown. B The factor composition (W values) for

each patient. PF1 positive factor 1, PF2 positive factor 2, NF1 negative factor 1, NF2
negative factor 2. Source data are provided as a Source Data file.

Table 1 | Clinicodemographic characteristics

Discovery dataset Validation dataset 1 Validation dataset 2

Depression
(N = 105)

HCs
(N = 130)

p Depression
(N = 76)

HCs
(N = 68)

p HCs

Male, No. (%) 50.48% 45.38% 0.963a 39.47% 51.47% 0.843a 38.01%

Age, mean (SD), [range], y 20.30 (5.04) [11–37] 21.05 (5.33) [12–36] 0.256b 24.76 (6.58) [14–37] 25.06 (5.12) [18–37] 0.766b 45.10 (17.30)
[19–80]

Educational level, mean (SD), y 12.81 (5.13) 13.56 (4.49) 0.230b 13.51 (2.76) 16.38 (2.19) 2.106e−10 b

HAMD, mean (SD) 22.26 (6.19) 27.60 (7.87)

Age of onset, mean (SD), y 18.83 (4.94) 28.69 (11.55)

Anxiety/somatization, mean (SD) 5.77 (2.56)

Weight, mean (SD) 0.15 (0.51)

Cognitive impairment, mean (SD) 2.92 (2.46)

Psychomotor slowing, mean (SD) 8.55 (2.00)

Sleep disturbance, mean (SD) 4.21 (2.25)

IQR, mean (SD) 1.98 (0.14) 2.09 (0.29) <0.001b 1.99 (0.10) 1.98 (0.11) 0.759b

HC healthy control, HAMD Hamilton rating scale for depression, a χ2 test, b two-sided two-sample t test, IQR Image Quality Rating.
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In addition, to intuitively show the relationship between the
subject- and group-level results. Group-level results were assumed to
obtained from an ‘average’ patient and the coefficients (obtained
before) were treated as its factor composition. Factor composition of
the “average” patient along with that of each patient were embedded
into a two-dimensional space (Fig. 4B). This relationship was validated
in the validation dataset 1 (supplementary results).

Discussion
In the current study, we put forward a comprehensible framework to
quantitatively assess altered gray matter morphological of patients
with depression. This framework parses subject-level gray matter
morphological differences into latent disease factors and retains inter-
individual variability. Factor composition significantly differs between
adult- and adolescent-onset patients. In addition, identified disease
factors can significantly derive group-level gray matter morphological
differences. Moreover, the framework can predict the factor compo-
sition of patients in another independent dataset.

The normative model can map individualized brain morphologi-
cal differences but yield high-dimension results at the same timewhich
is hard to handle with8,19. In this study, we go further to parse subject-
level morphological differences into disease factors using NMF that is
found to be able to uncover disease factors in autism spectrum
disorder23,26. In the work of Shan et al., the authors also decompose
gray matter matrix into six disease factors using NMF and obtain
individualized deviations of weight using normative model for each

patient with autism spectrum disorder23. However, there are three
main differences between their work and the current study. First, the
assumption is different. In the framework used in autism, the authors
do not directly obtain disease-specific factors, but the different com-
positions of factors shared by patients and normal population in aut-
ism. Second, the number of disease factors is automatically
determined in our proposed framework. Finally, quantitative relation
between subject- and group-level morphological results is also iden-
tified, reconciling the group- and subject-level results. We tackle inter-
individual gray matter morphological heterogeneity in depression
from a dimensional prospective, in accordance with dimensionmodel
of psychiatric disorders27.

Previous similar studies23,28,29 fails to obtain disease-related dif-
ferential patterns at subject level or validate the reproducibility of
their findings. Our proposed framework identifies four robust dis-
ease factors derived from individualized morphological differences
in patients with depression. The identified disease factors demon-
strate distinct spatial distributions and cognitive processes.
Although the identified factors are significantly associated with
cognitive processes, we don’t find any significant correlations
between the weights of disease factors and symptoms. The possible
explanations are numerous: First, ‘mood’ in the Neurosynth is a very
broad term including neutral, sad, and happy mood states derived
from both patients with brain disorders (mainly mental disorders)
and healthy population. Not all of them are related to depression.
Second, the structural/functional neural correlations of the same

Fig. 3 | Differences of factor composition between adult-onset and adolescent-
onset patients. Adult onset patients have significantly larger NW2 (A) and smaller
PW1 (B) than adolescent-onset patients. The y-axes represent the frequency, and
the unit is arbitrary (a.u.). Box plots represent median value, first and third

quartiles; whiskers represent the empirical 95% confidence interval. PW1 weight of
positive factor 1, NW2 weight of negative factor 2. Source data are provided as a
Source Data file.
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clinical symptom vary between patients with depression and healthy
population or patients with other mental disorders, such as
anhedonia30–32. Finally, we don’t record enough clinical measures.
Considering the association between age of onset and disease fac-
tors, clinical measures, such as antidepressant treatment response33,
executive dysfunction34, prevalence of stressful life events preceding
onset and levels of neuroticism35 may also be associated with disease
factors.

The patients with depression exhibit tremendous inter-individual
heterogeneity in factor composition. Examination of factor composi-
tion show that patients with depression are uniformly distributed in
the embedded space. Although medical status and comorbidity are
well controlled in this study, there is still notable heterogeneity in
factor composition among patients with depression, in accordance
with the notion that depression is a highly heterogeneous disorder36,37.
In addition, factor composition demonstrates significant differences

Fig. 4 | Reproducibility analysis results and association between subject-level
and group-level differences. A Distribution of the correlation coefficients
between the four disease factors identified using the overall patients and that using
a patient subset (90%) (N = 100). B Factor composition of all patients is embedded
into 4 into two-dimensional space. The orange hexagram represents subject-level
differences of each patient, and the red circle represents group-level differences

(“average” patient).C The correlations between the predicted weights and the true
weights in the validation dataset 1. Shadow represent the empirical 95% confidence
interval. PW1 weight of positive factor 1, PW2 weight of positive factor 2, NW1
weight of negative factor 1, NW2 weight of negative factor 2. Source data are
provided as a Source Data file.
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between adult- and adolescent-onset patients. The age of onset has
been consistently recognized as one of the sources of clinical hetero-
geneity and import potential confounders, leading to conflicting
findings of neuroimaging studies in depression10,33,38–40. For example,
unlike adult-onset depression characterized by decreased volume in
widespread brain regions41, adolescent-onset depression demon-
strates increased volume in distributed brain regions such as the hip-
pocampus, amygdala, and anterior cingulate cortex, possibly
reflecting an delayed dendritic pruning42,43. Collectively, these results
suggested that our framework uncovered potential disease factors
that captured the sources of clinical heterogeneity in depression.
Meanwhile, the personalized and multifarious factor composition
provided a possible interpretation of the conflicting findings of case-
control neuroimaging studies aimed at detecting group-level effects.
Although a large number of neuroimaging studies have recognized
structural brain abnormalities in depression, the patterns of abnorm-
ality remain unclear, as the findings have been largely inconsistent41,44.
Patients with depression demonstrate decreased, no variation, or even
increased graymatter volumes in distributedbrain regions45–48. Among
the affected brain regions, the hippocampus and medial prefrontal
cortex are representative regions. Their structural differences are
varied, resulting from the heterogeneity of patients with
depression12,49. Collectively, our proposed framework helped parse
subject-level morphological differences.

Although a number of studies also obtain subject-level neuroi-
maging differences, their results are difficult to understand18,50,51. The
current study shows that group-level approaches only detect
decreased gray matter volumes in limited brain regions, and the
derived conclusions are representative of the “average” patient. Most
of the individualized differences (e.g., positive factors) are concealed
by group-level analysis. In this study, the identified disease factors
show quantitative and linear relationshipwith group-level and subject-
level differences, establishing a connection to previous findings.

Despite these advantages, this study also has some limitations.
First, we don’t record enough clinical data, future studies can investi-
gate whether disease factors correspond to symptom dimensions in
depression. Second, only patients without other mental disorders
comorbidities are included in this study. The influence of comorbidity
on the disease factors can be investigated in the future. Third, wedon’t
control the alcohol and tobacco use.

This study proposes a robust and comprehensible framework to
quantitatively estimate altered structural brain heterogeneity in
depression from a dimensional perspective. Our proposed framework
yields comprehensible neuroimaging results at subject level, recon-
ciles the subject- and group-level neuroimaging findings and can pre-
dict factor compositions of patients in another independent dataset.

Methods
Sample
This study included three independent datasets: a discovery dataset
and two validation datasets. The discovery dataset included 105 first-
episode and untreated patients with depression and 130 matched
healthy controls (HCs). Patients were recruited from the outpatient
services of the Department of Psychiatry at the First Affiliated Hospital
of Zhengzhou University. The protocol to recruit this dataset was
approved by the Research Ethics Committee of the First Affiliated
Hospital of ZhengzhouUniversity. The validation dataset 1 included 76
patients with depression and 68 HCs. The protocol to recruit the
validationdataset 1was approvedby theResearchEthicsCommitteeof
the University of Electronic Science and Technology of China. The
validation dataset 2 included 492 HCs and the protocol to recruit this
validation dataset was approved by the Research Ethics Committee of
the Brain Imaging Center of Southwest University.

All study procedures were performed in accordance with the
Helsinki Declaration of 1975, and written informed consent was

obtained from all participants before the experiment. Details regard-
ing the description of datasets and scan acquisition are included in the
supplementary methods. All reported results were based on the dis-
covery dataset and validated using the validation datasets.

Voxel-based morphometry analysis
Voxel-wise gray matter volume (GMV) was measured following the
recommended pipeline of the Computational Anatomy Toolbox
(CAT12, http://dbm.neuro.uni-jena.de/cat12/). Structural images were
segmented into gray and white matter and cerebrospinal fluid, nor-
malized into Montreal Neurological Institute space (MNI), resampled
to 1.5mm3, smoothed (6-mm full-width at half-maximum Gaussian
kernel)38,52. The total intracranial volume (TIV) of each participant was
calculated. To control the data quality, the Image Quality Rating (IQR)
was recorded51,53.

Modelling latent disease factors
First, we adopted a normative model to obtain voxel-wise morpholo-
gical differences at the subject level. In a similar manner to growth
charts, which infer a child’s height or weight from age, the normative
model infers subject-level neuroimaging differences. As in previous
studies8,18, a Gaussian process regression was built to infer GMV value
for each voxel from age and sex. The model was first trained with HCs
and then applied to patients with depression. Two strategies were
adopted to assess the performance of the normativemodel. Firstly, we
assessed the performance of normative model using 10-fold cross-
validation in HCs in three datasets, respectively18. Specifically, for each
run, models were trained using the training set and predicted GMV
values in the test set. Second, we trained a Gaussianprocess regression
based on HCs in the discovery dataset and applied it to HCs in the
validation dataset 1. The performance of models was assessed using
the standardized mean squared error (MSE)18. Deviations between the
predicted and true GMVs wasmeasured with Z-score where positive Z-
scores indicated higher GMV in patients, and vice versa. Voxels were
divided into two parts according to Z-scores (positive and nega-
tive parts).

The subsequent steps were separately conducted on the positive
and negative parts. NMF was conducted to parse individualized mor-
phological differences into distinct patterns (disease factors) for the
increased/decreased parts. As NMF only allows non-negative input,
absolute values of Z-scores of negative parts were considered. In
neuroimaging studies,NMFproducesmore explanatory, reproducible,
and specific results and avoids the opposite differences canceling each
other54. NMF yields soft (probabilistic) parcellation of voxel-wise dif-
ferences. This method has been widely used in neuroimaging
studies55,56. NMF is defined as follows:

D=W×H+ ϵW,H>0 ð2Þ

Where D is the subject-level gray matter differences (subject × voxel),
H is disease factors (factors × voxel), W (subject × K) is factor
composition, and є is the residuals. The only parameter that needs
to be predefined is the K.

Inspired by a previous study57, we determined the optimal K
(between 2 and 10) using the following strategy. First, we assumed that
if the K was the optimal, the corresponding results were the most
stable. For each K (between 2 to 10), NMF was repeatedly ran because
of random initialization (100 times). The Hungarian matching algo-
rithm was used to match factors across runs28,57. The mean Pearson’s
correlations between factorswere calculated. This procedure yielded a
100 × 100 correlation matrix. The averaged value (stability value) of
the 100 × 100matrixwas then calculated tomeasure the stability of the
results across runs. If theK is optimal, the corresponding stability value
was the largest. Finally, using the optimal K, we averaged the results
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across 100 runs. For each patient, linear regression models were gen-
erated to obtain how much variance was explained by disease factors.

Then, we investigated whether NMF with the optimal K would
yield more stable disease factors and whether the variance explained
by these disease factors was significantly greater than chance. To this
end, a permutation test (1000 times) was performed. For each run,
individualized GMV differences were shuffled for each patient. Then,
we calculated stability valuewith the optimalK (as before). Once again,
the variance of disease factors was explained using linear regression
models. The significance was determined with permutation p <0.05
(FDR corrected).

Functional annotation for the disease factors
To provide a further interpretation of the identified disease factors, we
conducted functional annotation on the identified disease factors.
Briefly, functional annotation associated cognitive processes/func-
tional terms with identified brain regions using probabilistic (activa-
tion) mappings provided by Neurosynth (https://neurosynth.org/)24.
There are more than 4000 search terms in Neurosynth. However,
some of the search terms were useless in identifying tasks such as
“able” and “abstract.” Overall, 217 terms that had clear biological sig-
nificance were selected. The list of selected functional terms is listed in
the study by Cheng et al.58. The significance of the associations
between the identified disease factors and functional terms was
determined using a permutation test (1000 times). The significant
terms were determined if the corresponding p values were <0.05 (FDR
corrected). Details about the permutation test are included in the
Supplementary Methods. As each factor covered the whole brain,
functional annotationwas performedon themost representative brain
areas (the top 5% of voxels according to disease factors or H) for each
factor. This procedure was performed using the brain annotation
toolbox (BAT, https://istbi.fudan.edu.cn/lnen/info/1173/1788.htm)59.

Association between factor composition and clinical features
We calculated Spearman’s correlation between factor composition
and the Hamilton Depression Rating Scale factor scores, disease
duration, age of onset, and years of education. The correlation results
were corrected by false discovery rate (p <0.05). The differences in
factor composition between adolescent- (age ≤18 years) and adult-
onset patients (age >18 years) were calculated60. Sexual differences in
factor composition were also investigated using a two-sample t test
(p < 0.05, FDR corrected).

Robust analysis
To rule out the possibility that our results were biased by some
patients, disease factors were identified from 90% of randomly selec-
ted patients with K determined in the previous step. This procedure
was repeated 100 times. Spearman’s correlation coefficients between
factor composition obtained from all patients and that from patient
subgroup were calculated. Similarly, factors were matched with the
Hungarian matching algorithm28,57.

Reproducibility analysis
Then, we inferred the factor composition of patients in the validation
dataset 1 using linear regression models where disease factors
(identified using the discovery dataset) were the independent vari-
ables and subject-level differenceswere thedependent variables. The
coefficients of regression models were treated as the predicted fac-
tor compositions. The true factor compositions of patients in the
validation dataset 1 were obtained as before. Spearman’s correlation
coefficients between the predicted factor composition and the true
ones were calculated to measure the reproducibility of our frame-
work. The correspondence between the predicted factor composi-
tion and the true ones were determined using the Hungarian
matching algorithm.

Association with group-level differences
Wealso investigated the relationship between subject- and group-level
gray matter morphological differences. Group-level gray matter mor-
phological differences were obtained by comparing GMV between all
patients and HCs using a two-sample t test with using SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm). In this step age, sex, years of edu-
cation and TIV were treated as covariates. Then, a linear regression
model was conducted to assess the quantitative relationship between
group-level gray matter morphological differences (unthresholded T
map) and disease factors. Model statistics included the R2 statistic, the
F-statistic and its p-value were recorded.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The probabilistic (activation) mappings are provided by Neurosynth
(https://neurosynth.org/). The neuroimaging data of discovery dataset
and validation dataset 1 used in this study are under active use by the
reporting laboratory and are available from the corresponding author
upon request. The validation dataset 2 is freely available (http://
fcon_1000.projects.nitrc.org/indi/retro/sald.html). Source data are
provided with this paper.

Code availability
All analytical procedures in this study are based on publicly available
toolkits. Gray matter volume is assessed with the Computational
Anatomy Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat12/). The
normativemodel is freely available (GAUSSIAN PROCESS REGRESSION
AND CLASSIFICATION Toolbox version 4.2, http://www.
GaussianProcess.org/gpml/code). Functional annotation is per-
formed using the Brain Annotation Toolbox (BAT version 1.1, https://
istbi.fudan.edu.cn/lnen/info/1173/1788.htm). Group-level differences
in GMV are obtained using SPM12 (http://www.fil.ion.ucl.ac.uk/spm).
Non-negative matrix factorization is performed using the built-in
function in MATLAB 2018a. Additional information is available from
the corresponding author upon request.
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