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Large depth-of-field ultra-compact micro-
scope by progressive optimization and deep
learning

Yuanlong Zhang1,2,3,4,11, Xiaofei Song5,11, Jiachen Xie1,2,3,4,11, Jing Hu6,11,
Jiawei Chen7, Xiang Li7, Haiyu Zhang7, Qiqun Zhou7, Lekang Yuan8, Chui Kong 9,
Yibing Shen6, Jiamin Wu 1,2,3,4 , Lu Fang 10 & Qionghai Dai 1,2,3,4

The optical microscope is customarily an instrument of substantial size and
expense but limited performance. Here we report an integrated microscope
that achieves optical performance beyond a commercialmicroscopewith a 5×,
NA 0.1 objective but only at 0.15 cm3 and 0.5 g, whose size is five orders of
magnitude smaller than that of a conventional microscope. To achieve this, a
progressive optimization pipeline is proposed which systematically optimizes
both aspherical lenses and diffractive optical elements with over 30 times
memory reduction compared to the end-to-end optimization. By designing a
simulation-supervision deep neural network for spatially varying deconvolu-
tion during optical design, we accomplish over 10 times improvement in the
depth-of-field compared to traditional microscopes with great generalization
in a wide variety of samples. To show the unique advantages, the integrated
microscope is equipped in a cell phone without any accessories for the
application of portable diagnostics. We believe our method provides a new
framework for the design of miniaturized high-performance imaging systems
by integrating aspherical optics, computational optics, and deep learning.

Microscopy is an indispensable tool in understanding the world that
cannot be seen with the unaided eye and facilitates diverse applica-
tions in fundamental biology1, systems neuroscience2, and clinical
diagnostic3. Most of the microscopes require tabletop optical instru-
mentations, including multiple glass lenses and bulky sensors, as well
as trainedpersonnel for operations. However, the complexity prevents
accessibility in resource-limited settings and hampers the scope and
scale of applications. Even with that bulkiness, the development of the
microscope is confounded in several aspects. Scale-dependent

geometric aberrations limit the resolution of the microscope in the
margin of a millimeter-scale field-of-view (FOV), resulting in an unde-
sirable trade-off between the effective space-bandwidth product (SBP)
and the complexity of the optical design4. High resolution is always
desired in microscopic systems, but the depth-of-field (DOF) is inevi-
tably reduced due to the high numerical aperture (NA) and leads to
poor imaging quality for 3D distributed samples5. Emergent advances
in sophisticated optical design try to circumvent these restrictions
through complex lens configuration6 and multi-view information
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acquisition7,8, which achieve remarkable results in table-level labora-
tory equipment, but the bulkiness is even more problematic.

Miniaturized integration is a pivotal advance that facilitates low-
cost production and typically leads to improved performance and
broad applications in telecommunications, computing, and
genomics9. Recently, a miniaturized microscope has achieved break-
throughs in multiple aspects, including neural recording in freely
behaving mouse9,10, high-throughput screening11,12, and flow
cytometry13,14. Furtherwith computational enhancement, the extended
DOF (EDOF) that provides robustness over rough surfaces of 3D
samples15 can be achieved togetherwith corrected color and enhanced
resolution16–18. However, the optical performance of current minia-
turized microscopes is still limited in size, performance, and cost.
Approaches with simple lenses are limited in sub-millimeter FOVs with
remarkable distortions19–21, while larger FOVs can be achieved through
more complex lens combinations, but the overall length and weight of
the system increase rapidly22,23. Although two-photon and three-
photon-based miniaturized microscopes have been developed to
provide deep penetration with optical sectioning24–26, they require
more specialized optical elements and suffer from low acquisition
speed for high-throughput imaging. Moreover, limited space for pla-
cingmultiple compound lensesmakesmostminiaturizedmicroscopes
monochromatic9,27,28. Integrated light microscope designs that break
those limitations remain to be explored.

Recently, deep optics technologies that parallel optimize the
optical design and image processing algorithms are emerged and pro-
mising to achieve superior performance29,30 than traditional ray-tracing-
based optical designs. The end-to-end fashion in deep optics has been
validated to be distinguished in achieving large FOV31,32, large DOF33,
high dynamic range34, and hyperspectral imaging16, among others.
However, currentdeepoptics techniqueshavebeen limited in simplistic
optical systems and remained a great challenge for applications with
small working distances and large FOVs due to the ever-larger solution
spaces and aberrations in microscopic applications29. In addition, most
deep neural networks for megapixel-level microscopic image restora-
tion require large storage spaces and computational resources, which
are hard to be distributed in integrated systems for practical use.

To overcome these limitations, we develop a progressive optimi-
zation pipeline to exploit state-of-the-art optical design techniques in
computational imaging systems, together with physics-based deep-
learning reconstructions compositely. Specifically, the progressive
optimization paradigm first constrains the heavily non-linear and
complicated design space into a feasible size by ray-tracing-based
merits and leverages advanced artificial intelligence algorithms to
exhaustively rummage the optima, with over 30 times memory reduc-
tion compared to the end-to-end optimization paradigm. We conse-
quently build a compact multi-color microscope that is as light as 0.5 g
in a 0.15 cm3 volume and can even be integrated into a cell phone for
potable diagnosis. Inspired by emerging technologies in diffractive
elements35, we integrate a cubic phase mask to achieve an EDOF of
300 µm for 0.16 NA acquisition that is tenfolds of the commercial sys-
tem and in the single-dollar range for mass production. With four
aspherical lenses optimized to generate spatially uniform coded point
spread functions (PSF), our device achieves 3 µm optical resolution
across a wide FOV with a diameter larger than 3.6mm after learning-
based reconstructions. Aphysics-awaremodel is established to simulate
the forward imaging process of the integrated microscope, which can
fuel the training of the recovery algorithm to accomplish ground-truth-
deficient restoration and perpetuate the generalization ability. We fur-
ther apply apruneddeepneural network as the image recoverymodule,
offering the powerful capability of resolving high-fidelity information in
a noniterative, feed-forward manner, but with near 80% parameter
reductions for real-time processing of megapixel level captures, which
is critical for ready distributions in mobile platforms. Thereby, not only
compressing over 100,000 times in volume, our integratedmicroscope

obtains imagingperformancebeyondacommercial 5×microscopewith
over 10 times improved DOF, which is necessary for practical applica-
tions on rough surfaces of most samples across a large FOV. Even
compared with existing advanced miniaturized microsopes27,36–40, the
proposed integrated microscope has a much smaller size and weight
(Supplementary Table 1). In themeantime, the total cost of the system is
below10dollars formassproductionwith theplastic lensesusedandno
cemented lenses involved. To demonstrate its unique advantages, we
used themicroscope formobile healthmonitoring after integration into
a commercial cell phone. By detecting skin moisture with over 80%
accuracy, we show the great potential of the proposed integrated
microscope in image-based diagnostics and high-throughput screening
on a generally accessible mobile platform. We further open source the
designof theproposed integratedmicroscope (Supplementary Table 2)
and corresponding restoration network (Code Availability and addi-
tional online data41) and hope they spur the development of high-
performance integrated optical devices.

Results
High-performance integrated system by progressive
optimization
To accomplish high-quality imaging in an integration platform with
minimized size andmaximized depth of field (DOF), pivotal challenges
from geometrical aberrations, resolution, and DOF dilemma, and
chromatic aberrations are necessary to be remedied. First, the effec-
tive space-bandwidth product of an optical system reduces rapidly
with the reduction of the lens scale due to the practical limit set by the
geometrical aberrations42. Second, intrinsic tradeoffs between the
spatial resolution and DOF impair the performance either in capturing
delicate structures or in being robust over rough 3D samples. Third,
chromatic aberrations in miniaturized devices are raised as diffractive
elements with complex surfaces used and hamperwide applications of
multi-channel screening and color-coded neural imaging.

To solve all these problems, we propose an advanced progressive
design pipeline that fully leverages the advantages of both traditional
ray-tracing-based and emerging deep-optics-based optimizations
compositely (Fig. 1a). We notice that direct optimization of both
optical system and retrieving algorithms in an end-to-end manner
requires over 16 million calculation grids per surface and 600 GB
memory consumption (Supplementary Note 3), inevitably leads to
suboptimal solutions with huge computational costs. Instead, we first
narrow down the overall design space with traditional optical design
merits to achieve an integrated lens design with fair performance and
compact size (Fig. 1b), then jointly optimize both lenses and a coding
phase plate for DOF extension, and finally concurrently optimize the
overall system with a neural network to achieve the best performance
across all DOF.

In the first round of optimization, our integrated system accom-
plishes an optical resolution of 3 µm across a FOV ofΦ3.6mm and in a
conjugate distance of 6mm with four pieces of aspherical lens under
traditional ray-tracing-based merit. To achieve this, we use a multi-
dimensional coupling optimization design to realize equivalized MTF
across a wide wavelength range (470–650 nm, step 1 in Fig. 1a). We
adopt two kinds of optical plastic materials as well as aspherical sur-
face shapes to effectively reduce the chromatic aberrations while
keeping the form factor compact without using cemented doublets43

(“Methods”). The strict Rayleigh-Sommerfeld diffraction theory is used
to establish the corresponding optical propagation model, and adap-
tive gradient descent is applied to optimize the surface shape to
reduce aberrations. As a comparison, a conventional microscope sys-
tem that is consisted of spherical glass lenses (Supplementary Fig. 1)
uses six more lenses (including two sets of cemented doublets to
eliminate chromatic aberration), and its conjugate distance
(11.735mm) is twice that of the proposed system. In the second round
of optimization, we introduce a diffractive optical element (DOE)
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featuring a cubic phase distribution in close proximity to the lens
system’s pupil plane, facilitating light field encoding and bolstering the
depth invariance of the point spread function (PSF) (Fig. 1c). As a
member of the polynomial-based asymmetric phase profile family, the
cubic phase is capable of producing MTFs that demonstrate gradual
variation in response to focus shift, thereby extending the DOF
effectively44. For a specific cubic phase parameter, we finetune the
surface parameters of the integration system such that MTFs of the
system are similar across 300 µm (“Methods”, Fig. 1d, step 2 in Fig. 1a).
The optimized PSFs then show similar triangle profiles across 300 µm
depth range (Fig. 1e) with a nearly unchanged frequency modulation
range (Fig. 1f), while the uncoded PSFs quickly losemodulations in the
higher frequency range during defocus. We then get 15 configurations

with varied cubic phaseparameters and lens shapes, andwe separately
train a neural network for each configuration with merits of best
reconstructions across the 300-µm depth range (step 3 in Fig. 1a). We
choose the configuration with the best imaging quality as our final
design (Supplementary Fig. 12).

After the optimization, the proposed integratedmicroscope shows
non-degraded Strehl ratios across a 300-µm depth range andΦ3.6mm
lateral FOV, which is a widely used merit that evaluates the perfectness
of an optical system. On the other hand, the system without the DOE
coding shows substantially lower Strehl ratio when defocus is beyond
30 µm (Fig. 1g). The size of the optimized lens system is smaller than
4mm in all dimensionswithout the sensor board (Fig. 1h). Noteworthily,
the optical resolution and FOV of the progressively optimized
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integrated microscope are comparable to a commercial microscope
with a 5× objective (Fig. 1i), while the overall volume is reduced by 5
orders of magnitude (“Methods”). The corresponding full design char-
acteristics can be found in Supplementary Fig. 2.

Deep-learning-enhanced image restoration in the integrated
microscope
Deep learning is a powerful technique that performs complex opera-
tions using amultilayered artificial neural networkandhas showngreat
success in various computer-vision tasks45. We incorporate a deep
neural network in the final optimization stage and envisage high-
quality reconstructions from DOE-coded raw images in both the
training and practical usage stage. However, it is hard to capture the
paired ground-truth images that remain clear and sharp in different
depths in practice, ensuing the restoration problem of ground-truth
deficiency46. We thus accomplish the image restoration task through
the simulation-supervision approach. We first use a standard 5×
tabletop microscope to capture images at different depths with a
motorized stage (Fig. 2a, “Methods”) and then digitally propagate the
defocused images through the proposed integrated microscope and
simulate corresponding blurry captures (“Methods”, Supplementary
Figs. 3, 13). Combining coded images that are defocused differently
thereby generates the input of the network. On the other hand, we
utilized image fusion technology47 to stitch clear parts in each defo-
cused image to form the all-in-focus ground truth across the DOF. The
virtually generated input and label form training pairs to fuel the
neural network in an end-to-end manner to restore clear images from
blurred captures (Fig. 2b, “Methods”, Supplementary Software 1). By
separately optimizing the network for each optical setup in the pro-
posed progressive optimization, we simultaneously achieve both the
optimized reconstruction algorithms and optical models, consolidat-
ing the superior performance of the proposed integrated microscope.

The effectiveness of the above simulation-supervision framework
working on practical data is assured through highly similar distribu-
tions of features from simulated coded captures and real coded cap-
tures (Supplementary Fig. 4). After proper training, the neural network
can efficiently remove blurriness from experimentally coded captures
(Fig. 2c, Supplementary Fig. 5). To show the superior restoration ability
of the proposed simulation-supervision network, we compare it with
the state-of-the-art shift-variant deconvolution algorithms which have
shown great success with irregular nonuniform PSFs across a large
FOV37,48 (Supplementary Fig. 6). We find that our simulation-
supervision method outperforms that technique in terms of peak
signal-to-noise ratio (PSNR), perceptual loss49, and structure similarity
index50 (SSIM; Fig. 2d). We further quantitatively measure the fidelity
of retrieved images acrossmultiple depths (Fig. 2e). The quality scores

by the proposed neural network maintain similar high performance
across 300-µm depth ranges, while scores of the shift-variant decon-
volution algorithm quickly degrades when the defocus is beyond
50 µm. Compared to refocusing methods that directly retrieve large
DOF imageswithout DOE coding51, our simulation-supervisionmethod
also achieves superior results (Supplementary Fig. 7).

Recent emerging unsupervised learning technology establishes
network mappings between domains without paired data52. Although
the unsupervised manner avoids the procedure of focal stack acqui-
sition compared to our simulation-supervision approach, we find that
our approach achieves better performance in PSNR, SSIM, and per-
ceptual loss (Supplementary Fig. 8). Besides, the unsupervised
approach generates many artifacts in the boundary of features (Sup-
plementary Fig. 8a, b), while our simulation-supervision approach
achieves vivid reconstructions without artifacts.

Evaluation of the mass-producible integrated microscope
To verify the proposed framework in practice, we fabricated the inte-
grated microscope through diamond turning and injection molding
(“Methods”). Successive lens parts thus can be acquired at a low price
(cheaper than $10 each) thanks to our plastic design, molding fabri-
cation, and being free of cemented elements. To confirm the suc-
cessful fabrications, we calibrated the proposed system through a
customized 1-µm pinhole array written by lithography across a
Φ3.6mm FOV (Fig. 3a, Supplementary Fig. 9; “Methods”). As shown in
Fig. 3b, themaximum intensity projection (MIP) of 3D distributed PSFs
shows spread patterns in the margin of the FOV because of the finite
conjugation of the system, where the experimental magnification
highly correlates with the design value. Furthermore, shapes and
intensity distributions of experimental PSF across different lateral and
axial positions highly match those of the simulated PSFs, suggesting
accurate modeling and fabrications (Fig. 3c).

The similarity between the designed PSFs and calibrated PSFs
guarantees that the simulation-supervision network can effectively
work on experimental data. To further verify it, we quantitatively
compared the PSF size along the x and y directions in simulated and
calibrated data. We found the simulated PSF size corresponded well
with the experimental data at different depths and lateral positions
across the entire sensor area (Fig. 3d). On the other hand, dis-
crepancies during lens fabrication were inevitable. Considering the
fabrication flaws of different instances are distributed in a centered
manner, it is likely that the average similarity between the theoretical
PSF and practical PSFs would be closest compared to the similarities
between different instances of practical PSFs (Supplementary Fig. 14a).
Additionally, the noise present during the calibration of practical PSFs
can contribute to the convolution of the forward imaging process,

Fig. 1 | Principles of progressive optimization of an integrated microscope.
a Progressive optimization pipeline for a high-performance integratedmicroscope.
In the first step, the integratedmicroscope consisting of plastic lenses is optimized
with field of view (FOV) and chromatic merits through a canonical ray-tracing
approach. In the second step, a diffractive optical element (DOE) containing cubic
phase distribution is inserted in the front of the integrated microscope, and the
system is further optimized for consistent modulation transfer function (MTF)
across a 300-µmdepth range. For every amplitude of the cubic phase (“Methods”),
a corresponding lens system is optimized, and multiple candidate models are
formed. In the third step,we separately train a deepneural network to retrieve clear
images from captures of each of the models, and select the one yielding the best
quality as the final optical design. As a comparison, directly optimizing all surfaces
with deep optics algorithms needs 16 million calculation grids in an aperture of
4mm and a feature size of 1 µm for each surface, consuming over 600 GB of
memory. On the other hand, our progressive but systematic optimization can be
finished in a desktop-level computer with 20 GB of memory. bWireframe sketches
of aspherical surfaces and DOE (here is a cubic phase plate) in the proposed inte-
gratedmicroscope. Irregular surfaces in our integratedmicroscope help achieving

superior performance compared to spherical surfaces (Supplementary Fig. 1).
c Modulation phase of the DOE in the integrated microscope (right) and corre-
sponding surface fluctuations across the red dashed line (left). The valid area of
DOE is lower than the surface of the surrounding glass to protect the component.
dMTF characteristics of coded (with DOE) and uncoded (without DOE) PSFs in the
focal depth (z =0 µm) and defocused depth (z = 150 µm). e 3D PSF in the center of
FOV across 300 µmdepth. Themaximum intensity projection (MIP) from x, y, and z
axis are plotted below. f Spatial and frequency plots of the PSF without DOE and
with DOE through different depths. White circles show a valid frequency range.
g Strehl ratio across different FOV and depth of field (DOF) of uncodedmicroscope
(without DOE, left) and codedmicroscope (with DOE, right). Red solid lines in each
panel present the normalized FOV-averaged Strehl ratios. The colormap range has
been adjusted for better visibility. h 3D rendering of the proposed integrated
microscope. i The DOF changes with optical resolution of commercial 1×, 2×, 5×,
10×, and 20× objectives (blue). The proposed integratedmicroscope achieves high
resolution that is comparable to the commercial 5× objectives but with 10 times
increased DOF (green) and orders of magnitude smaller size.
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which deviates from the physical process and introduces additional
artifacts (Supplementary Fig. 14b). Hence, we employed theoretical
PSFs for generating training pairs, as opposed to relying on experi-
mentally calibrated PSFs. This approach ensures enhanced resilience
against manufacturing imperfections during mass production and
mitigates the impact of diverse noise sources encountered in the

imaging process. Through numerical simulations, we proved that the
trained neural network exhibited merely marginal performance
degradation when confronted with the uppermost decenter (20 µm)
and tip/tilt (0.1°) discrepancies potentially arising during the manu-
facturing (Supplementary Fig. 15), evincing the high robustness of the
proposed neural network over the fabrication variability.
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We conducted a qualitative assessment of the depth extension
capabilities of the proposed integrated microscope using sample
slides positioned at varying depths by a motorized stage (Supple-
mentary Fig. 16). We found that the integrated microscope evidently
improved resolution, contrast, and fidelity at defocused depths when
compared to the ground truth in the focal plane (at z =0 µm of the
conventional microscope), without any apparent artifacts. We further
confirmed theDOFextension by imaging aUSAF-1951 resolution target
placed at different axial planes (Fig. 3e, Supplementary Fig. 17). It is
worth noting that the proposed neural network was trained on biolo-
gical samples and microscopic samples from natural sources (such as
insects, leaves, and flowers). Thus, the clearly restored USAF-1951
resolution target, which is substantially different from the training
samples, additionally verified the generalization ability.We foundboth
a conventional microscope and the integrated microscope achieved
high-resolution chart images in the focal plane (z =0 µm), but only the
integratedmicroscopemaintained that sharpness when the resolution
target was largely defocused (z = 150 µm). A per-depth comparison
further corroborated that the proposed integrated microscope
achieved consistently high-quality images across various depths and
various samples (Supplementary Fig. 17b).

We quantitatively compare the contrast of images obtained by
both methods and find the proposed integrated microscope achieves
overall higher contrast than the conventional microscope across the
300-µm depth range (Fig. 3f). With the simulation-supervision net-
work, a 1-µm emitter can be restored tightly with full-width-half-
maximum (FWHM) 3.1 µm at z =0 µm, 3.5 µm at z = 100 µm, and 4.8 µm
at z = 150 µm (Fig. 3g), suggesting the proposed microscope preserves
high resolution across a large DOF.

To characterize chromatic aberrations of the system, we change
the illumination spectrums of the calibration LED while fixing the
pinhole array (“Methods”). We find that under blue, green, and red
illuminations, the calibrated PSFs of three wavelengths are very similar
with a structural similarity higher than 0.7 across the whole FOV
(Fig. 3h), indicating that the chromatic aberrations are well corrected
in the integration system. We proceeded to conduct a quantitative
examination of the depth extension across various wavelengths by
applying the trained neural network in each separate channel. We
observed that the imaging performance of all three channels was
closely aligned (Supplementary Fig. 18), signifying a consistent
extended depth of field across multiple wavelengths.

Integrated microscope in a cell phone enables information-rich
imaging and portable diagnosis
The proposed integrated microscope, with its small size and light
weight, can be seamlessly integrated into a cell phone. As shown in

Fig. 4a, the integrated microscope can be well equipped without lar-
gely bumped structures compared to previous mobile-phone-based
microscopes53,54. The illumination is provided by a circular LED around
the lenses. Besides the hardware integration, the optimized neural
network used for reconstruction needs to be deployed in the cell
phone for real-time visualization. To accommodate the processors in
the mobile platform, we prune the network with 78% reduced para-
meters but nearly the same performance (Fig. 4b, Supplementary
Fig. 10; “Methods”). The processing time of the pruned network is
reduced by about 5 times (Fig. 4c).

To demonstrate the performance of the integratedmicroscope in
the cell phone, we hold the cell phone and take pictures of yellow
flowers (Fig. 4d). We find the proposed integrated microscope
achieves clear features across multiple sites of the FOV in different
depths. In comparison, a conventional microscope only achieves clear
features within a small region that is near the focal plane, thereby
relegating defocused elements to substantial blurriness. We further
use the cell phone to image samples with different structures,
including tilted Rhizopus nigricans, Paramecia, and plant root
slices (Supplementary Fig. 11). We find that the proposed integrated
microscope shows better performance than conventional micro-
scopes across a much larger depth range for all the samples, sug-
gesting achieving superior imaging quality and richer informationwith
great generalizations. Besides, no color fringing is observed in all
fields of captured samples, indicating full correction of chromatic
aberrations.

The powerful imaging ability and miniaturized size of our inte-
grated microscope shed new light on cell phone-based health mon-
itoring. As an example, we show our integrated microscope helps
monitor the hydration of the stratum corneum (Fig. 5a), a key factor in
monitoring skin health. We develop a neural network with the input of
deconvolved microscopic skin images and output of the moisture
levels (dry, normal, and overhydration; Fig. 5b, c; “Methods”) to alarm
decreased water content which impairs the natural desquamation
process55. The neural network is further packaged into a customized
application that quickly informs the user about the skinmoisture level
with high accuracy (Fig. 5d). With the reminder of the customized
applications, users can timely detect skin dryness and intentionally
dose lotions which effectively eases the dryness andmaintains healthy
skin conditions (Fig. 5e).An additional ablation study substantiated the
necessity of high-resolution restoration of skin images by the pro-
posed network to attain precise skin state detection (Supplementary
Fig. 19). Compared to traditional ways that utilize an additional elec-
tronic device to monitor water content through conductance and
capacitance, our integrated microscope in a cell phone readily pro-
vides quick suggestions on skin protections based on images. Much

Fig. 2 | Simulation-supervised deep neural network for the integrated micro-
scope. a Illustrations of generating training pairs through simulation-supervision
strategy. To generate the training pairs between an all-in-focus image and a depth-
coded image from the integratedmicroscope, a commercialmicroscope combined
with a piezo objective scanner was employed to capture focal stacks of 3D samples
(Supplementary Fig. 13). Two regions from a tilted sample with an approximate
axial distance of 300 µm were delineated by blue and green boxes. The region
labeled by the green box was situated in the top-right corner of the image and
gradually came to focus as the imaging focal plane approached the sample. Con-
versely, the regionmarked by the blue boxwas situated in the bottom left corner of
the image and gradually progressively became clearer as the imaging focal plane
receded from the sample. The green and blue arrows represented the direction in
which the focal planemustmove to capture those regions with optimal clarity. The
Σ symbol denoted the summation of a collection of images enclosed within a large
bracket. In the “Depth fusion” row, each slice from the captured focal stackwas first
processed to extract the region where the sample was clearly captured (i.e., the in-
focus region), as illustrated by gray patches inside the bracket. Then, these in-focus
regions were summed to create an all-in-focus image. In the “Physical propagation

image” row, each slice from the captured focal stack was first convolved with the
depth-specific PSFs and then summed to reassemble the capture from the inte-
grated microscope. b Structures of the proposed simulation-supervision network
to retrieve clear images from the coded integrated microscope. c Comparisons of
the raw coded image (Raw; top left) and the network-retrieved image (Network;
bottom right). The zoom-in regions on the right side compare the raw coded
images (Raw; top), deconvolved images using shift-variant deconvolution (Deconv;
middle), and network-retrieved images (Network; bottom). Representative data
from 122 samples. d Statistical comparisons between the shift-variant deconvolu-
tion and the proposed network on 19 test samples in terms of peak signal-to-noise
ratio (PSNR, left), perceptual loss (Learned Perceptual Image Patch Similarity,
LPIPS70, middle), and structure similarity index (SSIM, right). Central line inside the
box:Median. Box: interquartile range.Whiskers: Maximum andminimum. Outliers:
Individual data points. e Statistical comparisons between results of the shift-variant
deconvolution (blue) and the proposed network (red) for 19 samples placed at
different axial depths in terms of SSIM. Error bars are represented for standard
deviation. Center of error bars: Mean of scores.
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more complicated health monitoring and portable testing can be
developedwith the integratedmicroscopeon cell phones in the future.

Discussion
In summary, we propose an effective progressive optimization para-
digm that fully leverages state-of-the-art optical design techniques and
physics-based deep-learning reconstructions compositely. By first

utilizing ray-tracing-based optimization to narrow down the searching
space and then jointly optimizing optics and algorithms,we achieve an
integrated microscope design that achieves the performance of
tabletop microscopes but with five orders of magnitude smaller size
and four orders of magnitude reduction in weight. The jointly opti-
mized deep neural network is trained in a simulation-supervision
manner thatmaximizes the domain similarity between simulation data
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and experimental capture and outperforms both traditional decon-
volution algorithms and recently emerging unsupervised approaches.
Together, the integrated microscope, after progressive optimizations,
achieves 3 µm resolution across a FOV ofΦ3.6mm and a depth of field
of 300 µm, which is about 10-fold larger than that of a typical micro-
scope. The comprehensive optimization greatly reduces size and
weight without compromising any performance, enabling integrations
even in a cell phone for health monitoring. Further with the optimized
network in cell phone processors, the integrated microscope can
render the clear structures across the 300 µmdepth range in real-time.

The optical design is heavily non-linear and is characterized by
many local minima and steep ridges with many fabrication-related
physical constraints (e.g., feasible central and edge thicknesses)56.
Given these challenges, end-to-end lens optimizations in a top-down
manner are only available in the image formation models that are
either on simple wave optics models or on similar paraxial models29,
providing simplistic solutions of a single lens surface in limited appli-
cations. Differently, our progressive optimization paradigm constrains
the solution space into a feasible size and effectively avoids local
optima through ray-tracing-based merits and refining an introduced
diffractive optical element (DOE) and artificial intelligent algorithms to
accomplish higher performance. In principle, the proposed optimiza-
tion paradigm is scalable to any complex system (Supplementary
Note 1), including the high-resolution miniaturized microscopic sys-
tem in our case. Other optical systems like telescopes and surveillance
systems can be extended through the proposed method with com-
pressed size seamlessly. We acknowledge that our choice of a cubic
phase distribution as the wavefront coding profile is not singular;
indeed, alternate phase functions such as circular symmetric phase
functions57 can also significantly augment the imagingdepth of field. In
accordance with scholarly articles, higher-order anti-symmetric phase
masks and sinusoidal profiles can even yield high-quality images in the
presence of substantial focus errors44. It is also worth noting that deep
neural networks solely selected suitable candidates produced by tra-
ditional ray tracing, primarily due to the incompatibilities between
traditional ray-tracing optimization and deep learning tools. The
recently emerged differentiable ray-tracing technique29 offers the
prospect of synergistically employing traditional high-efficiency ray
optimization methods in conjunction with reconstruction algorithms,
which is anticipated to evolve into a comprehensive design approach
encompassing both traditional spherical and aspherical lenses as well
as diffractive optical elements (DOEs).

Through the proposed optimization pipeline, we create the most
compact mesoscope among ever-fabricated designs (Supplementary
Tables 1 and 3; Supplementary Note 2). The introduction of ring-shaped
LEDs takes advantage of the surrounding space of the trapezoid lens
housing and is capable of fluorescent excitation via proper LEDs and
coating without dichroic9,27. Our integrated microscope consists of
plastic lenses without cemented elements for the capability of massive
production. To achieve even more compact size and advanced perfor-
mance, metasurfaces could be introduced to replace the plastic lenses
with sub-micron thickness and over 80° of FOV angle58.

Wehaveproven that a high-resolution integratedmicroscope that
can be equipped in a cell phone stimulates new portable diagnoses in
skin health without additional electronic devices. Other skin diseases

like acne, pemphigus, and psoriasis can also be readily diagnosed
through the proposed integrated microscope and corresponding
intelligent algorithm in a single shot. Further with recently emerging
virtual clinic services, patients can get convenient care only using a cell
phone equipped with our integrated microscope at home. Moreover,
the high-performance integratedmicroscope should facilitate probing
microbiome59, blood-borne filarial parasites60, and waterborne
pathogens54 on limited resources conditions and mitigating sub-
stantial threats to human health, and the portability opens up new
possibilities for mobile assays for numerous conditions and diseases.

Capitalized on recent advances in genetically encoded calcium
indicators (GECIs)61, our proposed integration microscope can be
further extended for neuronal Ca2+ imaging in freelymovingmice both
at the cerebral cortex as well as the cerebellum and other brain
regions9,20,27,28 (Supplementary Fig. 20). The ultra-compact form factor
and minimized weight of our integrated microscope incur the least
disturbance to animal motions compared to other head-mounted
microscopes, thereby facilitating visualizing population-level micro-
circulation across different locomotor behaviors more naturally. Fur-
ther combined with wire-free technologies36, the even more flexible
integrated microscope will promote neuroscience research across
widely used freely behaving assays, including fear conditioning and
social interactions. The heavily optimized integrated microscope
offers less costly, versatile, and stable solutions than the current
optical apparatus in brain-imaging research.

In addition to potential use in behaving animals, the integrated
microscope is a multipurpose instrument for various applications,
including flow cytometry9, air quality monitoring62, and cancer
screening63. For in vitro applications, the integrated microscope has
the potential to achieve even higher throughput on a large scale
through massively parallel strategies12 and is capable of being equip-
ped with other instrumentation, such as incubators, thanks to the
miniaturized sizes9. With upcoming GPU advances in improved speed,
efficiency, and reduced size, integrated microscopes in intelligent
platforms seem likely to facilitate the emerging paradigm of mobile
analysis, screening, and diagnostic evaluations.

Lastly, we believe the proposed progressive optimization para-
digm sheds new light on optical designs by harnessing the advantages
of aspherical optics, computational imaging, and deep learning
reconstructions in a complete pipeline. Catalyzed by the optimization
formulas, the proposed integrated microscope sets a new record for
miniaturized microscopes, which can facilitate diverse applications
spanning from image-based mobile diagnostics to neural recording in
freely behaving animals and beyond.

Methods
Preliminary design of the integrated microscope based on ray-
tracing
We start designing the high-performance integrated microscope with
ray-tracing merits which remarkably reduces the parameter searching
space compared to brute-force deep-optics optimization. The system
numerical aperture is set to be 0.16 for subcellular spatial resolution
and fluorescence-capable energy collection efficiency, while the focal
length remains 1mm to ensure a compact system. It is obviously
challenging to design a system with such a large aperture in a

Fig. 3 | Evaluation of the integrated microscope with mass-producible fabri-
cation. a The sketch of the PSF calibration setup of the integratedmicroscopewith
a customized 1-µm pinhole array through lithography. b Maximum intensity pro-
jections (MIPs) of captured PSF in xy, xz, and yz planes. The bottom plot shows the
magnification changes across different depths. c Comparisons of simulated and
experimental 3D PSFs at three different lateral positions. dComparisons of the PSF
size between simulations (red) and experiments (blue) at different lateral positions
across a 300-µm axial range. e Characteristics of DOF extension through imaging
the USAF-1951 resolution target. Top: imaging results with a conventional

microscope (without DOE coding). Bottom: imaging results with a proposed inte-
gratedmicroscope with network restoration. f The contrasts of element 6, group 6
of the resolution target at different depths for the proposed integratedmicroscope
(red) andconventionalmicroscope (blue).g Full-width-half-maximums (FWHMs)of
the 1-µm pinhole at different depths after network restoration (3.1 µm at z =0 µm,
3.5 µm at z = 100 µm, and 4.8 µm at z = 150 µm). h The curves of structure similarity
index (SSIM) calculated by PSFs of different illumination colors versus different
lateral positions. Shaded areas: mean ± SD.

Article https://doi.org/10.1038/s41467-023-39860-0

Nature Communications |         (2023) 14:4118 8



conjugate distance of only 6mm by the traditional method. The
parameters of the lenses do not exist independently but restrict
mutually and are mainly constrained by the aberration correction
efforts. Since the primary aberrations, such as spherical aberration,
coma, astigmatism, and field curvature, are closely related to the

aperture of the lens, optimization on such a relatively high-NA
microscope faces substantial challenges.

First, we arranged the lens structure based on the principle of the
Chevalier Landscape lens, which is the first widely used camera lens
introduced after the invention of film-based photography, to correct
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aberrations. With reference to the structure model of the Chevalier
Landscape lens, we set the aperture in the front of the imaging lens and
made the aperture diameter smaller than that of the subsequent lens.
In the optical path of the lens, the rays in normal and oblique incidence
are separated by the frontmost aperture and then focused by different
parts of the subsequent lenses so that the curvature of each lens can be
adjusted to reduce aberrations, especially coma. On the other hand,
the full correction of the aberrations from different incident fields
requires the lens surface to be non-spherical.

Note that although a singlet spherical lens cannot achieve
diffraction-limited focusing for different angles of incidence, adding
more lenses in principle could provide more degrees of freedom to
correct spherical aberration, coma aberration, astigmatism, and Petz-
val field curvature. However, this approach, combined with conven-
tional lensmanufacturing techniques, results in bulky imaging systems
(Supplementary Fig. 1). This becomes tricky as the demand for por-
table and compact devices increases. Thereby, in our designs, multi-
lens elements with non-spherical shapes are utilized for high optical
performance. The surface profile for used aspherical lens can be

expressed as

z =
cr2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1 + kð Þc2r2

p +α1r
2 +α2r

4 +α3r
6 +α4r

8 +α5r
10 +α6r

12 +α7r
14 +α8r

16 ð1Þ

where c denotes the curvature, r is the radial coordinate in lens units, k
is the conic constant, and α1 � α8 are the coefficients. In addition,
imperfect irradiances such as glare reflection, nonuniform distribution,
and brightness level are considered as well. After the steps of initial
building the surfaces, we iteratively optimized the proposed system in
ZEMAX (OpticStudio)with themerit of resolution across allfields (up to
1.814mm from the center) and wavelengths (400–700nm).

Extendeddepth-of-fielddesignwith adiffractive optical element
For the practical scenario in microscopy, the acquisition volume and
the DOF are always required to be large enough to preserve the high
reliability and robustness of the system. In standard microscopy, DOF
is fundamentally coupled to lateral resolution 4r: DOF / λ

NA2 / Δr2
λ .

Fig. 4 | Integratedmicroscope equipped in a cell phone for real-time extended
depth-of-field imaging. a Left, assemble the proposed integrated microscope in a
cell phone. Right, the zoom-in panel shows the integrated microscope module
(top) and 3D schematic diagramof the ring-shapedLED that is used for illumination
(bottom). b After the introduction of network pruning, we reduced the network
parameters by 78% with similar reconstruction performance regarding structure
similarity index (SSIM), peak signal-to-noise ratio (PSNR), and perceptual loss
(Learned Perceptual Image Patch Similarity, LPIPS). Central line inside the box:
Median. Box: interquartile range. Whiskers: Maximum and minimum. Outliers:

Individual data points. n = 19 samples. c Comparisons of the rendering time costs
for n = 19 samples before and after network pruning. Data points are overlaid.
Height of bars: Mean. Error bars: SD. d Left, comparisons of the captures obtained
by the integrated microscope (bottom right) and a conventional microscope (top
left) on yellow flowers. Right, zoom-in panels of the white dashed boxes on the left.
White arrows indicate the structures which are hard to be resolved in a conven-
tional microscope. Representative data from 53 samples. e The same as (d) but on
samples of leaves. Representative data from 53 samples.
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Fig. 5 | Portable health monitoring with the integrated microscope in a cell
phone. a Illustration of using a cell phone with the integrated microscope built-in
for skin hydrationdetection.bAconvolution neural network is proposed to classify
the output image of the integrated microscope into three classes, including dry,
normal, andoverhydration. cTheproposedhydrationdetection algorithmresolves
the features of dry skin which has many flakes (top). After skincare, the skin

monitoring shows hydration back to normal (bottom). d The proposed hydration
detection method achieves high accuracy compared to ground truths obtained by
electrical hydration sensors for all threemoisture levels. Central line inside the box:
Median. Box: interquartile range. Whiskers: Maximum and minimum. Outliers:
Individual data points. n = 28 samples. e The improvement of hydration identified
by the integrated microscope after skincare (n = 100 tests).
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There is a fixed trade-off between depth-of-field (DOF) and lateral
resolution—the higher the desired lateral resolution, the narrower the
DOF. The conventional approach to increase theDOF is to decrease the
NA, which corresponds to using a smaller aperture or a longer focal
length. However, both scenarios have a side effect. A smaller aperture
would lead to a poor optical throughput and thus a low signal-to-noise
ratio outcome. On the other hand, a longer focal length increases the
form factor of the devices, which contradicts the goal of miniaturiza-
tion. Imaging optics with sufficient DOF while preserving satisfactory
resolution is highly desirable.

In this regard, we propose a computational technique that breaks
the above constraint and achieves a 10 times largerDOFwhile retaining
cellular resolution, obviating the need for axial scanning and sub-
stantially reducing the imaging time required. The key factor is to
optimize a diffractive optical element (DOE) placed near the micro-
scope aperture and the subsequent deep learning-based reconstruc-
tion algorithm. In our case, the DOE is substantiated as a cubic phase
plate (CPP) with the surface profile as α x3

DOE + y
3
DOE

� �
, where xDOE and

yDOE constitute a right-angled coordinate system situated within the
DOE plane, with the positive xDOE direction oriented toward the
sagittal direction and the positive yDOE direction oriented toward the
tangential direction. The single variable α is used to control the spread
of the PSFs across different defocus and thereby controls the DOF.

We next optimized the best pupil modulation strength α through
numerical evaluation. This needs to ensure that a trade-off is made
between the following two points—the imaging characteristics within
the designed range of defocus are as similar as possible, and some
constraints are adopted to prevent an excessive optimization result
and avoiddifficulties in deblurring the captured images. Different from
the conventional approach of obtaining the modulation strength
based on diffraction-limited MTF in simulation, we set the MTF simi-
larity across different axial depths of the CPP-equipped system as the
merit function. Fisher information (FI) is an effective method that can
be applied to evaluate the similarity of MTF, which can measure the
variation of MTF encountering defocusing. If FI is zero, all defocused
MTFs within the designed range of defocus are the same, indicating
that the MTF is insensitive to defocus. Thus, the optimized aim of the
phase parameters is to find theminimumFI. It shouldbe noted that the
MTF of the coded system cannot be too close to zero, which will
cause a permanent loss of information and cannotbe restored through
post-processing. The situation that needs to be avoided more is that
when the strong modulation is imposed, negative values (contrast
reversal) occur. In order to keep the system within a safe range, it is
necessary to prevent the α value from being over-optimized. The
MTF threshold at the Nyquist frequency is greater than 0.1 to ensure
that most information is above the noise floor and thus well
recoverable.

To select the best α value, we individually conducted the afore-
mentioned optimization for systems with α evenly distributed across
0.005 to 0.075, resulting in 15 optimized candidates. For each candi-
date, we separately trained a neural network (see “Network archi-
tecture and training details” section) and selected the preferential
candidate based on the best reconstruction scores. We found that the
optimal value of α was 0.03, which enabled a tenfold DOF increment
nearly. In conventional microscopy with a standard objective, achiev-
ing subcellular lateral resolution (2–3μm) restricts theDOF to∼30μm,
which is almost one order of magnitude smaller than our optimized
results. The extended DOF of the proposed system provides privileges
in accommodating the variations in surface topography of freshly
resected tissue surfaces. An additional example is delineated in Sup-
plementary Note 1 and Supplementary Figs. 21–23.

Chromatic aberration correction without cemented elements
Chromatic aberration is caused by the dispersion characteristics of the
material or optical structure. Compared to an ideal lens that focuses a

point in the object space on a point in the image space, light of dif-
ferent wavelengths generates focal spots at different spatial positions
in a practical imaging system. This phenomenon deteriorates the
performance of imaging systems under broadband illumination. In a
microscope, dyes and labels that range a wide spectrum make chro-
matic correction necessary. In principle, chromatic aberration can be
approximately corrected by using materials with complementary dis-
persion properties, as in an achromatic doublet. As one of the most
commonly used optical elements in optical designs and engineering,
an achromat cements a positive crown glass element (low refractive
index) and a negative flint glass element (high refractive index) toge-
ther. The compound lens brings at least two wavelengths of light to a
common focus. However, this technique is cumbersome since the
number of materials equals the number of wavelengths where the
chromatic aberrations are minimized.

Instead, we presented an implementation of a non-cemented
aspherical lens group made of two plastic optical materials (EP-9000
and ZEONEX_K22R&K26R_2017) for chromatic correction. Axial MTF
and chromatic focal shift data in such a design are comparable with a
system with cemented achromatic doublets. The secondary color was
corrected mainly through the optimized aspherical surfaces since the
two plastic materials alone are not sufficient to fully satisfy the dis-
persion diversity.

Fabrications
After the optical design is finished, aspherical lenses are plastic mol-
ded, and the phase masks are fabricated through nanoimprint. All
components (including plastic housing) are fabricated by Sunny
optical technology. The manufacturing process typically involves a
combination of CNC machining, injection molding, and surface coat-
ing. The lens barrel was machined from a solid block of aluminum
using a CNC machine. The lens elements were injection molded using
specialized equipment that was designed to produce high-quality
optical polymers. Once the lens elements are produced, they are
assembled into the lens barrel, and the entire assembly is coated with
an anti-reflective coating to improve image quality. Nanoimprinting
was opted as our chosen fabrication process in order to facilitatemass
production. The mold for nanoimprinting was created using two-
photon polymerization with the desired nanostructure patterns. The
mold is then pressed onto the substrate surface, transferring a pattern
from the mold to the substrate. Following this, the imprint was cured
through UV light, and the mold and residual material were subse-
quently removed from the substrate.

Compared to a tabletop microscope (IX73, Olympus) with
dimensions of 323mm (W) x 475mm (D) x 656mm (H), which results
in a total volume of 100,646,800mm3, our integrated microscope
features a size of 150mm3, leading to a size reduction of 6.7 × 105 and
an overall volume reduction of 5 orders of magnitude.

Network architecture and training details
Our network architecture employed pix2pix64 network, a GAN-based
model that provides rich texture details for image restoration tasks.
For the generator, our model was mainly based on the U-Net65 model,
whichwas reported tohave superior performance inmicroscopy tasks.
In general, our generator network was composed of a U-Net encoder
and decoder module. In the U-Net encoder module, four encoder
blocks were used, where each block consisted of a 4×4 convolutional
layer (stride=2) followed by a leaky rectified linear unit (LeakyReLU). In
the U-Net decoder module, four symmetrical decoder blocks were
used, where each block consisted of bilinear interpolation, 3×3 con-
volutional layer, followed by a ReLU. Considering the difficulty of
restoring images with inconsistent PSF in the horizontal and axial
direction, we used nine residual blocks after the encoder module to
further strengthen the feature transformation ability of the network.
Each residual block consisted of two 3×3 convolutional layers,
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followed by a ReLU and a shortcut connections component. As the
core part of U-Net, a skip-connection architecture was used between
the encoder module and the decoder module to fuse shallow features
with deep features. For the discriminator, we adopted the standard
PatchGAN model with 70 receptive fields from pix2pix. This dis-
criminator architecture could penalize structure at the scale of local
patches to encourage high-frequency details.

We used the GAN loss term, L2-norm loss term, and perceptual
loss term49 for the loss function. Compared to pix2pix, we used the
VGG19 model to extract features to compute an additional perceptual
loss in feature level, which made the output look more realistic and
accomplished better performance visually.

AdamWoptimizer66 was used to optimize network training, with a
learning rate of 0.0002 and exponential decay rates of 0.9 for the first
moment and 0.999 for the second moment. We used a learning rate
warmup for 10 epochs and then linearly decayed the learning rate over
the course of training. We used graphics processing units (GPU) to
accelerate the training and testing process. It took about 10 h to train
our model for 300 epochs with a batch size of 16 on our training set
(about 110 microscopy and daily life images with the size of
2160×2560×3) with 4 GPUs (NVIDIA TeslaV100, 16GB memory). In the
training phase, we randomly cropped an image into 20 small image
patches with a size of 512×512×3 such that we had 2200 images for
training eventually. In the testing phase, we tested 19 images with the
size of 2160×2560×3 directly.

Shift-variant forward propagation model and training data
acquisition
To train a restoration neural network for evaluating optical designs in
the optimization stage, it is necessary to numerically simulate the
blurred captures through the DOE-combined aspherical system.
However, relatively large FOV (Φ3.6mm) and high numerical aperture
(NA 0.16) cause nonuniform point spread functions (PSFs) across the
field-of-view (FOV), which precluded using traditional forward propa-
gation models15. To manage this, we proposed a shift-variant forward
model considering the PSF change with an optimized computing
burden. An optical system with shift-variant PSF satisfies the general
form of the following superposition formulation,

i x, yð Þ=
X
u,v,z

s u, vð Þp u, v, x � u, y� v, zð Þ ð2Þ

where ðu, vÞ and ðx, yÞ represent object and image space coordinates,
respectively, and z represented different depths. Point sðu, vÞ gen-
erates a corresponding PSF pðu, v, x, y, zÞwhich relates to field position
ðu,vÞ instead of offset position ðx � u, y� vÞ.

Given the difficulties that querying all PSFs corresponding to all
field points ðu, vÞ, it is necessary to reduce the dimension of PSFmatrix
pðu, v, x, y, zÞ. One effective step of characterizing the PSF change
within large FOV in lower dimensions is matrix factorizaton37,48, that is,
to model the PSF as the weighted sum of a set of bases hiðx, yÞ and
corresponding coefficient maps wi u, vð Þ for encoding the spatial
variability,

p u, v, x, y, zð Þ=
XN

i

wi u, v, zð Þhi x, y, zð Þ ð3Þ

whereN is the number of effective bases and hiðx, yÞ satisfies the shift-
invariant property. In practice, we calibrated MðN ≤M =49Þ
field points for each depth z in total, resulting in a collection of PSF
p u, v, xi, yi, z
� �� �

,1≤ i≤M. The numerical or experimental PSF
p u, v, xi, yi, z
� �� �

are downsampled, tailored, vectorized, and
merged into a PSF matrix P 2 Rab ×M for total ab sensor pixels.
Similarly, hiði= 1, . . . ,N,N ≤MÞ was expressed as H2Rab ×N , and
wiði= 1, . . . ,N,N ≤MÞ was expressed as W2RN ×M . Then the above

factorization process can be translated into an optimization problem
known as non-negative matrix factorization67. We described Pab×M as
Hab ×NWN ×M + Eab×M where E 2 Rab×M donates error matrix between
truth and estimation. In other words, H and W can be simultaneously
optimized by solving the equation

Ĥ, Ŵ= arg min
H,W

∣∣H×W� P∣∣22 ð4Þ

We used Hierarchical Alternating Least Squares (HALS)
algorithm67 to solve the above problem. For the purpose of reducing
color fringing causedbynonuniformcoefficientmaps across channels,
we modified the algorithm such that the coefficient maps are uniform
across channels for each depth.

After the above simplification, the complete shift-variant forward
propagation model can be written as:

i x, y, zð Þ=
XN

i= 1

X
u, v

s u, vð Þwi u, vð Þhi x � u, y� v, zð Þ ð5Þ

With the simplification by using the convolution operator, the
above formula can be further written as:

i x, yð Þ=
XN

i = 1

s u, vð Þ×wi u, vð Þ� �
*hi u, vð Þ� �

x, y½ � ð6Þ

where * indicates discrete convolution operator and can be imple-
mented by FFT.

We utilized a motorized stage (M-VP-25XA-XYZL, Newport) and a
tabletop microscope with 5× objective (MPLFLN 5X, Olympus) to
capture both microsection and tiny objects as samples. The sample
was first focused in the focal plane and motorized scanned axially
across −150 µm to +150 µm at a step of 10 µm to form focal stacks,
which were further used to generate training pairs.

Deconvolution reconstruction algorithm
To restore clear images from coded captures, deconvolution algo-
rithms are widely used68. The deconvolution problem regularized by
total-variation distance can be represented in the following way:

S = arg min ∣∣A×S� I∣∣22 + λTVDS∣∣1 ð7Þ

where A System transformation function, S is the sample, I is the input
degraded capture, D donates total variation (TV) regularization by
gradient, and λTV is an adjustable regularization parameter.We applied
the alternating direction method of multipliers (ADMM)69 to solve the
above equation.

On the other hand, the above optimization requires the PSFs to be
uniform across the fields, which contradicts the facts in our meso-
scopic imaging system. We thereby utilized a modified Richardson-
Lucy deconvolution algorithm with TV regularization48 regarding the
aforementioned shift-variant forward propagation model. The k-th
iteration is as follows:

TVk =
1

1� λTV � div ∇Sk
∣∇Sk ∣

h i ð8Þ

I*k =
XN

i= 1

F pi

� ��F ai � Sk
� � ð9Þ
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Rk =
I

F�1 I*k
n o ð10Þ

E*
k =

XN

i = 1

F pi

� ��F ai � Rk

� � ð11Þ

Sk + 1 =TVk � F�1 E*
k

n o
� Sk ð12Þ

where F and F�1 were Fourier and inverse Fourier transforms,
respectively, * represented the variable in the complex domain, and
the value of λTV was set as 0.00015. All deconvolution algorithms are
implemented using MATLAB.

PSF calibration
We fabricated a 1-μmpinhole array in a 1-mm thick glass slide through
binary lithography. Theglass slide that contained thepinhole arraywas
then mounted in a customized holder that matched the cell phone.
The fabricated lenses were mounted before a GC5035 sensor that was
already been embedded inside an OPPO Find X3 cell phone for cali-
bration. To calculate the size of the PSF,wefirst cropped thePSF in one
site and binarized the PSF by the threshold that equals 10% of the
maximum intensity of the PSF. We then picked up the maximum
component through bwconncomp in MATLAB and calculated the size
in the x and y directions. We illuminated the sample with LEDs with
different wavelengths (M470L5 for blue illumination, M530L4 for
green illumination, andM590L4 for red illumination. All LEDs are from
THORLABS)while keeping the pinhole arrayfixed at the sameposition.
The colorful PSFs thus were acquired, visualized by ImageJ, and eval-
uated for chromatic aberration measurement.

Network pruning and migration in mobile phone
Considering the limitation of computational cost, memory usage, and
real-time requirement in mobile devices, we designed a lightweight
version for our network by pruning the number of channels in our
generator network. For the U-Net encoder module, the origin output
channels of four encoder blocks are 128, 256, 512, and 512, respectively.
Now it becomes 32, 64, 128, and 256. The decoder module also makes
symmetrical changes to keep the U-shaped structure. The number of
output channels in nine residual blocks module correspondingly
becomes 256. When migrating our model to mobile devices, we used
the sigmoid activation function at the end of the generator instead of
tanh because of the acceleration of mobile phone processors. All
training procedures were accomplished on desktop PCs. The restora-
tion of the captured image (i.e., inference through the trained net-
work) was carried out through the APP using the computational
sources available on themobile phone. After capturing an image using
the proposed integrated microscope, a low-resolution reconstruction
will be produced through deconvolution for preview purposes. In the
background, the network will restore the high-resolution image, which
will then be stored in the phone gallery. The typical computation time
on the APP side for the pruned network was 1729.3ms.

Skin moisture measurement
One 35-year-oldmale volunteered to be tested with informed consent.
Initially, we employed our proposed integratedmicroscope to capture
images across multiple regions of the volunteer’s hands and lower
arms, subsequently followed by the measurement of skin moisture
levels at identical locations using a portable skin tester (Pocreation).
The paired data from the integrated microscope capture and the skin
moisture values were utilized to construct a customized skin
moisture detection application (details outlined in subsequent sec-
tions). Measurements were reiterated post-application of skincare

(Vitamin C cream, Elastalift; a single drop per location). Our research
complies with all relevant ethical regulations overseen by the Com-
mittee on Ethics of Tsinghua University.

Customized skin moisture detection applications
We employed the MobileNet-V2 to complete the skin moisture
detection task in a cell phone. It is a lightweight convolutional neural
network for classification and segmentation tasks. The model used
depth-wise separable convolution to reduce computation and the
number of parameters, making it possible to deploy this model
directly on mobile devices. Compared to Mobilenet-V1, it used inver-
ted residuals and linear bottlenecks to get better performance.

For the loss function, we used the Cross-Entropy (CE) loss. We
resized the input image size to 512 and trained the model for 240
epochs with a batch size of 128 on our training set (about 9000 skin
images). Adamoptimizerwas used tooptimize network training,with a
learning rate of 0.0002 and exponential decay rates of 0.9 for the first
moment and 0.999 for the second moment. The network was trained
on a server and then migrated into the cell phone for portable
diagnosis.

Image quality metrics
Structure similarity (SSIM). Structure similarity index (SSIM) is a
widely used full-reference metric for the assessment of the visual
quality of images and remote sensing data. We called ssim function in
MATLAB to calculate the similarity between PSFs from different
spectrums or the similarity between reconstruction images and
ground-truth images.

Peak signal-to-noise-ratio (PSNR). Peak signal-to-noise ratio (PSNR) is
an engineering term for the ratio between the maximum possible
power of a signal and the power of corrupting noise that affects the
fidelity of its representation. We called psnr function in MATLAB to
calculate the similarity between reconstruction images and ground-
truth images.

Perceptual loss. Learned Perceptual Image Patch Similarity (LPIPS)70.
It is a perceptual similarity metric that is based on deep features
extracted from a neural network. It can compute a “perceptual dis-
tance,” which measures how similar two images are in a way that
coincides with human judgment. Compared to PSNR and SSIM, the
result of the LPIPSmetric ismore in linewith human perception. In our
work, we used the pretrained AlexNet71 to extract image features and
compute the “perceptual distance” between output images and label
images. The lower the value of this evaluation metric, the higher the
perceptual similarity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Demo datasets, expected outputs from demos, as well as pretrained
model weights, are available for download at https://zenodo.org/
record/7950911 (ref. 41, https://doi.org/10.5281/zenodo.7950911).
Further data that support the findings of this study are available from
the corresponding author upon request.

Code availability
The custom code that contains the deconvolution neural network and
simulation dataset generation is available in Supplementary Software 1
under an open-source license permitting not-for-profit research use
(see file LICENSE.txt). The code is also available for download at
https://zenodo.org/record/7953526. Future updates to the codewill be
published at https://github.com/yuanlong-o/mobilephone_EDOF.
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