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Transcriptional and spatial profiling of the
kidney allograft unravels a central role for
FcyRIII+ innate immune cells in rejection
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Rejection remains the main cause of premature graft loss after kidney trans-
plantation, despite the use of potent immunosuppression. This highlights the
need to better understand the composition and the cell-to-cell interactions of
the alloreactive inflammatory infiltrate. Here, we performed droplet-based
single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant
biopsies with varying phenotypes and severities of rejection and without
rejection, and identified cell-type specific gene expression signatures for
deconvolution of bulk tissue. A specific association was identified between
recipient-derived FCGR3A+ monocytes, FCGR3A+NK cells and the severity of
intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47
and LILR genes and increased paracrine signaling pathways promoting T cell
infiltration. FCGR3A+NK cells overexpressed FCRL3, suggesting that antibody-
dependent cytotoxicity is a central mechanism of NK-cell mediated graft
injury. Multiplexed immunofluorescence using 38 markers on 18 independent
biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical
monocytes in antibody-mediated rejection, with specificity to the glomerular
area. These results highlight the central involvement of innate immune cells in
the pathogenesis of allograft rejection and identify several potential ther-
apeutic targets that might improve allograft longevity.

Despite the development of potent immunosuppressive therapy,
rejection remains a prime cause of long-term graft failure after kidney
transplantation, representing an unmet need to better understand its
underlying mechanisms1,2. Rejection of the allograft results from the
complex interaction between immune cells, solublemolecules and the

kidney cells3. Kidney transplant rejection is currently classified4 into
two distinct categories based on the spatial distribution of the infil-
trating leukocytes and the presumed underlying allorecognition pro-
cess: T cell-mediated rejection (TCMR), defined by tubulointerstitial
inflammation or arteritis following T lymphocyte activation and
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migration to the allograft, and antibody-mediated rejection (ABMR),
primarily characterized by microvascular inflammation (MVI) and
complement activation induced by the binding of donor-specific
antibodies to the donor endothelium4,5.

This dichotomy in the clinically used Banff classification is chal-
lenged by accumulating insights in the heterogeneity of rejection and
the alloreactive potential of the innate immune system3,6. For example,
the frequent observation of histological features of ABMR in absence
of donor-specific antibodies (DSA) is puzzling7 and can potentially be
explained by antibody-independent mechanisms8–11. Second, ther-
apeutic strategies directed at canonical pathways have shown mixed
results. For ABMR, consensus on the ideal treatment is lacking, as
several therapies targeting the humoral immune system such as anti-
CD20 monoclonal antibodies have not shown long-term benefit12. For
TCMR, T cell targeted therapies such as CTLA4-Ig, a T cell costimula-
tion blocker13, improve short-term functional outcomes but lack
response in an important subset of patients14,15, highlighting the need
for better preventive and therapeutic treatment options. Third,
important heterogeneity in the composition of the inflammatory
infiltrate in rejection was observed, independent of the spatial dis-
tribution of the infiltrating leukocytes that is used for rejection
classification16. Altogether, these aspects highlight the need for more
precise phenotyping of the immune cell populations involved in kid-
ney transplant rejection subtypes.

Herein, we aimed to uncover the transcriptional, phenotypic and
spatial profile of immune cell infiltration in kidney transplant rejection.
First, we performed single-cell RNA sequencing of 16 kidney allograft
biopsies with varying phenotypes and degrees of rejection (from no
rejection to severe rejection). We derived and validated a cell-specific
gene expression signature matrix that was used for deconvolution of
the cellular heterogeneity in several independent bulk transcriptomic
datasets. Finally, we developed a custom multiplex immuno-
fluorescenceassay toobtain a high-resolutionphenotypical and spatial
profile of the inflammatory infiltrate in 18 independent allograft
biopsies.

Results
Single-cell analysis of kidney allograft rejection
To phenotype the cell subtypes present in transplant rejection, we
analyzed 16 allograft biopsies with in total 35,152 cells that passed
quality control (Fig. 1a, Supplementary Fig. 1a, Table S1), withoutmajor
batch effects between samples (Supplementary Fig. 1b) and with an
average of 2197 cells per sample (Supplementary Fig. 1c). Using
canonical lineagemarkers17, all structural compartments of the human
kidney were represented in each biopsy (Fig. 1b, c). Epithelial cell
populations included PLA2R1+ podocytes, LRP2+proximal tubular (PT)
cells, UMOD+ loop of Henle (LOH) cells and TMEM213+ intercalated
cells (IC). Vascular cell populations were TAGLN+ vascular smooth
muscles or pericytes (vSMp), several PECAM1+ endothelial cells (EC)
populations, including PLVAP+ peritubular capillary (ECptc), CLDN5+
vasa recta (ECvr), and EMCN+ glomerular (ECg) endothelial cells. In
addition to these structural cells, several immune cell clusters were
identified (Fig. 1b). Lymphoid cell populations encompassed CCR7+
naïve CD4 T cells and CCR7- memory CD4 T cells, GZMKlow effector
CD8 T cells, GZMKhigh effector memory CD8 T cells (CD8effmem) and
MKI67+ CD8temra cells. Two clusters of natural killer (NK) cells,
FCGR3A+ and FCGR3A- were identified at this resolution as well as a
single cluster of CD19+ B cells (Fig. 1b, d). Two myeloid cell clusters
were detected at this resolution: one cluster with high expression of
CD14 (CD14+ Mono/Macro) and one with high expression of FCGR3A
encoding for FcγRIIIa (FCGR3A+Myeloid) (Fig. 1b, d). Tubular cells and
more particularly PT cells were the most abundant cell types,
amounting up to ameanof 54%of total cells in each individual data set,
whereas EC represented up to 7% and immune cells represented 30%,
in line with previous reports (Fig. 1e)17,18.

Leukocyte populations in the kidney allograft are mainly of
recipient origin
We next sought to determine whether the identified immune cell
populations were of donor or recipient origin by assessing the
expression of sex-linked genes as indicator of the origin of cellular
populations in transplantations with a gender mismatch between
donor and recipient. Five female-to-male transplantations (Supple-
mentary Fig. 3a) and one male-to-female transplantation (Supple-
mentary Fig. 3b) were present in our cohort, of which the cells were
assigned as donor- or recipient-derived by the expression of Y
chromosome-encoded ZFY and DDX3Y and female-specific XIST and
TSIX, involved in X chromosome inactivation19. The percentage of cells
expressing sex-linked genes was heterogeneous among the cell types,
which is in line with previous reports19. Cell types composing the renal
architecture were mostly donor-derived, but a fraction of glomerular
endothelial cells (5%) expressed recipient-derived genes, which could
reflect endothelial chimerism20. Leukocyte populations mostly
expressed recipient-derived sex-linked genes, indicating recipient-
derived immune cell infiltration, although a small proportion (1.65%)of
CD14+ Mono/Macro expressed donor-derived genes. This corrobo-
rates previous findings on myeloid cells originating from the donor
organ, and suggests that myeloid cells may exhibit tissue residency
after transplantation21. Finally, in our scRNAseq cohort, CD8temra cells
were equally recipient- and donor-derived.

The proportion of FCGR3A+NK cells and FCGR3A+ myeloid
cells is associated with graft inflammation
Next, we investigated which immune cell subtypes are implicated in
kidney transplant rejection subtypes. We first stratified the biopsies
using a data-driven clustering method producing a phenotypic
reclassification of kidney transplant rejection22. As depicted on the
polar plot generated by thismethod, biopsies were categorized in four
different groups: non-rejection (NR) DSA negative group (NR DSA-,
N = 4), TCMR (N = 1), NR DSA+ (N = 8) and ABMR DSA+ (N = 3). No
biopsy in this cohort was categorized as mixed TCMR-ABMR or DSA-
histology of ABMR (ABMRh). We also evaluated the association
between the frequencies of the different cell types identified by
scRNAseq analysis and the calculated22 inflammation severity (Fig. 1f).
Strikingly, among immune cells, only the frequencies of FCGR3A+
myeloid cells and FCGR3A+ and FCGR3A- NK cells significantly corre-
lated with the severity of inflammation in the kidney allograft (Fig. 1g).

To confirm these findings in a representative cohort of 224 kidney
allograft biopsies (GSE147089) with different rejection phenotypes
and awide rangeof inflammation severity, wederived cell type-specific
gene expression signatures from the single-cell clusters using CIBER-
SORTx. In this aim, we generated a kidney transplant biopsy-derived
signature matrix encompassing 18 cell types (KTB18) and estimated
the cellular fractions (Fig. 2a)23. Pseudobulk samples derived from our
single-cell cohort demonstrated good overall correlation between the
real cell fractions and the predictedproportions from theCIBERSORTx
pipeline (median Pearson r =0.83, Supplementary Fig. 4a). Given that
the estimated FCGR3A- NK cell fraction did not correlate significantly
with the captured fraction, we grouped the NK cell subsets for further
deconvolution analyses (Supplementary Fig. 4b). In addition, we
demonstrated a good correlation between the deconvoluted cell
fractions and the observed cellular densities in multiplex immuno-
fluorescence staining (CD3, CD163, NKp46) on FFPE tissue from 81
allograft biopsies (Supplementary Fig. 4c, d), further corroborating
that our deconvolution matrix KTB18 reliably predicts the cellular
composition of kidney allograft biopsies based on bulk tran-
scriptomic data.

We next applied the same data-driven clustering method as used
for the scRNAseq cohort22 on the bulk transcriptomics dataset
(N = 224). This indicated a good distribution of the biopsies on the
polar plot, covering the entire spectrum of rejection phenotypes
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(Fig. 2b). We observed that the cell types best associated with the
severity of inflammation were nonclassical monocytes and NK cells, as
well as classical monocytes, macrophages and various CD8 +T cell
subsets (Fig. 2c). Monocytes, macrophages and CD8 +T cells corre-
lated both with tubulo-interstitial inflammation (tubulitis and inter-
stitial inflammation) and with inflammation in the vascular
compartment (glomerulitis, peritubular capillaritis, intimal arteritis)
(Fig. 2d). In contrast, NK cell infiltration associated with inflammatory

lesions in the vascular compartment but not with tubulitis or inter-
stitial inflammation. In addition, NK cells were increased only in
biopsies with ABMRh, whereas nonclassicalmonocytes were increased
in both ABMRh and TCMR (Fig. 2e). Infiltration of classical monocytes
and macrophages was increased in all rejection phenotypes but was
higher in TCMR compared to ABMRh. Finally, CD8 + T cells were only
significantly increased in biopsies with TCMR, either pure or mixed.
We confirmed these results in public dataset GSE36059 in which the
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presence of DSA was taken in account for ABMR classification (Fig. 2f),
illustrating that DSA status slightly impacts on transcriptional changes
in biopsies with ABMRh.

Phenotypic characterization of the cellular composition of
rejection at protein level
To characterize the immune infiltrate in rejection at the protein level,
we next performed spatially resolved, single-cell, multiplexed immu-
nofluorescence (MILAN) using a broad panel of immune cell markers
on 18 independent kidney transplant biopsies (Fig. 3a, Supplementary
Tables 2, 3). For each biopsy, a routine hematoxylin and eosin staining
was performed. On a serial slide, the multiplexed immunofluorescent
staining was performed before digital reconstruction of the cell
populations (Fig. 3b).

Following quality control and clustering using the main pheno-
typic markers across the included samples, wemapped 555,479 DAPI+
cells to 17 phenotypes including 5 types of renal epithelial cells (PT
cells, AQP1+ tubule cells, CD138+ tubule cells, distal tubule cells and
AQP1+ PanCK+ tubule cells), 9 immune cell subtypes: 3 myeloid
(macrophages, CD1c+ dendritic cells [DC] and S100+DC), 5 lymphoid
(B cells, CD4 regulatory T cells (Tregs), FcγRIII+ NK cells, CD4 effector
T cells (Teff) and CD8 Teff) and an MPO+ neutrophil subtype that
represented 1.77% of the total cells (Fig. 3c, d). Of note, no cluster
corresponding to neutrophils was observed in the scRNAseq dataset.
In addition, 26.64% of the total cells were annotated as “not otherwise
specified” (NOS) encompassing all the different cell types for which no
markers were included in the multiplexing panel (e.g., podocytes,
mesangial cells, etc.).

Stratifying the biopsies according to the Banff classification, we
noticed that only certain immune types were significantly increased in
either TCMR or ABMR rejection phenotypes compared to biopsies
without rejection. In particular, macrophages and FcγRIII + NK cells
were significantly increased in ABMR, whereas neutrophils, CD1c+ DC
and Teff cells were increased in TCMR (Supplementary Fig. 5). Con-
fronting immune cell proportions with inflammation severity (Fig. 3e),
only FcγRIII+ NK cells, neutrophils, macrophages and CD8+ Teff pro-
portions correlated with inflammation severity (Spearman correlation,
P =0.0038, P =0.0097, P = 0.0208 and P = 0.0344, respectively), con-
firming our previous findings at the transcriptomic level (Fig. 3f, g).
To further explore the role of myeloid cell activation in transplant
rejection, we reintegrated and subclustered all myeloid cell types and
distinguished 13 subclusters: CD163+ macrophages, CD68+ macro-
phages, CD209+ regulatory macrophages, neutrophils, FcγRIII+ CD14-
nonclassical monocytes, FcγRIII+ CD14+ intermediate monocytes,
FcγRIII- CD14+ classical monocytes, CD141+ cDC1, CD1c+ cDC2, IRF8+
inflammatory DCs, other DCs (characterized only by CD11b) and a not-
otherwise-specified (NOS) monocyte cluster (Fig. 4a). Importantly,
only the NOS monocytes, MPO+ neutrophils, CD14+ classical mono-
cytes and FcγRIII+ nonclassicalmonocytes significantly correlatedwith
inflammation severity (Spearman correlation, P = 0.0002, P =0.0072,
P =0.0094 and P =0.0175 respectively, Fig. 4b, c), highlighting
the relevance of these innate immune cells in kidney transplant
rejection.

FcγRIII+NK cells and FcγRIII+ monocytes relate to vascular
inflammation
Having identified an important role for monocytes, FcγRIII+ NK cells,
neutrophils and CD8+ Teff, we next investigated the spatial distribu-
tion of these cellular populations in kidney transplant biopsies,
according to rejection subtype. For this purpose, the proportion of
immune cells wasmeasured in the glomerular, vascular, large vascular,
tubular and interstitial compartments of the kidney transplant biop-
sies. In ABMR and mixed rejection, FcγRIII+NK cells, neutrophils and
FcγRIII+ monocytes specifically infiltrated glomeruli and vascular
compartments. In contrast, TCMR was hallmarked by infiltration of
CD8+T cells and CD14+ monocytes in the tubulo-interstitium and
CD8+T cells in larger vessels (Fig. 5a).

Glomerulitis is characterized by an increase in the number of
mononuclear cells in the glomerular capillary lumina. FcγRIII+NK cells,
FcγRIII+ nonclassical monocytes and neutrophils were significantly
enriched inside glomeruli, whereas CD14+ classical monocytes were
mainly identified outside the glomeruli (Fig. 5b, c). To investigate dif-
ferences in the cellular composition of the glomerulus between
rejection subtypes, the distance of each cell type from the glomeruli
was measured and compared (Fig. 5d). In ABMR and mixed rejection,
but not in TCMR, the percentage of FcγRIII+NK cells, neutrophils and
FcγRIII+ monocytes were most present in the glomeruli and rapidly
dropped at 100μm away from the glomeruli. These results were con-
cordant with our finding that NK cells and FCGR3A+myeloid cells were
specifically associated with glomerulitis lesions (Fig. 2d). Moreover,
still in ABMR, the proportion ofCD14+monocytes andNOSmonocytes
increased with distance from the glomeruli. In TCMR, there was less
heterogeneity in the spatial distribution of immune cells.

FCGR3A+ monocytes specifically express activating Leukocyte
Immunoglobulin Like Receptors
Given this confirmation of the involvement of FCGR3A+ monocytes in
solid organ allograft rejection and the need for deeper insight in their
activation mechanisms in humans, we then reintegrated all myeloid
cells encompassed in our transcriptomic single-cell dataset. We
observed 8 clusters: FCGR3A+CD14- nonclassical monocytes, FCGR3A+
CD14+ intermediate monocytes, FCGR3A- CD14+ classical monocytes,
as well as CD163+ and CD68+ macrophages, THBD+CLEC9A+ cDC1,
CD1C+CLEC9A+ cDC2, MPO+ ITGAX+ neutrophil-like cells (Fig. 6a, b).
The proportion of FCGR3A+CD14- nonclassical monocytes sig-
nificantly correlated with inflammation severity, while other myeloid
subtypes did not (Fig. 6c). In pseudotime trajectory analysis, excluding
neutrophils and DCs, we observed two distinct trajectories (Fig. 6d):
CD14+ monocytes connected with either FCGR3A+ monocytes or
CD68+ macrophages cells, which subsequently connected to CD163+
macrophages. Profiling of marker genes such as microvascular adhe-
sion markers along these trajectories confirmed the functional anno-
tation, as FcγRIII+ nonclassical monocytes are known to patrol
along endothelium24 (Fig. 6e). Besides increasing endothelial adhesion
marker expression, FCGR3A+ monocytes also expressed innate
allorecognitionmarkers such as CD47 and Leukocyte Immunoglobulin
Like Receptors (LILR) family genes25,26 progressively along the

Fig. 1 | Identification of the cell subtypes in kidney allograft biopsies by single-
cell RNA seq. a Experimental Approach. Kidney allograft biopsies were used for
scRNAseq (n = 16 biopsies from 14 patients). b Uniform Manifold Approximation
and Projection (UMAP) plot of 35,152 cells passingQCfiltering. Themain kidney cell
types are represented, including loop of Henle (LOH), podocytes, vascular smooth
muscle and pericytes (vSMp), proximal tubule (PT), intercalated cells (IC), three
endothelial cell subsets comprising vasa recta (ECvr), glomerular (ECg) and peri-
tubular capillaries (ECptc), myeloid cells, and lymphoid cells. c Schematic of a
juxtamedullary nephron showing relevant cell types and associated vasculature.
d Dot plot showing average gene expression values of canonical lineage markers

(log scale) and percentage ofmajor cell types represented in the whole dataset and
UMAP plot. e Relative proportions of the 18 different cell types identified in the
kidney transplant biopsies. f Polar plot of the 16 biopsies22. The biopsies were
reclassified into 4 groups: non-rejectingdonor-specific antibody (NRDSA)-negative
(NR DSA-), NR DSA-positive (NR DSA+), T cell-mediated rejection (TCMR), DSA-
positive antibody-mediated rejection (ABMR DSA+). g Spearman’s correlation
coefficient represented by a dot with 95% confident interval represented by the
error bars of the correlation between inflammation severity (radius on the polar
plot)22 and the frequency of the different immune cells as a proportion of the total
population. Panels a and c were created using biorender.com.
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trajectory. In contrast, increased expression of complement-related
(C1QA, C1QB, C1QC), phagocytosis-related (LAMP1, MSR1, OLR1) and
antigen presentation-related (CD74, HLA-DMA, HLA-DRA) genes was
observed in CD68+ and CD163+ macrophages. Overall, this indicates
that macrophages mainly assume complement secretion as well as
scavenger function and antigen presentation, whereas nonclassical
monocytes are equipped with both antigen-dependent cytotoxicity

(FcγRIII) and receptors suggested to be involved in innate
allorecognition25,26.

Transcriptional changes in FCGR3A+ monocytes and FCGR3A+
NK cells during allograft rejection
Given that both FCGR3A+ monocytes and FCGR3A+NK cells enrich-
ments were associatedwith inflammation severity, we investigated the
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transcriptional changes occurring in these two cell types upon ABMR.
In FCGR3A+ monocytes, a robust transcriptional response of 11 dif-
ferentially expressed genes (DEG) was observed in NR DSA+ (Fig. 7a)
that coincidedwith thatof theABMRgroup. Immediately apparentwas
the strong upregulation of the chemokine CXCL10 together with
upregulation of the two IFN-γ-inducible genes GBP5, WARS and two
other transcripts, TNFSF10 and SLC31A2 (logFC>1.5 in ABMR). Con-
versely, we observed a downregulation of the chemokines CCL3 and
CCL17 but also CD163, JUN, and FN1 (logFC< −1.5 in ABMR group)
suggesting a shift in cytokine signaling by FCGR3A+ monocytes. The
expressionof thesegenes related to inflammation severity (Fig. 7c).We
confirmed these findings in independent scRNAseq datasets, reinte-
grating two ABMR biopsies21 as well as two mixed ABMR-TCMR
biopsies27 with four biopsies from patients showing no rejection21

(Supplementary Fig. 6a). In FCGR3A+ nonclassicalmonocytes, CXCL10,
GBP5, WARS, SLC31A2 and TNFSF10 were overexpressed in the ABMR
and mixed rejection cases, while JUN and CCL3 were decreased (Sup-
plementary Fig. 6b, c). Expression of CCL17 and CD163was observed in
only one sample and FN1 not expressed at all in this public dataset.

Analysis of FCGR3A+NK cells displayed much less DEG in com-
parison between NR DSA- and ABMR samples. Only FCRL3 showed a
logFC>1.5 in ABMR compared to NR DSA- (Fig. 7b). FCRL3, a gene
increased after FcγRIII engagement during ABMR28, correlated posi-
tively with inflammation severity (Fig. 7d). In the validation set, over-
expression of FCRL3 in ABMR was observed in the two ABMR samples
but was less clear in mixed rejection (Supplementary Fig. 6d, e).

Characterization of FCGR3A+ monocytes and FCGR3A+NK
cell-cell communication
We next used CellChat to quantitatively infer intercellular commu-
nication networks29 and noticed more than 60 significantly enriched
pathways (Fig. 8a) contributing to cell-to-cell communications. A lim-
ited number of communications were attributed to FCGR3A+NK cells
(Fig. 8b), mainly represented by the secretion of the macrophage
migration inhibitory factor MIF and the expression of its receptors,
CD74 +CXCR4 or CD74 +CD44 in the other immune cells. This is in
line with literature stipulating that FCGR3A+NK cells arematurated NK
cells that progressively decreased their cytokine secretion but that are
more cytotoxic compared to their FCGR3A- counterparts30.

In contrast, FCGR3A+ myeloid cells were predicted to commu-
nicate with almost all other cell types within the kidney except for
PT cells and IC. A large number of communications in FCGR3A+ mye-
loid cells was observed in which GALECTIN represented an additional
broad signaling pathway together with TNF and CXCL signaling
(Fig. 8c). Specifically, myeloid cells exerted a privileged communica-
tion with FCGR3A+NK through LGALS9-HAVCR2 signaling (Fig. 8d).
HAVCR2 encodes for Tim-3 protein, a marker of NK cell activation that
enhances IFN-γ secretion in response to galectin-9 within the
allograft31,32. In line with this, CXCL10, an IFN-γ-inducible gene, is par-
ticularly upregulated in FCGR3A+ monocytes during rejection and
mainly interacts with T cells through CXCR3, but also with ECptc
through ACKR1 (DARC, also called the Duffy antigen/chemokine
receptor) (Fig. 8e, f).

FCGR3A+NK and FCGR3A+ monocytes strongly interact
in ABMR
Finally, we assessed the cell-cell contact signaling, as predicted in the
transcriptomic datasets, in the MILAN spatial protein expression
dataset. At the transcriptional level, the most active pathways were
represented by APP-CD74, CD99-CD99 and CD8-class I HLA interac-
tions followed by ITGB2-ICAM2 and LILRB1-class I HLA (Fig. 9a).
Focusing on FCGR3A+ NK cell-cell contacts, we noticed that NK cells
mainly interacted with CD8 Teffmem through class I HLA-CD8 and
with FCGR3A+ myeloid cells through class I HLA-LILRB1 but also
ITGB2-ICAM and CD99-PILRA (Fig. 9b, left panel). FCGR3A+ myeloid
cells mainly responded to autocrine signaling through more than 30
pathways including LILRB1-S100A but also LILRB1-class I HLA and
CD4-class II HLA, PECAM1-PECAM1 and ITGB2-ICAM pathways. They
also displayed two unique pathways to communicate with
FCGR3A + NK cells: HLA-E-KLRC1 and HLA-E -CD94:NKG2A (Fig. 9b,
right panel). Since CellChat analysis identified FCGR3A+myeloid cells
as the dominant communication “hub” within the allograft, mainly
communicating with CD8 T cells and FCGR3A+ NK cells, we finally
tested whether FcγRIII+ myeloid cells would differentially induce
recruitment of CD8 T cells and FcγRIII+ NK cells according to the
rejection subtype. For this, we performed a neighborhood analysis at
the proteomic level to characterize which immune cells were speci-
fically located around FcγRIII+ monocytes within the allograft (Sup-
plementary Fig. 2).We noticed a strong and significant enrichment of
FcγRIII+ NK cells in ABMR or mixed rejection biopsies, but not in
TCMR or NR biopsies. In contrast, FcγRIII+ monocytes were mainly
surrounded by CD8 T cells in TCMR (Fig. 9c). Altogether, these
results suggest that FcγRIII+ monocytes might distinguish non-self
through LILRs expression and secrete TNF, galectin-9 and CXCL10.
This activation and cytokine secretion could support the alloimmune
responses together with FcγRIII+ NK cells in antibody-mediated
context, or with CD8 T cells in antibody-independent context. To
better characterize the role of monocytes in supporting CD8+T cells
alloreactivity, we set up an in vitro model in which CD8+ T cells,
purified from anHLA-A2 negative healthy volunteer, were cocultured
with a human cell line expressing only the allogeneic molecule HLA-
A2 in presence or absence of monocytes from the same healthy
volunteer. The proliferating HLA-A2 specific CD8+T cells were
detected using CellTrace dye dilution (Supplemental Material
and Methods, Fig. S8a, b). After 4 days of coculture with monocytes,
the HLA-A2 specific CD8+T cells showed a trend towards an increase
of proliferation (Fig. S8c), as well as stronger cytotoxic profiles as
illustrated by higher level of expression of CD107a, Granzyme-B and
IFN-γ expression (Fig. S8d) compared to CD8 + T cells cultured
without monocytes. In line with these phenotypical data, HLA-A2
specific CD8+ T cells cocultured with monocytes showed an
increased capacity to kill HLA-A2-expressing renal epithelial cells as
compared to non-specific CD8+T cells or HLA-A2 specific
CD8+T cells cultured in absence of monocytes. Altogether, these
results further support our hypothesis that monocytes may support
the expansion and acquisition of a cytotoxic profile by allo-specific
CD8 + T cells.

Fig. 2 | CIBERSORTx deconvolution confirms enrichment of FCGR3A+ cells in
biopsies with rejection. a Experimental Approach. scRNAseq-derived signature
matrix KTB18 was used for deconvolution of the dataset GSE147089 encom-
passing 224 transcriptomes from kidney biopsies. Created using biorender.com.
b Polar plot of the 224 biopsies. The biopsies were reclassified into 6 groups: non-
rejecting donor-specific antibody (NR DSA)-negative (NR DSA-), NR DSA-positive
(NR DSA+), T cell-mediated rejection (TCMR), antibody-mediated rejection DSA-
positive (ABMR DSA+), ABMR, DSA-negative histology of ABMR (ABMRh DSA-),
and mixed rejection. c Pearson’s correlation coefficient is represented by a dot,
with 95% confident interval shown as error bars, for the correlation between

inflammation severity and frequency of different immune cells as a proportion of
the total cell population (n = 224 biopsies). d Correlogram of the indicated
immune cell proportions and Banff histological lesions using Pearson’s correla-
tion. Colors indicate correlation coefficient. i, interstitial inflammation; ptc,
peritubular capillaritis; v, vasculitis; mvi (g+ptc), microvascular inflammation; t,
tubulitis. e, f Frequency of the indicated cell subsets measured by deconvolution
and stratified according to clinical outcome. The difference between groups was
assessed by a two-tailed Kruskal-Wallis test and multiple comparisons using the
Dunn’s test. Data were obtained from the GSE147089 test set23 f Data derived
from the public GSE36059 validation set83.
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Fig. 3 | The cellular composition of rejection characterized at the protein level
using Multiple Iterative Labeling by Antibody Neodeposition (MILAN).
a Experimental Approach. MILAN was used for characterization of infiltrating cells
in kidney biopsies at the protein level in 18 kidney biopsies. Created using Bior-
ender.com. b Representative sample illustrating the MILAN analysis with hema-
toxylin and eosin (H&E) staining (left), composite fluorescence image of 5 markers
(plus autofluorescence, AF) after image processing (center), digital reconstruction
of the sample highlighting themain cell populations of interest. cUniformManifold
Approximation and Projection (UMAP) plot of 7804 representative cells. d Relative
proportions of the 555,479 cells identified in the kidney transplant biopsies (n = 18).

e Polar plot of the 18 biopsies. The biopsies were reclassified into 6 groups:
non-rejecting donor-specific antibody (DSA) negative (NR DSA-) and DSA positive
(NRDSA+), T-cellmediated rejection (TCMR) and antibody-mediated rejectionDSA
positive (ABMR DSA+) and DSA negative (ABMRh DSA-) and Mixed rejection.
f Spearman’s correlation coefficient represented by a dot with 95% confident
interval represented by the error bars of the correlation between inflammation
severity and the frequency of different immune cells as a proportionof the total cell
population (n = 18 biopsies).gCorrelations between the frequency of indicated cell
types and inflammation severity. Spearman’s correlation coefficient and two-tailed
p-value are indicated.
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Interactions between FCGR3A+NK and FCGR3A+ myeloid cells
and structural kidney cells
To evaluate cell communications between the FCGR3A+ immune cells
and the structural kidney cells, we next reintegrated PT cells, endo-
thelial cells, podocytes and immune cells of interest: FCGR3A+NK and
FCGR3A+ myeloid cells (Fig. 10a). Four different clusters were dis-
tinguished within PT cells, corresponding to the 3 segments already
described fromkidney cortical area tomedulla (PT_S1, PT_S2 and PT-S3
respectively, Fig. 10a–c). Interestingly, a cluster corresponding to
injured tubular cells expressing HAVCR1 and VCAM1 (Fig. 10b) was
detected33. Regarding endothelial cells, in addition to the previously
described clusters (ECptc, ECg and ECvr), we detected a cluster
expressing high levels of VCAM1, suggesting activation as previously
reported21. We performed CellChat analysis assessing both secreted
signaling and cell-cell contact using FCGR3A +NK and FCGR3A+
monocytes as source cells. Very limited cellular communications were
detected in PT cells clusters (Fig. 10d), which is in line with Fig. 10e
confirming that no significant interaction was detected between the
tubules and FCGR3A+ immune cells. In contrast, secreted signaling
unraveled that FCGR3A+ monocytes mainly interact with NK cells
through LGALS9 coding for galectin-9 inferred secretion (Fig. 10e). We
previously showed that anti-HLADSA triggers chemokine and cytokine
production in kidney transplant recipients’ serum, independent of
histological lesions and we demonstrated that this secretion could be
induced by FcγRIII+ cells in an in vitro model of ADCCmimicking anti-
HLA DSA binding on endothelium34. Here, using the same in vitro
model, we found that non-classical monocytes significantly secreted
more galectin-9 after anti-HLA DSA recognition (Fig. S8a–d).

Therefore, we measured the expression of Tim-3, the galectin
9-receptor in FcγRIII+ NK cells in kidney biopsies using multiplexed
immunofluorescence (MILAN). We observed that Tim-3 expression is
increased in FcγRIII+ NK cells closely located near FcγRIII+ monocytes
in acute rejection context (Fig. S8e, f) suggesting that galectin-9
secreted by FcγRIII+ monocytes could trigger NK cell activation in
rejection.

In addition, VCAM1+ EC (EC_Injured) overexpress ACKR1 and
TNFRSF1A, making them potential targets of monocyte-derived
CXCL10 and TNF but also of NK-derived CCL5. Given that the recog-
nition of anFc fragmentby the FcγRIII receptor induces Sykdependent
pathways triggering cytokine secretion, we investigated whether a Syk
inhibitor could block the secreted signaling using the in vitromodel of
ADCC. The addition of R406, the active form of fostamatinib, to the
NK/non-classical monocytes/GENC coculture completely abrogated
the secretion of TNF, CCL5 and CXCL10 in the presence of HLA DSA,
suggesting that Syk inhibitors could alleviate the cytokine release of
NK cells and monocytes in ABMR (Fig. S9a, b).

Regarding cell-cell contacts between FCGR3A+NK and FCGR3A+
monocytes, the main interactions were driven by ITGB2 and ITGA4
expression. The basal expression of their ligands ICAM1 and ICAM2 in
ECvr, Ecptc and Ecg strengthened by VCAM1 overexpression in EC_In-
jured could explain this preferential cell-cell contact (Fig. 10e). We did
not identify any injury cluster of podocytes given their limited number.

Discussion
In this study, by performing scRNASeq on 16 human kidney trans-
plant biopsies, we identified the major infiltrating immune cells

Fig. 4 | Distinct monocytes populations are enriched in inflamed biopsies.
a Reintegration of DC, neutrophils and macrophages populations and Uniform
Manifold Approximation and Projection (UMAP) plot of the 4795 corresponding
cells. b Spearman’s correlation coefficient represented by a dot with 95% confident
interval represented by the error bars of the correlation between inflammation

severity and the frequency of different immune cells as a proportionof the total cell
population (n = 18 biopsies). c Correlations between the frequency of indicated cell
types and inflammation severity. Spearman’s correlation coefficient and two-tailed
p-value are indicated.
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Fig. 5 | Immune cells are differently compartimentalized in the kidney allo-
graft. a Radar plots showing the percentage of indicated cell populations as a
proportion of the total cell population measured in the glomerular, tubular, vas-
cular, large vascular and interstitial compartments. b Percentage of indicated cells
measured in the glomerular vs. non-glomerular area. The mean ± SEM is depic-
ted.The difference between groups was assessed by the two-tailed p value calcu-
lated with Mann-Withney test. c Representative case showing a composite
fluorescent image of 3 markers (plus autofluorescence, AF) after image processing

(top), and the resulting digital reconstruction highlighting the cell types of interest
(bottom). The reader should note that FcγRIII+ NK cells and FcγRIII+ nonclassical
monocytes infiltrate the glomerulus whereas classical monocytes are located out-
side of it. d Enrichment of 6 different immune cell types based on their distance to
the closest glomerulus. The y-axis represents the percentage of cells (from the total
cell population) belonging to a given cell type at amaximumgiven distance (x-axis)
from the closest glomerulus. Different samples from the same Banff classification
were pulled to get a single line per category.
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Fig. 6 | FCGR3A+ monocytes are involved in innate myeloid allorecognition.
a All myeloid cells identified in the 16 scRNAseq samples were reintegrated in a
UMAP plot of 1,168 myeloid cells. b Dot plot demonstrating average gene expres-
sion values of canonical lineage markers (log scale) and percentage of myeloid cell
types represented in the UMAP plot. c Correlations between inflammation severity
(the radius on the polar plot22) and the proportion of each myeloid subset relative
to the total number of cells assessed in each biopsy. Spearman’s correlation

coefficient represented by a dot with 95% confident interval represented by the
error bars. d Pseudotime trajectories for monocytes and macrophages based on
Slingshot, showing the common branch of CD14+ monocytes differentiating into
either FCGR3A+ monocytes or CD68+, then into CD163+ macrophages. The light
grey error band represents the SEM of the gene expression e Profiling of marker
genes along these trajectories.
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relevant in allograft rejection. To our knowledge, this is the largest
single-cell cohort of human kidney transplant biopsies to date. The
cell fractions that were identified, and their respective prevalence,
were consistent with previous single-cell studies17,21,35,36 and were
statistically correlated with detailed clinicopathological phenotypes
and inflammation severity. Gene expression signatures and a cell-
specific deconvolution matrix KTB18 that were derived from the

single-cell populations allowed to estimate the cellular fractions in a
transcriptomic cohort of 224 independent allograft biopsies. This
confirmed the correlation between FcγRIII+NK cell and FcγRIII+
monocyte infiltration and inflammation severity. We demonstrated
that FcγRIII+ NK cells and FcγRIII+ monocytes are increased in ABMR
and microvascular inflammation, while TCMR and tubulo-interstitial
inflammation associated with CD8+ T cells, monocytes, and

Fig. 7 | Transcriptional changes in FCGR3A+NKand FCGR3A+monocytesduring
rejection. a, b The differentially expressed genes (DEGs) of FCGR3A+ cells were
identified by the FindMarker function in Seurat using Wilcoxon test, according to
the diagnostic phenotype of the samples (n = 16). a The fold change-fold change
(FC-FC) plot compares the transcriptional differences within FCGR3A+ monocytes,
betweennon-rejecting donor-specific antibody (NRDSA-) andNRDSA+ (y-axis) and
antibody-mediated rejection (ABMR) (x-axis). The highlighted DEGs represent
transcripts with log FC> 1.5 or log FC< −1.5 in ABMR cases compared to NR DSA-.

b FC-FC plot comparing the DEGs in FCGR3A+NK cells between NR DSA- and NR
DSA+ (y axis) or ABMR (x axis). The highlightedDEGs represent transcripts with log
FC> 1.5 or log FC< −1.5 in ABMR. c, d Dot plots demonstrating average gene
expression values of selected genes (log scale), and percentage of FCGR3A+
Monocytes expressing indicated genes (c) or FCGR3A+NK cells expressing indi-
cated genes (d), according to inflammation severity (the radius on the polar plot22)
represented by the rank of the biopsies in the plot.
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Fig. 8 | FCGR3A+monocytes present specific communication patterns. a All the
significant communications contributing to secreted signaling inferred by CellChat
analysis are depicted. b Ligand-receptor pairs that significantly contribute to the
secreted signaling from FcγRIII+ NK to all other cell types. c Ligand-receptor pairs

that significantly contribute to the secreted signaling from FCGR3A+ monocytes to
all other cell types. d The inferred LGALS9-HAVCR2 signaling network. e, f The
inferredCXCL10 signaling network encompassing CXCL10-CXCR3 (e) and CXCL10-
ACKR1 ligand-receptor pairs (f).
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Fig. 9 | FCGR3A+ monocytes neighborhood analysis. a All the significant com-
munications contributing to cell-to-cell signaling inferred by CellChat analysis are
depicted. b Ligand-receptor pairs that significantly contribute to the cell-to-cell
signaling from FCGR3A+NK (left panel) or FCGR3A+ monocytes (right panel) to all
other cell types. c Neighborhood analysis results showing the enrichment of cell-

cell interactions between FCGR3A+ monocytes and FCGR3A+NK cells or CD8 T eff
for the different Banff classification groups. The y-axis represents the number of
random cases with a higher (if above 0) or smaller (if below 0) number of inter-
actions than the observed data (seemethods). The x-axis represents the distance at
which one cell is considered to be in the neighborhood of another cell.
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Fig. 10 | FCGR3A+ cells mainly interact with the endothelium by direct contact
but also through secreted mediators. a FCGR3A+ cells were reintegrated with
endothelial/epithelial cells in a UMAP plot. b UMAP depicting the concomitant
expressions of twomarkersof injury:VCAM1 andHAVCR1. cDotplot demonstrating
select average gene expression values (log scale) and percentage cell types repre-
sented in the UMAP plot. d CellChat analysis was performed and the number of

incoming and outgoing ligand-receptor interactions is plotted per cell type. e All
the significant communications contributing to cell-to-cell signaling inferred by
CellChat analysis are depicted: ligand-receptor pairs that significantly contribute to
the secreted effectors (left panels), or cell-to-cell direct contact from FCGR3A+NK
or FCGR3A+ monocytes to all other cell types (right panels).
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macrophages. Using multiplex immunofluorescence analysis, we
confirmed the differential involvement and spatial distribution of the
innate immune cell infiltrate in the vascular vs. tubulo-interstitial
rejection subtypes. Finally, these studies indicate molecular and
spatial cell-cell interactions between the FcγRIII+ monocytes and
FcγRIII+ NK cells in microvascular rejection. Our results collectively
point to the central involvement of recipient-derived innate immune
cells, in particular NK cells and monocytes, in kidney transplant
rejection, which is usually assumed to be primarily mediated by
adaptive immunity.

In our study, FcγRIII+ NK cells were correlated with inflammation
severity and more particularly with microvascular inflammation.
Among NK cells, FcγRIII+ NK cells represent a cytotoxic subset,
whereas FcγRIII- NK cells harness more regulatory functions37. FcγRIII,
encoded by FCGR3A, is a surface receptor that interacts with the
constant fraction of target-bound antibodies. Notably, Sablik et al.
reported an increase of FCGR3A expression on circulating NK cells in
chronic active ABMR38. This activation is hallmarked by transcriptional
changes and notably the overexpression of FCRL328, the release of
cytolytic granules and apoptosis-inducing ligands that lead to the
destruction of the antibody-bound cellular target39 in a process termed
antibody-dependent cellular cytotoxicity (ADCC). Moreover, NK cells
can also sense the absence of HLA-I molecules through the KIR
receptors and thus recognizemissing self, which can contribute to and
even trigger microvascular inflammation9,40,41. In our study, transcrip-
tional changes of these cells were very limited in ABMRpatients, which
suggests that these cells primarily interact with the allograft through
FCRL3 induction and thus ADCC. Further studies are required to
investigate the cellular interactions and interplay of potential other
activating stimuli that lead to FcγRIII+ NK cell activation in micro-
vascular inflammation.

Next to demonstrating the role of FcγRIII+NK cells in kidney
transplant rejection, our study also identified the main subsets of
monocytes, macrophages, and dendritic cells in kidney allografts:
CD14+ classical monocytes, CD14+ FcγRIII+ intermediate monocytes,
CD14- FcγRIII+ nonclassical monocytes, CD68+ macrophages and
CD163+ macrophages but also CLEC9A+ cDC1 and CLEC10A+ cDC2.
Whereas the main function of classical monocytes is phagocytosis and
scavenging, allowing the elimination of microorganisms and/or
abnormal cells, FcγRIII+ nonclassical monocytes present less phago-
cytosis activity but more ADCC capability42. FcγRIII+ monocytes infil-
trationwithin the allograft was positively correlatedwith inflammation
severity, suggesting that nonclassical monocytes can play a patho-
genic role during rejection, most likely by ADCC after anti-donor
antibody fixation, and by amplifying CD8+T cells allogeneic respon-
ses. Interestingly, FcγRIII+ monocytes represented the main myeloid
cells expressing the newly described receptors involved in innate
allorecognition, such as CD47. Recipient-derived CD47+ infiltrating
myeloid cells could sense allogeneic SIRPα expressed by donor cells,
as was recently suggested25. Moreover, after CD47 priming, murine
monocytes overexpressed paired immunoglobulin-like receptors
(PIRs) thatdirectly bind class IMHCmolecules43 and can thus provide a
second hit in case of MHC mismatch44. Human orthologs to
murine PIRs are leukocyte immunoglobulin-like receptors (LILRs).
Among the LILR family, only LILRA1, LILRA2, LILRA3 are known to
interact with HLA molecules to elicit an activator signal45. In our
study, LILRA1, LILRA2 and LILRA5 were mainly expressed by FcγRIII+
monocytes, which is further indication that these cells are not only
capable of ADCC, but are also able to directly recognize non-self
donor cells.

The present study was not designed to address the mechanistic
causes of rejection, but the expression patterns of the immune cell
infiltrate corroborate recent hypotheses. Recipient-derived anti-
bodies bound to the allograft tissue can enhance immune responses
in FcγRIII+ cells. Here, we showed that these same cells are also

equipped with either KIRs (for NK cells)46 or LILRs (for monocytes)47,
which thus could participate in allorecognition not solely restricted
to humoral responses as driver of kidney rejectionmediated by these
FcγRIII+ cells. Indeed, as often in immunological processes, a single
effector cannot induce a complete phenotype by itself and the
immunological response is far more complex than expected. Similar
to what was observed for NK cells, where missing self and ADCC
mechanisms can act synergisticly9, the potential synergistic effects of
FcγRIII engagement and LILRs activation in FcγRIII+ monocytes need
to be addressed. As activator LILRA family downstream signaling
relies on ITAM phosphorylation, driving Syk and PI3K pathways47,
this signaling converges on FcγR signaling and mTOR activation. We
can thus speculate that pharmacological inhibition of the Syk or
mTOR pathway could lead to proportional decrease in both FcγRIII+
monocytes and FcγRIII+ NK cell activation48,49. Using an in vitro
model of ADCC, Shin et al. showed that steroids and calcineurin
inhibitors were effective at reducing IFN-γ production by NK cells
compared to mTOR inhibitors50 but their impact on FcγRIII+ mono-
cytes remains to be addressed. Also, daratumumab, targeting CD38
and depleting NK cells and monocytes, could be considered for
treating ABMR, as suggested by Doberer et al. 51. In addition, a recent
report indicated that murine inflammatory monocytes could be tar-
geted using immune-modifying nanoparticles to prevent acute kid-
ney allograft rejection52. Building on our human data on the Syk
pathway in rejection, we now demonstrate that fostamatinib inhibits
FcγR-triggered, Syk-dependent activation53 and, as such, represents
an additional avenue for targeting this previously unexplored
mechanism of kidney rejection pathogenesis.

Finally, our findings suggest that recipient-derived nonclassical
monocyte infiltration into the graft, followed by FcγRIII engagement
and CXCL10 secretion, contributes significantly to the immunological
attack against the allograft. FcγRIII+ nonclassical monocytes not only
exhibit local cytotoxicity, but also actively contribute to the ongoing
pro-inflammatory microenvironment in the allograft. FcγRIII+ mono-
cytes overexpress galecti- 9, a 40-kDa S-type β-galactoside binding
lectin which is a known ligand for Tim-3 encoded byHAVCR2 gene and
induced at the NK cell surface after activation. In response to galectin-
9, Tim-3+NK cells enhance IFN-γ production31. This finding echoes our
recent report showing that coculturing FcγRIII+ monocytes with
FcγRIII+ NK cells and glomerular endothelial cells enhanced IFN-γ
secretion in vitro34. FcγRIII+ monocytes also overexpress the chemo-
kine CXCL10 together with upregulation of two other IFN-γ-inducible
genes, GBP5 and WARS, upon rejection. These three transcripts were
previously reported asprimaryDEGs in bulk transcriptomic analysesof
kidney allograft rejection54 and ABMR23. Using microdissection on
formalin-fixed kidney allograft biopsies combined with mass
spectrometry-based proteomics, it was recently reported that 77
proteins were deregulated in glomerulitis compared to stable grafts,
particularly involved in cellular stress mediated by interferons type I
and II, leukocyte activation and microcirculation remodeling55. Also
here, WARS1 protein was overexpressed in leucocytes infiltrating the
glomeruli as well as in endothelial cells during ABMR55,56. Furthermore,
our cell-to-cell communications analysis suggested that CXCL10 over-
expression by FcγRIII+ monocytes may recruit CXCR3 + T cells and
activate ACKR1+ endothelial cells composing the peritubular capil-
laries. This aligns with our previous finding that the FcγRIII engage-
ment of purified nonclassical monocytes co-cultured with primary
endothelial glomerular cells induces CXCL10 secretion57. Finally,
increased expression of CXCL10 is not only observed in the biopsies at
time of kidney allograft rejection but also in urine, serving as suitable
biomarker of rejection58–60, and in peripheral blood57.

Our study has some limitations. For example, in the scRNAseq
dataset, the limited number of samples and case mix could have
impacted on the results, and less common phenotypes or disease
processes may have been missed. The sample size of our biopsy
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cohorts, the way biopsies are obtained (primarily cortical tissue), the
choice of technique for single cell dissociation and wet lab prepara-
tion, and the downstream clustering affects the cellular mix and
transcriptional profiles of the cells both in scRNASeq61 and in MILAN,
and explain why in the scRNASeq dataset no distal convoluted tubule
or principal cell and only few podocytes were obtained. In addition, we
used a non-overlapping set of samples in scRNAseq and MILAN. This
also explains some discrepancies between the scRNAseq results and
the MILAN multiplex immunofluorescence data. Moreover, in the
MILAN-derived dataset, we largely focused on immune cell subtypes,
excluding common epithelial cell markers especially from themedulla
area (e.g. SLC12A1 for LOH) and injury markers. As a result, epithelial-
immune neighborhoods were not fully assessed at epithelial subtypes
level. Nevertheless, themain analyses showed robust corroboration of
our conclusions by the different techniques applied to different sam-
ples sets. Finally, the relation between the histological/molecular
phenotype and cellular mix in the biopsies, and the underlying causal
pathways of allorecognition or even autoreactivity (DSA, non-HLA
antibodies, missing self, etc.) was not assessed and needs
further study.

In conclusion, we have used single-cell transcriptomics, decon-
volution of bulk transcriptomics by a novel cell-specific signature
matrix KTB18, and multiplex immunofluorescence to characterize the
immune landscape of kidney transplant rejection. Current paradigms
of kidney transplant rejection focus on adaptive immunity, antibody-
mediated injury, and T-cell activation, which are the primary targets of
immunosuppressive regimens to prevent and treat rejection. We have
demonstrated the importance of FcγRIII+ monocytes and FcγRIII+NK
cells, and innate immune crosstalk during rejection. We believe that
this work is amajor resource for the understanding of the role of these
cells and the innate immune system involvement in kidney transplant
rejection, and shows promise for developing therapeutic strategies
that target these pathways.

Methods
Patient population and data collection
Single-cell RNA sequencing (scRNAseq) was performed on a cohort of
16 biopsies from 14 renal transplant recipients followed in the Uni-
versity Hospitals Leuven, Belgium (Supplementary Table 1). All trans-
plantations were performed with negative complement-dependent
cytotoxicity crossmatches on T and B cells. Most recipients had a
planned indication biopsy with a high clinical probability for humoral
rejection. This study included both male and female participants. Sex
annotation was based on self-report. For two patients, a follow-up
biopsy was included in the study. Additionally, one recipient of an
identical twin transplantation was included with a protocol biopsy at
3 months post-transplantation.

The selection of the bulk transcriptomic samples was reported
before23. Briefly, we included 224 renal allograft biopsy samples from
four European transplant centers between June 2011 and March 2017
(University Hospitals Leuven, Belgium; Medizinische Hochschule
Hannover, Germany; Centre Hospitalier Universitaire Limoges, France,
and Hôpital Necker Paris, France), in the context of the BIOMArkers of
Renal Graft INjuries (BIOMARGIN) study (ClinicalTrials.gov number
NCT02832661), and the Reclassification using OmiCs integration in
KidnEy Transplantation (ROCKET) study. Institutional review boards
and national regulatory agencies (when required) approved the study
protocol at each clinical center. Each patient contributed one biopsy
and gave written informed consent.

For the multiplex immunofluorescence (MILAN) analysis, an
independent set of 18 biopsies was included from renal transplant
recipients followed in the University Hospitals Leuven, Belgium (Sup-
plementary Table 2). All patients provided written informed consent.
This study was approved by the Ethics Committee of the University
Hospitals Leuven (S64904).

Clinicopathological diagnosis of acute rejection subtypes
Two kidney biopsy cores were obtained using a 14-gauge needle under
sonographic guidance. One biopsy core was fixed in formalin and
embedded in paraffin for standard histopathological assessment. Half
of the secondbiopsy corewas used for frozen sections and/or electron
microscopy; the remaining half core was used for either scRNAseq or
bulk transcriptomic analysis. All biopsies were scored according to the
internationally standardized Banff lesion scores62. The follow-up of
anti-HLA antibodies was systematically monitored in one histo-
compatibility laboratory (HILA –Belgian Red Cross Flanders); details
on this assessment were previously published7. Anti-human leukocyte
antigen (HLA) donor-specific antibodies (DSA) were assessed retro-
spectively, taking into account both donor and recipients high-
resolution HLA genotyping results. A possible presence of DSA was
suspected at a background-corrected median fluorescence intensity
value around 500. For the final assignment of DSA, the total sera
reactivity of the patients was analyzed. A diagnostic label was awarded
to eachbiopsybased on the presence and severity of these histological
lesions and on the DSA status, in concordance with the Banff 2019
classification4. In addition, all biopsies were categorized into one of six
recently described clinicopathological clusters22, based on the pre-
sence of acute histological lesions and recipient DSA status (available
at https://rejectionclass.eu.pythonanywhere.com/). This data-driven
classification allows for visualization of the biopsies on a two-
dimensional polar plot in which the theta angle associates with the
spatial localization of the inflammation, i.e., microvascular inflamma-
tion versus tubulointerstitial inflammation. The radius indicates the
global severity of the inflammatory infiltrate given by the sum of re-
weighted acute lesions scores, scaled to the unit interval (from 0 to 1)
and is designated as “inflammation severity”22.

Single-cell isolation and single-cell droplet-based RNA
sequencing
Biopsies wereminced into small pieces with a scalpel and incubated at
37 °C for 5minutes in freshly prepared dissociation buffer containing
2mg/mL Collagenase P (Roche) and 0.2mg/ml DNase I (Roche). Dis-
sociated tissuewas harvested and filtered through a 40 µmcell strainer
(Flowmi Tipstrainers, VWR) into ice-cold PBS. Cells were collected by
centrifugation at 300 g for 5minutes at 4 °C before resuspension in
Red Blood Cell lysis buffer (Merck) for 5minutes, then centrifuged at
200 g for 5minutes at 4 °C before resuspension in PBS containing
0.04% UltraPure BSA (AM2616, ThermoFisher Scientific), and finally
strained through a 40-µm cell strainer to further remove cell clumps
and large fragments. Cell number and viability was measured for the
biopsy using Luna Cell counter as previously published63. Libraries for
scRNAseq were generated using the Chromium Single Cell 5′ library
and Gel Bead & Multiplex Kit from 10x Genomics. We aimed to profile
5000 cells per library if sufficient cells were retained during dissocia-
tion. All libraries were sequenced on Illumina NextSeq until sufficient
saturation was reached. After quality control, raw sequencing reads
were aligned to the human reference genome GRCh38 and processed
to a matrix representing the UMIs per cell barcode per gene using
CellRanger (10x Genomics, v3.1).

Single-cell RNA-sequencing data analysis
Filtered gene expression matrices generated per sample were merged
and analyzed using the Seurat V4 package64. Cellmatrices werefiltered
with the following parameters: cells having <400 and >10000 genes
detected and having greater than 25% mitochondrial transcripts were
excluded (Supplementary Fig. 1a). After filtering, all objects were
integrated using 3000 features. Full data set UMAP was generated
using Seurat’s DimPlot function using the top 17 principal compo-
nents. Clusters were built using the FindNeighbors and FindClusters
functions in Seurat (resolution = 2). Cluster identification was per-
formed using the FeaturePlot function by evaluating the expression of
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specific markers in each cluster. Dot plots, violin plots and heatmaps
were generated using theDotPlot and VlnPlot functions respectively in
Seurat, with normalized counts in the RNA assay as input data. Enri-
ched genes identification was performed using the FindMarkers
function in Seurat. A p-value cut-off (p < 0.05) was applied to select
significantly enriched genes in indicated cell clusters. Expression levels
of significant enriched genes were calculated using AverageExpression
function in Seurat according to each patient group as previously
defined22. Validation scRNAseq dataset was compiled and analyzed as
previously described34,65.

CellChat and trajectory inference analysis
CellChat uses a mass action-based model for quantifying the com-
munication probability between a given ligand and its cognate
receptor and takes into consideration the proportion of cells in each
group across all sequenced cells and expressed co-factors (https://
github.com/sqjin/CellChat)29. A Seurat object encompassing all the
cells was used to generate a corresponding CellChat object. The
recently reported LILRA and LILRB ligand-receptors pairs47 were added
to the CellChat database. The aggregated cell-cell communication
network was calculated by counting the number of links or summar-
izing the communication probability. The aggregated cell-cell com-
munication network showing the total interaction strength (weights)
between all clusters was represented using circle plots. The contribu-
tion of each ligand-receptor pair to the overall signaling pathway was
computed and the function extractEnrichedLR was used to extract all
the significant interactions (L-R pairs) and related signaling genes for
all available signaling pathways.

The R package Slingshot was used to explore pseudotime trajec-
tories/potential lineages in myeloid cells66. The analyses were per-
formed with DC excluded due to their unique developmental origin.
For each analysis, PCA-baseddimension reductionwasperformedwith
differentially expressed genes of each phenotype, followed by two-
dimensional visualization with UMAP. Next, this UMAP matrix was fed
into SlingShot with classical monocytes as a root state for calculation
of lineages and pseudotime.

Bulk transcriptomics and deconvolution analysis
Biopsy samples for bulk transcriptomics were immediately stored in
Allprotect Tissue Reagent® (Qiagen, Benelux BV, Venlo, The Nether-
lands). Sample processing was described previously23. Briefly, frag-
mented cRNA was hybridized to the Affymetrix GeneChip Human
Genome U133 Plus 2.0 Arrays (Affymetrix), which comprised of 54,675
probe sets covering the whole genome. The resulting image files (.dat
files) were generated using the GeneChip® Command Console® Soft-
ware (AGCC), and intensity values for each probe cell (.cel file) were
calculated. The transcriptomics data were handled in accordance with
the MIAME (Minimum Information About a Microarray Experiment)
guidelines. The data were analysed using TAC software (version 4.0,
Thermo Fisher Scientific, Carlsbad, CA, United States) and Bio-
conductor tools in R (v3.5.3, www.rstudio.com)67. The robustmultichip
average method was performed on the raw expression data (.cel files)
to obtain a log2 expression value for each probe set, and batch effect
correction was performed for timing of the analysis by use of the
LIMMA package68,69.

Wegenerated a kidney transplant biopsy-derived signaturematrix
that contains 3110 genes distinguishing 18 kidney and immune cell
phenotypes (KTB18) for implementation in the CIBERSORTx decon-
volution algorithm70. Briefly, the anti-logged gene expression profiles
of 10,000 labeled cells from the single-cell dataset, pertaining to 18
distinct cell types, were used as input. Considering that a droplet-
based technique was used for single-cell analysis, the Min. Expression
valuewas reduced to 0.1 in order to increase reliability of the signature
matrix, as recommended by the developers71. The number of barcode
genes per cell type was held between 300 and 500, resulting in a

matrix consisting of 3110 genes. CIBERSORTxwas used to deconvolute
the predicted cell fractions from the antilogged gene expression data
in the bulk transcriptomics cohort. For genes that were represented by
several probesets in the microarray platform, the probeset with the
highest average expression was used. S-mode batch correction was
applied to correct for technical variation between platforms.

Multiple Iterative Labeling by Antibody Neodeposition (MILAN)
and image acquisition
Multiplex immunofluorescent staining was performed according to
the previously published MILAN protocol72. The antibody panel for
MILAN was designed to allow a phenotypic identification of the most
abundant immune cell types based on the results from the scRNAseq.
An overview of the panel with the 38 markers included and the spe-
cifications about theprimaryand secondary antibodies canbe found in
Supplementary Table 3. Immunofluorescence images were scanned
using the Axio scan.Z1 slidescanner (Zeiss, Germany) at 10X objective
with resolution of 0.65micron/pixel. The hematoxylin and eosin slides
were digitized using theAxio scan.Z1 slidescanner in brightfieldmodus
using a 20X objective with resolution of 0.22micron/pixel. All samples
were stained simultaneously. Image-acquisition order was distributed
spatially and independently of patient replicates. The stains were
visually evaluated for quality by digital image experts and experienced
pathologists (FB, YVH, double blinded). Multiple approaches were
taken to ensure the quality of the single-cell data. On the image level,
the cross-cycle image registration and tissue integrity were reviewed;
regions that were poorly registered or contained severely deformed
tissues and artifactswere identified, and cells inside those regionswere
excluded. Glomerular regions and large vessels were manually anno-
tated by an experienced pathologist (FB) on the autofluorescent ima-
ges. Antibodies that gave low confidence staining patterns by visual
evaluation were excluded from the analyses. Image analysis was per-
formed following a custom pipeline. Briefly, flat field correction was
performedusing a custom implementationof the algorithmpreviously
described73. Then, adjacent tiles were stitched by minimizing the Fro-
benius distance of the overlapping regions. Next, images from con-
secutive rounds were aligned (registered) following the algorithm
previously described74. For registration, the first round was used
always as fixed image whereas all consecutive rounds were sequen-
tially used asmoving images. Transformationmatriceswere calculated
using the DAPI channel and then applied to the rest of the channels.
After registration, the performance of the overlapping was evaluated
by visual inspection. Samples with tissue folds showed significant
misalignments and were manually segmented in different regions.
Each region was independently re-registered. Downstream analysis
was independently performed for each annotated region. Next, tissue
autofluorescence was subtracted using a baseline image with only
secondary antibody. Finally, cell segmentation was applied to the DAPI
channel using STARDIST75. For every cell, topological features (X/Y
coordinates), morphological features (nuclear size), and molecular
features (MeanFluorescence Intensity (MFI) of eachmeasuredmarker)
were extracted.

MILAN phenotypic identification
MFI values were normalized within each region to Z-scores as recom-
mended in Caicedo et al.76. Z-scoreswere trimmed in the [0, 5] range to
avoid a strong influence of any possible outliers in downstream ana-
lyses. Single cells were mapped to known cell phenotypes using three
different clustering methods: PhenoGraph77, FlowSom78, and KMeans
as implemented in the Rphenograph, FlowSOM, and stats R packages.
While FlowSom and KMeans require the number of clusters as input,
PhenoGraph can be executed by defining exclusively the number of
nearest neighbors to calculate the Jaccard coefficient which was set to
30. The number of clusters identified by PhenoGraph was then passed
as an argument for FlowSom and KMeans. Clustering was performed
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exclusively in a subset of the identified cells (50,000) selected by
stratified proportional random sampling and using only the 20 mar-
kers defined as phenotypic (Supplementary Table 3). The stratification
was performed by selecting a number of cells in each sample equal to
the relative proportion of the number of cells in that sample in the
entire dataset. That is:

Si = S �
Ni

M
, whereM =

XP

i = 1

ðNiÞ

where Si is the number of cells to be sampled for the i-th sample, S is
the total number of cells to be sampled (here 50,000), Ni is the number
of cells in the i-th sample, and M is the total number of cells in the
dataset (sum of all samples, P).

For each clustering method, clusters were mapped to known cell
phenotypes following manual annotation from domain experts (FB,
YVH, double blinded). If twoormoreclusteringmethods agreedon the
assigned phenotype, the cell was annotated as such. If all three clus-
tering methods disagreed on the assigned phenotype, the cell was
annotated as “not otherwise specified, NOS”. Annotated cells were
used to construct a template in order to extrapolate the cell labels to
the rest of the cells included in the dataset. To that end, a UMAP was
built by sampling 500 cells for each identified cell type in the con-
sensus clustering. The complete dataset was projected into the umap
using the base predict R function. For each cell, the label of the closest
100 neighbors was evaluated in the UMAP space and the label of the
most frequent cell type was assigned. To gain more resolution into
monocyte subtypes, cells identified as “dendritic cells” (DC), “macro-
phages”, or “neutrophils” were grouped together, and reclustered
again following the samemethod as described above yet using a set of
13 monocyte-specific markers (Supplementary Table 3, ‘monocyte
profiling’).

MILAN in-silico microdissection and neighborhood analysis
Next, to gain insights into tissue structure and the interactions
between structural cells (tubuli, blood vessels, etc.) and the immune
infiltrate, tissue samples were segmented into 5 different regions:
glomerular, tubular, vascular (distinguishing large vessels and small
vessels), and interstitial. Glomerular regions and large vessels were
manually annotated by an experienced pathologist (FB). Small vessels
were identified by applying a mask to the CD31 marker. Tubular and
interstitial areas were distinguished by training a pixel classifier in
QuPath79.

For neighborhood analysis, a quantitative analysis of cell-cell
interactions was performed using an adaptation of the algorithm
described in Schapiro et al.80. A detailed description of the adapted
implementation was previously described81. Briefly, for every cell, all
the other cells that are located at amaximumdistance dwere counted.
Then, the tissue is randomized preserving the cytometry of the tissue
as well as the X and Y coordinates of each cell but permutating the cell
identities. This is repeated N times (here N = 1000) which allows to
assign an empirical p-value by comparing the number of counts
observed in the real tissue versus the number of counts in the rando-
mized cases. Here, we performed the described analysis for different
values of the distance d (from 10 to 100micrometers with a step of 10
micrometers) to show the consistency of the reported results. Since
here the main interest was to evaluate interaction partners between
immune cells, structural cells (tubular and endothelial cells) were not
included in the randomization process to avoid any potential bias
introduced by the structure of each sample (Supplementary Fig. 2).

Multiplex immunofluorescence staining and image
processing (Opal)
A multiplex immunofluorescence staining method on paraffin-
embedded tissue was recently described using Opal reagents

(PerkinElmer, Waltham, MA)16. Briefly, tissue sections were depar-
affinized, rehydrated and fixed for 20minutes in 10% neutral-
buffered formalin. Antigen retrieval was performed using micro-
wave treatment (MWT) in antigen retrieval solution pH6 or pH9
(AR6 or AR9) according to the target of interest. At each of 4 con-
secutive staining cycles, primary antibodies (Supplementary
Table 4) were added, followed by Opal Polymer HRP Ms + Rb Kit
(PerkinElmer) for 10minutes at room temperature. The tissue sec-
tions were then incubated with TSA opal fluorophores (Opal 620,
690, 520 and 540). After each staining cycle,MWTwas performed to
remove antibody-TSA complex with AR6 or AR9. Finally, all slides
were counterstained with DAPI for 5 minutes.

The tissue slides were initially scanned using the PerkinElmer
Vectra (v3.0; PerkinElmer) at low magnification (×10). Under patholo-
gist supervision, regions of interest (ROI) were identified and scanned
at high resolution (x20) using the Phenochart 1.0.4 viewer (Perki-
nElmer). High resolution scans of ROIs in the 86 biopsies were ana-
lyzed using the software inFormTissue Finder 2.3.0 (PerkinElmer). The
consecutive steps in the image processing software were tissue seg-
mentation based on CD34 (discerning the extravascular from the
intravascular compartment), nuclear segmentation based on DAPI
staining and cell phenotyping based on CD163, NKp46 and CD3,
resulting in a label as “Macrophage”, “NK cell”, “T cell” and “Other” for
each of the identified cells. Infiltration of the respective immune cell
types was quantified as density, i.e. number of cell per mm², and
relative prevalence, i.e. the number of a specific immune cell type
compared to the total number of Macrophages, NK cells and T cells.

NK cell and monocyte sorting and coculture with glomerular
endothelial cells
Peripheral blood mononuclear cells (PBMCs) were isolated from the
blood of healthy volunteers from the Etablissement Français du Sang
(Besançon, France) by Ficoll gradient centrifugation (Eurobio, Cour-
taboeuf, France). NK cells were purified from PBMCs by negative
selection with magnetic enrichment kit (Stemcell, Grenoble, France)
and FcγIII+ CD14- non-classical monocytes were isolated from PBMCs
using Slan-(M-DC8)+ Monocyte Isolation Kit, (Miltenyi Biotec, Paris,
France)82. All sorted cell populations exhibited high purity (>90%), as
revealed by flow cytometry.

Glomerular endothelial cell activation with anti-class I HLA
Glomerular endothelial cells (GENC,Cell System,USA)were cultured in
endothelial cell growthmedium 2 (PromoCell, Germany) at 37 °C in 5%
CO2 until 80% confluence before being used for coculture. GENCwere
then preincubated with either anti-HLA-A, -B, -C purified antibody (BD
Biosciences, France) or control isotype (BD Biosciences) during 30’ at
room temperature before being washed with phosphate buffered
saline. GENC (5.104 cells) were seeded in flat-bottomed 96-well plates
and let to adhere 4 h at 37 °C before coculture with immune cells as
previously described34.

GENC-monocyte coculture
Purified monocytes were mixed with GENC treated with either anti-
HLA-A, -B, -C antibody or control isotype at a ratio of 1:1, centrifuged at
100 g for 1min, and incubated at 37 °C at 5% CO2. After 36 hours of co-
culture, cellswere harvested andGalectin-9 secretionwasmeasuredby
flow cytometry.

GENC-NK–monocyte coculture
Purified monocytes and NK cells were mixed with activated GENC at a
ratio of 1:1, centrifuged at 100 g for 1min, and incubated at 37 °C at 5%
CO2 in presence or absence of R406, the active metabolite of the Syk
inhibitor fostamatinib (2 µM, Invivogen, France). After 36 hours of co-
culture, supernatants were collected, and stored at −20 °C, until
analysis.
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Cytokine assays
For evaluation of intracellular expression of Galectin-9, cells were
stained using a fixable viability dye (Fixable Viability Stain 780, BD
Biosciences, France) and anti-CD45 BV510 (BD Biosciences) before
fixation, permeabilization and staining using an Intracellular staining
buffer set (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Intracellular staining was performed for anti-Galectin-9
FITC (Miltenyi Biotec). Cells were analyzed using a Attune analyzer
(Thermo Fisher Scientific).

Human CXCL10, CCL5, and TNF were quantified in culture
supernatants using multiplex immunoassay (BD Cytometric Bead
Array, BD Biosciences). Data were acquired on Attune analyzer
(Thermo Fisher Scientific) and analyzed with FlowJo software (BD
Biosciences) using dedicated plugin.

Human proximal tubule epithelial cell line HK-2
The human proximal tubule epithelial cell line HK-2 (HLA-A2+/+) was
cultured in DMEM enriched with ITS LiquidMedia Supplement (Sigma
Aldrich), human EGF (200 ng/mL, Sigma Aldrich), hydrocortisone
(500ng/mL, Sigma Aldrich), triiodothyronin (4 pg/mL, Sigma Aldrich),
penicillin/streptomycin (Gibco) and 1% foetal bovine serum (FBS,
Dutscher, Brumath, France).

HLA-A2 specific CD8+T cells-monocytes coculture
HLA-A2-/- PBMCs were isolated from the blood of healthy volunteers
from the Etablissement Français du Sang by Ficoll gradient cen-
trifugation (Eurobio, Courtaboeuf, France). CD8 +T cells were purified
by negative selection (magnetic enrichment kit, Miltenyi Biotec) and
stained with CellTrace Violet (Thermo Fisher Scientific). Sorted cell
population exhibited high purity (>90%), as revealed by flow cyto-
metry. Total monocytes encompassing both FcγRIII+ CD14- non-
classical monocytes and FcγRIII- CD14+ classical monocytes were
purified by Percoll gradient (Eurobio) centrifugation from the same
donor. CD8+ T cells with or without monocytes were co-cultured with
100Gy-irradiated HLA-A2+/+ human stimulator cells in X-VIVO 20
medium (Lonza) complemented with 10% human AB serum. Non-
specific CD8+T cells were generated by polyclonal stimulation using
CD3/CD28 Dynabeads (1 bead/1cell ratio, Thermo Fisher Scientific)
that were magnetically removed after 48 h.

After 4 days of coculture, cells were harvested and CD8 + T cells
were either purified by negative selection (magnetic enrichment kit,
Miltenyi Biotec) for cytotoxic assay or stained for phenotyping.

For phenotyping, cells were incubated with fixable viability dye
(Fixable Viability Stain 780) and stained using anti-CD3 BV785 (BD
Biosciences), anti-CD8 PerCP-Cy5.5 (BioLegend), anti-CD14 BV510 (BD
Biosciences) and anti-CD107a FITC (Thermo Fisher Scientific) anti-
bodies. The cells were subsequently fixed and permeabilized (Cytofix/
Cytoperm fixation/permeabilization kit; BD Biosciences), stained with
anti-Granzyme-B AlexaFluor700 (BD biosciences) and anti-IFN-γ PE
(BD biosciences) antibodies and analyzed by flow cytometry.

In vitro cytotoxicity assay – Impedancemetry
In each culture well, 5.103 HLA-A2+/+ HK2 adherent target cells were
seeded in E-Plate VIEW 96 PET allowing impedance measurement and
incubated at 37 °C in 5% CO2. After 18 h, either HLA-A2 specific or non-
specificCD8+T cellswere added to the culture at a 3:1(effector: target) ratio.
HK2 viability was monitored every 15min for 24 h by electrical impe-
dance measurement with an xCELLigence RTCA SP instrument (ACEA
Biosciences, San Diego, USA). The cell index was normalized to the
reference value (measured just prior to adding effector cells to the
culture) of the control wells corresponding to non-specificCD8+T cells.

Statistical analysis
We report descriptive statistics usingmean and standard deviation (or
median and interquartile range for skewed distributions) for

continuous variables or numbers, and percentages for discrete vari-
ables, for the full cohort and for the rejection subgroups. We used the
most recent (as of July 2022) versions of all software programs,
including R Studio (version 1.3.1073), SAS (version 9.4, SAS Institute
Inc., Cary, NC, United States) and GraphPad Prism (version 9; Graph-
Pad Software, San Diego, CA, United States) for statistical analysis and
data presentation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data produced in the present study are available. The Single-cell
RNA-sequencing data have been deposited in BioStudies accession
code E-MTAB-12051. The images generated by MILAN were made
available to the reviewers but are not accessible publicly. These image
data can be made available upon request. The kidney transplant
biopsy-derived signature matrix encompassing 18 cell types (“KTB18”)
generated for deconvolution is available in Supplementary Data 1. This
Signature matrix file can be directly used as custom input to run a job
within the CIBERSORTx console (https://cibersortx.stanford.edu/
runcibersortx.php). Source data are provided with this paper.

Code availability
Code for Seurat is available at https://satijalab.org/seurat/. Code for
CellChat is available at https://github.com/sqjin/CellChat. Code for
Slingshot is available at https://github.com/kstreet13/slingshot.
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