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Tunably strained metallacycles enable
modular differentiation of aza-arene
C–H bonds

LonglongXi1,2,MinyanWang 1,2, YongLiang1, YueZhao 1&Zhuangzhi Shi 1

The precise activation of C–H bonds will eventually provide chemists with
transformative methods to access complex molecular architectures. Current
approaches to selective C–H activation relying on directing groups are effec-
tive for the generation of five-membered, six-membered and even larger ring
metallacycles but show narrow applicability to generate three- and four-
membered rings bearing high ring strain. Furthermore, the identification of
distinct small intermediates remains unsolved. Here, we developed a strategy
to control the size of strained metallacycles in the rhodium-catalysed C−H
activation of aza-arenes and applied this discovery to tunably incorporate the
alkynes into their azine and benzene skeletons. By merging the rhodium cat-
alyst with a bipyridine-type ligand, a three-membered metallacycle was
obtained in the catalytic cycle, while utilizing an NHC ligand favours the gen-
eration of the four-memberedmetallacycle. The generality of this method was
demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quino-
lone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine.
Mechanistic studies revealed the origin of the ligand-controlled regiodiver-
gence in the strained metallacycles.

Due to the near universal advantage of C −H bonds in organic
molecules, the C −H activation strategy provides an opportunity to
functionalize any carbon centre in an atom-economical and
streamlined way1–10. Because organic molecules typically contain
multiple C −H bonds with comparable strengths and steric envir-
onments, regiocontrol has been a long-standing challenge within
this type of chemistry11. The differentiation of C −H bonds is tradi-
tionally dominated by steric and electronic effects12, and there have
been considerable efforts to utilize directing groups in less con-
strained molecules (Fig. 1a)13–17. Directed C −H activation is ther-
modynamically favoured through conformationally rigid five-, six-,
and seven-membered metallacyclic intermediates. Several elegant
methods have been exploited to achieve the meta- and para-selec-
tive C −H activation of arenes through chelation-assisted macro-
cyclic complexes by directing groups18–22. Despite these advances,

the generation of highly strained metallacycles in directed C −H
activation remains much desired but more challenging.

Substantial progress has been made regarding the C–H activa-
tion of aliphatic amines through strained metallacycles, allowing for
site-selective functionalization at the α or β position of the amino
group in one catalytic step23,24. Early transition metals, including
titanium, tantalum and zirconium, enable the hydroaminomethyla-
tion of alkenes with unprotected N-heterocycles and amines
through metallaaziridine intermediates, affording either linear or
branched products (Fig. 1b)25–30. A series of C–H functionalizations
of aliphatic amines have been developed by palladium catalysis,
showing β-selectivity through a four-membered ring cyclopallada-
tion pathway (Fig. 1c)31–33. Compared to small aliphatic metalla-
cycles, the formation of benzo-fused analogues comes with larger
ring strain. We questioned whether such metallacycles could be
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generated through chelation with inherent nitrogen atoms in
aza-arenes. Furthermore, switching the ring size in a unifying system
to differentiate of two C–H bonds would likely have a broad impact
on the continued advancement of this field.

As a representative example of bicyclic aza-arenes, quinoline
contains seven C −Hbonds in the pyridine (C2 to C4) and benzene (C5
to C8) cores that can be functionalized34,35. Structural modification of
the pyridine ring has been achieved by taking advantage of strong
electronic and steric bias36–43. An indirect route to access the benzene
core involves the oxidation of quinoline to its N-oxide, followed by
oxygen-directed C −H functionalization and subsequent reduction to
the desired products44–46. To provide more flexibility to access the
benzene core, metal clusters and dimers such as Os3(CO)10

47,
Ru3(CO)12

48, and Rh2(OAc)4
49 have been employed in C −H activation

through bridged metal-metal bonds. Enabled by bimetallic palladium
catalysis, Yu and coworkers also designed a class of remote-directing
template for differentiationofC −Hbonds (C5-C7) at the benzene core
of quinolines50–53.

Here, we report the successful realization of a strategy for
regiodivergent C–H activation of aza-arenes enabled by tunably
strainedmetallacycles undermonomeric rhodium catalysts (Fig. 1d).
The precise differentiation of two C–H bonds proceeds through
a switchable three- or four-membered-ring cyclometallation path-
way by just tuning the structure of the ligands. Incorporation
of alkyne motifs into aza-arenes are valuable transformations to
build C–C bonds and provide a versatile handle for further
modifications.

Results
Reaction design
As shown in Fig. 2, we first evaluated the reaction of
3-methylquinoline (1a) with (bromoethynyl)triisopropylsilane (2a).
After treatment of [Rh(cod)Cl]2 (5 mol%) with NaOtBu (2.5 equiv) at
120 °C under an Ar atmosphere in toluene, the desired product 3aa
was generated in trace amounts after 12 h (entry 1). After screening a
variety of ligands for optimization (for the details of the reaction
optimization, see the Supplementary Information), the optimized
conditions for C2-alkynylation were determined, using 10mol%
dtbpy as a ligand. Under these conditions, product 3aawas afforded
in 84% yield, showing 99/1 r.r. of the C2 to C8 positions (entry 2).
Interestingly, employing NHC ligands54 resulted in a preference for
C8 selectivity, and the use of IMes·HCl led to the formation of pro-
duct 4aa in 70% yield (C8/C2 = 91/9 r.r.) (entry 3). Employment of
[Rh(cod)Cl]2 with the optimal ligands resulted in the production
of two rhodium complexes, Rh(cod)(dtbpy)Cl and Rh(cod)(IMes)Cl,
both of which were unambiguously assigned by X-ray crystal-
lography. Utilizing the pregenerated Rh(cod)(dtbpy)Cl as the
catalyst showed a much lower reactivity than the in situ generation
of the catalyst (entry 4). In contrast, the use of Rh(cod)(IMes)Cl as
the catalyst improved the generation of 4aa to 85% yield with 92/8
r.r. (entry 5).

Scope of the methodology
The scope of the regiodivergent C–H alkynylation was then exam-
ined (Fig. 3). In general, a series of commercially available quinolines
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with varied substituents reacted smoothly with bromoalkyne 2a,
yielding two types of alkynylation products under reaction condi-
tions A and B. The reaction of quinoline (1b) with bromoalkyne 2a
underwent C2- and C8-selective C–H alkynylation, providing pro-
ducts 3ba (98/2 r.r.) and 4ba (89/11 r.r.) with excellent regioselec-
tivities. The quinolines that incorporated electron-donating groups,
including phenyl (1c), ether (1d-e), silyloxy (1 f), and amino (1g-h)
groups, at different positions were readily tolerated with bro-
moalkyne 2a to produce the corresponding products 3ca-ha and
4ca-ha with excellent regioselectivity under both reaction condi-
tions. Halide-containing quinolines 1i-p bearing F, Cl, Br, and even I
motifs were compatible with the generation of both the C2 and C8
alkynylation products. Among them, substrates 1k-l containing
substituents at the C7 position did not sterically block the reaction
at the C8 position. Quinoline 1q bearing a CF3 group was also com-
patible with both sets of reaction conditions, affording 3qa and 4qa
in 87% and 64% yields, respectively. The use of 6-cyanoquinoline (1r)
under condition A became too sluggish to provide product 3ra, but
this substrate did not interfere with productive C–H alkynylation at
the C8 position. Quinoline 1 s, containing a phenylethynyl motif at
the C3 position inhibited the reactivity at the C2 position but
enabled C8-selective C–H alkynylation to generate product 4sa. As a
bidentate nitrogen ligand, 2,2′-biquinoline (1t) could also engage
under reaction conditions B to deliver the expected products 4ta in
a good yield. We further explored the scope of alkynyl bromides
with quinoline 1a. Compared to reagent 2a, the reaction of TIPS-
protected ethynyl chloride (2a’) showed much lower reactivity in
both reaction systems. Alkynylation with propargyl silyl ethers 2b-c
afforded the desired products in significantly lower yields, but
maintained the excellent regioselectivity. Alkynyl bromides 2d with
a less sterically hindered phenyl groupwere problematic under both
reaction conditions, and the corresponding products 3ad and 4ad
were observed in only trace amounts. The poor outcomes are
attributed to the lower stability of these bromoalkynes without TIPs
group under the reaction conditions55–59.

Other aza-arenes commonly featured in bioactive molecules
and functional materials were next targeted. Benzo[f]quinoline (5a)
was first employed in the catalytic systems and gave desired pro-
ducts 6aa and 7aa at the C3 and C5 positions, respectively (Fig. 4a).

Phenanthridine (5b), the key aromatic unit of many DNA stains,
underwent regiodivergent C–H alkynylation at the C6 and C4 posi-
tions in high yields with excellent selectivities (Fig. 4b). Treatment of
4,7-phenanthroline (5c) containing two azine motifs under reaction
conditions A afforded a promising mixture of mono- and di-
substituted products 6ca and

6ca’ with a high regioselectivity (Fig. 4c). Similarly, the two pro-
ducts 7ca and 7ca’ were also generated under reaction conditions B
with excellent regioselectivity. Notably, the products with one or two
alkynyl motifs could be separated by column chromatography on
silica. When 1,7-phenanthroline (5d) was treated under reaction con-
ditions A, C–H alkynylation occurred at the C8 position. However, an
unusual C10-functionalized product 7da’was obtained under reaction
conditions B, indicating that C–H metalation process preferred to
undergo five-membered metallacyclic intermediate (Fig. 4d). Finally,
acridine (5e), bearing two C–H bonds (C4 and C5) for activation, gave
only the monosubstituted product 7ea in 85% yield with complete
selectivity (Fig. 4e).

Synthetic applications
To showcase the synthetic utility of this discovery, gram-scale reac-
tions of quinolone 1j were first performed under both reaction con-
ditions, and products 3ja and 4ja were isolated in 96% and 85% yields
without erosion of the regioselectivity (Fig. 5a). Further derivatizations
of 3ja were achieved with synthetically useful intermediate 8, which
was obtained in 70% yield by the TBAF-mediated removal of the TIPS
group. For instance, hydrogenation of 8 under 1 atm of hydrogen with
a catalytic amount of Pd/BaCO3 yielded alkylation product 9a in high
yield. The use of the Wilkinson catalyst for hydrogenation allowed for
the chemoselective synthesis of olefin9b. The terminal triple bond in8
could be effectively transformed into an internal bond to provide
product 9c in nearly quantitative conversion through the Sonogashira
reaction. Ag catalysis of the reaction of 8 with NBS formed bromina-
tion product 9d in excellent yield. In addition, alkyne 8 was easily
converted to triazole 9e with BnN3 via a copper-catalysed click reac-
tion. Based on diverse alkyne conversion, our strategy provides a
simple and distinct way to construct a number of pharmaceutically
relevant compounds andmaterials. The reaction of quinoline 10 under
Conditions B furnished C2-alkynylation, and further removal of the
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X-ray structure of Rh(cod)(IMes)Cl

toluene, 120 oC, 12 h, Ar

N

H

Me

TIPS

(2.5 equiv)

N H

Me

TIPS

Br TIPS

2a

3aa

4aa

[Rh(cod)Cl]2 (5 mol%)

Entry Deviation Yield of 3aa
(C2/C8)

Yield of 4aa
(C8/C2)

1

3

4

5

2

none

addition of dtbpy (10 mol%)

addition of IMes•HCl (10 mol%)

using (10 mol%) as catalyst

using Rh(cod)(IMes)Cl (10 mol%) as catalyst

84% (99/1 r.r.)

70% (91/9 r.r.)-

-

52% (99/1 r.r.) -

85% (92/8 r.r.)-

< 5% (99/1 r.r.)

N H

H

Me

1a

-

Fig. 2 | Effect of the ligandsonreactivity and regioselectivity.The regioselectivity ratio (r.r.) wasdeterminedbyGC‒MSanalysis of the reactionmixtures. dtbpy= 4,4’-di-
tert-butyl-2,2’-bipyridine. IMes =1,3-bis (2,4,6-trimethylphenyl)−1,3-dihydro-2H-imidazol-2-ylidene.

Article https://doi.org/10.1038/s41467-023-39753-2

Nature Communications |         (2023) 14:3986 3



TIPS group provided Compound 11 in good yield, acting as a core
framework for the tautomerase inhibitor (Fig. 5b). As a key inter-
mediate for the synthesis of montelukast, Compound 13 was rapidly
prepared from quinoline 12 by C2-selective C–H alkynylation with
bromoalkyne 2a, further removal of the TIPS group and reductionwith
theWilkinson catalyst under 1 atmof hydrogen (Fig. 5c). Compound 15
is a key intermediate in the synthesis of BN-dibenzo[a,o]picene, and
3,8-dibromo-4,7-phenanthroline (14) must be pregenerated through
multistep synthesis from 5c to access this molecule by Sonogashira
coupling (Fig. 5d)60. Notably, thismolecule canbeprepared in anatom-
and step-economic way, further indicating the value of the developed
method.

Mechanistic study
In order to gain insights into the reaction pathways and origin of
positional selectivity, density functional theory (DFT) calculations
were performed using the reaction of quinoline 1b and alkynyl bro-
mide 2a as the model (Fig. 6). The reaction initially commences by the
formation of 1b and the ligand bound Rh(I) intermediate INT1A, which
is set as the relative zero point of the Gibbs free energy. The previous
reported Rh(I)-involved C–H activation by oxidative additionmight be
a reversible process with an activation energy barrier of 26.2 kcalmol−1

(for the details of the computational data, see the Supplementary
Information)36–38. Comparably, INT1Amore favorably coordinateswith
2a to generate INT2A, which then undergoes C–Br bond oxidative
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addition to affordRh(III) species INT3A. In the caseof thedtbpy ligand,
the C–Br oxidative addition through transition state TS3A-dtbpy was
calculated tohave anactivation free energy of 27.6 kcalmol−1. This step
is the rate-determining step in the catalytic cycle. The resulting inter-
mediate INT3A-dtbpy occurs C2–H metalation through a tbutoxide-
assisted deprotonation with a 25.8 kcalmol−1 energy barrier61–66. Fur-
ther reductive elimination and ligand exchange yield the desired
products with high selectivity and regenerates INT1A to complete
the catalytic cycle. For the IMes ligand, the C–Br bond oxidative
addition to the Rh(I) center from INT2A-IMes has an activation
energy of 26.7 kcalmol−1, which shows a comparable energy barrier
with the subsequent C–H activation (26.1 kcalmol−1). In the following
C −H metalation, IMes ligand favors C8 selective transition state
TS4B-IMes.

As shown in Fig. 7, extensive computational studies on different
site selectivity were also carried out. The molecular electrostatic
potential map was used to analysis the possible nucleophilic sites of
quinoline 1b (Fig. 7a). Quantitatively, the natural population analysis

of 1a shows that C2 has an atomic charge of −0.069e, which is less
charged than C8 (−0.192e), illustrating C2 −H is relative electron
deficient and more prone to C −H metallization with electron-rich
rhodium catalyst (Supplementary Data 1). Inspecting computed
electrostatic potential maps of Rh−dtbpy and Rh−IMes, the dtbpy
ligand exhibits more electron-donating ability than IMes, allowing
INT3A-dtbpy to preferentially react with the C2 position of 1b. The
energy barrier of the rhodacycle transition state TS4A-dtbpy that
delivers the three-membered intermediate INT4A-dtbpy is
8.2 kcal mol−1 lower than that of the competing transition state
TS4B-dtbpy that leads to the INT4B-dtbpy (Fig. 7b). This energy
difference is consistent with the experimentally excellent site
selectivity of 3ba. Without the nitrogen chelation, transition states
TS4C-dtbpy and TS4D-dtbpy have activation barriers of 42.0 and
43.9 kcal mol−1, respectively. Such high computed energies are
mainly ascribed to the intrinsic inertness of the C −Hbonds at the C2
and C8 position of quinoline, indirectly illustrating the importance
of the directing group. The directed C–Hmetalation transition state
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through TS4B-IMes has an activation Gibbs free energy of
26.1 kcal mol−1, which is 17.3 kcal mol−1 lower than the same process
through TS4A-IMes (26.1 and 43.4 kcal mol−1) and 11.2 kcal mol−1

lower than the original nucleophilic attack at quinoline C2 position
through TS4C-IMes (26.1 and 37.3 kcal mol−1). In addition, the steric
maps around the Rh(III) centre with IMes ligandwere analyzed based
on the SambVca 2.1 tool (Fig. 7c)65,66. All transition states adopt tri-
gonal bipyramidal geometries, where Br atom and OtBu group
occupy the two vertex positions and the IMes ligand in the NW
quadrant of the steric map extends to the NE and SW quadrants. In
disfavored transition state TS4A-IMes, bicyclo 3-4 fused rhodacycle
enables the Rh−C bond formation to occur in the SW quadrant,
which suffers from significant repulsion with Mes group of the car-
bene ligand. The favored transition state TS4B-IMes is a bicyclo 4-4

fused rhodacycle, the expansion of ring size makes the quinoline
backbone more horizontally extended and reduce the steric hin-
drance between quinoline and TIPS group, thereby effectively low-
ering the energy barrier of TS4B-IMes. In TS4C-IMes and TS4D-
IMes, Rh−N bond distances are elongated to 2.85 and 3.57 Å,
respectively, indicating nitrogen atom in 1b is not anchored around
the Rh(III) centre. Taken together, the electronic and steric effects
account for the tunability of the strained metallacycles, achieving
different positional selectivity67,68.

Discussion
In conclusion, the present results demonstrate an important initial
advance in C–H activation through a benzo-fused three- or four-
membered ring cyclometallation pathway in a switchablemode. This
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chemistry provides a unique tool for the functionalization of high-
value aza-arenes with divergent site selectivities controlled by
ligands. The switch of the positional selectivity through strained
metallacycles fills a major methodological gap in directed C–H
activation. We anticipate that other transformations based on this
strategy could be exploited for molecular editing of aza-arene C–H
bonds, providing inspiration for the design of new tactics to pro-
duce complex bioactive molecules, natural products and functional
materials.

Methods
Due to slight variations in experimental protocols for all the processes
we present, we refer the reader to the Supplementary Methods for
experimental details.

Data availability
Crystallographic data for the structures of Rh(cod)(dtbpy)Cl,
Rh(cod)(IMes)Cl, 3ia, 7ca’ and 7da’ reported in this paper have been
deposited at the Cambridge Crystallographic Data Centre under
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deposition numbers CCDC 2192163, 2192164, 2192165, 2192166 and
2192167 (Supplementary Data 2). Copies of the data can be obtained
free of charge via www.ccdc.cam.ac.uk/getstructures. All other data
supporting the findings of the study, including experimental pro-
cedures and compound characterization, are available within the
paper and its Supplementary Information, or from the correspond-
ing author upon reasonable request.
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