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Deep quantum neural networks on a
superconducting processor

Xiaoxuan Pan 1,5, Zhide Lu 1,5, Weiting Wang1, Ziyue Hua1, Yifang Xu1,
Weikang Li 1, Weizhou Cai1, Xuegang Li1, Haiyan Wang1, Yi-Pu Song1,
Chang-Ling Zou 2,3, Dong-Ling Deng 1,3,4 & Luyan Sun 1,3

Deep learning and quantum computing have achieved dramatic progresses in
recent years. The interplay between these two fast-growingfields gives rise to a
new research frontier of quantummachine learning. In this work, we report an
experimental demonstrationof trainingdeepquantumneural networks via the
backpropagation algorithm with a six-qubit programmable superconducting
processor. We experimentally perform the forward process of the back-
propagation algorithm and classically simulate the backward process. In par-
ticular, we show that three-layer deep quantumneural networks can be trained
efficiently to learn two-qubit quantum channels with a mean fidelity up to
96.0% and the ground state energy ofmolecular hydrogenwith an accuracy up
to 93.3% compared to the theoretical value. In addition, six-layer deep quan-
tum neural networks can be trained in a similar fashion to achieve a mean
fidelity up to 94.8% for learning single-qubit quantum channels. Our experi-
mental results indicate that the number of coherent qubits required to
maintain does not scale with the depth of the deep quantum neural network,
thus providing a valuable guide for quantum machine learning applications
with both near-term and future quantum devices.

Machine learning has achieved tremendous success in both commer-
cial applications and scientific research over the past decade. In par-
ticular, deep neural networks play a vital role in cracking some
notoriously challenging problems, ranging from playing Go1 to pre-
dicting protein structures2. They contain multiple hidden layers and
are believed to bemore powerful in extracting high-level features from
data than traditional methods3,4. The learning process can be fueled by
updating the parameters through gradient descent, where the back-
propagation (BP) algorithm enables efficient calculations of gradients
via the chain rule3.

By harnessing the weirdness of quantum mechanics such as
superposition and entanglement, quantum machine learning approa-
ches hold the potential to bring advantages compared with their
classical counterpart. In recent years, exciting progress has beenmade

along this interdisciplinary direction5–10. For example, rigorous quan-
tum speedups have been proved in classification models11 and gen-
erative models12 with complexity-theoretic guarantees. In terms of the
expressive power of quantum neural networks, there is also pre-
liminary evidence showing their advantages over the comparable
feedforward neural networks13. Meanwhile, noteworthy progress has
also been made on the experimental side14–22. For example, in ref. 14,
the authors realize a quantum convolutional neural network on a
superconducting quantum processor. In ref. 15, an experimental
demonstration of quantum adversarial learning has been reported.
Similar to deep classical neural networks withmultiple hidden layers, a
deep quantum neural network (DQNN) with the layer-by-layer archi-
tecture is proposed23–25, which can be trained via a quantum analog of
the BP algorithm. The word “deep” in the DQNN refers to multiple
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hidden layers, rather than the large depth of quantum circuits. Under
this framework, the quantum analog of a perceptron is a general uni-
tary operator acting on qubits from adjacent layers, whose parameters
are updated by multiplying the corresponding updating matrix of the
perceptron in the training process.

In this paper, we report an experimental demonstration of train-
ing DQNNs through the BP algorithm on a programmable super-
conducting processor with six frequency-tunable transmon qubits.We
find that a three-layer DQNN can be efficiently trained to learn a two-
qubit target quantum channel with a mean fidelity of up to 96.0% and
the ground state energy ofmolecular hydrogenwith an accuracy of up
to 93.3% compared to the theoretical prediction. In addition, we also
demonstrate that a six-layer DQNN can efficiently learn a one-qubit
target quantum channel with a mean fidelity of up to 94.8%. Our
approach can carry over to other DQNNswith a largerwidth and depth
straightforwardly, thus paving the way towards large-scale quantum
machine learning with potential advantages in practical applications.

Results
Deep quantum neural networks
As sketched in Fig. 1a, our DQNN has a layer-by-layer structure, and
maps the quantum information layerwise from the input layer state ρin,
through L hidden layers, to the output layer state ρout. Quantum per-
ceptrons are the building blocks of the DQNN, and different types of
quantum perceptrons have been experimentally implemented
recently26–28. DQNNs with the most general form of quantum percep-
trons,which can apply generic unitaries on all qubits at adjacent layers,
are capable of universal quantum computation29. In practice, we
usually employ restricted forms of perceptrons for experimental
implementations on noisy quantum devices. In this work, a single
quantum perceptron is defined as a parameterized quantum circuit
applied to the corresponding qubit pair at adjacent layers, which is

shown in Fig. 1b. A sequential combination of the quantum percep-
trons constitutes the layerwiseoperation between adjacent layers. One
of the key characteristics of the DQNN is the layer-by-layer quantum
state mapping, allowing efficient training via the quantum BP
algorithm23.

We sketch the general experimental training process in Fig. 1c.
When performing the quantum BP algorithm, one only requires the
information from adjacent two layers, rather than the full DQNN, to
evaluate the gradients with respect to all parameters at these two
layers. Such a BP-equipped DQNN bears the following merit: the
number of coherent qubits required to maintain does not scale with
the depth of the DQNN. This merit makes it possible to realize DQNNs
with reduced number of layers of qubits through qubit reusing23. The
qubits can be reused as follows: after completing the operations
between adjacent layers, we can reset qubits in the previous layer to
the fiducial product state, and then reuse them as qubits in the sub-
sequent layer. We note that resetting qubits takes extra time in
experiments, and this raises additional coherence requirements for
qubits in the current layer. By reusing qubits, only two layers of qubits
are required to implement a DQNN regardless of its depth. The
experimental errors on qubits in the previous layer will affect qubits in
the current layer, which will limit the depth of the DQNN in real
experiments with noisy devices.

Experimental setup
Our experiment is carried out on a superconducting quantum pro-
cessor, which possesses six two-junction and frequency-tunable
transmon qubits30–37. As photographed in Fig. 1d, the chip is fabri-
cated with the layout of the qubits being purposely and carefully
optimized for a layer-by-layer structure. Each transmon qubit is cou-
pled to an individual flux control line, XY control line, and quarter-
wavelength readout resonator, respectively. All readout resonators are

Fig. 1 | A schematic of training deep quantum neural networks. a Architecture
exhibition of a general DQNN. Information propagates layerwise from the input
layer to the output layer. At adjacent two layers, we apply the quantum perceptron
in the order according to the exhibited circuit in b. A quantum perceptron is
realized by applying two single-qubit rotation gates Rx(θ1) and Rx(θ2) (the rotations
along the x axis with variational angles θ1 and θ2, respectively) followed by a fixed
two-qubit controlled-Phase gate. c Illustration of the quantum backpropagation

algorithm.We apply forward channels E on ρin and successively obtain {ρ1, ρ2…ρout},
and apply backward channelsF to successively obtain {σout, σL…σ1} in the backward
process. These forward and backward terms are used for the gradient evaluation.
d Exhibition of a quantum processor with six superconducting transmon qubits,
which are used to experimentally implement the DQNNs. The transmon qubits
(Q1–Q6) and the bus resonators (B1 and B2) are marked.
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coupled to a common transmission line, which is connected through a
Josephson parametric amplifier for high-fidelity single-shot readout of
the qubits38,39. In order to implement the two-qubit gates in the
quantum perceptrons, two separate half-wavelength bus resonators
are respectively used to mediate the interactions among the qubits
between layers16,40,41. The characterized fidelities of single-qubit Rx
gates are above 99.5%, while the average fidelity of the two-qubit gates
is 98.4%. The detailed experimental setup and device parameters can
be found in Supplementary Note 4.

Learning a two-qubit quantum channel
The first application of DQNNs is learning a quantum channel. Speci-
fically, we consider using DQNNs to learn a two-qubit target quantum
channel. We experimentally implement a three-layer DQNN with two
qubits in each layer. This three-layer DQNN is denoted by DQNN1. As
mentioned above, we employ restricted form of perceptrons due to
realistic experimental limitations. In general, the restricted form of
perceptrons would reduce the representation power of DQNNs.
Therefore, we construct the target quantum channel using the same
ansatz as DQNN1 with randomly generated parameters θt, so that the
target quantum channel would be within the representation range of
DQNN1 (seeMethods). Here, we choose ∣00i, ∣01i, ∣+ + i, and ∣+ i+ ii as
our input states ρ in

x , where the subscript x = 1, 2, 3, 4 is the labeling, ∣0i

and ∣1i are the eigenstates of Pauli Zmatrix, ∣+ i ∣�ið Þ is the eigenstate
of Pauli Xmatrix, and ∣+ ii is the eigenstate of Pauli Ymatrix. The four
pairs of ðρ in

x ,τoutx Þ serve as the training dataset, where τ out
x is the cor-

responding desired output state produced by the target quantum
channel. The optimization goal is to maximize the mean fidelity
between τ out

x and the measured DQNN output ρout
x averaged over all

four input states. The general training procedure goes as follows: (1)
Initialization: we randomly choose the initial gate parameters θ for all
perceptrons in DQNN1. (2) Forward process (implemented on our
quantum processor): for each training sample ðρ in

x ,τoutx Þ, we prepare
the input layer to ρ in

x , then apply layerwise forward channels E1 and
Eout, and extract ρ1

x and ρout
x successively by carrying out quantum

state tomography42. (3) Backward process (implemented on a classical
computer): we initialize the output layer to σ out

x , which is determined
by ρout

x and τoutx (see Supplementary Note 1), and then apply backward
channels Fout and F 1 on σ out

x to successively obtain σ1
x and σ0

x . (4)
Based on f ρl�1

x ,σl
x

� �g, we evaluate the gradient of the fidelity with
respect to all the variational parameters in the adjacent layers l−1 and l.
Then we take the average over the whole training dataset for the final
gradient, which is used to update the variational parameters θ. (5)
Repeat (2), (3), (4) for s0 rounds. The pseudocode for our algorithm is
provided in Supplementary Note 1.

In Fig. 2, we randomly choose 30 different initial parameters θ,
and then train DQNN1 to learn the same target quantum channel. We
observe that DQNN1 converges quickly during the training process,
with the highest fidelity above 96%. To benchmark the performance of
DQNN1, we carry out a classical simulation of the training in Supple-
mentary Note 3, where we train DQNN1 to learn a target quantum
channel without considering any experimental imperfections. The
numerical results show that the average convergedmeanfidelity for 50
different initial parameters is above 98%. Compared with the numer-
ical simulation results, the deviation of the final converged fidelities is
due to experimental imperfections, including qubit decoherence and
residual ZZ interactions between qubits43–45. In the upper left inset of
Fig. 2, we show the distribution for all the converged fidelities from
these 30 repeated experiments. We expect that the distribution will
concentrate to a higher fidelity for improved performance of the
quantum processor.

To evaluate the performance of DQNN1, we choose one training
process from the 30 experiments, and refer the DQNN1 with para-
meters corresponding to the ending (starting) iteration of the training
curve as the trained (untrained) DQNN1. We generate other 100 dif-
ferent input quantum states and experimentally measure their corre-
sponding output states produced by the trained (untrained) DQNN1.
We test the fidelity between output states given by the target channel
and the trained (untrained) DQNN1. As shown in the lower left inset of
Fig. 2, for the trained DQNN1, 43% of the fidelities exceed 0.95 and 95%
of the fidelities are higher than 0.9, which separate away from the
distribution of the results of the untrained DQNN1. This contrast
illustrates the effectiveness of the training process of DQNN1.

Learning the ground state energy
DQNNs also provide a complementary approach to solving quantum
chemistry problems. Here, we apply DQNNs to learn the ground state
energy of a given Hamiltonian H as an example. The optimization goal
is tominimize the energy estimate tr ðρoutHÞ for the output state of the
DQNN. We aim to learn the ground state energy of the molecular
hydrogen Hamiltonian46. By exploiting the Bravyi-Kitaev transforma-
tion and certain symmetry, the Hamiltonian of molecular hydrogen
can be reduced to the effective Hamiltonian acting on two qubits:
ĤBK = g0I+ g1Z0 + g2Z 1 + g3Z0Z 1 + g4Y0Y 1 + g5X0X 1, where Xi, Yi, Zi are
Pauli operators on the i-th qubit, and coefficients gj (j =0,⋯, 5) depend
on thefixedbond lengthofmolecular hydrogen.Weconsider thebond
length 0.075 nm in this work and the corresponding coefficients gi can
be found in ref. 46.

Fig. 2 | Experimental results for learning a two-qubit quantum channel. We
train the three-layer DQNN1 with 30 different initial parameters and plot the mean
fidelity as a function of training iterations for 10 of them for clarity. The upper left
inset shows the distribution of the converged mean fidelities of these 30 different
initial parameters. We choose one of the learning curves (marked with triangles),
then randomly generate 100 different input quantum states, and test the fidelity
between their output states given by the target quantum channel and the trained
(untrained) DQNN1. In the lower left inset, two curves show the distribution of the
fidelities for the trained (untrained) DQNN1. The right inset is a schematic illustra-
tion of DQNN1. At adjacent layers, we apply the quantum perceptrons in the order
provided in Supplementary Table 2.
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We use DQNN1 again as the variational ansatz to learn the ground
state of molecular hydrogen with the following procedure, similar to
the previous one of learning a quantum channel: (1) Initialization: we
prepare the input layer to thefiducialproduct state ∣00i, and randomly
generate initial gate parametersθ forDQNN1. 2) In the forward process
(implemented on the quantum processor), we apply forward channels
E1 and Eout in succession, and extract quantum states of the hidden
layer (ρ1) and the output layer (ρout) by quantum state tomography. (3)
In the backward process (implemented on a classical computer), we
initialize the quantum state of the output layer to σout, and then obtain
σ1 and σ0 after successively applying backward channelsFout andF 1 on
σout. (4) Based on f ρl�1,σl

� �g, we calculate the gradient of the energy
estimate with respect to all the variational parameters in the adjacent
layers l−1 and l, and then update all gate parameters in DQNN1. (5)
Repeat (2), (3), (4) for s0 rounds. The pseudocode for our algorithm is
provided in Supplementary Note 1.

We train DQNN1 with 30 different initial parameters and show our
experimental results in Fig. 3a. We observe that DQNN1 converges
within 20 iterations. The lowest ansatz energy estimate reaches below
−1.727 (hartree) in the learning process, with an accuracy up to 93.3%
compared to the theoretical value of the ground state energy −1.851
(hartree). This shows the good performance of DQNN1 and the accu-
racy of our experimental system control. The inset of Fig. 3a shows the
distribution of all the converged energy from these 30 repeated
experiments with different initial parameters, six of which have accu-
racy above 90%.

To numerically investigate the effects of experimental imperfec-
tions on training DQNNs, we consider two possible sources: deco-
herence of qubits and residual ZZ interactions between qubits (see
Methods for details).Under different residual ZZ interaction strengthμ
and different decoherence time T, we numerically train the DQNNwith
30 different initial parameters to learn the ground state energy of the
molecular hydrogen. We find that for four of these initial parameters
DQNN1 converges to local minima instead of the global minimum.
Excluding these abnormal instances with local minima, we plot the
average energy estimate as a function of μwithdifferentT/T0 inFig. 3b,
where T0 is the experimentally measured qubit coherence time. The
numerical results show that, when there is no residual ZZ interaction,
the decoherence of the qubits at T/T0 = 1 degrades the accuracy of the
average energy estimate by 6% to −1.74 (the leftmost point of the
dotted line). At μ/2π ≈ 1 MHz (close to our experimental characteriza-
tion) with T/T0 = 1, the average energy estimate is −1.53, which is about
17% higher than the theoretical value and is comparable to the
experimental values shown in Fig. 3a. Apparently, such a large μ

dominantly limits the training performance, while the variation of the
coherence time has a minor effect. This is anticipated given the fact
that the total running time of the DQNN (1.2μs) is significantly shorter
than the average characteristic coherence time of the qubits (7.5μs).
These experimental imperfections can be suppressed after introdu-
cing advanced technologies in the design and fabrication of better
superconducting quantum circuits, such as tunable couplers47–49 and
tantalum-based qubits50,51.

Learning a one-qubit quantum channel
To further illustrate the efficiency of the quantum BP algorithm, we
construct another DQNN with four hidden layers (denoted as DQNN2)
by rearranging our six-qubit quantum processor into a six-layer
structure, with one-qubit respectively in each layer. We focus on the
task of learning a one-qubit target quantum channel, which is con-
structed using the same ansatz as DQNN2 with randomly generated
parameters (see Methods). We choose ∣0i,∣1i,∣�i as our input states
and compare the measured output states of DQNN2 with the desired
ones from the target single-qubit quantum channel. The general
trainingprocedure is similar as in trainingDQNN1 discussed above.Our
experimental results are summarized in Fig. 4, which shows the
learning curves for 10 different initial parameters. We find that DQNN2

can learn the target quantum channel with amean fidelity up to 94.8%.
We notice that the variance among the converged mean fidelity in
DQNN2 is smaller than that for DQNN1, whichmay be attributed to the
smaller total circuit depth and thus less error accumulation due to
experimental imperfections. To study the learning performance, we
choose one of these learning curves (marked in triangles), and refer
DQNN2 with parameters corresponding to the ending (starting) itera-
tion of the learning curve as the trained (untrained) DQNN2. We then
use other 100 different input quantum states to test the trained and
untrained DQNN2 by measuring the fidelities between the experi-
mental output states and the corresponding desired ones given by the
target quantum channel. As shown in the upper inset of Fig. 4, the
fidelity distribution concentrates around 0.92 for the trained DQNN2,
which stands in stark contrast to that of the untrainedDQNN2 and thus
indicates a good performance after training.

Discussion
In this work, we experimentally perform the forward process while
implementing the backward process on a classical computer. For the
task of learning a target quantum channel, we note that the backward
process can also be implemented with a quantum device in principle
(see Supplementary Note 1 for an experimental proposal). Yet, it is

Fig. 3 | Experimental and numerical results for learning the ground state
energy of molecular hydrogen. a Experimental energy estimate at each iteration
during the learning process for different initial parameters. The inset displays the
distribution of converged energy estimates of 30 different initial parameters.
b Numerical results for the mean energy estimate with different coherence time T

and residual ZZ interaction strength μ between qubits. Specifically, we assume the
same μ between all neighboring qubits and adjust the coherence time by the same
ratio (T/T0) for all qubits, where T and T0 are the coherence times in the numerical
simulation and the experiment, respectively.
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more challenging to achieve the required experimental accuracy for
backward channels than that for forward channels. In the future, we
expect an experimental implementation of the backward channel on a
quantum processor with better performance.

The efficiency of the quantum BP algorithm can be measured in
terms of the required number of copies for each training data per
training iteration (see Supplementary Note 2 for detailed discussions).
For the training with the quantum BP algorithm, this number scales
exponentially with the number of qubits in the hidden layers and the
output layer. This is due to the fact that an exponential number of
measurements are required for quantum state tomography and the
experimental implementation of backward channels. Compared with
the training not utilizing the quantum BP algorithm, we find that the
use of the quantumBP algorithm can enhance the training efficiency in
some caseswhereDQNNs have narrowhidden layers. SuchDQNNs can
be used as quantum autoencoders to compress and denoise quantum
data52.

In summary, we have demonstrated the training of deep quantum
neural networks on a six-qubit programmable superconducting
quantum processor. We experimentally exhibit its intriguing ability to
learn quantum channels and learn the ground state energy of a given
Hamiltonian. The quantum BP algorithm demonstrated in our experi-
ments can be directly applied to DQNNs with extended widths and
depths. With further improvements in experimental conditions,
quantum perceptrons with enhanced expressive power are expected
to be constructed with deeper circuits, which allows DQNNs to tackle
more challenging tasks in the future.

Methods
Framework
We consider a DQNN that includes L hidden layers with a total number
ml of qubits in layer l. The qubits in two adjacent layers are connected
with quantumperceptrons and eachperceptron consists of two single-
qubit rotation gates Rx(θ1) and Rx(θ2) along the x axis with variational
angles θ1 and θ2, respectively, followedby a fixed two-qubit controlled-
Phase gate. The unitary of the quantumperceptron that acts on the i-th
qubit at layer l−1 and the j-th qubit at layer l in the DQNN is written as
Ul

ði,jÞðθlði,jÞ,1,θlði,jÞ,2Þ. Then the unitary product of all quantumperceptrons
acting on the qubits in layers l−1 and l is denoted as
Ul =

Q1
j =ml

Q1
i=ml�1

Ul
ði,jÞ. The DQNN acts on the input state ρin and

produces the output state ρout according to

ρout � trin,hid U ρin � ∣0 � � �0ihid,out 0 � � �0h ∣
� �Uy� �

, ð1Þ

where U � UoutULUL�1 . . .U1 is the unitary of the DQNN, and all qubits
in the hidden layers and the output layer are initialized to a fiducial
product state ∣0 � � �0i. The characteristic of the layer-by-layer
architecture enables ρout to be expressed as a series of maps on ρin:

ρout = Eout EL . . . E2 E1 ρin� �� �
. . .

� �� �
, ð2Þ

where El ρl�1
� � � tr l�1 Ul ρl�1 � ∣0 � � �0il 0 � � �0h ∣

� �
Uly

� �
is the forward

quantum channel.
In the Supplementary Information, we prove that for the two

machine learning tasks in our work, the derivative of the mean fidelity
or the energy estimate with respect to θl

ði,jÞ,k can be calculated with the
information of layers l−1 and l, which canbewritten asG(θl, ρl−1, σl) with
θl incorporating all parameters in layers l−1 and l. We note that
ρl�1 = El�1ð. . . E2ðE1ðρinÞÞ . . .Þ refers to the quantum state in layer l−1 in
the forward process, and σl =F l + 1ð. . .Foutð� � � Þ . . .Þ represents the
backward term in layer l with F l being the adjoint channel of El . The
backwardchannelF l applies on thebackward termσl andproduces σl−1

according to σl�1 =F lðσlÞ= tr l Il�1 � ∣0il 0h ∣
� �

Uly Il�1 � σl
� �

Ul
� �

.

Generating random input quantum states
To evaluate the learning performance in the task of learning a target
quantum channel, we need to generate many different input quantum
states and test the fidelity between their output states produced by
DQNN1 and their desired output states given by the target quantum
channel.

For the task of learning a two-qubit quantumchannel,wegenerate
these input quantum states by separately applying single-qubit rota-
tion gates Ra1

ðΩ1Þ � Ra2
ðΩ2Þ on the two qubits initialized in ∣00i. Here

each rotation gate has a random rotation axis ai in the x–y plane and a
random rotation angle Ωi.

For the task of learning aone-qubit quantumchannel,we generate
the input quantum states by applying single-qubit rotation gates Rb(Φ)
on the input qubit initialized in ∣0iwith a random rotation axis b in the
x–y plane and a random rotation angle Φ.

The target quantum channels
The target quantum channels are constructed using the DQNN ansatz
with randomly chosen parameters θt. For DQNN1, the schematic illus-
tration is shown in the right inset of Fig. 2. The input state is encoded in
qubits Q1 and Q2 (input layer). After completing all the layerwise
quantum perceptrons, the output state is obtained from qubitsQ5 and
Q6 (output layer). Each quantum perceptron is applied with randomly
chosen single-qubit rotation angles, which are provided in the third
column of Supplementary Table 2. The target quantum channel for
DQNN2 is constructed in a similar way, with the corresponding para-
meters (randomly chosen) also provided in Supplementary Table 2.

Fig. 4 | Experimental results for learning a one-qubit quantum channel. The
mean fidelity of training the six-layer DQNN2 is plotted as the function of training
iterations for different initial parameters. We randomly generate 100 different
single-qubit states, and evaluate the fidelities between their output states produced
byDQNN2 and theirdesiredoutput statesgivenby the target quantumchannel. The
upper inset displays the distribution in two cases: a well-trainedDQNN2 (markedby
squares) and an untrained (marked by circles) DQNN2, both are defined with the
learning curve marked in triangles. The lower inset is a schematic illustration of
DQNN2, where we apply the perceptrons in the order indicated by the direction of
the arrows.
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Numerical simulations
We numerically consider two sources for experimental imperfections:
decoherence of qubits and residual ZZ interactions between qubits. In
our simulation, we consider the effects of the residual ZZ interactions
only during the implementation of rotation gates for simplicity. Spe-
cifically, Rx,i(θ) (rotation gate Rx on the i-th qubit) is realized by the
evolution of a time-dependent Hamiltonian of the form
H0ðtÞ=θðay

i +aiÞhðtÞ=2, where ai (ay
i ) is the corresponding annihilation

(creation) operator, and h(t) is the time-dependent driving strength
given as a Gaussian function hðtÞ=Ae�ðt=δÞ2 . We set the evolution time
of the rotation gate as Δt = 40 ns and δ = 10 ns. The unwanted residual
ZZ interactions between qubits are considered by adding a Hamilto-
nian of the form H1ðtÞ=

P
hi,jiμi,ja

y
i aia

y
j aj to H0(t), where 〈i, j〉 denotes

the interaction between nearest-neighbor qubits, and μi,j is the inter-
action strength between the i-th and j-th qubits. The qubit deco-
herence is considered by adding the relaxation term

ffiffiffiffiffiffiffiffiffiffiffiffi
1=T 1,i

p
ai and the

pure dephasing term
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Tϕ,i

q
ay
i ai as the collapse operators to the

evolution. Here, T1,i and Tϕ,i are the energy relaxation time and the
pure dephasing time of the i-th qubit, respectively.

Data availability
The data generated in this study have been deposited in the Figshare
database under accession code https://doi.org/10.6084/m9.figshare.
2280250153.

Code availability
The codes for numerical simulations are available at https://zenodo.
org/badge/latestdoi/55219307254.

References
1. Silver, D. et al. Mastering the game of Go without human knowl-

edge. Nature 550, 354 (2017).
2. Jumper, J. et al. Highly accurate protein structure prediction with

AlphaFold. Nature 596, 583 (2021).
3. Goodfellow, I., Bengio, Y., and Courville, A. Deep learning (The MIT

Press, Cambridge, 2016). https://www.deeplearningbook.org/
4. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436 (2015).
5. Biamonte, J. et al.Quantummachine learning.Nature549, 195 (2017).
6. Dunjko, V. &Briegel, H. J.Machine learning&artificial intelligence in

the quantum domain: a review of recent progress. Rep. Prog. Phys.
81, 074001 (2018).

7. Das Sarma, S., Deng, D.-L. & Duan, L.-M. Machine learning meets
quantum physics. Phys. Today 72, 48 (2019).

8. Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J.
Challenges and opportunities in quantum machine learning. Nat.
Comput. Sci. 2, 567 (2022).

9. Dawid, A. et al. Modern applications of machine learning in quan-
tum sciences. arXiv http://arxiv.org/abs/2204.04198 (2022).

10. Huang, H.-Y., Kueng, R. & Preskill, J. Information-theoretic bounds
on quantum advantage in machine learning. Phys. Rev. Lett. 126,
190505 (2021).

11. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quan-
tum speed-up in supervised machine learning. Nat. Phys. 17,
1013 (2021).

12. Gao, X., Zhang, Z.-Y. & Duan, L.-M. A quantum machine learning
algorithmbased on generativemodels. Sci. Adv. 4, eaat9004 (2018).

13. Abbas, A. et al. The power of quantum neural networks. Nat.
Comput. Sci. 1, 403 (2021).

14. Herrmann, J. et al. Realizing quantum convolutional neural net-
works on a superconducting quantum processor to recognize
quantum phases. Nat. Commun. 13, 4144 (2022).

15. Ren, W. et al. Experimental quantum adversarial learning with pro-
grammable superconducting qubits.Nat. Comput. Sci. 2, 711 (2022).

16. Havlíček, V. et al. Supervised learning with quantum-enhanced
feature spaces. Nature 567, 209 (2019).

17. Hu, L. et al. Quantum generative adversarial learning in a super-
conducting quantum circuit. Sci. Adv. 5, eaav2761 (2019).

18. Blank, C., Park, D. K., Rhee, J.-K. K. & Petruccione, F. Quantum
classifier with tailored quantum kernel. npj Quantum Inf. 6,
1 (2020).

19. Li, Z., Liu, X., Xu, N. & Du, J. Experimental realization of a quantum
support vector machine. Phys. Rev. Lett. 114, 140504 (2015).

20. Zhu, D. et al. Training of quantum circuits on a hybrid quantum
computer. Sci. Adv. 5, eaaw9918 (2019).

21. Gong, M. et al. Quantum neuronal sensing of quantummany-body
states on a 61-qubit programmable superconducting processor.
Sci. Bull. 68, 906 (2023).

22. Huang, H.-Y. et al. Quantum advantage in learning from experi-
ments. Science 376, 1182 (2022).

23. Beer, K. et al. Training deep quantum neural networks. Nat. Com-
mun. 11, 808 (2020).

24. Liu, Z., Duan, L.-M. & Deng, D.-L. Solving quantummaster equations
with deep quantum neural networks. Phys. Rev. Res. 4, 013097
(2022).

25. Wilkinson, S. A. and Hartmann, M. J. Evaluating the performance of
sigmoid quantum perceptrons in quantum neural networks. http://
arxiv.org/abs/2208.06198 (2022).

26. Huber, P. et al. Realization of a quantum perceptron gate with
trapped ions. http://arxiv.org/abs/2111.08977 (2021).

27. Moreira, M. S. et al. Realization of a quantum neural network using
repeat-until-success circuits in a superconducting quantum pro-
cessor. http://arxiv.org/abs/2212.10742 (2022).

28. Pechal, M. et al. Direct implementation of a perceptron in super-
conducting circuit quantum hardware. Phys. Rev. Res. 4, 033190
(2022).

29. Beer, K. Quantum neural networks. http://arxiv.org/abs/2205.
08154 (2022).

30. Koch, J. et al. Charge insensitive qubit design from optimizing the
cooper-pair box. Phys. Rev. A 76, 042319 (2007).

31. Barends, R. et al. Coherent josephson qubit suitable for scalable
quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

32. Li, X. et al. Perfect quantum state transfer in a superconducting
qubit chain with parametrically tunable couplings. Phys. Rev. Appl.
10, 054009 (2018).

33. Cai, W. et al. Observation of topological magnon insulator states in
a superconducting circuit. Phys. Rev. Lett. 123, 080501 (2019).

34. Kono, S. et al. Breaking the trade-off between fast control and long
lifetime of a superconducting qubit. Nat. Commun. 11, 3683
(2020).

35. Carusotto, I. et al. Photonic materials in circuit quantum electro-
dynamics. Nat. Phys. 16, 268 (2020).

36. Negîrneac, V. et al. High-fidelity controlled-Z gate with maximal
intermediate leakage operating at the speed limit in a super-
conducting quantum processor. Phys. Rev. Lett. 126, 220502
(2021).

37. Blais, A., Grimsmo, A. L., Girvin, S. M. &Wallraff, A. Circuit quantum
electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

38. Roy, T. et al. Broadband parametric amplification with impedance
engineering: beyond the gain-bandwidth product. Appl. Phys. Lett.
107, 262601 (2015).

39. Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single
quantum trajectories of a superconducting quantum bit. Nature
502, 211 (2013).

40. Majer, J. et al. Coupling superconducting qubits via a cavity bus.
Nature 449, 443 (2007).

41. Song, C. et al. Generation of multicomponent atomic schrodinger
cat states of up to 20 qubits. Science 365, 574 (2019).

Article https://doi.org/10.1038/s41467-023-39785-8

Nature Communications |         (2023) 14:4006 6

https://doi.org/10.6084/m9.figshare.22802501
https://doi.org/10.6084/m9.figshare.22802501
https://zenodo.org/badge/latestdoi/552193072
https://zenodo.org/badge/latestdoi/552193072
https://www.deeplearningbook.org/
http://arxiv.org/abs/2204.04198
http://arxiv.org/abs/2208.06198
http://arxiv.org/abs/2208.06198
http://arxiv.org/abs/2111.08977
http://arxiv.org/abs/2212.10742
http://arxiv.org/abs/2205.08154
http://arxiv.org/abs/2205.08154


42. Nielsen, M. A., and Chuang, I. L., Quantum computation and
quantum information (Cambridge University Press, Cambridge,
2010) https://doi.org/10.1017/CBO9780511976667.

43. Zhao, P. et al. High-contrast zz interaction using superconducting
qubits with opposite-sign anharmonicity. Phys. Rev. Lett. 125,
200503 (2020).

44. Ku, J. et al. Suppression of unwanted zz interactions in a hybrid two-
qubit system. Phys. Rev. Lett. 125, 200504 (2020).

45. Kandala, A. et al. Demonstration of a high-fidelity cnot gate for
fixed-frequency transmons with engineered zz suppression. Phys.
Rev. Lett. 127, 130501 (2021).

46. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular
energies. Phys. Rev. X 6, 031007 (2016).

47. Li, X. et al. Tunable coupler for realizing a controlled-phase gate
with dynamically decoupled regime in a superconducting circuit.
Phys. Rev. Appl. 14, 024070 (2020).

48. Collodo, M. C. et al. Implementation of conditional phase gates
based on tunable zz interactions. Phys. Rev. Lett. 125,
240502 (2020).

49. Sung, Y. et al. Realization of high-fidelity cz and zz-free iswap gates
with a tunable coupler. Phys. Rev. X 11, 021058 (2021).

50. Place, A. P. M. et al. New material platform for superconducting
transmon qubits with coherence times exceeding 0.3milliseconds.
Nat. Commun. 12, 1779 (2021).

51. Wang, C. et al. Towards practical quantum computers: transmon
qubit with a lifetime approaching 0.5 milliseconds. npj Quantum
Inf. 8, 3 (2022).

52. Bondarenko, D. & Feldmann, P. Quantum autoencoders to denoise
quantum data. Phys. Rev. Lett. 124, 130502 (2020).

53. Pan, X. and Lu, Z. Deep quantum neural networks on a super-
conducting processor. Figshare Dataset. https://doi.org/10.6084/
m9.figshare.22802501 (2023).

54. Pan, X. and Lu, Z. Deep quantum neural networks on a super-
conducting processor. Zenodo Database. https://zenodo.org/
badge/latestdoi/552193072 (2023).

Acknowledgements
We thank Wenjie Jiang for the helpful discussions. We acknowledge the
support of the National Natural Science Foundation of China (Grants No.
92165209, No. 11925404, No. 11874235, No. 11874342, No. 11922411, No.
12061131011, No. T2225008, No. 12075128), the National Key Research
and Development Program of China (Grants No. 2017YFA0304303),
Key-Area Research and Development Program of Guangdong Province
(Grant No. 2020B0303030001), Anhui Initiative inQuantum Information
Technologies (AHY130200), China Postdoctoral Science Foundation
(BX2021167), and Grant No. 2019GQG1024 from the Institute for Guo
Qiang, Tsinghua University. D.-L.D. also acknowledges additional sup-
port from the Shanghai Qi Zhi Institute.

Author contributions
X.P. carried out the experiments and analyzed the data with the assis-
tance of Z.H. and Y.X.; L.S. directed the experiments; Z.L. formalized the
theoretical framework and performed the numerical simulations under
the supervision of D.-L.D.; W.L. and C.-L.Z. provided theoretical support;
W.C. fabricated the parametric amplifier; W.W. and X.P. designed the
devices; X.P. fabricated the devices with the assistance of W.W., H.W.,
and Y.-P.S.; Z.H., W.C., and X.L. provided further experimental support;
X.P., Z.L., W.L., C.-L.Z., D.-L.D., and L.S. wrote the manuscript with
feedback from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39785-8.

Correspondence and requests for materials should be addressed to
Dong-Ling Deng or Luyan Sun.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39785-8

Nature Communications |         (2023) 14:4006 7

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.6084/m9.figshare.22802501
https://doi.org/10.6084/m9.figshare.22802501
https://zenodo.org/badge/latestdoi/552193072
https://zenodo.org/badge/latestdoi/552193072
https://doi.org/10.1038/s41467-023-39785-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Deep quantum neural networks on a superconducting processor
	Results
	Deep quantum neural networks
	Experimental setup
	Learning a two-qubit quantum channel
	Learning the ground state energy
	Learning a one-qubit quantum channel

	Discussion
	Methods
	Framework
	Generating random input quantum states
	The target quantum channels
	Numerical simulations

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




