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Trait anxiety is associated with hidden state
inference during aversive reversal learning

Ondrej Zika 1,2 , KatjaWiech 3, Andrea Reinecke 4,5, Michael Browning4,5 &
Nicolas W. Schuck 1,2,6

Updating beliefs in changing environments can be driven by gradually
adapting expectations or by relying on inferred hidden states (i.e. contexts),
and changes therein. Previous work suggests that increased reliance on con-
text could underly fear relapse phenomena that hinder clinical treatment of
anxiety disorders. We test whether trait anxiety variations in a healthy popu-
lation influence how much individuals rely on hidden-state inference. In a
Pavlovian learning task, participants observed cues that predicted an
upcoming electrical shock with repeatedly changing probability, and were
asked toprovide expectancy ratings on every trial.We show that trait anxiety is
associated with steeper expectation switches after contingency reversals and
reduced oddball learning. Furthermore, trait anxiety is related to better fit of a
state inference, compared to a gradual learning, model when contingency
changes are large.Ourfindings support previouswork suggesting hidden-state
inference as a mechanism behind anxiety-related to fear relapse phenomena.

Aversive memories are notoriously difficult to forget, and often resist
attempts to overwrite them with new experiences. In exposure ther-
apy, for instance, the feared situation or object is presented in the
absence of an aversive outcome to achieve extinction of the fear
response. While this procedure can lead to a decrease in fear
responding, this reduction sometimes remains specific to the ther-
apeutic context, and fails to generalize to the outside world1,2. Such
deficits in updating of aversive beliefs have been linked to anxiety
disorders. Clinical anxiety has been associated with lowered dis-
crimination between conditioned and unconditioned stimuli3,4,
decreased inhibition of responses to conditioned stimuli5,6 and
heightened fear generalization7. Some research has suggested that,
even in healthy adults, heightened trait anxiety can lead to overly
context-specific learning, as indicated by lower success of cognitive
behavioral therapy in high trait anxious individuals8, suboptimal
uncertainty adjustment of learning in volatile environments9,10 and
higher rates of fear relapse following treatment11,12.

One important aspect of aversive learning is the degree to which
individuals internally represent periods of relative safety and threat as

separate contexts13, such as acquisition and extinction phases in con-
ditioning studies. The term context can either be used to describe
directly perceivable aspects of an environment, such as different vir-
tual rooms14, or un-cued aspects that have to be inferred based on
changing outcomes. The present paper is concerned with the dis-
tinction between periods of high or low threat, which represents the
latter type of context. We refer to this context as ‘hidden state’, akin to
the idea of partially observable states as discussed in the reinforce-
ment learning (RL) literature15. Previous theoretical16 and
experimental17–19 work suggests that the brain uses such hidden states
to represent information and to drive decisions (see ref. 20 for a
review).

Learning in a state-dependent manner21,22 is often contrasted with
gradual learning as proposed by classical associative learning
theories22. The key distinction between the twoways of learning is that,
under gradual learning, the individual updates their expectation on a
trial-by-trial basis, effectively overwriting their previous estimate with
eachupdate.On the other hand, anagent learning in a state-dependent
manner creates classes of similar experiences (i.e., states) and
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incorporates this information into their predictions of future out-
comes. Consequently, state-dependent learning often leads to abrupt
jumps in an agent’s predictions, called state switches, which reflect
when a state change was detected and implemented into the next
prediction. In addition, such a learning mechanism can also explain a
persistence of previous experiences despite new learning, similar to
relapse phenomena observed in clinical practice during which clini-
cally extinguished fear fails to generalize to everyday life1.

Experiments that aim to arbitrate between these perspectives
typically use extinction learning designs, in which a neutral stimulus
is first pairedwith an aversive unconditioned stimulus (US, typically a
painful shock) during an acquisition phase, but is no longer followed
by shocks during an extinction phase. The gradual learning per-
spective assumes that shock contingencies during the acquisition
phase lead to gradual strengthening of a cue-outcome association,
which is then gradually weakened, and hence forgotten, during
the extinction phase23,24. However, experiments25 and clinical
observations1 have challenged this view. Most importantly, see-
mingly extinguished memories can return unexpectedly, either after
a sufficient period of time has elapsed (spontaneous recovery)26, an
explicit change of context (renewal)25 or a presentation of the US on
its own (reinstatement)27. In line with state-dependent accounts,
these observations suggest that rather than forgetting or overwriting
aversive associations, extinction involves the creation of a new
memory together with the inhibition of the previous association21.
One intriguing possibility which follows from this idea is that the
individual may have learned that there are now two states that occur
repeatedly (acquisition/high-threat state and extinction/low-threat
state in the example). The same stimulus can therefore have different
associations with outcomes depending on the state, explaining why
animals and humans can suddenly behave differently in response to
the same observation in the case of spontaneous recovery, rein-
statement or renewal28. The notion of state-dependent learning is
also in line with data showing that gradual, rather than abrupt, con-
tingency changes lead to a decrease in the rates of spontaneous
recovery, reinstatement and fear re-acquisition on a subsequent
session29–31, a phenomenon known as gradual extinction or occa-
sional reinforced extinction. One study using continuous measure of
state inference found that individuals who tend to represent the
environment as multiple states have significantly higher rates of
spontaneous recovery, as indexed by skin-conductance32. This sug-
gests a relationship between state inference and spontaneous
recovery of aversive associations.

While much research supports the general existence of a state
inference mechanism, the question of which factors influence the
creation of internal states, and how trait anxiety might relate to it, has
remained less clear. First, the roleof trait anxiety (TA) in state inference
has not been explicitly tested, although some studies suggest such a
link31 (see also33 for the same proposition in PTSD). High TA has been
associated with an increased return of fear following phobia
treatment11,12 as well as with heightened neural and physiological dif-
ferentiation between cues associated with a shock (CS+) vs no shock
(CS-)14,34,35. Linking these findings to the theoretical work on state
inference, it is conceivable that high TA individuals tend to learn in a
more context-specific manner. If this context-specific learning is
associated with a propensity to reactivate a previously experienced
high-threat state, this could lead to repeated relapses as observed in
patients.

Here, we investigate the context-specificity of learning in aversive
environments and itsmodulation by trait anxiety. Ourmainhypothesis
was that trait anxiety is associated with a higher propensity to
associate periods of relative safety and harm with distinct internal
contexts, andwe argue that this processmight explain persistence and
recurrence of unwanted experiences, akin to relapse phenomena
observed in clinical populations.

We employ a probabilistic aversive learning paradigm where the
probability to receive a shock following a cue reversed regularly. In
such an environment, participants can either update their expecta-
tions about the shock probability from trial-to-trial, or they can infer
that there were in fact two contexts that correspond to relative safety
and threat. We reason that participants with higher levels of trait
anxiety aremore prone to infer two distinct contexts rather than learn
gradually. We test our hypothesis by comparing the performance of
two computational models that capture the differences between gra-
dual learning and context-dependent learning, and yield detailed
predictions about trial-to-trial changes in behavior. Our results indi-
cate that individuals with higher levels of trait anxiety tend to identify
latent changes in the environment, as evidenced by steeper learning
following environmental changes relative to oddballs, as well asmodel
comparisons.

Results
Ourmain objective was to study how learning about changing aversive
outcome associations is affected by variations in trait anxiety among
healthy participants. Eighty-nine participants (47 female, mean age:
25.5 years) performed a probabilistic aversive reversal learning task
during which they saw one of three possible cues and were then asked
to rate the probability of receiving a shock (Fig. 1a). The dataset was
acquired in three separate experiments. Experiments I and II consisted
of one session (75/25, see below), Experiment III was comprised of
three sessions, with each session differing in outcome uncertainty.
Therefore, the number of participants included in each session dif-
fered (N60/40 = 36; N75/25 = 88; N90/10 = 37; see Methods and Supple-
mentary Materials for a detailed breakdown). In all three datasets,
three different visual cues were each associated with a probability of
receiving anelectric shock. Twocueswereconsistently associatedwith
either a high or a low shock probability throughout the session. We
refer to these as stable-high and stable-low cues. The third cue started
with a shock probability corresponding to either the stable-high or
stable-low cue but reversed its probability a total of 6–10 times during
each session (henceforth: reversal cue; reversals occurred randomly
every 15.4 trials on average, see Fig. 1b, as well as Methods for details).

The three sessions varied in the amount of outcome uncertainty.
In the 90/10 session, the stable-high probability cue was followed by a
shock on 90% of trials, while the shock appeared on only 10% of trials
after the stable-low probability cue. The reversal (i.e., changing) cue
switched between phases of high (90%) and low (10%) shock prob-
ability. The 75/25 and 60/40 sessions followed the same logic: the
reversal cue probabilities switched between 75% and 25% and between
60% and 40%, respectively. We use the term phase when referring to
periods of fixed shock probability within the reversal cue. Participants
in Experiment 3 completed all three sessions, while participants in
Experiments 1 and 2 only completed a 75/25 session. The session order
in Exp. 3 was counterbalanced across participants (Fig. 1c).

The shock intensity was individually calibrated at the beginning of
each session to induce moderately high pain (rating of 8 on a numeric
rating scale from 1−10, defined as painful but bearable considering the
number of trials). The calibrated stimulus intensity did not differ
between studies. There was no significant relationship between shock
intensity and probability ratings, or between pain intensity and trait
anxiety (p >0.05, see Methods). Session order and initial shock prob-
ability of the reversal cue (high or low) were also found to have no
significant effect (see Methods). Experiments did not differ with
respect tomean stimulus intensity applied or participants’ trait anxiety
level. However, because several details of the experimental protocol
differed between experiments, we decided to include Experiment as a
factor (i.e., random effect) in all analyses. All participants completed
the STAI-TRAIT questionnaire36, which was used to assess the indivi-
dual trait anxiety (TA) scores (median score: 39; range 20–71). While
TA was included as a continuous parametric variable in all relevant
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analyses, we sometimes report and visualize mean ratings per anxiety
group (median split into high vs low trait anxious) in plots for illus-
tration purposes.

Our first analysis focused on participants’ ability to track shock
contingencies associated with the stable cues. A linear mixed effects
model (LMM) with probability ratings as a dependent measure
revealed a main effect of cue type (stable-high vs stable-low cue),
F(1,308) = 435.8, p < 0.001, η2

p = 0.59 [0.52, 0.64], with higher prob-
ability ratings for stable-high than stable-low cues (Fig. 2a). Although
participants’ ratings were relatively close to the true contingency
levels, we found that participants slightly overestimated the shock
probability for the stable-low cue (25% true vs. 30% estimated) and
slightly underestimated the probability for the stable-high cue (75%
true versus 71.8% estimated probability). Participants’ probability rat-
ings also reflected the contingency differences between sessions, as
shownby the significant interaction between cue type and session type
(90/10, 75/25 and 60/40), F(1,308) = 33.83, p < 0.001, η2

p = 0.02 [0.00,
0.06], see Fig. 2b (also Supp. Mat. for details).

Next, we asked whether participants’ shock probability ratings
for the two stable cues differed depending on trait anxiety. We
averaged shock probability ratings per cue and participant, and ran a

LMM with trait anxiety and session as fixed effects. This analysis
revealed that the difference in ratings between high- and low-prob
cues increased as a function of trait anxiety, as indicated by an
interaction of TA and cue type, F(1,308) = 6.91, p = 0.009, η2

p = 0.02
[0.00, 0.06] (Fig. 2c). There was a positive association with TA in
stable-high cue, β = 0.0024, and a negative relationship in the stable-
low cue, β = −0.0024: the higher participants TA score, the higher
reported ratings were in the stable-high condition, and the lower in
the stable-low condition. Direct contrast of the associations of TA
and rating between high and low-prob cues showed significant dif-
ference, t(242) = 2.63, p = 0.009, η2

p = 0.03 [0.00, 0.08]. We also
tested whether ratings differed significantly from the true con-
tingency level using one-way t-tests (Fig. 2d). When judging the
stable-high cue, less anxious participants significantly under-
predicted the true reinforcement level in the 75/25, t(47) = −2.62,
p = 0.047, η2

p = 0.13 [0.01, 31], and 90/10 sessions, t(18) = −3.51,
p = 0.015, η2

p = 0.41 [0.07, 65]. When judging the stable-low cue, less
anxious participants overpredicted the probability in the 75/25 ses-
sion, t(47) = 3.58 p = 0.010, η2

p = 0.21 [0.04, 40]. More anxious par-
ticipants, in contrast, did not show over- or underpredictions,
all ps > 0.05.

Fig. 1 | Structure of the task and individual trials. a Trial structure. Each trial
started with a fixation cross (inter-trial interval; ITI) followed by one of the three
cues (abstract fractals). Participants were asked to indicate the expected prob-
ability of receiving a shock on this trial by moving the red slider between 0% and
100% in increments of 1%. The final answer was submitted by pressing the down-
ward arrow, afterwhich the slider turned green to confirm the submission. After an
inter-stimulus interval (ISI), a painful electrical stimulus (intensity: 8/10) was either
delivered or omitted and the slider changed color to blue to indicate that the
outcome had occurred. b Experimental design, example of one of the three ses-
sions. The task was a continuous stream of trials. On each trial, one of the three

cues was presented. While the shock contingency of the stable cues remained
unchanged throughout the task (pink and light blue), the reversal cue changed
every on average 15.4 trials between a low (dark blue) and a high (red) shock
probability (i.e., phase). c In Experiment III participants completed the three ses-
sions in a randomized order, in Studies I and II, only the 75/25 session was com-
pleted. d The three cues (stable-low, stable-high and reversal) were presented in a
pseudo-randomized order. The reversal cue was presented on a larger proportion
of trials than the stable cues. For details seeMethods. Finger icons createdbyRahul
Kaklotar – Flaticon.
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Next, we analyzed shock probability ratings for the reversal cue.
This cue switchedbetweenphases of high and low-probability of shock
(high-prob phase and low-prob phase). After each reversal, ratings
tended to change rapidly, settling within about 5–10 trials at a stable
level thereafter (see Fig. 3a). We first focused on participants’ prob-
ability estimates during the stable periods between trial 10 and the
next reversal (orange box in Fig. 3a), that is, after the initial learning
period. Ratings provided during the high-prob phase were higher than
during the low-prob phase across all three sessions (main effect of
phase: F(1,234) = 165.92, p < 0.001; 63.0% vs 48.3% in 60/40, 71.4% vs
45.5% in 75/25 and 76.3% vs 38.4% in 90/10, high- vs low-prob phases
respectively, Fig. 3a). Moreover, the model revealed an interaction
between phase and session, F(2,234) = 8.86, p < 0.001, η2

p = 0.07 [0.02,
0.14]. Post hoc tests found that this was driven by increased ratings of
the high-prob phase in the 90/10 relative to the 60/40 session,
t(229) = −3.40, p =0.010, η2

p = 0.05 [0.01, 0.11]. No credible evidence

was found for a difference between sessions in the low phase (See
Supp. Mat.).

Our analysis also revealed a significant interaction between phase
andTA, F(1,234) = 13.75,p < 0.001, η2

p = 0.06 [0.01, 0.12] (Fig. 3b). Post-
hoc tests found that this was driven by a significant negative rela-
tionship between TA and ratings in the low-prob phase, F(154) = 9.43,
p =0.003, η2

p = 0.08 [0.00, 0.18], β = −0.0052 [−0.0085, −0018]. More
specifically, low trait anxious participants overestimated the shock
probability in the lowprobability phase by 23.7%, compared to 13.8% in
high TA. No credible evidence was found for a difference in ratings in
the high-prob phase, where low TA participants underpredicted the
shock probability by 5.0% and high TA participants by 4.3% (TA was
median split, see Fig. 3c for continuous relationship). This pattern
was similar in all three sessions, although the association with TA was
numerically most pronounced in the 90/10 session (interaction of TA
with session: p >0.05; Fig. 3c, Supp. Table 3).

Fig. 2 | Probability ratings for the two stable cues across all sessions. Probability
ratings were higher for the high-prob cue (pink) than the low-prob cue (light blue),
F(1,308) = 435.8, p <0.001, η2

p = 0.59 [0.52, 0.64] across sessions, a and b in each of
the three sessions, all ts > 4.9, ps < 0.001. c The difference between high and low
stable cue increasedwith trait anxiety, t(242) = 2.63,p =0.009,η2

p = 0.03 [0.00, 08]
All effects were assessed using LMMs, tests two-sided, post-hoc p-values Tukey
corrected. d The divergence of ratings from the true reinforcement schedules
(calculated as a cumulative mean) split by median TA, cue, and session. A positive
error indicates an overestimation of shock probability, a negative error shows an
underestimation. Low anxiety underpredicted true levels of stable-high cue in

75/25, t(47) = −2.62, p =0.047,η2
p = 0.13 [0.01, 31] and90/10, t(18) = −3.51, p = 0.015,

η2
p = 0.41 [0.07, 65], and overpredicted stable-low cue in 75/25, t(47) = 3.57,

p = 0.010, η2
p = 0.21 [0.04, 40]. Asterisks indicate a significant difference from the

true reinforcement level using one-way t-test, two-sided, p-value FDR-corrected. All
panels include data for N = 89 participants, in panels b and d the three conditions
include N = 36, N = 88 and N = 37 individuals. Box covers interquartile range (IQR),
mid-line reflects median, whiskers the +/−1.5 IQR range. Horizontal dashed lines on
all panels represent the true shock probability levels. Angled rectangles represent
predictions of the fitted LMM model.
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We next focused on the learning immediately after a reversal, i.e.,
trials 1 to 10 (reversal period). We characterized the speed of learning
following a reversal by fitting a line to ratings on trials 1 to 10. This was
done using a LMM with slope for each participant and phase. As
expected, slopes differeddependingon thedirectionof the switch, i.e.,
low-to-high switches were positive (2.44%; read as: the shock prob-
ability rating increased by 2.44% per trial) while slopes in high-to-low
switches were negative (−2.33%).

Next, we took the absolute value of the slope estimates and
included the values in a LMMmodel testing for effect of session, phase
and TA on slopes. The statistical model found amain effect of session,
F(2, 96) = 53.87, p < 0.001, η2

p = 0.53 [0.39, 0.63]. Post-hoc compar-
isons between sessions revealed that mean steepness was significantly
higher for 90/10 compared to 60/40 cues, t60<90 = −9.84, p <0.001,
η2

p = 0.15 [0.10, 0.21], and 75/25, t75<90 = −7.19, p <0.001, η2
p = 0.38

[0.22, 0.51]. Furthermore, we found a positive main effect of TA,
F(1,87) = 5.85, p = 0.018, η2

p = 0.06 [0.00, 0.18] and a significant inter-
action between TA and session, F(2, 600) = 5.33, p =0.005, η2

p = 0.02
[0.00, 0.04]. The associations between TA and slope were positive in
all sessions β60=40 = 1.85 [−2.24, 5.93] × 10−4β75=25 = 1.10 [−1.98, 4.17] ×
10−4β90=10 = 7.48 [3.45, 11.41] × 10−4. Post-hoc analyses found that this
was driven by a significantly stronger association between TA and
slope in the 90/10 session compared to 60/40, t60<90 = −2.54,
p =0.030, η2

p = 0.01 [0.00, 0.04], and 75/25, t75<90 = −3.05, p = 0.007,
η2

p = 0.01 [0.00, 0.04]. Despite the overall main effect, the relation-
ships between TA and slope in the 60/40, F(240) = 0.79, p =0.375,
η2

p = 0.00 [0.00, 0.03], and 75/25, F(141) = 0.50, p =0.482, η2
p = 0.00

[0.00, 0.05], sessions were not significant, see Fig. 4. These results
remained unchanged while controlling for the pre-reversal baseline
(see Supp. Mat.).

Next, we reasoned that those participants who employed a state
inference strategy should be better at knowing when to learn from
outcomes, i.e., they should update less following oddball events and
more just after contingencies have reversed. To test this, we calculated
learning rates separately for five trials immediately after reversal (i.e.
meaningful learning) and trials during the relatively stable periods
between trial five and the next reversal (oddball trials, see Methods).
Learning rates were log-transformed for the analysis (similarly to ref.
9). Learning was significantly higher after reversals(α = 0.265)

compared to oddball trials(α =0.225), F(1,534) = 12.85, p <0.001,
η2

p = 0.03 [0.01, 0.07]. This effect interacted with TA, F(1,535) = 4.56,
p =0.033 η2

p = 0.02 [0.00, 0.04]: TA was associated positively with
learning on meaningful trials, β = :0015, CI95 = �:0006:0037½ � and
negatively, β= � :001, CI95 = �:003 :002½ � with learning on oddball
trials, statistical contrast of the two trends found a significant effect,
t(528) = 2.136, p = 0.033, η2

p = 0.02 [0.00, 0.04] (see Fig. 5a). Taken
together, the behavioral analyses provide a link between trait anxiety
and two behavioral markers of state inference: increase in slope fol-
lowing reversal, and reduced learning from oddball events during
stable periods.

The results above suggested that trait anxiety is linked to faster
updating of expectations when contingencies change. Such behavior
could either be based on faster gradual learning or reflect state
switching. To distinguish between these two ideas more formally, we
fitted models to participants’ probability ratings in of the reversal cue
that assumed either gradual updating of a single state (1-state model)
or updating of, and switching between,multiple states (n-statemodel).
In both models, a state was characterized by a beta distribution that
reflected the learner’s current belief about shock probability. The
1-state model formalized gradual updating of a single beta
distribution37–39. The shape of the distribution was controlled by
parameters α and β, which were adjusted following each outcome.
Specifically, following a shock α was updated using a step size para-
meter τ + , whereas βwas increased by τ� when no-shockwas received.
Tomodel forgetting, in all trials bothparameters alsodecayedby a free
parameter λ, so that βt + 1 = λβt and αt + 1 = λαt . The 1-state model cap-
tured gradual learning in a manner resembling the Rescorla-Wagner
model, although it should be noted that the beta updating rule also
incorporated accelerated learning rates following reversals, akin to
Pearce Hall model (see Supp. Mat. for explicit comparison between
1-state learner and RWand PH). The n-statemodel started each session
with a single beta distribution that was updated over time in a manner
identically to the 1-state model. Crucially, however, the model kept
track of recency-weighted surprise. If the surprise exceeded a thresh-
old (controlled by a free parameter η), the model created a new state
that minimized the current surprise. If more than one state already
existed, themodelfirst polled for existing states, and switched to them
if a suitable candidate was found, before creating a new state. Every

Fig. 3 | Probability ratings in the reversal cue. a Probability ratings locked to the
reversal point for high-to-low (blue) and low-to-high (red) switches across the
entire sample and b separately for high and low (median split) trait anxious parti-
cipants. Trial indices indicate trials prior and following a reversal. c Probability
ratings for trials 10 after current reversal until next reversal shown separately for
each session as a functionof trait anxiety. Ratingswerehigher in the high compared
to low phase, F(1,234) = 165.9, p <0.001, η2

p = 0.41 [0.32, 40]. In the low phase,
ratings negatively associated with TA, F(154) = 9.43, p =0.003, η2

p = 0.08 [0.00,

0.18], β = −0.0052 [−0.0085, −0018], The 10+ window was selected as the point
from which shock ratings stabilized after the reversal. All assessed effects were by
LMM, tests are two-sided, post-hoc p-values Tukey corrected. Horizontal dashed
lines on all panels represent the true shock probabilities. Each panel contains data
for all participants (N = 89). Panels a and b show mean and standard error of the
mean (shaded). Straight lines and shaded areas in panel c showper-condition linear
fit y ~ x.
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time a new state was created the threshold for creating a new state
increased. This allowed themodel to generate ameaningful number of
states and effectively switch between them. Bothmodels are described
in detail in Methods, and parameter estimates are summarized in
Supplementary Tables 4a and 4b.

To assesswhichparticipants tended to learn gradually versus infer
states, we calculated BIC scores for bothmodels and subtracted them.
Note that although the n-state model has one additional parameter
(the threshold), it can behave almost identical to the 1-state model
when the threshold is so large that the model never creates more than
one state. Lower BIC scores of the n-state model can therefore be
attributed to the necessity of inferring and switching states, i.e., that
participants with improvedmodel fit for the n-state over 1-statemodel
are likely to rely on a state inference mechanism. Testing the model
across all sessions, the n-state model fitted the data better (1-state BIC:
−118; n-state BIC: −123). This was also true when comparing model fit
for all three sessions individually, 60/40 (−84 vs −91), 75/25 (−133 vs
−143) and 90/10 (−116 vs −132). However, the most pronounced dif-
ference was found in the 90/10 session where the n-state model
improved fit substantially (see Fig. 6b). The same pattern emerged

when assessing the percentages of participants best fitted by each
model: 41.7% vs 58.3% in 60/40; 43.2% vs. 56.8% in 75/25 and 37.8% vs
62.2% in 90/10 (1-state vs. n-state respectively). This suggests increased
reliance on state inference in environments with larger switches in
probabilities.

There was also considerable within-participant consistency of
winning model across sessions. Namely, 38% participants (chance
level: 11%) were fitted by the same model in all three sessions. Further
32% of participants relied on gradual leaning in 60/40 but switched to
state inference strategy in 90/10. For a full breakdown of within-
participant strategy by session see Supp. Mat.

Improved model fit should also be reflected in behavioral sig-
natures of state switching. In line with this assumption, data of parti-
cipants better fit by the 1-state than the n-state model exhibited more
gradual learning, while steeper post-reversal learning was found in
participants with better relative fits of the n-state model (Fig. 6a, see
also Supp. Fig. 11). To quantify this impression, we assessed twomajor
markers of state inference: post-reversal slope and learning from
oddball events. First, we correlated the differences inmodel fit against
the fitted slopes from participants’ shock ratings. This revealed a sig-
nificant positive association across all three sessions, r(87) = 0.36,
p <0.001, indicating that improved fit of the n-state model related to
the steepness of estimated switches. Second, we analyzed the relative
model fit in relation to learning from oddball events. Participants who
were fitted better by the n-state learned more from outcomes occur-
ring after reversal compared to oddballs ðαmeaningf ul�oddball =0:059Þ
while participants fitted better by the 1-state model had a smaller dif-
ference in learning rates (αmeaningf ul�oddball =0:021), t(69) = −2.11,
p =0.039, η2

p = 0.06 [0.00, 0.20]. In a continuous analysis, the relative
model fir correlatedwith reduced learning fromoddballs compared to
meaningful trials, r(87) = 0.23, CI = [0.01, 0.43], p = 0.031. Additionally,
both behavioral markers of state inference (slope and meaningful-
oddball learning rates) were tested using out-of-sample fits (fits from
first half were related to behavioral data from second half). In both
cases, the relationships remained significant. See Supp.Mat for details.

We next examined the relationship between trait anxiety (TA) and
state inference by constructing a LMMwith model fit difference as the
dependent variable and TA and session as fixed effects. This model
identified a significant interaction between TA and session,
F(2,105) = 5.20, p =0.007, η2

p = 0.09 [0.01, 0.20]. Post-hoc analyses
revealed that this was driven by a positive association between TA and
fit improvement in the 90/10 session, F(1,153) = 9.61, p =0.002

Fig. 5 | Learning difference for meaningful and oddball events in trait anxiety
and relative model fit. a Trait anxiety was positively associated with relative
learning from oddballs, r(87) = 0.23, p =0.033, CI = [0.04, 0.41] across all sessions
(N = 89). b Relative model fit was positively associated with relative learning from
oddballs, r(87) = 0.23, CI = [0.01, 0.43], p =0.031 across all sessions (N = 89). Both
tests were performed using Spearman’s correlation with bootstrapped confidence
intervals. Statistical tests were performed on log-transformed learning rates.

Fig. 4 | Estimated slopes. Slope of change of reported ratings on trials 1–10 fol-
lowing contingency reversal separately for each session and anxiety level. Anxiety
was split by median for visualization purposes, but the statistical tests and corre-
sponding asterisks reflect continuous relationships. Positive values indicate an
increase in shock probability ratings while negative values indicate a decrease. The
slope variable is shown using the original values, however, statistical tests were
performed on absolute values. Slope was steeper in 90/10 compared to 60/40,
t60<90 = −9.84, p <0.001, η2

p = 0.15 [0.10, 0.21], and 75/25, t75<90 = −7.19, p <0.001,

η2
p = 0.38 [0.22, 0.51]. Trait anxietywaspositively associatedwith slope in the 90/10

condition, F(1,233) = 13.39, p <0.001, η2
p = 0.05 [0.01, 12] (across L-H and H-L),

Assessed by LMM, tests two-sided, post-hoc p-values Tukey corrected. Asterisks
indicate significant post-hoc tests. The three conditions include N = 36, N = 88 and
N = 37 individuals. Box covers interquartile range (IQR), mid-line reflects median,
whiskers the +/−1.5 IQR range. Angled rectangles represent predictions of the fitted
LMM model.
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η2
p = 0.06 [0.01, 0.14] (see Fig. 6c). Therewas no significant association

in the 60/40 or 75/25 sessions. Betas for the TA effect by condition
were 0.04, −0.07 and 0.92 (60/40, 75/25 and 90/10). The association
was significantly stronger in the 90/10 session compared to both 60/
40, t(78) = −2.64, p =0.027 η2

p = 0.08 [0.00, 0.21] and 75/25,
t(111) = −2.96, p =0.011 η2

p = 0.07 [0.01, 0.18]. This result was con-
firmed by a permutation-tested correlation between TA and model fit
improvement which was significant in the 90/10 session, r(36) = 0.39,
p =0.023 (two-tailed, corrected for multiple comparisons). These
results suggest that individuals high in trait anxiety tend to rely more
on state inference.

To better understand the fitted n-state model, we explored its
behavior and fitted parameters in more detail. We analyzed the inter-
nal number of states, model-estimated switchpoint, estimated uncer-
tainty, step size parameters (τ+ = τ�), the threshold parameter (η), the
decay parameter (λ) and the starting values of α and β. These analyses
found a significant effect only in the fitted step sizes for the positive
and negative outcomes τ+ and τ�. A LMM with parameter type (τ+ =

τ�), TA and session as fixed effects found a significant main effect of
parameter type, F(1,228) = 37.03, p <0.001, η2

p = 0.14 [0.07, 0.22],
which reflected that shocks elicited larger updates than no-shocks
τ+ = 1.13 vs. τ� = 0.73). Therewasnomain effectof TA, or interactionof
outcome type (shock/no-shock) and trait anxiety. Note that the same
two parameters of the 1-state model, had a similar difference τ+ = 1.17
vs.τ� =0.86), suggesting that differential learning from shock and no-
shock events alone was unable to explain our behavioral effects of TA
(see Supp. Mat. for full analyses of model parameters).

Discussion
We investigated how outcome uncertainty and trait anxiety influence
the tendency to infer and use hidden contexts in aversive probabilistic
environments. We collected trial-by-trial shock probability ratings
while the true latent contingencies changed between phases of high
and low probability of receiving a shock. Our results show that trait
anxiety was associated with behavioral markers of state inference and
improvedfits of then-statemodel. In particular, participants high in TA
showed faster changes in probability ratings after a reversal and less
learning from oddball events. Both of these markers related to TA as
well as preferential fit of the n-state model, providing a link between
behavior and model fits that both suggest tendency towards state
inference in high TA. Hence, we present evidence for a link between
high trait anxiety and the tendency to infer hidden states, and to switch
between them. Both TA and state inference have been independently

linked to the fear relapse. Trait anxiety is known to be associated with
higher rates of fear relapse11,12 While representing environments as
multiple states leads to higher rates of spontaneous recovery32. Our
findings suggest that trait anxiety, as a time-invariant disposition40,
facilitates the parcellation of observations into different states that are
characterized by different cue-outcome contingencies. In the clinical
literature, the assumption of several independent states has been
discussed in relation to prevention of updating of existing cue-
outcome associations (i.e., overwriting previous memories) and
thereby to hinderance of effective fear extinction1. Instead of revising
the current situation, the individual assumes an additional new state
that reflects the altered contingencies. Given the links between orbi-
tofrontal cortex (OFC) the representation of task states16,18,41 and
anxiety42, our finding also motivates future investigation into the role
of anxiety in task-state representations in the OFC.

We note that the two learningmechanisms (state inference versus
gradual learning) are not mutually exclusive, but might rather reflect
different degrees of state-dependent learning (as in ref. 32).Our results
indicate that the propensity for state-dependent learning might
depend on the amount of outcome uncertainty in the environment,
since better fits of the n-state model were observed in sessions with
more distinct high- and low-probability states (90% and 10%), as
compared to sessions with less distinct states.

The results corroborate previous theoretical predictions. In par-
ticular, parcellation into separate states (or contexts) was proposed to
be associated with anxiety disorders and account for relapse
phenomena21,32,33. Here, it is assumed that extinction involves learning
that is separate and more complex from acquisition. The memory for
acquisition needs to be inhibited during extinction while a new asso-
ciation needs to be learned21. In our behavioral results, the effects of
anxiety were driven by more accurate probability estimates in the
stable-low cue and the low-state of the reversal cue, which both cor-
respond to conditions of relative safety. This alignswith someprevious
reports. For example, in a gamified aversive learning paradigm37

reported a positive association between safety learning and state
anxiety. Similarly, another study found that under a condition of
higher cognitive load fear extinction (indexed by SCRs) was more
successful in the high TA group43. Interestingly, high anxiety (i.e., fac-
tor loading high on trait anxiety) was associated with increased
engagement of cognitive control in a go/no-go paradigm44, suggesting
that non-clinical TA might be associated with better use of cognitive
resources. The broader literature on the relationship between trait
anxiety and fear yields mixed results. While some studies report

Fig. 6 | Modelling results. a Mean shock probability ratings separately for N = 89
participants better fitted by 1-state (purple) and n-state (green) models. The thick
line denotes mean of each group, the shading reflects the standard error of the
mean, b Mean BIC scores for the two models. BIC scores were demeaned to make
sessions visually comparable. The conditions containN = 36,N = 88 andN = 37 data

points respectively. c Positive association between relative model fit and trait
anxiety in the 90/10 session, r(36) = 0.39, CI = [0.07, 0.63], p =0.017 (p =0.023 for
cross-validated correlation). The plot shows the result for N = 37 participants ana-
lyzed using Pearson’s correlation, two-tailed, p-value Bonferroni-corrected for
multiple comparisons.
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increased discrimination of CS+ and CS-35 and comparable fear inhi-
bitionduringextinction in high vs. lowTA individuals45,46, others report
deficits in inhibitory processing6,47,48 and safety learning14,49. Taken
together, subclinical levels of anxiety might be beneficial to aversive
learning only under certain conditions, similarly to how it is sometimes
beneficial in cognitive test performance50. This would be in line with
the evolutionary conceptualization of anxiety as a state of increased
vigilance todetect and avoid threats51. This diversity offindings has not
been reconciled, however, a possible explanation in terms of metho-
dological differences (e.g., modality, aversiveness, outcome uncer-
tainty) has been suggested46. Additionally, previous work has
identified lower TA in studies involvingMRI52. Therefore, the sample of
study 1 (fMRI study) might not be fully representative in terms of trait
anxiety. However, the mean TA level was lowest in the drug study
(Study 1: 40.3; Study 2: 37.3; Study 3: 41.4) which also showed the
weakest behavioral effect as reported in Supp. Mat.

An above-chance proportion of participants (34%) switched from
using gradual strategy in 60/40 to using state inference in 90/10. The
optimal strategy for a given environment might depend on the tra-
deoff between cognitive effort and accuracy in prediction. Separating
the environment into latent states arguably comes at higher cognitive
cost which might only be justified in environments with low outcome
uncertainty. Trying to infer states in noisy environments can require
substantial cognitive load (e.g., integration over longer periods of
time) and it might not yield much benefit (i.e., predictive accuracy). A
major question that remains to be answered is why do high TA indi-
viduals rely on state inference mostly in the 90/10 session. One pos-
sibilitymight be thatwhile the uncertainty in the noisy environments is
too high and learning meaningful changes from stochastic events
poses high cognitive demands, in 90/10, learning the structure of the
environment can meaningfully result in reduction of internal uncer-
tainty. An interesting future direction would be to investigate whether
clinically anxious individuals continue to (perhaps sub-optimally) try
and find structures in noisy environments, i.e., whether they tend to
erroneously find too many latent causes, or whether they are instead
driven by the adversity of high uncertainty itself and lump all experi-
ences under a single latent cause (as in ref. 33).

How and whether states are inferred depends on uncertainty. In
our data, state inference was most favored in environments where
objective changes in shock contingencies were largest (90/10), i.e.,
when outcome uncertainty was low. However, in changing environ-
ments, inferring whether the objective probability has changed also
depends on higher order uncertainty such as volatility53 which has
been previously associated with anxiety and depression9,54. When
receiving a surprising outcome, one must consider both outcome
uncertainty and volatility to determine whether it reflects change in
state or anoddball event10,55. Interestingly, high TAhaspreviously been
associated with the inability to adjust learning to environmental vola-
tility, as reflected in a high learning rate despite stable contingencies9.
Our results show that high TA adjust their expectations faster. This
might seem at odds with9, however, it is important to consider meth-
odological differences, such as using instrumental, rather than Pavlo-
vian, learning to manipulate between-session, rather than within-
session, volatility. Additionally, a recent study demonstrated howmis-
estimation of outcomeuncertainty (stochasticity) rather thanvolatility
can drive learning and cause fast, jump-like learning from rare events
due to misestimation of stochasticity10. To test whether such mis-
estimation could explain our findings (as opposed to state inference),
we compared learning rates during the period just after a reversal
(meaningful learning) with learning rates in relatively stable periods,
where unexpected outcome did not signal a reversal but rather an
exception that was to be ignored (oddball learning), see Fig. 5. We
argue that a bigger difference in learning rates for meaningful and
oddball events reflects state awareness, that is, ignoringoddball events
suggests knowledge of a higher-order structure. In our behavioral

results high TA individuals indeed showed decreased learning from
oddballs. It should be noted, however, that a modulation of learning
can in principle have many different sources56–58, and differential
treatment of oddball versus reversal events can also be accounted for
in other implementations of state inference59.

As mentioned above, our results diverge from previous findings
that reported lack of fear inhibition during extinction45 and deficits in
safety learning49 in high trait anxiety. A number of methodological
differences compared to our study could account for these differ-
ences. Our study aimed to investigate a temporally extended learning
process, which contrasts with the fear extinction paradigm used in the
above-named studies. In particular, we used a task in which both
acquisition (phase of high shock probability) and extinction (phase of
low shock probability) are probabilistic. Notably, in the low phase,
probabilities ranged between 10% and 40% whereas in other studies,
this range was used during acquisition, i.e. the high-threat state60,61.
Our choice was in part motivated by the importance of keeping the
degree of outcome uncertainty identical in both phases within each
session. As recently pointed out, uncertainty is a confound in studies
where acquisition is probabilistic (e.g., 50% shock) but extinction is
deterministic (0%)62 (see also Discussion in ref. 46). Another important
factor is that in our design, phases of high and low shock probability
occur repeatedly as each participant experienced at least six con-
tingency switches. This decision was again motivated by real-world
conditions where aversive stimuli often reoccur (e.g., periods of back
pain, exam stress). Our focus was to understand how individuals with
varying degrees of trait anxiety intrinsically learn and represent the
structure of an aversive environment which sets the study apart from
classical studies on acquisition and extinction. However, future
research should systematically investigate the role of trait anxiety
under different relative conditions of threat in a manner similar to63,
including the difference in probabilistic versus deterministic
environments.

One question that remains to be answered is whether the ratings-
based results reported here would be followed by physiological mea-
sures. Physiological markers could mirror expectancy ratings and
thereby reflect the individual’s cognitivemodel of the environment64,65

or they could reflect deliberate cognitive processes whereas the phy-
siological fear response might diverge (as in refs. 45,66,67). For
example, one study reported change in physiological responses fol-
lowing a reversal without contingency awareness68. In our case, high
TA participantsmight be aware of relative safety (i.e., be in a subjective
low state) but not be able to inhibit fear response. In support of this
idea, a recent study looked at the relationship between SCR-indexed
spontaneous recovery and state inference. In one of their analyses,
they report that trait anxiety was not associated with SCR-indexed
inference of multiple states32.

A noteworthy aspect of our work is the model that captures state
inference and updating. It combines single-state updating models
under a beta distribution37–39 with state inference models proposed
previously22,69,70. The key feature of the model is that it can translate
binary outcomes into probabilistic states, quantifying the current
expectation and its uncertainty in the process (see Methods). We
showed that the n-state model was able to estimate the appropriate
number of states and that model-estimated switches occurred in the
same period as in the behavioral data (see Supp. Mat.). Most impor-
tantly, there was a clear behavioral distinction between participants
better fitted by the 1- versus n-state models (see Fig. 6a and
Supp. Fig. 11).

Despite the model performing well for our purpose, it might
require adjustments in other paradigms depending on the task and
data. For example, in our version the mechanisms by which the model
switches between states as opposed to creating new states are code-
pendent and only differ in the difficulty parameter (i.e., more surprise
is needed to create a new state with increasing number of states).
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Future implementations of this model could include entirely separate
thresholds for state switching versus state inference, for instance to
study whether some groups tend to create too many states but never
switch to a existing state.

Taken together, our results suggest that more trait anxious indi-
viduals have a tendency to represent aversive environments involving
high and low threat contexts as distinct states and to incorporate this
knowledge into their predictions. We suggest that this parcellation of
the environment into states may explain previously observed fear
relapse phenomena associatedwith trait anxiety and in turn contribute
to treatment of anxiety disorders71.

Methods
The three studies included in this work comply with and were
approved by the Central University Research Ethics Committee
(CUREC) of Oxford University (R44738/RE001, R29583/RE004,
R52892/RE001). All participants provided informed consent. We pre-
sented a pooled analysis of three studies that used a probabilistic
aversive learning task (see Task). Experiment I is an fMRI experiment
consisting of a short screening session and a main session 1–3 days
later. Only data from the main session were included in this analysis.
Experiment II is a three-visits (visit 1: baseline, visit 2: drug adminis-
tration; visit 3: follow-up) drug study investigating the role of the
angiotensin-II inhibitor drug losartan in aversive learning. Only the
placebogroup from the second visitwas included in this analysis as the
task on visits 1 and 3 was shorter. This ensures that participants in all
three studies had the most similar experience. For a detailed overview
of the three studies see Supplementary Table I.

Data were collected in the 3 Tesla MRI scanner of the Wellcome
Centre for Integrative Neuroimaging (Experiment I), in behavioral
testing laboratories of the Nuffield Department of Clinical Neu-
rosciences (Experiment III) (John Radcliffe Hospital, Oxford) and the
Departmentof Psychiatry,WarnefordHospital (Experiment II),Oxford.
The factor experiment was included as a random effect in all main
analyses.

Power analysis
Following the identification of behavioral effect in Experiment I we
designed Experiment III using the appropriate power calculations. Our
main effect of interest was the correlation between trait anxiety and
the difference in BIC scores for the two models. To detect a 0.5 effect
size at 0.8 power at least within one of the three sessions (two tailed,
Bonferroni corrected alpha = 0.0167) the sample of 38 participants is
required. We therefore collected slightly more participants (40) in the
study to meet that target.

Participants
Eighty-nine participants (47 female, mean age: 25.5 years) were inclu-
ded in the data set (Experiment I: N = 30, 16 female, mean age = 25.5;
Experiment II: N = 22, 10 female, mean age = 24.6; Experiment I:N = 37,
21 female, mean age = 25.7). Gender of participants was based on self-
report. It was not considered as a factor in the analyses becausewe did
not have a specific hypothesis and because it was not related to trait
anxiety levels. Participants for all three studies were recruited using
local advertisement and the SONA recruitment systemmanagedby the
Department of Experimental Psychology, University of Oxford. Inclu-
sion criteria varied slightly between studies (due toMRI data collection
in Experiment I and drug administration in Experiment II). A compre-
hensive list of criteria can be found in the Supplementary Materials
(section Inclusion and exclusion criteria). All studies included right-
handed healthy adults aged between 18 and 40 years without a history
of psychiatric illness and not taking any psychoactive medication
(including recreational drugs) at least 3 months prior to the experi-
mental session. In line with recent recommendations for exclusion
criteria in aversive learning studies72, data of all participants, including

non-learners, were included in the analyses. Participants were reim-
bursed 40 GBP in Experiment I (two visits, the second visit was a 2 h
MRI scanning session), 60 GBP in Experiment II (three visits lasting 0.5,
3–3.5 and 0.5 h) and 25 GBP in Experiment III (single visit lasting 1.5 h).

In total, 116 participants took part in the three studies. Four par-
ticipants were excluded due to missing behavioral data (presentation
computer or shock administration stopped working properly), two
because of missing anxiety scores (both participants had to leave the
lab before completing the questionnaire) and one for mis-
understanding the task. Twenty-two participants who received the
drug in Experiment II were not included because questionnaire and
physiological measures necessary to control for the effect of the drug
were not available in the other two studies. In two participants, data of
oneof three sessionswasmissingdue to script or stimulation failure. In
this case, we included data of the remaining sessions in the analyses.
Note, however, that therefore the degrees of freedom vary between
sessions. The final number of participants included in the analyses was
89 (87 without any missing sessions).

Aversive stimuli
Electrical stimuli were applied using a commercial electric stimulation
device (Constant Current Stimulator, model DS7A; Digitimer, Hert-
fordshire, UK), delivering a 2msmonopolar squarewaveformpulse via
a concentric silver chloride electrode attached to the back of the
left hand.

The stimuli were calibrated individually at the beginning of the
task and during any pauses (Experiment I – every 13 to 18min;
Experiment II – every 12 to 15min; Experiment III – just once at the
beginningof each session–every 20 to25min). The target intensitywas
8 on a scale ranging from0 (not painful) to 10 (too painful to take part)
scale. The 8/10 pain level was defined as a sensation that is painful but
tolerable for a given number of trials (study-specific number corre-
sponding to 50% of trials). Three qualitative anchor points were
defined to help standardize the calibration across participants and
studies: 1/10 which was defined as the intensity at which the sensation
starts to be moderately painful (pain threshold); 8/10 is a sensation
that is clearly painful but tolerable; and 10/10 whichwould be the level
of painwhich is too strong tobe tolerated. The calibration followed the
Methodof Limits73 . The stimulus intensity started at the pre-calibrated
1/10 level and changed after each rating in an increasing trend (indi-
vidual stimuli could however get stronger or weaker). Upon each sti-
mulus delivery, participants were asked to report how painful the
sensation was on a rating scale ranging from 1 to 10. When a rating was
higher than 8, the next stimulus was always lower. The calibration
terminated once three out of the last five stimuli were rated as exactly
8. To ensure that the intensity remains at a subjective 8/10 level, reg-
ular re-calibrations took place.

Task
The goal of the study was to investigate how participants learn to
predict the probability of an aversive event and how they update their
expectations on a trial-to-trial basis. To this end, we used a Pavlovian
probabilistic learning task in which participants learned to associate
three visual cues (abstract fractals, selected randomly for each parti-
cipant fromapool of 20possible fractals)with thedelivery or omission
of a painful electrical stimulus (shock). On each trial, participants were
presented with one of the cues which could be followed by the elec-
trical stimulation and asked to submit an expectancy rating.
Throughout the experiment, one of the cues was followed by a shock
on a high proportion of trials (60% to 90%) while no stimulus was
applied in the remaining trials (stable high-prob cue). For the second
cue, contingencies were reversed, i.e., the electrical stimulus was
applied in a lowproportion (10% to 40%) of trials (stable low-prob cue).
For the third cue, shock contingency switched between the low and
high probability in semi-regular intervals, mean 15.3 trials. Since our
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primary analysis goal was to study how people learn about changes in
contingencies, we designed the task in a way that the reversal cue
appearedmore often than the stable cues in all three studies (see Supp.
Table I).

Standard trial structure. Each trial started with the presentation of a
fixation cross (inter-trial-interval, ITI; Experiment I: 3–5 s; Experiment
II: 2 s; Experiment III: 1–2 s). Next, the cue for this trial was presented
and the participant had4 s to submit a response. The fractal was shown
in the middle of the screen while the slider used to provide the rating
was positioned below. Using the left and right arrow keys (MRI button
box in Experiment I), participants couldmove the slider on a scale from
0% to 100% (in increments of 1%). Once the desired position was
reached, they could confirm and submit their rating by pressing the
down arrow key (middle button on the MRI button box). Participants
had up to 4 s to submit the rating. If ratingwas not submitted on time a
warningmessage appeared and the trial was restarted. Once the rating
had been submitted, the slider changed color to green. After an inter-
stimulus interval (ISI; Experiment I: 2– 4 s; Experiment II: 1 s; Experi-
ment III: 1–2 s) the outcome was delivered (i.e., shock delivery or
omission). The outcome was accompanied by a change in the color of
the slider to blue (to make timing of outcome equally clear to parti-
cipants for both shock and no-shock trials) in Experiment III (in
Experiments I and II the slider did not change color). The cue remained
on the screen for additional 2 s (Experiment III: 1.5 s) and disappeared
with the onset of the next ITI. See Fig. 1. Three fractals out of a pool of
twenty were assigned randomly to the three cue conditions (stable-
low, stable-high, reversal). The background color was gray (rgb = [0.71,
071, 0.71]) and this stimulus occupied 9 degrees of visual angle. The
rating scale was shown just below the fractal. Only the two ends of the
0% to 100% expectancy rating scale were labeled by ticks. The slider
was initiated at a random position on each trial.

Bonus trials. In Experiments I and II, participants were occasionally
presented with two of the cues and asked to select the one with either
lower or higher probability of shock. Unbeknown to the participants,
therewas always one cue with currently low (i.e., stable-low or reversal
in low-prob phase) and one with high (i.e., stable-high or reversal in
high-prob phase) probability. In Experiment III, on a similarly small
proportion of trials, participants could wager an amount between £0
and £5 to avoid a single shock on the next trial. Both tasks were
introduced to keep participants engaged and to obtain an additional
measure of value. Due to the different nature of the ratings, analysis of
this data was not included in the present work.

Task structure. The task was characterized by changes in the con-
tingency of the reversal cue (switches) which occurred in irregular
intervals (see Supp. Table I).Weuse the termphase to refer to a section
of the task during which the shock probability of the reversal cue was
constant. Each participant experienced between 5 to 9 switches which
results in 6 to 10 phases per participant. Phases where the probability
of the reversal cue was low are referred to as low-prob phase while
phases with high probability are called high-prob phase. The number
of trials and the dispersion of the switch point was slightly different in
the three studies: Experiment I (M = 30, +/−2 trials), Experiment II
(M = 30, +/−5 trials), Experiment III (M = 35, +/−10 trials). The mean
refers to the total number of trials across all three cues. Theproportion
of stable-low, stable-high and reversal trials was as follows: Experiment
I: 30%-30%-40%; Experiment II: 25%−25%−50%; Experiment III: 20%
−20%−60%. This means that for example in Experiment III it was on
average 0.6 × 35 = 21 reversal trials/phase, although with higher varia-
bility (minimum 15 trials). Individual trials were presented in pseu-
dorandomized orders. The schedules were generated as follows. First,
the number of trials for a given phase was determined (by phase we
mean the period during which the reversal cue did not switch). Next, it

was ensured that the contingency of each of the cues was within +/−5%
of the target. This means that if there were for example 40 trials in
total, out of which 10 were stable-low, 10were stable-high and 20were
the reversal cue, the target objective probabilities were 25%, 75% and
75% (assuming the 75/25 session and the reversal cue being in the high-
phase) it was ensured that the objective shock rates delivered for each
cue were within +/−5% of these contingencies, e.g., for the reversal cue
there were between 14 (70%) and 16 (80%) shock trials within this mini
block. Additionally, it was ensured that within each phase a given cue
was not presented on more than three subsequent trials. For the
reversal cue, on the first five trials after reversal, at least three out-
comes were in the new direction (if switch from high-to-low phase just
happened, at least threeout of thefirstfive trials endedwith no-shock).
Furthermore, once eachmini-block passed the above criteria, themini-
blocks were assembled into a schedule. There was a slight difference
between studies. While in studies I and II a change in phase occurred
with 75% probability (i.e. sometimes it didn’t happen), in Experiment III
switch always happened. Lastly, a second +/−5% contingency check
was performed, this time across the entire trial schedule separately for
each cue.

Instructions
Tominimize any influence of the experimenter, the information about
the task was presented in writing. Only if the participant required
further explanation, instructions were clarified verbally according to
protocolled answers. Participants were presented with minimal infor-
mation regarding the number of cues, task duration, cue frequency
and switches. They were told that each cue is associated with a certain
probability of receiving a painful stimulus and to pay attention to all
three cues as any of them may or may not change their probability
signaling the painful stimulation at any point. Participants were also
explicitly told that their ratings do not impact the outcomes. For
details on the instructions see Supplementary Materials (Instructions
section).

Questionnaires
Trait anxiety was assessed using the STAI-TRAIT36. Additional study-
specific personality measures were collected (e.g., pain-related fears
and attitudes in Experiment I). For the complete list of questionnaires
see SupplementaryMaterials, sectionQuestionnaires. In Experiments I
and III, questionnaires were completed using a computerized interface
based on the LimeSurvey software. In Experiment II, pen & paper
versions of the questionnaires were used.

Data analyses
Data were analyzed using custom MATLAB74 and R 3.6.3. scripts (for a
complete list of packages and versions see associated repository).
Stimuli were presented using MATLAB 2016a and Psychtoolbox 375.
Questionnaire responses were collected using LimeSurvey.

Statistical and visualization approach. Statistical analyses were per-
formed using Linear Mixed Models (LMMs, as implemented in lmer
1.1–25 Rpackage76 with study andparticipant included as aneffectwith
a random intercept. For each analysis we included fixed effect of
interest also as a random slope, and we performed a model compar-
ison between the two version. Adding random slope didn’t result in
improved model fit in any of the analyses, so we didn’t include them.
Following ANOVA analysis of LMM results, post-hoc tests are reported
using corrected p-value (Tukey). Reported effect sizes use the partial
eta squared metric with the corresponding 95% confidence intervals.
Where variables were continuous (e.g., trait anxiety) they were inclu-
ded as such in the statisticalmodels. All tests were two-sided at alpha =
0.05. To visualize data, we include raw data, summary statistics (mean
or median), information about variance (standard error or inter-
quartile range) and density (raincloud plots77. In time-series plots (e.g.,
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Fig. 3a) we plot mean per condition and SEM (standard error of the
mean). All analyses were tested for homogeneity of variance (KS-test)
and visually inspected for normality of residuals (histogram). One
model violated assumptions, the LMM testing for effect of oddball/
meaningful trial typeonmodel-free learning rates.We log-transformed
the learning rates (the analysis thatwe actually report)which improved
the homogeneity of variance but it didn’t remove its violation entirely.
We also replicated the result using beta regression. Both approaches
resulted in the same set of results. Additionally,wenote the robustness
of LMM models to moderate violations in distributional assumptions,
specifically heteroscedasticity78.

Computational modeling. All models were fitted to the trial-by-trial
shock expectancydata using BayesianAdaptiveDirect Search (BADS)79

by minimizing the negative log likelihood of the data given a model.
Our 1- and n-state models naturally use beta likelihood. To assess
model fit across all trials, BIC80 scores were calculated. To prevent
convergence to local extremes,fittingwasperformed45 times for each
participant and cue, ensuring that computational resources were
identical across all models.

Measures
Behavioral measures. All main analyses including model fitting are
based on shock probability ratings (0% to 100%) provided by the
participant on each trial. Additionally, each study contained either cue
preference ratings or a shock wagering task to provide additional
measure of shock expectancy. However, because the measures varied
across studies, they are not included. Lastly, at the end of the task we
collected visual and general liking ratings for each of the images used
in the task. Participants were presented with the three fractals and
asked to rate their visual appeal and general liking’ on a scale
from 1 to 10.

Slope after reversal. To calculate the average speed of updating after
reversal, we fitted the shock probability ratings data on trials 1 to 10
(period of change) using a linear mixed effect model with estimated
slope for each participant, session, half (early/late) and switch type
(high-to-low, low-to-high). Due to convergence issues, suchmodel was
fitted separately for each session, half and switch type. The estimates
slopes for each participant/session were then extracted from the
models and analyzed separately using another LMM.

Error from true reinforcement. To evaluate how much the individual
learning time courses deviated from the delivered rates of shock, we
calculated the runningmean reinforcement rate (mean over shocks = 1
and noshock = 0 outcomes) for each state condition separately. This
measure serves as an estimate of the true shock probability under the
assumption that the agent knows which state they are in. To obtain a
directional measure of error, the true reinforcement rate was sub-
tracted from the expectancy ratings.

Model-free learning rates in meaningful and oddball” trials. To
obtain trial-wise learning rates, we rearranged the Rescorla-Wagner
(Eq. 1) learning rule and calculated the trial-specific learning rate α
(Eq. 2), where P stands for probability ratings, O for outcomes (shock/
no-shock) and t for a given trial.

Pt + 1 = Pt +αt Oi,t � Pt

� � ð1Þ

αt =
Pt + 1 � Pt

Ot � Pt
ð2Þ

where 0≤αt ≤ 1
In somecases, such calculated learning rates becamenegative, for

example, when the participant received a shock, but they lowered their

expectation. In this instance, ratings were excluded from the analysis
(assigned NaN values).

To distinguish between learning immediately after reversal, when
learning rates should be relatively higher (meaningful learning), and
later in stable periods of each state, when learning from surprising
events should be relatively slower (oddball learning), we split model
free learning rates at fifth trial after reversal. For example, if shock
occurred in the first five trials after low-to-high switch then it was
consideredmeaningful to learn from,while if it occurred afterfifth trial
of high-to-low switch it was considered an oddball.

To check that our specific choice of post-reversal cutoff trial (ct =
5) did not drive the results, we calculated oddball/meaningful learning
rates for three additional cutoff values: 7, 10 and 13.We next tested the
impact of the cutoff threshold on the estimated meaningful/cutoff
values using a LMM. We found no significant impact of the cutoff, all
ps > 0.9. We also present the result in Supp. Fig. 3.

Computational models
Our primary goal was to provide a set of two models which used the
same updating mechanisms and distributional assumptions (beta dis-
tribution), and that differed only in the ability to infer states. Tomodel
gradual learning and switching, we used a framework based on the
beta distribution, similarly to previous studies37,38. Our goal was to
model the current shock probability estimate (ranging between 0 and
1) based on the received binary outcomes using the beta distribution.
This approach is well-suited to model probabilities because beta dis-
tribution is boundedby0and 1. Additionally, it implicitlyquantifies the
amount of uncertainty about the current state. Lastly, this probability
distribution naturally arises from binary outcomes. This provides a
logical link between the outcomes delivered in the task (shock/no-
shock) and the data reported by participants (probability estimates)
but stands in contrast to more commonly used Normal distribution,
which offers no straightforward mapping between binary outcomes
and probability density.

1-statemodel. Each state was characterized by a beta distributionwith
parameters and α and β (Eq. 3).

BetaPDF α,βð Þ= xα�1 1� xð Þβ�1

Γ αð ÞΓ βð Þ
Γ α+βð Þ

ð3Þ

Given this distribution, we assumed that the reported subjective
probability of a shock reflected the mode (Eq. 4a) of the probability
density function provided above, while state uncertainty was defined
as standard deviation of the same distribution (Eq. 4b).

P̂ =
α� 1

α+β� 2
ð4aÞ

σ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αβ

α+βð Þ2 α+β+ 1ð Þ

s
ð4bÞ

Parametersα and β can be thought of as proportional to the
number of shocks and no-shocks received up until this point. As the
sum of α and β increases, the variance (and therefore state uncer-
tainty) of the distribution decreases. In other words, the more evi-
dence is available to the model, the more certain it is about its
probability estimate. The starting values of α and β are estimated as
free parameters (α0,β0, both 2 1,10½ �, values smaller than 1 were not
included because in this case the distributions become bimodal, and
Eq. 4b). On each trial, the two parameters are updated by the amount
equal to shock and no-shock attention weights τ+ or τ�(both 2 0,2½ �)
depending on whether the shock was received (+) or omitted (−).
Specifically, if the cue was followed by a shock, then α is updated by
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the amount of τ+ and if no-shock occurred then β is updated by τ�.
Additionally, on each trial both α and β are subject to decay λ 2 ð0,1Þ
(estimated in log space) which results in an increase in state uncer-
tainty. This is the conceptual equivalent to forgetting. Lastly, the
uncertainty of a given state is kept within realistic boundaries so that
the sum of α and β does not exceed 30. This is done to ensure
numerical stability. See Eqs. 5–10.

If outcome is shock (Ot = 1):

α t + 1,sð Þ = λ α t,sð Þ + τ
+

� �
ð5Þ

β t + 1,sð Þ = λβ t,sð Þ ð6Þ
If outcome is not a shock (Ot =0)

β t + 1,sð Þ = λ β t,sð Þ + τ
�

� �
ð7Þ

α t + 1,sð Þ = λα t,sð Þ ð8Þ
Both parameters of all non-active states decay

α t + 1,s0ð Þ = λα t,s0ð Þ ð9Þ

β t + 1,s0ð Þ = λβ t,s0ð Þ ð10Þ
The 1-state model can behave very similarly to the more com-

monly used associative learning models such as the Pearce-Hall
model81,82, see Supp. Mat. For a comparison.

Beta state inference model (n-state). The 1-state model described
above assumes a single state. However, alternatively we can let the
model infer states from the data and allow for the possibility of
switching between them. Specifically, our goal was for such switching
model (a) to infer state switches from binary outcomes without any
context cues, (b) to infer a state switch at a rate similar to humans,
ideally in less than 10 trials and (c) to have a tendency to only create a
handful of states to allow for meaningful generalization. The last
aspect reflects the fact that every additional state (e.g., fear memory)
must bemaintained in parallel, but it also needs to be distinct from the
already existing states. We note that a number of state switching
models have been proposed previously69,70,83,84 but none of these
meets the goals set above.

As in the 1-state model, each state is characterized by a beta dis-
tribution that is updated as described above. In addition to updating
each state, the model keeps track of the running average of surprise, S
(see Eq. 11).

S t,sð Þ = 1� πð ÞS t�1,sð Þ +π∣Ot � cPt,s∣ ð11Þ

Weighing current and past surprise using π (Eq. 11) keeps the
surprise values between 0 and 1. This, in turn, ensures that the key
parameter η is within a range that is easily interpretable.

In order to distinguish between inferring new states and state
switching (it might be optimal to infer just two states but to switch
between them multiple times, i.e., every time the contingencies
change) the model uses two decision thresholds to guide behavior.
The basic threshold is defined by the uncertainty of the current state σ
times the threshold parameter η. Exceeding this threshold triggers a
polling mechanism during which all existing states are compared
against an expected value which is simply the mode P̂ of the current
state +/− the current running surprise S. Following this procedure, the
most likely next state is switched to, or the current state is kept active.
If the surprise S exceeds the compound threshold (Eq. 13), the model
first checks for any existing states in the range around the expected

value ( ± σ t,sð Þη). If multiple suitable states exist it chooses the most
likely one and if none exist it creates a new state. The compound
threshold is additionally controlled by the parameter q which repre-
sents the difficulty of creating a new state.

ðbasic thresholdÞ S t,sð Þ >σ t,sð Þη ð12Þ

ðcompound thresholdÞ S t,sð Þ >σ t,sð Þηq ð13Þ
In order to allow new states to be created but to prevent the

model from creating too many states, q follows a Chinese Restaurant
Process distribution with parameters θ =0:25 and α= 1 under which
the creation of each next state becomes progressively more difficult.
CRP probability density distribution was generated using 10000
iterations of Eqs. 14 and 15 and averaging over them.

Chinese Restaurant Process – probability of creating new state

P Snew = S
� �

=
θ + ∣S∣α
t + θ

ð14Þ

Chinese Restaurant Process – probability of choosing existing state

P St = S
� �

=
∣s∣� α
t + θ

ð15Þ

When a new state is being created it is initialized with mean at the
current expected value (P t,sð Þ ± S t,sð Þ) and standard deviation calculated
using Eq. 5b from the estimated parameters α0 and β0 (i.e., all states
will have the same starting uncertainty).

Both models were found to recover well (see the Model recovery
section below for full description), providing support for a unique
identifiability of the state switching strategy.

Models were also fitted to artificial data containing either one or
two reinforcement levels, mimicking the stable and reversal cues from
the actual task and the three contingency levels (Supp. Fig. 15). In
stable environments (columns 1 and 3) the models were able to fit the
data almost exactly. In environmentswith two reinforcement levels the
1-state model updated appropriately following contingency changes.
The n-statemodel on the other handwas able to approximate high and
low state and effectively switch between them.

Model recovery
The 1-state and n-state models were included in a model recovery
procedure. First, we fitted all models to the data of the participants.
Second, we used the mean and standard deviation of the fitted para-
meter values to generate synthetic data. Third, the data generated
using each model were fitted by each of the candidate models. The
fitting procedure was identical to the one used to fit real participant
data (45 runs, separate fit for each cue). Last, model comparison was
performed for each artificial data set using the mean BIC as the
quantitative criterion. A model was considered to recover well if the
winning model matched the model used to generate the data. All
investigated models recovered uniquely (see Supp. Fig. 16).

Data quality and checks
Shock intensity and perception. A linear mixed effects model (LMM)
was estimated to check for the differences in shock intensity between
studies and its relationshipwith trait anxiety. Themean shock intensity
did not differ between studies, F(2,79) = 2.92, n.s. nor was there a sta-
tistically significant interaction with trait anxiety F(2,80.8) = 0.02, n.s.
Kolmogorov-Smirnov tests foundno credible evidence for a difference
in shock intensity values between full dataset and dataset after
exclusions. Lastly, there was credible evidence for an association
between shock intensity and reported probabilities in either low or
high state indicating that probability ratings did not differ due to the
participants general sensitivity to electrical stimuli. We also tested
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whether the perceived shock unpleasantness and pain intensity cor-
related with true shock intensity or trait anxiety. If the calibration
procedure had been successful, the objective shock intensity should
not relate to the subjective ratings. Employing a LMM, we found no
credible evidence for an association between the subjective painful-
ness/unpleasantness and the objective current or trait anxiety.

Trait anxiety. We tested whether anxiety scores differed between the
three studies. While there was no statistically significant difference,
F(2,157) = 1.35, n.s., themedian TA in Experiment II was 35 compared to
42 in 1 and 41 in Experiment III. We therefore decided to include
experiment as a random effect in all linear mixed effect models. On
occasions, anxiety results are shown as median split for convenience.
Where possible, such plots are accompanied by parametric visualiza-
tion. All statistics are performed using a full range of trait anxiety
scores. Kolmogorov-Smirnov tests found no credible evidence for a
difference in anxiety scores between the full data set and the data set
after exclusions.

Cue appeal. Although fractals were randomly allocated to the differ-
ent conditions across participants, there was a possibility that parti-
cipants would rate a specific fractal more favorably due to its visual
appeal. To check whether this was the case, the visual appeal ratings
collected at the endof the taskwere includedasdependent variables in
a LMMwith cue and session as fixed effects. LMM found no significant
effect of cue or contingency on visual appeal of the presented cues.

Initial bias. To test whether the first rating differed from the unbiased
estimate of 0.5 indicating a pre-existing bias in shock expectancy, each
participant’s first rating of the first session was entered into a one-way
t-tests (separately for each experiment). These analyses did not reveal
any significant effect. Since therewas a degree of variability around the
mean we next tested for an association between trait anxiety and the
first rating, but no relationship between the variables was found.

Session order. In Experiment III, the three contingency conditions
(i.e., sessions) were presented in a random order. To verify that our
findings are not a result of an order effect, we used a LMM to test
whether the session order had an influence onmean ratings separately
for the high and low state of the reversal cue. The model found no
significant effect of the order in which the sessions were delivered on
the probability ratings.

Starting contingency of the reversal cue. Next, we assessed whether
ratings later in the task were influenced by the starting contingency
(high vs low) of the reversal cue. To perform this analysis, we removed
the first half of each time course (there would of course be an effect in
the early ratings, here we are checking for any lasting anchoring bias)
and fitted a LMM with state, contingency, experiment and starting
contingency as fixed effects. There was no significant main effect or
interaction of starting contingency. By adding trait anxiety to the
model, we further checked whether there was any interaction with TA
but found no credible evidence for a relationship between starting
contingency on trait anxiety.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral data generated in this study have been deposited to
GitHub and are openly accessible here: https://github.com/ozika/trait-
anxiety-and-state-inference-zika202385. The raw behavioral data have
been anonymized and are stored in a publicly available repository:

https://github.com/ozika/trait-anxiety-and-state-inference-rawdata-
zika202386.

Code availability
The code used to derive statistical results is stored in the associated
GitHub repository together with the data:https://github.com/ozika/
trait-anxiety-and-state-inference-zika202385. The repository includes
instructions to reproduce the results, including dedicated computa-
tional virtual environment in R.
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