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Aggregation-regulated room-temperature
phosphorescencematerials withmulti-mode
emission, adjustable excitation-dependence
and visible-light excitation

Jingxuan You1,2, Xin Zhang1, Qinying Nan1,2, Kunfeng Jin1, Jinming Zhang 1 ,
Yirong Wang1,2, Chunchun Yin1, Zhiyong Yang 3 & Jun Zhang 1,2

Constructing room-temperature phosphorescent materials with multiple
emission and special excitation modes is fascinating and challenging for prac-
tical applications.Herein,wedemonstrate a facile andgeneral strategy to obtain
ecofriendly ultralong phosphorescent materials with multi-mode emission,
adjustable excitation-dependence, and visible-light excitation using a single
organic component, cellulose trimellitate. Based on the regulation of the
aggregation state of anionic cellulose trimellitates, such as CBtCOONa, three
types of phosphorescent materials with different emission modes are fabri-
cated, including blue, green and color-tunable phosphorescent materials with a
strong excitation-dependence. The separated molecularly-dispersed
CBtCOONa exhibits blue phosphorescence while the aggregated CBtCOONa
emits green phosphorescence; and the CBtCOONa with a coexistence state of
singlemolecular chains and aggregates exhibits color-tunablephosphorescence
depending on the excitation wavelength. Moreover, aggregated cellulose tri-
mellitates demonstrate unique visible-light excitation phosphorescence, which
emits green or yellow phosphorescence after turning off the visible light. The
aggregation-regulated phenomenon provides a simple principle for designing
the proof-of-concept and on-demand phosphorescent materials by using a
single organic component. Owing to their excellent processability and envir-
onmental friendliness, the aforementioned cellulose-based phosphorescent
materials are demonstrated as advanced phosphorescence inks to prepare
various disposable complex anticounterfeiting patterns and information codes.

Organic room-temperature phosphorescence (RTP) materials have
unique photophysical properties, rich excited-state features, good
biocompatibility, high flexibility, low cost, and excellent structural
designability1,2. In addition, the nature of phosphorescence, with

respect to the radiative transition from the excited triplet states (Tn) to
the ground states (S0), endows RTP materials with long emission life-
time and large Stokes shift3,4. Therefore, organic RTP materials have
recently attracted tremendous interest, and indicate attractive
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application prospects in various fields, such as bioimaging5, optical
recording6, information storage7, anticounterfeiting system8, and
organic light-emitting diodes9–11.

Multi-color and stimuli-responsive RTP materials can collect more
information andprovide advancedutilization. Therefore, they arehighly
desired in the phosphorescence field12–16. An et al. designed and syn-
thesized a series of carbazole derivatives to achieve multicolor
phosphorescence12. Chen et al. introduced different brominated aro-
matic groups into polyacrylamide side chains to obtain RTP materials
with phosphorescence colors from green to orange17. Lei et al. prepared
multicolor RTP materials by changing the chemical structure of the
donor and acceptor18. Wang et al. modified the side groups on the
aromatic structure to obtain multicolor RTP materials19. Tan et al.
introduced different fluorescence groups into the biopolymer sodium
alginate (SA) via an amidation reaction to achieve color-tunable RTP
materials20. Furthermore, they doped different aromatic carboxylates
into SA to obtain colorful and time-responsive afterglow materials with
adjustable colors from blue to red21. Zhang et al. combined polyvinyl
alcohol (PVA) and heterocyclic aromatic molecules to form large-area
multi-color phosphorescent films22,23. So far, the preparation of these
multicolor RTP materials typically involves a laborious and time-
consuming synthetic procedure, or entails a coordination of several
chromophores with various chemical structures24,25. In addition, there
have been many attempts to fabricate stimuli-responsive phosphores-
cence materials, including force-responsive26–28, pH-responsive29–31,
light-responsive32–34, temperature-responsive35,36, humidity-responsive37,
and redox-responsive materials38. For instance, Chi et al. reported an
aggregation-induced emission (AIE) luminogen of 2-([1,1′:3′,1′′-
terphenyl]-5′-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane exhibiting
fluorescence-phosphorescence dual emission under mechanical
stimulation39,40. Gong et al. prepared pH-responsive RTP materials by
mixing cururbit[7]uril (CB[7]) with a 6-bromoisoquinoline derivative41.
The switching RTP emission of the molecular shuttle could be detected
with thenakedeyebyaltering thepH.YuanandTanproduceda series of
excitation-dependent RTP materials based on a clustering-triggered
emission mechanism20. Cai et al. found that the poly(styrene sulfonic
acid) sodium exhibited excitation-dependent phosphorescence at 77K
based on the same mechanism42. The excitation-dependent phosphor-
escence materials exhibit varied phosphorescence colors under differ-
ent excitation wavelengths. Therefore, they are promising candidates
for high-security information storage and anticounterfeiting applica-
tions. Furthermore, thedetectionmethod for excitation-dependent RTP
materials is simple and easy to use. However, the responsive behavior of
such excitation-dependent RTP materials is nonadjustable. When they
areused toprepare complicatedphosphorescencepatterns, other types
of RTPmaterials are necessary, such as RTPmaterials without excitation
wavelength dependence. Remarkably, RTP materials are generally used
as light and thin materials, such as patterns, labels, coatings, and films,
which are difficult to be recycled. Hence, it is desirable for these mate-
rials to be completely degradable. However, it is difficult to achieve
complete biodegradation in case of synthetic polymers. Hence, it is
fascinating and pragmatic to prepare RTP materials with multiple
emission modes, special excitation modes, and excellent biodegrad-
ability by developing a facile preparation strategy using sustainable
components.

Herein, we demonstrated a principle for regulating phosphores-
cence. Ecofriendly ultralong RTP materials with multi-mode emission,
adjustable excitation-dependence, and visible-light excitation were
fabricated using a single biopolymer component and regulating its
aggregation state.

Results
Multimode RTP materials
Natural cellulose with a strong hydrogen-bonding network is an ideal
substrate for constructing RTP materials. Anionic phenylcarboxylate

substituents were added into the cellulose chain via chemical immo-
bilization to obtain cellulose derivatives with ultralong RTP, such as
cellulose trimellitate (Fig. S1a). In the 1H-NMR spectrum of cellulose
trimellitate (CBtCOOH), the peaks observed in the 7.5–8.5 ppm range
are assigned to the protons on the benzene ring while the peaks
observed at 2.7–5.5 ppm region correspond to the protons of the
cellulose backbone (Fig. S1b). In the FTIR spectrum of CBtCOOH, the
peak at 1703 cm−1 corresponds to the C =O stretching vibration peak
(Fig. S1c). These results prove that the cellulose derivative, CBtCOOH,
was successfully synthesized. Via controlling the reaction time and the
molar ratio of trimellitic anhydride and anhydroglucose unit (AGU), a
series of CBtCOOH with different degree of substitution (DS) from
0.33 to 1.12 were synthesized (Table S1). Subsequently, after a neu-
tralization reaction between CBtCOOH and NaHCO3, sodium cellulose
trimellitate (CBtCOONa) was obtained. The quantum yield and RTP
lifetime of CBtCOONa (DS =0.54) were higher than those of other
samples, thus it was used as the raw materials. The amorphous
CBtCOONa powder exhibited blue fluorescence and green phosphor-
escence under irradiation with a 365 nm lamp and with the lamp off,
respectively (Fig. S1d and S2).

Surprisingly, the CBtCOONa aqueous solutions of different con-
centrations exhibited different phosphorescence phenomena at 77 K
(Fig. S3). At 0.2mg/mL concentration, the CBtCOONa aqueous solu-
tion exhibited blue phosphorescence at 310 nm excitation while no
phosphorescence at 365 nm excitation. Conversely, at 60mg/mL
concentration, the CBtCOONa aqueous solution exhibited blue phos-
phorescence at 310 nm excitation and green phosphorescence at
365 nm excitation. After adding a quantity of 100mM CaCl2 into the
0.2mg/mL CBtCOONa aqueous solution, the obtained solution emit-
ted both blue phosphorescence at 310 nm excitation and green
phosphorescence at 365 nm excitation. We speculated that this phe-
nomenonwas related to the solution stateofCBtCOONa. At 0.2mg/mL
concentration, the CBtCOONa aqueous solution was a dilute solution,
in which the polymer chains were molecularly dispersed. The inde-
pendent sodium trimellitate group exhibited blue phosphorescence.
When the concentration of CBtCOONa aqueous solution increased to
60mg/mL, the polymer chains strongly entangled with each other.
Consequently, the sodium trimellitate groups formed aggregated
structures, which emitted green phosphorescence. According to the
plot of specific viscosity (ηsp) versus concentration, the overlap con-
centration (c*) and entanglement concentration (ce) of the CBtCOONa
aqueous solution are 0.2wt% and 2.0wt%, respectively (Fig. S4).
Therefore, when the concentration was <0.2wt%, the CBtCOONa
aqueous solution (e.g., 0.2mg/mL) was a molecularly-dispersed solu-
tion. When the concentration was >2.0wt%, the CBtCOONa aqueous
solution (e.g., 60.0mg/mL) was in an entanglement state. These
results confirm our above speculation. Furthermore, the appearance
of green phosphorescence after adding the CaCl2 solution into the
0.2mg/mL CBtCOONa aqueous solution also proves the aforemen-
tioned mechanism, because Ca2+ ions formed a chelate bond with
COO− ions on the CBtCOONa chains, causing the aggregation of the
polymer chains. Overall, the CBtCOONa aqueous solutions exhibited
an aggregation-regulated phosphorescence phenomenon.

Inspired by the phosphorescence phenomenon of CBtCOONa
solution at 77 K, we proposed to preserve the molecularly-dispersed
state, the aggregate state and the coexistence state of singlemolecular
chains and aggregates in the solid state. As a result, a series of RTP
materials with different emission modes were obtained by controlling
the ratio of the molecularly dispersed and aggregated states of
CBtCOONa (Fig. 1 and S5). We first added a Na2CO3 solution into the
CBtCOONa dilute solution to isolate CBtCOONa polymer chains using
CO3

2− ions. Subsequently, a CaCl2 solution was added into the afore-
mentioned solution, resulting in immediate formation of insoluble
CaCO3. The molecularly-dispersed CBtCOONa chains were immobi-
lized in CaCO3 to prevent the formation of an aggregated state.
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Consequently, the obtained solid material retained the phosphores-
cence property of the diluteCBtCOONa solution and emitted only blue
phosphorescence (Fig. 1a, b). When Na2CO3 and CaCl2 were sequen-
tially added into the concentrated CBtCOONa solution, the obtained
material had both molecularly-dispersed CBtCOONa chains and
aggregated states. Therefore, the resultantmaterial exhibited blue and
green phosphorescence (Fig. 1a, b). When the solvent in the dilute
CBtCOONa solution was slowly volatilized, the polymer chains gra-
dually overlapped together, indicating an increasing entanglement

degree. The final product was almost always the aggregated state of
CBtCOONa, so it exhibited green phosphorescence. Thus, a series of
RTP materials with different emission modes can be obtained by reg-
ulating the aggregation states of CBtCOONa.

The CBtCOONa/CaCO3 powders with a CBtCOONa content of
4–20% prepared from dilute CBtCOONa solutions emitted bright
blue phosphorescence at 310 nm (Fig. 1b and S5). The phosphores-
cence emission lasted for >2 s at room temperature after irradiation
with a 310 nm ultraviolet lamp, as observed by the naked eye. The

365 nm310 nm

on     off     0.5 s   1.0 s   1.5 s   2.0 s    2.5 s   3.0 s    3.5 s    4.0 s

77%

50%

20%

4%

CBtCOONa

100%

Visible
light

Ex: 310 nm

(b)

(e)(d)(c)

on      off     0.5 s   1.0 s   1.5 s   2.0 s    2.5 s

Ex: 365 nm

(a)

Fig. 1 | Mechanism and properties of multi-mode RTP materials. a Schematic
illustration of sample preparation processes and microstructures; b Photographs
of RTPmaterials with different CBtCOONa contents under irradiation with 310 and

365 nm lamps and with the lamps off; c, d Phosphorescence spectra of RTP
materials with different CBtCOONa content at 310 nm and 365 nm excitations;
eCommission Internationaled’Eclairage (CIE) coordinatediagramofRTPmaterials.
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CBtCOONa/CaCO3 powder with a CBtCOONa content of 50% pre-
pared from the concentrated CBtCOONa solution exhibited the
changeable RTP with a strong excitation dependence. It exhibited
blue phosphorescence at 254–310 nm excitation and green phos-
phorescence at 340–365 nm excitation (Fig. 1b and S5). The persis-
tent luminescence time of blue and green phosphorescence was
>1.5 s. The pure CBtCOONa solid material had green phosphores-
cence with a weak excitation dependence at 310–365 nm excitation
(Fig. 1b and S5). The persistent luminescence time was >3.5 s.
Obviously, with the increase of the CBtCOONa content in
CBtCOONa/CaCO3 powder, the intensity and lifetime of blue phos-
phorescence gradually diminished, whereas the intensity and life-
time of green phosphorescence rapidly increased (Figs. 1b–d and
2a–d). Almost all the RTP materials had a phosphorescence lifetime
of >100ms, indicating an ultralong phosphorescence property
(Fig. 2a–d). In the scanning electronmicroscope (SEM) images of the
CBtCOONa/CaCO3 powder with 4% CBtCOONa, cube-shaped CaCO3

calcite crystals were observed; no organicmatter was visible. In other
words, the CBtCOONa chains were encapsulated in CaCO3. When the
content of CBtCOONa was increased to 20%, CaCO3 crystals were
adhered together by organic CBtCOONa. When the content of
CBtCOONawas increased to 50–77%, CaCO3 crystals were embedded
in the lamellar structure formed by CBtCOONa, creating a coex-
istence state of single molecular chains and aggregates of
CBtCOONa. Pure CBtCOONa has a dense structure at the surface and
cross-section, indicating that CBtCOONa chains tightly stack and
exist in the aggregated state. These results prove that various RTP
materials with different emissionmodeswere obtained via regulating
the aggregation state of CBtCOONa (Fig. 1e and S5, andTable S2). The
molecularly-dispersed CBtCOONa exhibited blue phosphorescence
without an excitation-dependence; the aggregated CBtCOONa
emitted green phosphorescence with a weak excitation-dependence.
On the other hand, the CBtCOONa with a coexistence state of single
molecular chains and aggregates exhibited color-tunable phosphor-
escence with a strong excitation-dependence.

Phosphorescence mechanism
The solution state of CBtCOONa was examined to verify further the
formation mechanism of the aforementioned RTP materials (Fig. 3a).
Dynamic light scattering (DLS) shows that CBtCOONa chains were
molecularly dispersed at a concentration of 0.2mg/mL. When the
concentration was increased to 60.0mg/mL, CBtCOONa chains
formed aggregates with different sizes. After adding 100mM CaCl2
into 0.2mg/mL CBtCOONa aqueous solution, the hydrodynamic
radius (Rh) became remarkably smaller. The formation of chelate
bonds between the introducedCa2+ ions andCOO- anions caused intra-
chain and inter-chain aggregation of the CBtCOONa chains; thus, the
volume of the CBtCOONa chains was compressed. The 0.2mg/mL
CBtCOONa aqueous solution emitted blue phosphorescence at
310 nm excitation and 77K. Moreover, it had negligible phosphores-
cence at 370 nm excitation (Fig. 3b). The lifetime of blue phosphor-
escence was as high as 498ms (Fig. 3c). The 60mg/mL CBtCOONa
aqueous solution emitted strong green phosphorescence at 370 nm
excitation and 77K, while had weak blue phosphorescence at 310 nm
excitation (Fig. 3d). The lifetime of greenphosphorescencewas ashigh
as 530ms (Fig. 3e). Therefore, the blue phosphorescence and green
phosphorescence originate from the molecularly dispersed
CBtCOONa chains and the aggregates of CBtCOONa chains, respec-
tively (Fig. 3f).

We prepared sodium trimellitate (BtCOONa) to illustrate the
phosphorescence mechanism (Fig. S6). The dilute solution of
BtCOONa (0.1mg/mL) exhibited the same phosphorescence property
as that of CBtCOONa dilute solution at 77 K. It emitted blue phos-
phorescence at 310 nmexcitationwhile negligible phosphorescence at
365 nm excitation (Fig. S7). The concentrated solution of BtCOONa
(400mg/mL) exhibited the same phosphorescence performance as
that of CBtCOONa concentrated solution at 77 K. It emitted green
phosphorescence at 365 nm excitation and blue phosphorescence
emission at 310 nm excitation (Fig. S7). With the increase of tempera-
ture, the phosphorescence lifetime of BtCOONa decreased gradually
(Fig. S8). These phenomena illustrate that blue phosphorescence
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originates from molecularly-dispersed BtCOONa, and green phos-
phorescence originates from aggregated BtCOONa (Fig. 3f).

Additionally, the O–H peak for CBtCOONa shifted to a lower
wavenumber compared with the O–H stretching vibration peak for
natural cellulose, indicating that the stronger hydrogen bonding
interactions were formed in CBtCOONa (Fig. 3g). Zeta potential gra-
dually increased as the DS of CBtCOONa increased from 0.33 to 1.12.
Hence, the electrostatic interactions between the chains are became
increasingly strong in CBtCOONa (Fig. 3h). The density of CBtCOONa
film was 1.832 g·cm−3, which was considerably higher than that of the
cellulose film (1.650g·cm−3), illustrating that the CBtCOONa chains
were tightly packed (Fig. 3i). Overall, the molecularly-dispersed and
aggregate states of the BtCOONa group promoted inter-system
crossing. The strong hydrogen-bonding and electrostatic attraction

interactions facilitated the tight packing of CBtCOONa chains, which
effectively suppressed the non-radiative transition (Fig. 3j). Therefore,
various RTPmaterials with different emissionmodeswereobtained via
regulating the aggregation state of CBtCOONa. The molecularly-
dispersed CBtCOONa exhibited blue phosphorescence; the aggre-
gated CBtCOONa emitted green phosphorescence; and the
CBtCOONa with a coexistence state of single molecular chains and
aggregates had color-tunable phosphorescence with a strong
excitation-dependence. Such an aggregation-regulated principle pro-
vides a facile strategy to prepare the proof-of-concept and on-demand
RTP materials by using a single organic component.

In order to prove the universality of the above strategy, three
cellulose derivatives have been synthesized and used, including cel-
lulose phthalate sodium (CPhCOONa), carboxymethylcellulose
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sodium (CMC) and cellulose 1-cyanomethylimidazolium chloride (Cell-
ImCNCl). Via using the aggregation-regulated strategy, three series of
ultralong RTP materials with multi-mode emission were fabricated
successfully (Figs. S9–S11).

Adjustment of phosphorescence performance
We also used other inorganic salts, such as CaSO4 and BaCO3, to
replace CaCO3. The obtained RTP materials exhibited similar phos-
phorescence performance. When the CBtCOONa content was 4%,
CBtCOONa/CaSO4 and CBtCOONa/BaCO3 emitted blue phosphores-
cence at 310 nm excitation, and no phosphorescence at 365 nm exci-
tation (Fig. 4a). The phosphorescence emission peak changed slightly
as the excitation wavelength increased (Fig. 4b, d). When the
CBtCOONa content was increased to 50%, CBtCOONa/CaSO4 and

CBtCOONa/BaCO3 emitted blue phosphorescence at 310 nm excita-
tion, and green phosphorescence at 365 nm excitation (Fig. 4a). The
phosphorescence emission was obviously excitation-dependent
(Fig. 4c, e).

Notably, CBtCOONa exhibited visible-light excitation phosphor-
escence (Figs. S12 and S13), which can be attributed to the aggregate
state of CBtCOONa. As the number of the aggregates increased, the
visible-light excitation phosphorescence became increasingly strong
(Fig. S14). We further exchanged the cation to prepare a series of cel-
lulose trimellitates with different metal cations (CBtCOOM). The
resultant cellulose trimellitates, i.e., CBtCOOAl, CBtCOOZn,
CBtCOOIn, and CBtCOOLa exhibited excellent phosphorescence
properties. They emitted blue fluorescence and bright green phos-
phorescence at 365 nm excitation. The green phosphorescence lasted
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Fig. 4 | RTP properties of different samples. a Photographs of CBtCOONa/CaSO4

and CBtCOONa/BaCO3 with different CBtCOONa contents under irradiation with
lamps and with the lamps off; b Phosphorescent spectra of CBtCOONa/CaSO4 with
4% CBtCOONa; c Phosphorescent spectra of CBtCOONa/CaSO4 with 50%
CBtCOONa; d Phosphorescent spectra of CBtCOONa/BaCO3 with 4% CBtCOONa;

e Phosphorescent spectra of CBtCOONa/BaCO3 with 50% CBtCOONa;
f Photographs of CBtCOOAl, CBtCOOZn, CBtCOOIn, and CBtCOOLa under irra-
diation with lamps andwith the lamps off; g Phosphorescent spectra of CBtCOOAl;
h Phosphorescent spectra of CBtCOOZn; i Phosphorescent spectra of CBtCOOIn;
j Phosphorescent spectra of CBtCOOLa.
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up to 3.5 s, as observed by the naked eye (Fig. 4f and S15–S17). At
visible-light excitation, they emitted phosphorescence. The phos-
phorescence was light green for CBtCOOAl and CBtCOOZn. The
phosphorescence was light yellow for CBtCOOIn and CBtCOOLa
(Fig. 4f and S17). The phosphorescence lasted up to 1 s. At 400nm
excitation, CBtCOOAl and CBtCOOZn had broad phosphorescence
emission peaks at 510 nm, while the phosphorescence peaks of
CBtCOOIn and CBtCOOLa were red-shifted (Fig. 4g–j), because the
larger In3+ and La3+ compared to Al3+ and Zn2+ formed larger aggregates
with CBtCOO− chains via electrostatic interactions42–44. The phos-
phorescence emission of CBtCOOAl, CBtCOOZn, CBtCOOIn and
CBtCOOLa had a certain degree of excitation wavelength dependence

(Fig. 4g–j). Therefore, via changing the cation species, the aggregation
state can be adjusted to improve the phosphorescenceperformance at
365–420 nm excitation.

Application of RTP materials
Based on the excellent processability and formability of cellulose
derivatives (Fig. S18), the above RTP materials can be used as water-
borne inks to directly prepare various phosphorescence patterns by
inkjet printing and screen printing (Fig. 5). In order to demonstrate
this, we selected CBtCOONa/CaCO3 with 4% CBtCOONa, CBtCOONa,
and CBtCOONa/CaCO3 with 50% CBtCOONa as the blue phosphores-
cence ink, green phosphorescent ink, and excitation-dependence
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Fig. 5 | Application of RTPmaterials in anticounterfeiting and information encryption. a Applications of phosphorescent inks; b Photographs of the phosphorescent
patterns; c Photographs of the phosphorescent patterns with three inks; d Anticounterfeiting pattern and code with three inks.
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phosphorescent ink, respectively (Fig. 5a). When these three inks were
used individually, patterns with different phosphorescence colors and
lifetimes were observed (Fig. 5b). When all the three inks were used in
the same pattern, complex phosphorescent patterns were fabricated
(Fig. 5c). At different excitation wavelengths, they would exhibit dif-
ferent phosphorescent pictures. For example, in the tree pattern, only
four leaves on two sides of the trunk appear in blue color at 310 nm
excitation. At 365 nm excitation, the trunk, top leaf, and two leaves on
the left side appear in green color. Obviously, these RTPmaterials can
exhibit a complicated variation using only a simple pattern, making
them a fabulous system for sophisticated anticounterfeiting and
information encryption. We made the code with the aforementioned
three inks (Fig. 5d and S19). The resultant pattern shows a blue colored
number 513 at 310 nm excitation, and changes to a green colored
number 281 at 365 nm excitation. In addition, CBtCOONa film shows
reversible water/heating-responsive RTP effect (Fig. S20), because of
the destructive effect of water to the intermolecular interactions16.
More significantly, the raw materials used to prepare multimode RTP
materials are natural materials that are completely biodegradable,
nontoxic and low-cost. Thus, theseRTP inks do not cause environment
pollution even when they are discarded in the environment after use.

Discussion
A principle, the aggregation-regulated phosphorescence, was
demonstrated to develop high-performance RTP materials. Accord-
ingly, we developed eco-friendly ultralong RTP materials with multi-
mode emission, adjustable excitation-dependence and visible-light
excitation, via using a single biopolymer component, cellulose tri-
mellitate. Three RTP materials with different emission modes were
fabricated: blue, green, and color-tunable RTP materials with a strong
excitation-dependence. In addition, the aggregated cellulose trimelli-
tates exhibited appealing visible-light excitation phosphorescence.
Notably, the raw materials used to prepare the multimode RTP mate-
rials were natural and entirely environmentally-friendly. Therefore, the
resultant multi-mode RTP materials were used as advanced anti-
counterfeiting inks to successfully prepare various sustainable com-
plex phosphorescence patterns and information codes successfully,
indicating a huge potential in anti-counterfeiting, information
encryption, intelligent labels, etc. This work provides a facile and
general strategy to prepare proof-of-concept RTP materials and dee-
pens the understanding of the luminescence mechanism and color
regulation of polymer materials.

Methods
Synthesis of cellulose trimellitate (CBtCOOH)
Four grams (24.69mmol) of cellulose was completely dissolved in 76 g
of the ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) at
80 °C. Then, 4-dimethylaminopyridine (DMAP) (300mg, 2.45mmol)
and trimellitic anhydride (9.48–14.22 g, 49.38–74.07mmol) were
added into the cellulose/AmimCl solution at 80 °C for 12 h. Thereafter,
ethanol was added into the reaction system to remove unreacted tri-
mellitic anhydride. The reaction solution was precipitated in ethanol
(400mL) with 1mLof concentrated hydrochloric acid. The precipitate
was filtered and washed thrice with an ethanol solution and dried
under vacuum for 24 h. The DS of obtained CBtCOOH was calculated
from 1H-NMR spectrum. 1H-NMR (400MHz, DMSO-d6): δ 7.50–8.50
(m, 3H), 2.70–5.50 (m, 6H); IR (Nujol): 3400 cm−1 (O-H), 1703 cm−1

(C =O), 1612 cm−1 (C =C), 1494 cm−1 (C = C), 754 cm−1 (=C–H).

Synthesis of sodium cellulose trimellitate (CBtCOONa)
Two grams (DS =0.54, 7.35mmol) of CBtCOOHwas dissolved in 50mL
of double-distilled water. Then, NaHCO3 (1.26 g, 15.00mmol) was
added to the solution. After stirring for 12 h, the solution was cen-
trifuged. The supernatantswere transferred to a dialysis bag. Ultrapure

water was used as the dialysate. The final product was obtained via
freeze-drying.

Synthesis of RTP materials with different CBtCOONa contents
CBtCOONa (DS = 0.54) aqueous solution with different concentra-
tions (0.2, 2.0, 20.0, 60.0 and 80.0mg/mL), Na2CO3 (1.0 mmol/
mL), CaCl2 (1.0mmol/mL), Na2SO4 (1.0mmol/mL) and BaCl2
(1.0mmol/mL) were prepared. Considering CBtCOONa/CaCO3 as
an example.

CBtCOONa/CaCO3

Four sample vials were prepared. CBtCOONa aqueous solution
(2.0mL, 0.2–80.0mg/mL) was added into each vial. Then, the Na2CO3

(0.5–1.6mL, 1.0mmol/mL) was added into each vial dropwise. After
stirring for 10min, the CaCl2 (0.5–1.6mL, 1.0mmol/mL) was added
into each vial dropwise. After a strong stirring for 30min, the mixed
suspended solution was transferred to a dialysis bag. Ultrapure water
was used as the dialysate. After a dialysis for 12 h, the solution in the
dialysis bag was dried at 80 °C with stirring. The final products were
dried under vacuum at 60 °C for 24 h. The contents of cellulose deri-
vatives were calculated according to the mass of dissolved CBtCOONa
and CaCO3 produced from Na2CO3 and CaCl2.

Synthesis of CBtCOOM
Four sample vials were prepared. Then, 0.31 g of CBtCOOH (DS =0.54,
1.00mmol) and 10mL of ultrapure water were put into each vial. AlCl3
(67mg, 0.50mmol), ZnCl2 (109mg, 0.80mmol), InCl3 (111mg,
0.50mmol) and LaCl3 (123mg, 0.50mmol) were added into each vial,
respectively. After stirring for 12 h, the white precipitates were cen-
trifuged and washed with water thrice. The final products were dried
under vacuum at 60 °C for 24 h to obtain CBtCOOM.

Synthesis of BtCOONa
Trimellitic anhydride (1.92 g, 10mmol) and NaOH (1.20 g, 30mmol)
were added into 20mL distilled water. After stirring for 30min, the
transparent solution was dried under vacuum at 60 °C for 24 h to
obtain BtCOONa.

Preparation of RTP patterns
The CBtCOONa/CaCO3 with 4% CBtCOONa aqueous suspension was
used as the blue phosphorescence ink. The CBtCOONa aqueous solu-
tion with the CBtCOONa concentration of 3wt% was used as the green
phosphorescent ink. The CBtCOONa/CaCO3 with 50% CBtCOONa
aqueous suspension was used as the excitation-dependence phos-
phorescent ink. Those inks were directly used to prepare patterns by
inkjet printing and screen printing. For the complex phosphorescence
patterns, different areaswereprintedwithdifferent kinds of inks (Fig. 5
and S19). Blue area represents CBtCOONa/CaCO3 with 4% CBtCOONa
ink, green area represents CBtCOONa ink, blue and green area repre-
sents CBtCOONa/CaCO3 with 50% CBtCOONa ink.

Data availability
All relevant data are included in this Article and its Supplementary
Information files.
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