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Nutritional redundancy in the human diet
and its application in phenotype association
studies

Xu-Wen Wang 1, Yang Hu2, Giulia Menichetti 1,3, Francine Grodstein4,
Shilpa N. Bhupathiraju1,2, Qi Sun 1,2,5, Xuehong Zhang 1,2, Frank B. Hu1,2,5,
Scott T. Weiss 1 & Yang-Yu Liu 1,6

Studying humandietary intakemay help us identify effectivemeasures to treat
or prevent many chronic diseases whose natural histories are influenced by
nutritional factors. Here, by examining five cohorts with dietary intake data
collected on different time scales, we show that the food intake profile varies
substantially across individuals and over time, while the nutritional intake
profile appears fairly stable. We refer to this phenomenon as ‘nutritional
redundancy’ and attribute it to the nested structure of the food-nutrient net-
work. This network enables us to quantify the level of nutritional redundancy
for each diet assessment of any individual. Interestingly, this nutritional
redundancymeasure does not strongly correlatewith any classical healthy diet
scores, but its performance in predicting healthy aging shows comparable
strength. Moreover, after adjusting for age, we find that a high nutritional
redundancy is associated with lower risks of cardiovascular disease and type 2
diabetes.

Human dietary intake fundamentally affects our nutrition, energy
supply, and health. A better understanding of dietarypatterns can help
us identifymeasures to prevent or treat health conditions and diseases
such as obesity1,2, type 2 diabetes3,4, and cardiovascular disease5,6.
Indeed, randomized trials have established the benefits7 of the Medi-
terranean diet on clinical cardiovascular disease8 and the Dietary
Approaches to Stop Hypertension (DASH)9 diet on blood pressure
control. To improve the diet quality, the 2020-2025 Dietary Guidelines
for Americans recommended that consumers should select nutrient-
dense foods and beverages, which can provide vitamins, minerals and
other health-promoting components and have no or little added
sugars, saturated fat, and sodium10. For example, intake of whole
grains, legumes and vegetables and fruit is recommended to reduce
ingredients, such as unhealthy fats, and excess sugar and sodium,

which have been associatedwithmany diseases such as coronary heart
disease11–13 and obesity, liver and other metabolic diseases14–16.

Food is a complex combination of components that can be clas-
sified into nutrients and non-nutrients17. The preliminary step to
developing a guide to healthy dietary guidance is nutrient
profiling18,19–the science of understanding which nutrients are present
in a given food item. This has many potential applications, ranging
from dietary guidance to nutrient labeling and the regulation of health
claims18. The current nutrient profiling relies on some existing data-
bases, such as the USDA’s Food and Nutrient Database for Dietary
Studies (FNDDS)20,21, Frida22, FooDB23, and many other databases24–26

(see Supplementary Section 1.1 for details). Those databases represent
the most comprehensive efforts so far to integrate food composition
data from specialized databases and experimental data.
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Despite the various databases on food constituents, a compre-
hensive understanding of the food-nutrient relationship remains
challenging. Human dietary patterns across the world could be dras-
tically different27. For example, theMediterranean diet is characterized
by high consumption of olive oil, legumes and vegetables and lower
consumption of non-fish meat products while the Western dietary
pattern is characterized by high consumption of highly processed
meat28–30, candy and sweets and low intakes of fruits, and vegetables.
Although dietary patterns sometimes exhibit drastically divergent
food choices, at a finer resolution, the underlying nutrient palettes
could reveal a higher degree of similarity. This implies that despite the
variability in food choice and intake, nutrient profiles can be highly
stable across individuals and over time.

Here, by analyzing human dietary intake data collected from dif-
ferent cohorts and on different time scales, we show that the food
profile varies substantially across individuals and over time, while the
nutritional profile is highly stable across individuals andover time. This
phenomenon is strongly reminiscent of the phenomenon of functional
redundancy observed in the human microbiome, i.e., the taxonomic
profile is highly personalized while the gene composition (or func-
tional profile) is highly conserved across individuals31–33. Hence, here-
after we will refer to this phenomenon as nutritional redundancy (NR).
We find that NR cannot be simply explained by the fact that different
foods contain similar nutrients. Instead, it is largely due to more
sophisticated features (e.g., the highly nested structure) of the food-
nutrient network–a bipartite graph that connects foods to their
nutrient constituents. The food-nutrient network also enables us to
quantify the level of NR for each diet assessment of any individual, i.e.,
the personal NR. Interestingly, this personal NR measure does not
strongly correlate with any classical healthy diet scores, but its per-
formance in predicting healthy aging shows comparable strength.
Moreover, after adjusting for age, we find that a high personal NR is
associated with lower risks of cardiovascular disease and type 2 dia-
betes. Hence, the concept of NR developed here may offer us a new
perspective on studying the human diet. The measure of personal NR
could serve as a powerful tool in nutrition science to modulate indi-
vidual dietary patterns and study the correlation with different health
phenotypes.

Results
The phenomenon of population-level NR
To demonstrate the phenomenon of NR in the human diet, we ana-
lyzed five comprehensive datasets with dietary data collected on dif-
ferent time scales. (1) Diet-microbiome association study (DMAS)34: a
longitudinal study of 34 healthy individuals with dietary intake data
and stool samples collected daily over 17 consecutive days. Daily
dietary intake data were collected using the automated self-
administered 24-h (ASA24) dietary assessment tool35–37. DMAS
focused on 41 nutrients, and 9 food groups (e.g., grains, fruits, vege-
tables, etc.) based on the Food and Nutrient Database for Dietary
Studies (FNDDS) food coding scheme20. Note that there are two out-
liers in DMAS, referred to as “shake drinkers”, whose reported diet
consisted primarily of a nutritional meal replacement beverage. Those
two outliers were removed in our analysis. Also, in our analysis, we
focused on those participants (in total n = 30) who have ASA24 data
available for all the 17 days. (2) Nurse Healthy Study (NHS)38,39: NHS
began in 1976 when 121,700 female registered nurses, aged 30–55
years in the United States were enrolled; the semiquantitative food
frequency questionnaire (FFQ) was first administrated in 1980, and
then administrated approximately every 4 years. So far, we have up to
eight time points of FFQ data for NHS participants. In our analysis, we
focused on those participants (in total n = 35,256) who have FFQ data
available for all the eight time points. (3) Health Professionals Follow-
up Study (HPFS)40,41: HPFS is a prospective cohort of 51,529 men fol-
lowed since 1986, when participants initially ranged from 40–75 years.

This all-male study was designed to complement the all-female NHS/
NHSII, and both were conducted identically. In our analysis, we
focused on those participants (in total n = 17,529) who have FFQ data
available for all the seven time points. (4) Women Lifestyle Validation
Study (WLVS)37: As a sub-study of the NHS and NHSII, WLVS was
designed to investigate the measurement-error structure associated
with self-reported dietary and physical activity assessments within 1
year (with up to four ASA24 records). Women with a history of cor-
onary heart disease, stroke, cancer, ormajor neurological diseasewere
excluded. Among the 796 enrolledparticipants, 692 completed at least
one ASA24. In our analysis, we focused on those WLVS participants
with all four ASA24 records available (in total n = 216). (5) Men’s Life-
style Validation Study (MLVS)42,43: a 1-year study nested in HPFS40,41.
MLVS was designed to complement WLVS. In our analysis, we focused
on thoseMLVS participants with all of four ASA24 records available (in
total n = 451).

For those selected participants in each study, we first assessed
the change in their food and nutrient profiles (i.e., the relative
abundances of food items and nutrients in their diet) over time. The
relative abundances of nutrients are calculated by converting the
unit of each nutrient to gram and then normalized by the total grams
of all nutrients for an individual. We found that the food profiles
were highly dynamic for almost all individuals at different time
scales: daily (Fig. 1a1), monthly (Fig. 1b1, c1), and yearly (Fig. 1d1, e1).
Moreover, the food profiles are highly personalized44, i.e., the intra-
individual dissimilarity of the foods consumed over time is sig-
nificantly lower than the inter-individual dissimilarity of their con-
sumed foods at both single food (Fig. S1a) and food-group (Fig. S1b)
level. By contrast, the nutrient profiles, as expected, were highly
conserved across different individuals and over the whole study
time period for all five studies (Fig. 1a2–e2), and were not highly
personalized (Fig. S1c).

We observed that the most abundant food items consumed by
individuals are sweetened beverages and vegetables. This is partially
due to the fact that themoisture content in these foods is high, as well
as their relevance as staple foods in different cuisines45. On the other
hand, the most abundant nutrients for all participants are carbohy-
drate, fat, and protein, confirming their key role as dietary intake
macronutrients, and representing broad families of chemical com-
pounds. Within the carbohydrate category, sugars and fiber are the
driving factors.

To quantify the between-individual difference in food or nutrient
profiles, we adopted the notion of beta diversity from community
ecology46. In particular, we used four different measures (Bray-Curtis
dissimilarity, root Jensen-Shannon divergence, Yue-Clayton distance,
and negative Spearman Correlation) to quantify the beta diversity. As
shown in Fig. S1, the beta diversity of nutritional profiles is significantly
lower than that of food profiles at both single food (Fig. S1d) and food-
group (Fig. S1e) levels in termsof all the fourmeasures of beta diversity
for all the five studies. While the beta diversity captured by food
groups47 is remarkably lower compared to the food-level analysis, we
found that it is still significantly higher than the beta diversity of
nutritional profiles.

Definition of personal NR
Consider a pool of N food items, which contains a collection of M
nutrients in total. The food profile f ðνÞ = ½ f ðνÞ1 , � � � , f ðνÞN � of individual-
ν’s diet assessment can be directly related to its nutrient profile
nðνÞ = ½nðνÞ

1 , � � � ,nðνÞ
M � through the FNN (Fig. 2). Here, f ðνÞi (or nðνÞ

a )
represents the relative abundance of food-i (or nutrient-a) in the diet
assessment of individual-ν. We define the FNN as a weighted bipar-
tite graph connecting these foods to their nutrients5. The FNN can be
represented by an N ×M incidence matrix G = Gia

� �
, where a non-

negative value Gia indicates the amount contributed by food-i to
nutrient-a (see Fig. 2a for the unit of each nutrient). The nutrient
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profile is given by nðνÞ = cf ðνÞG, where c= ½PM
a= 1

PN
i= 1 f

ðνÞ
i Gia�

�1
is a

normalization constant.
A key advantage of the FNN is that it enables us to calculate theNR

for each diet assessment of any individual, i.e., the within-individual or
personal NR. In the ecological literature32,33,48, the functional redun-
dancy of a local community is interpreted as the part of its taxonomic
diversity that cannot be explained by its functional diversity. Similarly,
we can define the NR of a dietary assessment from a particular indi-
vidual as the part of its food diversity (FD) that cannot be explained by
its nutrient diversity (ND), i.e., NR= FD� ND. Here we chose FD to be
the Gini-Simpson index: GSI � 1�PN

i= 1 f
2
i =
PN

i= 1

PN
j≠if if j, represent-

ing the probability that randomly chosen two units of a individuals’s
food profile (with replacement) belong to two different food groups;
and ND is chosen to be the Rao’s quadratic entropy
Q �PN

i= 1

PN
j≠idij f if j , characterizing the mean nutritional distance

between any two randomly chosen food items in the diet

assessment25,26. Here dij =dji 2 ½0,1� denotes the nutritional distance
between food-i and food-j. By definition, dii =0 for i= 1, � � � ,N. For the
sake of simplicity, to avoidmajor effects drivenby the several orders of
magnitude covered by nutrient amount in food49, we compute dij as
the (unweighted) Jaccard distance between the sets of nutrients within
two food items (see Methods for definition). Note that with FD=GSI
andND=Q, we haveNR=

PN
i= 1

PN
j≠i ð1� dijÞf i f j , naturally representing

the nutrient similarity (or overlap) of two randomly chosen food items
in any diet assessment.

The personal NR of each diet assessment is closely related to the
phenomenonof population-level NR observed over a collection of diet
assessments. Let’s consider highly personalized food profiles from a
population. There are two extreme cases: (i) Each food has its own
unique nutrient content (Fig. 2b1), hence dij = 1 for any i≠ j. In this case,
for each individual we have FD=ND and NR=0 (representing the
lowest level of nutritional redundancy), and the nutrition profiles vary
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Fig. 1 | Dietary food profiles are highly personalized while the nutrient profiles
are highly stable. Rows represent results from selected participants of different
cohorts: (a) DMAS (dietary intake data collected using ASA24 dietary assessment
tool daily over 17 consecutive days); (b) WLVS (with four ASA24 records within 1
year); (c) MLVS (with four ASA24 records within 1 year); (d) NHS (with FFQ admi-
nistrated every 4 years and with total eight time points). e HPFS (with FFQ admi-
nistrated every 4 years andwith total seven time points). Columns: (1) food profiles;

(2) nutrient profiles. For DMAS, we plot the food and nutrient profiles of 30 par-
ticipantswhohaveASA24data available for all the 17 days. For theWLVS,MLVS, and
NHS datasets, we plot the food and nutrient profiles of 50 randomly chosen indi-
viduals. In the visualization of nutrient profiles, we only show the top-15 most
abundant nutrients, while the remaining nutrients (after excluding amino acids,
total fatty acids of saturated, monounsaturated, and polyunsaturated) are sum-
marized as others.
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drastically across different individuals (Fig. 2c1). (ii) All food share
exactly the same nutrient contents (Fig. 2b3), rendering dij =0 for all i
and j. In this case, for each individual we have ND=0 and NR= FD
(representing the highest level of nutritional redundancy), and the
nutrition profiles are exactly the same for all individuals (Fig. 2c3).
These two extreme scenarios are of course unrealistic. In a more rea-
listic intermediate scenario, the FNN has certain topological features
such that different foods share a few common nutrients, but some
foods are specialized to include some unique nutrients (Fig. 2b2). In
this case, the ND and NR of each individual’s diet assessment can both
be quite comparable, and the nutritional profiles can be highly con-
served across individuals (Fig. 2c2).

A reference FNN
To visualize the topological features of real FNNs, we constructed a
reference FNN based on USDA’s Food and Nutrient Database for

Dietary Studies (FNDDS) 2011–201220, consisting of 7618 foods and 65
nutrients and micronutrients. This reference FNN is depicted as a
bipartite graph, where for visualization purposes, each food node
represents one of the nine highest-level food groups (based on the
FNDDS food coding scheme) and each nutrient node represents
nutrient (Fig. 3a). Note that the FNN associated with the diet assess-
ment of any individual can be considered as a particular subgraph of
this reference FNN.

To characterize the structure of this reference FNN, we system-
atically analyzed its network properties using the complete nutrient
profile of all 7618 foods.Wefirst visualized its incidencematrix (Fig. 3b),
where the presence (or absence) of a link connecting a food and a
nutrient is colored in green (orwhite), respectively.We found that some
foods (e.g., bacon cheeseburger, hot ham and cheese sandwich, cor-
responding to the leftmost columns in Fig. 3b) contribute to almost all
of the nutrients, while some foods only include very few nutrients (e.g.,
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sugar substitutes and smart water, corresponding to the rightmost
columns in Fig. 3b). Moreover, we noticed that the incidence matrix
displays a highly nested structure, i.e., the nutrients of those food items
(with fewer distinct nutrients) in the right columns tend to be subsets of
nutrients for those food items (with more distinct nutrients) in the left
columns. The nestedness of the FNN can be quantified by utilizing the
classical Nestedness metric based on Overlap and Decreasing Fill
(NODF)measure50,51, and turns out to bemuch higher than expected by
chance (see Methods for details). We then calculated the nutritional
distances among different food items, finding a unimodal distribution
with the peak centered around 0.25, indicating that most food items
includevery similar nutrient components (Fig. 3c). Finally,we calculated
thedegreedistributionsof nutrient nodes and foodnodes, respectively.
Here, the degree of a nutrient node in the FNN is just the number of
distinct foods that contain this nutrient. Similarly, the degree of a food
node in the FNN is the number of distinct nutrients it contains. We
found that the degrees of food items follow a Poisson-like distribution
(Fig. 3d), implying that different foods generally contain a very similar
number of nutrients. Nutrient degrees show a more extreme behavior,
exhibiting a probability density peak located at the higher end of the
degree spectrum, indicating that the majority of nutrients are different
from zero in almost all foods collected in FNDDS, except a few excep-
tions (Fig. 3e).

FNN associated with each of the nine food groups and FNNs
constructed by using other databases, e.g., Frida22 and Harvard food
composition database (HFDB)39, revealed very similar network prop-
erties (see Figs. S2, S3). This confirms that the nested structure of the
FNN is a universal property across different databases, rather than
determined by the nutrients’ overlap in USDA reference. In addition,

we analyzed the FNN of 51 raw foods inHFDB, finding that the network
still displays high nestedness structure. However, NODF of this raw
FNN is 0.573, which is much lower than the original FNN (see Fig. S4).

We emphasize that the highly nested structure of the reference
FNN is neither explained by the presence ofmacronutrients, i.e., broad
classes of chemicals such as carbohydrates, protein, and fats that are
key components of food and exhibit high degree, nor by the nutrient
ontology used to annotate the databases. First, as shown in Fig. 3b, the
incidence matrix of the FNN still displays a highly nested structure
even in the absenceof high degree nutrients (the topmost green rows).
Second, FNN still shows highly nested structure after excluding
nutrientswithout InChIKey52, effectively removing thefirst hierarchical
level of the nutrient ontology, and also all those nutrients that corre-
spond to non-specific chemical mixtures (see Fig. S5). Third, if we
randomize the FNN but preserve the nutrient degree distribution, the
randomized FNNs have much lower nestedness than that of the real
FNN, and the nutrient distances between different foods are sig-
nificantly increased (Fig. S6). Last but not least, we adopted tools from
statistical physics53 to calculate the expected nestedness value and its
standard deviation for an ensemble of randomized FNNs in which the
expected food and nutrient degree distributions match those of the
real FNN.We found that the expected nestedness of randomized FNNs
is significantly lower than that of the real FNN (one sample z-test yields
pvalue<10

�5, see Methods for details).

Personal NR calculation based on dietary intake data
We calculated the personal NR of diet assessments of those selected
participants in the four studies: DMAS, WLVS, MLVS, NHS, and HPFS.
First, we constructed a reference FNNbased on the FNDDS to calculate

NODF = 0.91
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This reference FNN is depicted as a bipartite graph, where for visualization pur-
poses each food node represents one of the nine highest-level food groups (based
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d The food degree distribution. Here, the degree of a food item is the number of
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(M), and polyunsaturated (P) were not shown for visualization in (a).
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the NR of DMSA, WLVS, and MLVS participants, and a reference FNN
based on HFDB to calculate the NR of NHS and HPFS participants (see
Methods for details). Interestingly, we found that in all the 5 studies
(DMAS, WLVS, MLVS, NHS, and HPFS) NR∼0:3 (Fig. 4, purple boxes),
suggesting that nutritional redundancy and nutrient diversity are
generally comparable in human diet.

The NR of the NHS at the population level displays a non-
monotonic decrease, indicating that the dietary patterns of those
participants indeed have been adjusted. To better illustrate such a
dietary pattern change, we projected the bipartite food-nutrient net-
work (constructed fromHFDB) into the food space, resulting in a food
similarity network (see Fig. 5a). In this network, each node represents a
food item and a link connecting food item-i and item-j represents the
unweighted Jaccard similarity sij of their nutrient constituents (see
Methods). Here, for visualization purposes, only links with sij ≥0:85
were retained. We found a clear modular structure in the food simi-
larity network, i.e., food items from the same food group form a
densely connected cluster or module (see Fig. 5a), which is consistent
with previous study that a food network based on the foods’ nutri-
tional similarity displays separately clustered around animal-based
foods and plant-based foods at first, and fish and meats are separately
clustered in animal-based food cluster and grains, fruits, vegetables,
nuts are separately clustered in plant-based food cluster54. Then, we
examined the individual food similarity network of a particular NHS
participant with the largest NR reduction from year 1984 to 2010 (see
Fig. 5b, c). We found the density of her food similarity network in 1984
is much higher than that in 2010, suggesting that this participant

consumed foods with more overlapping nutrient constituents in 1984
(Fig. 5b). Moreover, we found the most abundant food items in 2010
were water and yogurt, which do not connect with each other, indi-
cating that she chose foods with more distinct nutrient constituents
(Fig. 5c).

Impact of FNN structure on personal NR
To identify key topological features of the FNN that determine the NR,
we adopted tools from network science. In particular, we randomized
the FNN using three randomization schemes, yielding three null
models. Null-FNN-1: Complete randomization. We keep the number of
foods (N) and number of nutrients (M) unchanged, but otherwise
completely rewire the links between foods and nutrients. Null-FNN-2:
Food-degree preserving randomization.We keepN,M, and the degree
of each food node unchanged, but selects randomly the nutrients that
link to each food. Null-FNN-3: Nutrient-degree preserving randomiza-
tion. Here, we keep N,M, and the degree of each nutrient unchanged,
but select randomly the foods that link to each nutrient. Null-FNN-4:
Nutrient-degree and food-degree preserving randomization. Here, we
keepN,M, and thedegree of eachnutrient and the degreeof each food
unchanged, but randomly rewire the links between food nodes and
nutrient nodes. Then we recalculated the NR for each diet assessment
(Fig. 4). We found that for all the cohorts all the four null models yield
much lower NR than that of the real FNN (Fig. 4, purple boxes). This
suggests that the real FNN must have certain topological features that
determine the high NR in the human diet. Analyzing the network
properties of those null models (Fig. S6), we found that those
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Fig. 4 | Topological features of the food-nutrient network and the human
dietary pattern contributes to the nutritional redundancy. a1–a5 The box plots
of the nutritional redundancy were calculated from the real FNN (purple box,
n = 30, 216, 451, 35,256 and 17,529 independent subjects), aswell as the randomized
FNNs (other colored boxes, n = 30, 216, 451, 35,256 and 17,529 independent sub-
jects) using four different randomization schemes: Complete randomization (Null-
FNN-1); Food-degree preserving randomization (Null-FNN-2); Nutrient-degree
preserving randomization (Null-FNN-3); Food- and nutrient-degree preserving
randomization (Null-FNN-4). Here the degree of a nutrient is the number of foods
that contain it, and the degree of a food is the number of nutrients contained in it.
b1–b5 The box plots of NR were calculated from the real food composition (Real-
comp,purplebox,n = 30, 216, 451, 35,256, and 17,529 independent subjects), aswell

as the randomized food compositions (other colored boxes, n = 30, 216, 451, 35,256
and 17,529 independent subjects) using three different randomization schemes:
Randomized food assemblage generated by randomly choosing the same number
of food items from the food pool but keeping the food profile unchanged (Null-
comp-1); Randomized food abundance profiles through random permutation of
non-zero abundance for each participant across different foods (Null-comp-2);
Randomized food abundance profiles through random permutation of non-zero
abundance for each food across different participants (Null-comp-3). For the
visualization purpose, we only showed four time points for each study. Boxes
indicate the interquartile rangebetween thefirst and thirdquartileswith the central
mark inside each box indicating the median. Whiskers extend to the lowest and
highest values within 1.5 times the interquartile range.
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randomized FNNs all display lower nestedness and higher hdiji than
those of the real FNN. Thus, the highly nested structure and low hdiji of
the real FNN jointly contribute to the NR values observed in the
human diet.

Impact of food composition on personal NR
To test if food composition plays an important role in determining
NR, we randomized the food composition of each participant using
three different randomization schemes, yielding three different null
models. Then we recalculated NR for each participant (Fig. 4b). We
found that for each dietary intake record, if we preserve the food
composition but randomly replace the food items by those present
in the reference FNN, the resulting null model (Null-comp-1) always

yields much higher NR than that of the original dietary record for
ASA24 studies but is comparable for NHS and HPFS. This confirms
that the food items present in each dietary record are not assembled
at random but follow certain assembly rules. Interestingly, if we
randomize the food compositions through random permutation of
non-zero abundance for each dietary record across different food
items (Null-comp-2) or for each food item across dietary records
from different participants (Null-comp-3), we found that only Null-
comp-3 did not significantly alter NR, suggesting that the assembly
rules are consistent across different participants. Taken together,
results from the three null composition models suggest that the
nutritional redundancy in human diet is low and not randomly
selected.

a Reference FSN 

b cNHS-ID #27434, 1984 NHS-ID #27434, 2010

Vegetables and 
Vegetable Products

Baked Products

Fruits and 
Fruit Juices

Dairy and 
Egg Products

Finfish and 
Shelfish Products

Beverages

Sweets Cereal Grains 
and Pasta

Others

1: BOILED, DRAINED, UNSALTED CARROTS
2: ICEBERG LETTUCE

3: ROASTED CHICKEN MEAT

1: TAP WATER
2: PLAIN LOWFAT YOGURT

3: PRUNES CANNED IN HEAVY SYRUP

1

2

3

1

2
3

Fig. 5 | Reference and personal food similarity networks. a The reference food
similarity network (FSN) was projected from the reference food-nutrient net-
work constructed from theHarvard food composition database used in the NHS.
The similarity between food-i and food-j was calculated using the unweighted
Jaccard similarity index sij . Only links with sij ≥0:85 were kept in the visualiza-
tion. The color of each node represents the food group it belongs to. b The
personal FSN constructed for a particular NHS participant (ID #12137) using her

FFQ data collected in 1984. This network is a subgraph of the reference FSN
shown in (a), thus those nodes and links in global network but do not appear in
the subnetwork are shown in white. c The personal FSN of the same NHS par-
ticipant constructed using her FFQ data collected in 2010. In (b, c), node sizes
are proportional to the relative abundance of the food items and edge widths
are proportional to the food similarities.
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Correlation between Personal NR and healthy diet scores
Adherence to healthy diets has the potential to prevent disease and
prolong life span.Many healthy diet scores have been developed in the
past. To test if the personal NRmeasure proposed here can be used to
quantify a healthy diet, we assessed the association between personal
NR and the following four existing healthy diet scores (see Supple-
mentary Section 2 for details): (i) Healthy Eating Index 2005 (HEI-
2005)55: a score that measures adherence to the USDA 2005 Dietary
Guidelines for Americans. (ii) Alternate Healthy Eating Index 2010
(AHEI-2010)55: a score that measures adherence to a dietary pattern
based on foods and nutrients most predictive of disease risk in the

literature. (iii) Alternate Mediterranean Diet Score (AMED)56: a score
adapted from form Mediterranean Diet Score of Ref. 57. (iv) DASH
Style Diet Score (DASH)58: a score capturing the characteristics of the
Dietary Approaches to Stop Hypertension diet. As shown in Fig. 6a, we
found that the NR is positively correlated with AMED (Spearman cor-
relation coefficient ρ=0:12) and DASH (ρ =0:08), but negatively cor-
relatedwithHEI (ρ= � 0:16) andAHEI (ρ= � 0:08). But in all cases, the
Pearson correlation coefficients are weak, implying that personal NR
should not be interpreted as being synonymous with a healthy diet
score. In otherwords, a heathy diet does not necessarily have higher or
lower nutritional redundancy.

Fig. 6 | Nutrient redundancy serves as a potential metric to predict healthy
aging in NHS. a Spearman correlation between the nutritional redundancy (NR)
and existing healthy diet scores: Alternate Mediterranean Diet Score (AMED);
Alternate Healthy Eating Index 2010 (AHEI-2010); Dash Style Diet Score (DASH);
andHealthy Eating Index 2005 (HEI-2005).P valueswere calculated from two-sided
t-test. b Spearman correlation between NR and several host factors: body-mass
index (BMI); education level; median income; energy intake level; Aspirin use;
pack-years of smoking; physical activity. P values were calculated from two-sided t-
test. c Error rate of random forest classifier in the prediction of healthy aging

status. d AUROC of random forest classifier in prediction of healthy aging status.
The participants are randomly spitted into 80% as the training set and the
remaining 20% as the test set. The boxplot represents the performances of 200
independent splits. Boxes indicate the interquartile range between the first and
third quartiles with the central mark inside each box indicating the median.
Whiskers extend to the lowest and highest values within 1.5 times the interquartile
range. All FDR-corrected P values were found using the paired and two-sided t-test.
Significance levels: FDR-corrected p <0.0001(****); <0.01(**); >0.05 (ns).
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Personal NR as an indicator of heathy aging
Then, we asked whether personal NR can be an indicator of healthy
aging–an overall indicator we developed by combining measures of
physical function, cognitive function, mental health, and chronic
diseases59–61. To address this question, we focused on a subset of NHS
participants (n = 21,299) for whom we had all of these four healthy
aging components: healthy agers (n = 3491) and usual agers
(n = 17,808) through a previous study62. The healthy agers are defined
as those participants who survived beyond 65 years of age, with no
history of chronic diseases, no reported memory impairment, no
physical disabilities, and intact mental health. The remaining partici-
pants who survived but did not achieve good health in one or more
domains were usual agers. The chronic disease domain used to define
usual agers includes cancer (other than nonmelanoma skin cancer),
myocardial infarction, coronary arterybypass surgery or percutaneous
transluminal coronary angioplasty, congestive heart failure, stroke,
type 2 diabetesmellitus, kidney failure, chronic obstructive pulmonary
disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lat-
eral sclerosis. Other host factors that were collected in this previous
study include age, education (registered nurse, bachelor’s degree,
master, or doctorate), marital status (widowed, married, and single/
separated/divorced), median income from census tract (quintiles),
BMI (<22, 22–24.9, 25–29.9, and ≥30 kg/m2), energy intake (quintiles
of kcal/day), multivitamin use (yes/no), aspirin use (<1, 1–2, or >2
tablets/week), pack-years of smoking (quintiles), and physical activity
(quintiles of MET-h/week) (see Table S1 for details of those
characteristics).

We first assessed the correlations between NR and these host
factors. We found that BMI and pack-years of smoking were nega-
tively correlated with NR, while education, median income, total
energy intake, and physical activity were positively correlated with
NR (Fig. 6b). In all cases, the Spearman correlation coefficients are
very weak. To compare the prediction performance of each of the
four healthy diet scores (HEI-2005, AHEI-2010, AMED, DASH) with
that of personal NR in predicting healthy aging, we built a random
forest classifier. In particular, we used features (personal NR or one
of the healthy diet scores, and the host factors mentioned above)
collected for those participants in 1998 to predict their heathy aging
status in 2012 (see Supplementary Section 5 for details). We found
that personal NR can achieve very similar error rate (i.e., the pro-
portion of participants that have been incorrectly classified by the
model) and AUROC (area under the ROC curve) as other four healthy
diet scores (Fig. 6c, d). Interestingly, we found NR can serve as a
better indicator than many other host factors (see Fig. S7 for the
importance ranking of those factors). We emphasized that the
healthy aging prediction does not rely on the particular NR defini-
tion or classifier. We evaluated the performance of NR in healthy

aging prediction using the Hill number-based definition and another
ensemble classifier: XGBoost63, showing that both AUC and error
rate are robust to different Hill numbers and classifier (see Figs. S8,
S9 and Methods for details).

We also performed the healthy aging prediction using data from a
substudy of HPFS with 6160 healthy agers and 11,534 usual agers64.
Again, we used personal NR or one of the four healthy diet scores in
1998 and other host factors to predict the healthy aging status. We
found that NR can also achieve very similar error rate (or AUROC) as
other healthy diet scores inHPFS. Moreover, the performance of NR in
HPFS is comparable to that in NHS (Fig. S10).

The association between personal NR and the risks of type 2
diabetes and cardiovascular disease
To further demonstrate the potential of the personal NR measure in
predicting well-defined phenotypes, we examined its associations with
the risks of type 2 diabetes and cardiovascular disease in NHS and
HPFS (see Supplementary Section 6 for detailed definitions of the two
disease outcomes). In particular, for each disease outcome, we used
the age (months)- and calendar year-stratified Cox proportional-
hazard model to compute the hazard ratios and 95% confidence
intervals (CIs) of the disease according to tertiles of the NR for NHS
participants from 1984 to 2014, and HPFS participants from 1986
to 2016.

For NHS participants, after adjusting for age, we observed the
NR is associated with a lower risk of the type 2 diabetes (see Table 1).
In particular, those NHS participants whose NR values are at tertile-2
and tertile-3 have a hazard ratio of 0.86 (95% CI: 0.80–0.93) and 0.78
(95% CI: 0.72–0.85), respectively, with P for trend <0.001. To further
check if this association is robust against many other confounding
factors, we also adjusted for total energy intake, race (white, African
American, Asian, others), BMI (<21.0, 21.0–22.9, 23.0–24.9,
25.0–26.9, 27.0–29.9, 30.0–32.9, 33.0–34.9, or ≥35.0 kg/m2),
smoking status (never smoked, past smoker, currently smoke 1–14
cigarettes per day, 15–24 cigarettes per day, or ≥25 cigarettes
per day), alcohol intake (0, 0.1–4.9, 5.0–9.9, 10.0–14.9, 15.0–29.9,
and ≥30.0 g/d), hypertension (yes, no), hypercholesterinemia (yes,
no), multivitamin use (yes, no), physical activity (quintiles), alter-
native healthy eating index, family history of diabetes, post-
menopausal hormone use (never, former, or current hormone use,
or missing), and oral contraceptive use. We found that those NHS
participants whose NR values are at tertile-2 and tertile-3 have a
hazard ratio of 0.93 (95% CI: 0.86–1.01) and 0.93 (95%CI: 0.85–1.00),
respectively, with marginal P for trend = 0.09. For cardiovascular
disease, we performed the same calculations. Again, we observed
that NR is associatedwith lower risk of the cardiovascular disease for
NHS participants (see Table 1). In particular, after adjusting for age

Table 1 | Hazard ratios (95% confidence intervals) of type 2 diabetes according to tertiles of NR in the Nurses’ Health Study
(NHS, 1984–2014) and Health Professionals Follow-Up Study (HPFS, 1986–2016)

T1 T2 T3 P for trenda

NHS

Cases/Person-year 1436/312,411 1245/312,509 1133/312,388

Age-adjusted model 1 (reference) 0.86 (0.80, 0.93) 0.78 (0.72, 0.85) <0.001

Multivariable-adjusted modelb 1 (reference) 0.93 (0.86, 1.01) 0.93 (0.85, 1.00) 0.0997

HPFS

Cases/Person-year 684/147,746 502/148,000 502/148,085

Age-adjusted model 1 (reference) 0.73 (0.65, 0.82) 0.73 (0.65, 0.82) <0.001

Multivariable-adjusted modelb 1 (reference) 0.77 (0.69, 0.87) 0.82 (0.73, 0.93) 0.0016

aP for trend was calculated using the median value of each tertiles (two-sided Chi-square test).
bMultivariable-adjustedmodel adjusted for age (years), ethnicity (white, African American, Asian, others), bodymass index (<21.0, 21.0–22.9, 23.0–24.9, 25.0–26.9, 27.0–29.9, 30.0–32.9, 33.0–34.9,
or ≥35.0 kg/m2), smoking status (never smoked, past smoker, currently smoke 1–14 cigarettes per day, 15–24 cigarettes per day, or ≥25 cigarettes per day), alcohol intake (0, 0.1–4.9, 5.0–9.9,
10.0–14.9, 15.0–29.9, and ≥30.0g/d), hypertension (yes, no), hypercholesterinemia (yes, no), multivitamin use (yes, no), physical activity (quintiles), alternative healthy eating index, family history of
diabetes. In NHS, postmenopausal hormone use (never, former, or current hormone use, or missing) and oral contraceptive use were additionally adjusted.
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(months) only, the P for trend <0.001. After adjusting for a wide
range of confounding factors, the P for trend = 0.006.

For HPFS participants, we observed similar results. For type 2
diabetes, after adjusting for age (months) only, the P for trend
<0.001; after adjusting for a wide range of confounding factors, the
P for trend = 0.002 (see Table 1). For cardiovascular disease, after
adjusting for age (months) only, the P for trend = 0.004; after
adjusting for a wide range of confounding factors, the P for
trend = 0.04 (see Table 2).

For both disease outcomes and both cohorts, we also repeated
the above calculations using quintiles of the NR score. As shown in
Tables S2–S3, we found qualitatively very similar results.

Since NR is a part of FD and actually they are positively correlated
(see Fig. S11), we wonder if FD itself is associated with the risk of type 2
diabetes and cardiovascular disease. We performed association ana-
lyses. Interestingly, for bothNHSandHPFSparticipants, we found that,
after adjusting for a wide range of confounding factors, FD is not
associated with lower risk of type 2 diabetes (see Table S4) or cardi-
ovascular disease (see Table S5) at all. This result implies that the
association between NR and disease risks cannot be simply attrib-
uted to FD.

To understand the association betweenNR and the risk of type 2
diabetes and cardiovascular disease in the two cohorts, we analyzed
the food consumption pattern of each NR tertiles in those two
cohorts. We found that there is a consistent trend among the three
NR tertiles for those important food groups in NHS and HPFS (see
Fig. 7). For instance, abundances of Fruits, Vegetables, Dairy, Cereal
Grains are much higher for T3 (i.e., high-NR participants) than T2
and T1; while abundances of Beverages are much lower for T3 than
T2 and T1 in both NHS and HPFS. This food consumption pattern
might explain why NR is an indicator of low risk of type 2 diabetes
and cardiovascular disease.

Discussion
Through examining various human dietary intake datasets, we
found that food profile varies tremendously across individuals and
over time, while the nutritional profile is highly conserved across
different individuals and over time. To quantify this nutritional
redundancy, we constructed the food-nutrient network–a bipartite
graph that connects foods to their nutrient constituents. This food-
nutrient network also allows us to assess the NR of any dietary
assessment from any individual. We found that this personal NR is
not strongly correlated with any existing healthy diet scores. We
emphasize that, as the difference between the food diversity and the
nutrient diversity of a person’s dietary assessment, the personal NR
quantifies the nutrient similarity (or overlap) of two randomly cho-
sen food items in the diet assessment. Thus, a healthy diet does not

necessarily have higher or lower NR. Interestingly, we found that the
personal NR can be used to predict healthy agingwith equally strong
performance as those healthy diet scores. Hence, the concept of
personal NR offers us a completely new perspective on studying
human diet.Moreover, we examined its associations with the risks of
type 2 diabetes and cardiovascular disease in NHS (all female) and
HPFS (all male). For both cohorts, we found a clear inverse asso-
ciation between NR and the two phenotypes after adjusting for age.
For HPFS, the inverse association is observed even after adjusting
for a wide range of confounding factors. Whether these findings
can lead to practical nutritional guidance warrant further interven-
tional studies.

Since the personal NRmeasure is not strongly correlated with any
classical healthy diet scores, in principle we can combine the concepts
of NR and those healthy diet scores to better capture the total impact
of diet on health outcomes. For instance, one can leverage the food-
specific subgraphs of the FNN (see Fig. S2) to calculate the NR of food
groups contributing to each component of a healthy diet score. This
will enable us to define an NR-aware healthy diet score. Systematically
exploring this direction warrant dedicated efforts, which is beyond the
scope of the current work.

There are several limitations in our current framework of NR
calculation. First, we did not explicitly consider the nutrient difference
between different food sources. We understand that nutrient content
and its fluctuations span several orders of magnitude, and different
scaling transformation, as well as different selections of nutrients,
could modulate nutrient diversity and redundancy across
individuals49. We anticipate that incorporating this information in our
NR calculation will further improve the power of using NR to predict
healthy aging or other disease risks65.

Second, the calculation of a personal NR relies on food intake
measurements, e.g., ASA24 and FFQ, which are based on self-
reported dietary intake questionnaires. We understand that such
food intake measurements have inherent limitations, particularly
measurement error related to poor recall, which can be overcome by
the use of nutritional biomarkers that are capable of objectively
assessing food consumption in different biological samples without
the bias of self-reported dietary assessment66. Although nutritional
biomarkers provide a more proximal measure of nutrient status
than dietary intake, quantitatively studying NR using nutritional
biomarkers is beyond the scope of the current study. We anticipate
that our framework will trigger more research activities in this
direction.

Third, due to the unmapped chemical complexity of food26, the
nutritional components listed in existing epidemiological databases
represent only a small fraction of the several hundreds of thousands
of molecules documented in food67, many of which are bioactive

Table 2 | Hazard ratios (95% confidence intervals) of cardiovascular disease according to tertiles of NR in the Nurses’ Health
Study (NHS, 1984–2014) and Health Professionals Follow-Up Study (HPFS, 1986–2016)

T1 T2 T3 P for trenda

NHS

Cases/Person-year 1477/325,684 1324/325,688 1250/325,419

Age-adjusted model 1 (reference) 0.92 (0.85, 0.99) 0.85 (0.79, 0.92) <0.001

Multivariable-adjusted modelb 1 (reference) 0.94 (0.87, 1.02) 0.90 (0.83, 0.97) 0.0057

HPFS

Cases/Person-year 1358/145,486 1285/145,662 1290/145,726

Age-adjusted model 1 (reference) 0.94 (0.87, 1.02) 0.89 (0.83, 0.96) 0.0041

Multivariable-adjusted modelb 1 (reference) 0.97 (0.89, 1.04) 0.92 (0.85, 1.00) 0.0405

aP for trend was calculated using the median value of each tertiles (two-sided Chi-square test).
bMultivariable-adjustedmodel adjusted for age (years), ethnicity (white, African American, Asian, others), bodymass index (<21.0, 21.0–22.9, 23.0–24.9, 25.0–26.9, 27.0–29.9, 30.0–32.9, 33.0–34.9,
or ≥35.0 kg/m2), smoking status (never smoked, past smoker, currently smoke 1–14 cigarettes per day, 15–24 cigarettes per day, or ≥25 cigarettes per day), alcohol intake (0, 0.1–4.9, 5.0–9.9,
10.0–14.9, 15.0–29.9, and ≥30.0g/d), hypertension (yes, no), hypercholesterinemia (yes, no), multivitamin use (yes, no), physical activity (quintiles), alternative healthy eating index, family history of
myocardial infarction. In NHS, postmenopausal hormone use (never, former, or current hormone use, or missing) and oral contraceptive use were additionally adjusted.
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substances contributed by the extensive secondary metabolism of
plants, and substrates for the human gut microbiome68,69. Our NR
calculation is based on the existing nutrient databases that are cer-
tainly incomplete. We anticipate that a more comprehensive food
composition database will yield a more powerful measure of NR to
predict healthy aging and other disease risks.

Forth, although we considered four null models of the bipartite
food-nutrient network, systematically exploring other null models of
this bipartite network (or its unipartite presentations) deserves dedi-
cated efforts, which is beyond the scope of the current study. Hence,
our analysis cannot entirely exclude the possibility of the presence of
other network characteristics that are simpler than nestedness itself
and can still be used to explain the NR values observed in the
human diet.

Finally, food distance was measured using all nutrient compo-
nents, which might introduce biases as some nutrients are correlated
or redundant, such as fatty acids and amino acids. Although we have
demonstrated that the FNN still shows a highly nested structure after
excluding broad families of chemicals (Fig. S5), and that removing fat-
related nutrient subtypes does not drastically alter NR (Fig. S12), more
efforts are warranted to systematically address the potential impact of
nutrition ontology on NR calculation.

Methods
Food nutrient network
Consider a pool of N food items, which contains a collection of M
nutrients in total. The food profile f ðνÞ = ½f ðνÞ1 , � � � , f ðνÞN � of the diet record
of individual-ν can be directly related to its nutrient profile
nðνÞ = ½nðνÞ

1 , � � � ,nðνÞ
M � through the FNN (Fig. 2). Here, f ðνÞi (or nðνÞ

a )

represents the relative abundance of food-i (or nutrient-a) in the diet
record. And we define the FNN as a weighted bipartite graph con-
necting these foods to their nutrients. The FNN can be represented by
an N ×M incidence matrix G = ðGiaÞ, where a non-negative value Gia

indicates the amount contributed by food-i to nutrient-a (see Fig. 2a
for the unit of each nutrient). The nutrient profile is given by
nðνÞ = cf ðνÞG, where c= ½PM

a= 1

PN
i= 1 f

ðνÞ
i Gia�

�1
is a normalization

constant.

Nestedness
Nestedness a classical concept in ecology, which is used to char-
acterize the nested structure of ecological systems, such as the
species-site network (describing the distribution of species across
geographic locations), and the species-species interaction networks
(e.g., host-parasite, plant- pollinator interactions)70–74. In principle, an
ecological system is said to be nested if the items belonging to
“smaller” elements (e.g., a small island containing few species, or a
specialist specieswith few interactions) tend tobe a subset of the items
belonging to “larger” elements (e.g., a large island containing many
species, or a generalist species with many interacting partners).
Mathematically, those ecological systems can be represented as
bipartite graphs with two types of nodes, e.g., sites and species, hosts
and parasites, plants and pollinators, etc. In this work, we focus on the
food nutrient network of dietary, which is also a bipartite graph with
two types of nodes: foods and nutrients.

Numerical calculation
Consider a general bipartite graph with N type-1 nodes and M type-2
nodes. The structure of this bipartite graph can be represented by its
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Fig. 7 | Individuals with high NR tend to consume more healthy food groups.
Square root ofmedian relative abundanceof each food group for each tertile group
(T1–T3) based on the NR of participants in NHS (a) and HPFS (b). Food group was

defined inHarvard food nutritiondatabase and those food groupspresented in less
than three tertile groups were not shown.
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N×M binary incidence matrix B= ðBiaÞ, where Bia = 1 if there is a link
connecting the i-th type-1 node and the a-th type-2 node, and 0
otherwise. Mathematically, nestedness can be defined as a property of
the incidence matrix B. If there exists a permutation of rows and col-
umns such that the set of links in row-i contains the links in row-(i+ 1),
and the set of links in column-a contains those in column-(a+ 1), then B
is a perfectly nested binarymatrix. For example, consider themainland
and a series of islands sorted according to their distances to the
mainland. The mainland contains all the species, the first island has a
subset of species in the mainland, the second island has a subset of
species in the first island, etc.

The Nestedness metric based on Overlap and Decreasing Fill
(NODF) nestedness metric is based on two simple properties:
decreasing fill and paired overlap. For any given bipartite graph with
incident matrix B, the unweighted degree of i-th food node is
ki =

PM
a= 1Bia, and the unweighted nutrient degree of a-th nutrient

node is ka =
PN

i = 1Bia. The number of nutrients shared by the i-th food
and the j-th food is given by Pij =

PM
a= 1BiaBja. And the number of

common foods that both of a-th nutrient and b-th nutrient are inclu-
ded is given by Qij =

PN
i= 1BiaBib. Define ePij =0 if ki = kj andePij =Pij=minðki,kjÞ otherwise. Then, define eQab =0 if ka = kb andePab = Pab=minðka,kbÞ otherwise. The NODF is defined as

NODF=

PN
i<j
ePij +

PM
a<b
eQab

NðN�1Þ
2 + MðM�1Þ

2

, ð1Þ

Theoretical approach
To theoretically analyze the nested structure of a given bipartite
graph, one can construct a grand canonical ensemble for this
bipartite graph under the constraint that, for the two types of nodes,
the degree sequences in the ensemble match on average the
empirical ones53. This theoretical approach has two big advantages.
First, constraining the ensemble’s mean degree sequence to be
equivalent to the empirical one limits the possible effects of noisy
data, hence possible missing (false negative) or overrated (false
positive) links can be dealt with appropriately. Second, for this
bipartite graph ensemble one can analytically derive the mean and
standard deviation of the distribution of any network property (such
as the classical NODFmeasure of nestedness) that can be analytically
formulated in terms of the elements of the bipartite adjacency
matrix B.

Nutritional distance measure
To avoid the influence of nutrient amount variability in foods, we used
the (unweighted) Jaccard index to quantify the nutritional distance
between food item-i and item-j:

dij = 1�
∣Gi \ Gj ∣
∣Gi ∪Gj ∣

, ð2Þ

where Gi represents the nutrients in food i. dij =0 indicates that the
food item-i and food item-j share exactly the same nutrient con-
stituents; dij = 1 means that they have totally different nutrient con-
stituents. The nutritional similarity between food item-i and item-j can
be defined as

sij = 1� dij : ð3Þ

Nutritional redundancy measure
In the main text, the nutritional redundancy (NR) is defined as:
NRα =FDα � NDα . FDα is chosen to be the Gini-Simpson index:

GSI � 1�PN
i = 1p

2
i =
PN

i = 1

PN
j≠ipipj , representing the probability that

two randomly chosen members of a subject’s food profile (with
replacement) belong to two different food items; andNDα is chosen to
be the Rao’s quadratic entropy Q �PN

i= 1

PN
j≠idijpipj . Note that with

FDα =GSI and NDα =Q, we have NRα =
PN

i= 1

PN
j≠ið1� dijÞpipj, naturally

representing the nutritional similarity (or overlap) of two randomly
chosenmembers in any subject’s foodprofile. Here, we emphasize that
various taxonomic and functional diversitymeasurements can be used
in NR definition, for example Hill number.

Food diversity
Consider a subject’ food profile ofN foodswith the relative abundance
given by a vector f = f 1, � � � , f N

� �
. Hill introduced effective number of

species, which assumes that the taxonomic diversity (of order q) of a
given subject with relative abundance profile f = f 1, � � � , f N

� �
is the

same as that of an idealized subject of D equally abundant foods with
relative abundance profile ef = 1=D, � � � , 1=D� �

.

XN
i= 1

f qi =
XD
i = 1

1
D

� �q

=D1�q, ð4Þ

This offers a parametric class of food diversity measures defined
as follows:

FDq : =
XN
i = 1

f qi

 ! 1
1�qð Þ

forq≠ 1: ð5Þ

And

FD1 : = lim
q!1

FDq = exp �
XN
i= 1

f ilog f i

 !
: ð6Þ

Note that the Gini-Simpson index (GSI) used in the main text is
related to FD2 as follows:

GSI : = 1�
XN
i= 1

f 2i = 1�
1

FD2
: ð7Þ

Nutritional diversity
Consider a subject’ food profile ofN foodswith the relative abundance
given by a vector f = f 1, � � � , f N

� �
and pair-wise nutritional distance

matrix4= ðdijÞ 2 RN ×N with dii =0 for all i= 1, � � � ,N and dij =dji ≥0 for
all i≠ j. Follow our former definition of functional redundancy, we use
the new pair-wise nutritional distance matrix to overcome the draw-
backs of original distance matrix

40 = d0
ij

� 	
=

λ1 d12 d13 � � � d1N

d21 λ2 d23 � � � d2N

d31 d32 λ3 � � � d3N

..

. ..
. ..

. . .
. ..

.

dN1 dN2 dN3 � � � λN

0BBBBBBB@

1CCCCCCCA
, ð8Þ

where dij represents the original nutritional distance between food-i

and j and λi : =
PN

j≠i
dij

N�1 is the average nutritional distance between food-
i and all other foods. Note that, when different species are equally
distinct with a constant pairwise distance, λ is equal to this constant.
The final nutritional diversity of a subject can be defined as

NDq Q0� �
: =Dq Q0� � � Q0 =

XN
i = 1

XN
j = 1

d0
ij

Q0 f if j
� 	q ! 1

2 1�qð Þ

� Q0 forq≠ 1, ð9Þ
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and

ND1 Q0� �
: =D1 Q0� � � Q0 = exp � 1

2

XN
i = 1

XN
j = 1

d0
ij

Q0 f i f j logð f i f jÞ
" #

� Q0: ð10Þ

Nutritional redundancy
In the literature of ecology, the functional redundancy (FR) of a sample
is often considered to be the part of the taxonomic diversity (TD) that
cannot be explained by the functional diversity (FD)48. Hence FR is
typically defined to be the difference between TD and FD. Similarly, we
define the NR to be the difference between food diversity (FD) and
nutritional diversity (ND):

NR : = FD� ND: ð11Þ

In the main text, we chose FD to be the Gini-Simpson index:

GSI � 1�PN
i = 1 f

2
i =
PN

i = 1

PN
j ≠ i f i f j, and ND was chosen to be the Rao’s

quadratic entropy Q �PN
i = 1

PN
j≠idijninj . Hence,

NR=GSI� Q= 1�
XN
i= 1

f 2i =
XN
i = 1

XN
j≠i

ð1� dijÞf if j: ð12Þ

For the Hill number-based food diversity TDq and nutritional
diversity NDq Q0� �

, and define a parametric class of nutritional redun-
dancy:

NRq Q0� �
: =TDq � NDq Q0� �

: ð14Þ

For q≠ 1,

NRq Q0� �
: =

XN
i= 1

f qi

 ! 1
1�qð Þ

�
XN
i= 1

XN
j = 1

d0
ij

Q0 f if j
� 	q ! 1

2 1�qð Þ

� Q0: ð15Þ

For q= 1,

NR1 Q0� �
: = exp �

XN
i= 1

f ilogf i

 !

� exp � 1
2

XN
i = 1

XN
j = 1

d0
ij

Q0 f if jlog f if j
� 	" #

� Q0:

ð16Þ

Definition of disease outcomes
Type 2 diabetes was confirmed if at least one of the following criteria
by the National Diabetes Data Group75 was met: (1) elevated plasma
glucose levels (fasting glucose ≥ 140mg/dL or random glucose ≥ 200
mg/dL) with ≥ 1 classic symptoms (polydipsia, polyuria, polyphagia,
weight loss, or coma); (2) elevated plasma glucose on at least two
occasions (fasting glucose ≥ 140 mg/dL, random glucose ≥ 200 mg/
dL, and/or glucose ≥ 200 mg/dL after an oral glucose test) with no
symptoms; and (3) hypoglycemic therapy with insulin or oral medi-
cations. An updated cutoff of 126mg/dL for fasting glucose was used
for diagnoses after 1997 according to the American Diabetes Asso-
ciation diagnostic criteria76.

The primary outcome measure was major Cardiovascular dis-
ease (CVD), which is defined as a combined endpoint of non-fatal
myocardial infarction, non-fatal stroke, or fatal CVD (fatal stroke,
fatal myocardial infarction, and other cardiovascular death). The
secondary outcome measures were assessed as following: (1) total
CHD: defined as fatal CHD and nonfatal myocardial infarction; (2)
total stroke: all fatal and nonfatal stroke cases (ischemic, hemor-
rhagic, and undetermined subtypes). When a participant (or family

members of deceased participants) reported an incident event,
permission was requested to examine their medical records by
physicians whowere blinded to the participant risk factor status. For
each endpoint, the month and year of diagnosis were recorded as
the diagnosis date. Non-fatal events were confirmed through review
of medical records. Myocardial infarction was confirmed if the
World Health Organization criteria were met on the basis of symp-
toms plus diagnostic electrocardiogram changes or elevated cardiac
enzymes. If medical records were unavailable, we considered myo-
cardial infarctions probable when the participant provided addi-
tional confirmatory information. Information on angina and
coronary revascularization procedures (percutaneous transluminal
coronary angioplasty or coronary artery bypass grafting surgery)
were self-reported, and we included only events that occurred
before a manifest cardiovascular event.

Strokes were confirmed if data in the medical records fulfilled the
National Survey of Stroke criteria requiring evidence of a neurological
deficit with sudden or rapid onset that persisted for >24 h of until
death77. We excluded cerebrovascular pathology due to infection,
trauma, or malignancy, as well as “silent” strokes discovered only by
radiologic imaging. Radiology reports of brain imaging (computed
tomography or magnetic resonance imaging) were available in 89% of
those with medical records. We classified strokes as ischemic stroke
(thrombotic or embolic occlusion of a cerebral artery), hemorrhagic
stroke (subarachnoid and intraparenchymal hemorrhage), or stroke of
probable/unknown subtype (a stroke was documented but the sub-
type could not be ascertained owing to medical records being
unobtainable).

Deaths were identified by reports of families, the U.S. postal
authorities, and searches of the National Death Index. The cause of
death was assigned by physicians after review of medical records
and death certificate information. Follow-up for deaths was >98%
complete. Fatal CVD was defined as fatal CHD disease, fatal stroke,
or fatal CVD. Fatal CHD was defined as ICD-9 (international classifi-
cation of diseases, ninth revision) codes 410-412 and was considered
confirmed if fatal CHDwas confirmed viamedical records or autopsy
reports or if CHD was listed as the cause of death on the death
certificate and there was prior evidence of CHD in the medical
records. We designated as probable those cases in which CHD was
the underlying cause on the death certificates, but no prior knowl-
edge of CHD was indicated and medical records concerning the
death were unavailable. Similarly, we used ICD-9 codes 430–434 to
define fatal stroke and followed the same procedures to classify
cases of confirmed or probable fatal stroke. Lastly, fatal CVD was
defined by ICD-9 codes 390–458.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The DMAS dataset is available from https://github.com/knights-lab/
dietstudy_analyses. The USDA Food Nutrient Database is available
from https://fdc.nal.usda.gov/download-datasets.html. The Women’s
lifestyle validation study, Men’s lifestyle validation study, Nurses’
Health Study (NHS) and Health Professionals Follow-Up Study (HPFS)
are not publicly available for the following reason: data contain
information that could compromise research participant privacy.
Requests to access these data (for research purposes only) can be
made by research investigators 1 year after publication via http://www.
nurseshealthstudy.org/researchers. Investigators can expect initial
responses within 4 weeks of request submission. Harvard University
Food Composition Database can be accessed at https://regepi.bwh.
harvard.edu/health/nutrition.html. FoodDB database can be accessed
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at https://foodb.ca/downloads. Sourcedata supporting all our findings
are providedwith this publication as a SourceData file. Sourcedata are
provided in this paper. Source data are provided with this paper.

Code availability
MATLAB Code (version R2016b) used in this work is available at
https://github.com/spxuw/Nutritional-redundancy or under Zenodo
at https://doi.org/10.5281/zenodo.778152178.
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