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nnSVG for the scalable identification of
spatially variable genes using nearest-
neighbor Gaussian processes

Lukas M. Weber 1, Arkajyoti Saha2, Abhirup Datta 1, Kasper D. Hansen 1 &
Stephanie C. Hicks 1

Feature selection to identify spatially variable genes or other biologically
informative genes is a key step during analyses of spatially-resolved tran-
scriptomics data. Here, we propose nnSVG, a scalable approach to identify
spatially variable genes based on nearest-neighbor Gaussian processes. Our
method (i) identifies genes that vary in expression continuously across the
entire tissue or within a priori defined spatial domains, (ii) uses gene-specific
estimates of length scale parameters within the Gaussian process models, and
(iii) scales linearly with the number of spatial locations. We demonstrate the
performance of our method using experimental data from several technolo-
gical platforms and simulations. A software implementation is available at
https://bioconductor.org/packages/nnSVG.

Spatially-resolved transcriptomics (SRT) refers to recently developed
technologies that measure gene expression in either the full tran-
scriptome or up to thousands of genes at near- or sub-cellular resolu-
tion along with spatial coordinates of the measurements, either based
on (i) tagging messenger RNA (mRNA) molecules with spatial barcodes
followed by sequencing1–4 or (ii) fluorescence imaging-based in situ
transcriptomics techniques where mRNAmolecules are detected along
with their spatial coordinates using sequential rounds of fluorescent
barcoding5,6. These technologies have been used to study the spatial
landscape of gene expression in a variety of biological systems,
including the brain1,7,8, cancer9, and embryonic development10.

However, these new platforms also bring new computational
challenges11. One common analysis task is to identify genes that vary in
expression across a tissue, defined as spatially variable genes by
Svensson et al.12 (SVGs). These SVGs can then be further investigated
individually aspotentialmarkersof biological processes, or used as the
input for downstream analyses such as spatially-aware unsupervised
clustering8,13,14 or registering the spatial locations of single-cell RNA
sequencing (scRNA-seq) data11,15,16.

To identify SVGs, one approach is to ignore the spatial coordi-
nates and applymethods that rely only on the gene expression, such as
feature selection methods used in the analysis of scRNA-seq data,
including highly variable genes (HVGs)17–19 or deviance residuals from

binomial or Poisson models20. A second approach is to use both the
gene expression and spatial coordinates to identify genes that vary in
expression in a continuous manner, either across the entire tissue or
within a priori defined spatial domains, for example, using morphol-
ogy from histology images, representing a subset of the tissue. Here,
we refer to this second set of approaches with continuous spatial
variation asmethods to detect SVGs. Some examples of thesemethods
include (i) standard spatial statistics measures (Moran’s I statistic21,
Geary’s C statistic22) to rank genes by their spatial autocorrelation, (ii)
marked point processes (trendsceek23), (iii) Gaussian process (GP)
regression (SpatialDE12, SpatialDE224), (iv) generalized linear spatial
models with either an overdispersed Poisson or Gaussian distribution
(SPARK25) or a zero-inflated negative binomial distribution (BOOST-
GP26), or (v) nonparametric covariance tests (SPARK-X27). These
methodsmake tradeoffs, for example, flexibility in fitting gene-specific
parameters (iii, iv) versus improved computational efficiency (v).
There are also toolboxes that incorporate some of these methods, for
example, MERINGUE28, Giotto29, within a larger end-to-end analysis
framework.

A third approach is to detect changes in the average expression at
all spatial coordinateswithin one spatial domain relative to the average
expression at all spatial coordinates in other domains. We refer to
these approaches as methods to detect spatial domain marker genes.
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The spatial domains can be defined a priori, for example using mor-
phology from histology images, or alternatively using an unsupervised
clustering algorithm. However, the primary difference between
methods to identify SVGs and these approaches are the type of var-
iation in expression. In contrast to methods searching for continuous
variation across the tissue (SVGs), thesemethods search for changes in
the mean expression across spatial coordinates within one domain
compared to other domains. This is in similar spirit to detecting mar-
ker genes between discrete cell populations in scRNA-seq data. An
example of this approach is SpaGCN14, which first uses the spatial
coordinates to identify domains in an unsupervised manner and then
performs domain-guided differential expression analysis14 with a Wil-
coxon rank-sum test to identify mean-level changes between the spa-
tial domains. Here, we are interested in methods to identify SVGs, not
spatial domain marker genes. Therefore, we focus on methods to
identify SVGs in this work.

A key distinguishing characteristic among recent methods to
identify SVGs is computational scalability. In particular, SPARK-X scales
linearly with the number of spatial locations27, while other methods
scale cubically (e.g., SpatialDE12 and SPARK25) or quadratically
(SpatialDE224). This is relevant as datasets from the latest SRT plat-
forms such as 10x Genomics Visium2 and Slide-seqV24 contain thou-
sands of spatial locations per tissue sample, with future development
moving towards even higher resolution. In addition, a limited set of
existing methods, such as SPARK-X, offer the ability to search for
continuous variation in expression within a priori defined spatial
domains, which can be incorporated as known covariates in statistical
models fit for each gene27. However, SPARK-X uses the same set of
kernels and length scale parameters for all genes, which reduces flex-
ibility to identify SVGs fromdifferent biological processes with varying
spatial ranges in expression within the same tissue sample. In this
work, we aimed to address this limitation and develop a computa-
tionally scalable approach to identify SVGs that fits a flexible length
scale parameter per gene and also allows taking spatial domains into
account.

Here, we describe nnSVG, a method to identify SVGs, which is
based on statistical advances in computationally scalable parameter
estimation in spatial covariance functions in GPs using nearest-
neighbor Gaussian process (NNGP) models30–32. First, we introduce
an overview of themethodological framework and thenwe compare
our method to other methods in several SRT datasets including
from the 10x Genomics Visium2, Spatial Transcriptomics1, Slide-
seqV24, and seqFISH33 platforms. Our method can search for SVGs
across an entire tissue or within a priori defined spatial domains. In
addition, unlike existing scalable methods, our approach estimates
a gene-specific length scale parameter within the spatial covariance
function in the GPs, enabling flexibility in the types of SVGs iden-
tified. We demonstrate that our method scales linearly with the
number of spatial locations, ensuring the method can be applied to
datasets with thousands or more spatial locations. Our methodol-
ogy is implemented in the nnSVG R package within the Bio-
conductor framework34 and can be integrated into workflows using
established Bioconductor infrastructure for SRT and scRNA-seq
data17,35.

Results
Overview of the nnSVG model and methodological framework
The nnSVG framework fits a nearest-neighbor Gaussian process
(NNGP) model30,31 to the preprocessed expression values for each
gene:

y∼NðXβ,eΣðθ,τ2ÞÞ ð1Þ

Here, y = (y1,…, yN) represents the normalized and transformed
expression values of gene g (subscript g = 1,…,G omitted for

simplicity) at the set of N spatial locations s = (s1,…, sN), which we
assume to be in two dimensions, butmay in principle be generalized.
The eΣðθ,τ2Þ term represents the NNGP covariance matrix, which
offers a scalable (linear-time and storage) approximation to the
covariance matrix Σ(θ, τ2) = C(θ) + τ2I from a full GP model, which
scales cubically in the number of spatial locations. The GP covariance
matrix C(θ) = (Cij(θ)) (also referred to as a kernel) captures the spa-
tially correlated variation and is parameterized by a vector of para-
meters θ. We assume an exponential covariance function, based on
the observation that the widely used squared exponential covariance
function (e.g., used in SpatialDE12) decays too rapidly with distance in
the context of SRT data36. The exponential covariance function is
defined as:

CijðθÞ= σ2 exp
�∣∣si � sj∣∣

l

� �
ð2Þ

with covariance parameters θ = (σ2, l), and where ∣∣si − sj∣∣ represents
the Euclidean distance between two spatial locations si and sj. Here,
σ2 is the spatial component of variance, and l is referred to as the
length scale (or bandwidth) parameter, which controls the strength
of decay of correlationwith distance. The parameter τ2 (referred to as
the nugget) represents the additional nonspatial component of
variance.

The design matrix X[N×d] can include up to d − 1 covariates
representing known spatial domains or other information at each
spatial location. Thedefault isX = 1[N×1], representing an intercept,with
β accounting for themean expression level.We fit a separatemodel for
each gene and obtain maximum likelihood estimates for the para-
meters θ = (σ2, l) and τ2 using the fast optimization algorithms for
NNGP models implemented in the BRISC R package32. The main
parameter of interest is σ2, on which we perform a likelihood ratio (LR)
test comparing the fitted model against a classical linear model that
assumes σ2 = 0 and hence does not account for the spatial correlation
in expression. Finally, we rank genes by the estimated LR statistic
values and calculate multiple-testing adjusted approximate p-values
for statistical significance.We provide a ranked list of genes, which can
be used to select either (i) an arbitrary number of top-ranked genes for
further investigation or to use as input for downstream analyses, or (ii)
a set of statistically significant SVGs based on p-values adjusted for
false discoveries. In addition, we calculate an effect size defined as
propSV = σ2/(σ2 + τ2), which is the proportion of spatial variance (σ2)
from the total variance (σ2 + τ2), as previously defined by Svensson
et al.12.

Key innovations of nnSVG
The key innovations of nnSVG compared to existing approaches are
as follows. First, since we use NNGPs to fit the models for each gene,
the computational complexity and runtime of nnSVG scale linearly
with the number of spatial locations while retaining a large pro-
portion of the underlying information30,31. SPARK-X also achieves
linear scalability27, while earlier methods (e.g., SpatialDE12, SPARK25)
scale cubically with the number of spatial locations and are thus
infeasible to apply to large datasets. Second, we demonstrate that
because nnSVG estimates a gene-specific length scale parameter
within the models, it enables the identification of SVGs associated
with distinct biological processes with varying spatial ranges in
expression within the same tissue sample. This cannot be achieved
with methods that either assume a fixed length scale parameter or a
combination of models with fixed length scale parameters across
genes (e.g., SPARK-X27) or ignore the spatial information. Finally,
nnSVG can identify SVGs within spatial domains by including the
spatial domains as covariates within the model, which can also be
done with SPARK-X27 but not other existing methods (e.g.,
SpatialDE12, SPARK25).
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nnSVG recovers biologically informative SVGs with gene-
specific length scales
In the following sections, we consider three SRT datasets that con-
tain previously identified biologically informative SVGs: data with (i)
variation across cortical layers in the human brain dorsolateral
prefrontal cortex (DLPFC)8 measured with the 10x Genomics Visium
platform37, (ii) variation across cell type layers in the mouse brain
olfactory bulb (OB)1,12 measured with the Spatial Transcriptomics
(ST) platform1, and (iii) variation within a sagittal tissue section of a
mouse embryo38 measured with the seqFISH platform33. In the Vis-
ium human DLPFC dataset, while the primary variation in expression
is across cortical layers, there are alsomore subtle forms of variation
associated with blood vessels and immune processes, which vary in
expression across smaller length scales than the main cortical
layers8. We demonstrate that nnSVG identifies SVGs associated with
both forms of variation, and that this flexibility stems from how the
nnSVG model fits a gene-specific length scale parameter l within the
covariance function C(θ) for each gene (see “Methods”). By contrast,
methods that assume a fixed length scale parameter (or a combi-
nation of models with fixed length scale parameters) across genes
may miss these types of discoveries.

Here, we evaluate the performance of nnSVG in recovering SVGs
from the Visium human DLPFC8, ST mouse OB1,12, and seqFISH mouse
embryo38 datasets, and compare against SPARK-X27, which is the only
other existing method that also scales linearly with the number of
spatial locations, and can therefore be applied to transcriptome-wide
datasets with thousands or more spatial locations27. In addition, we
compare with baseline approaches, specifically HVGs17 and Moran’s I

statistic21, as nonspatial and spatial baselinemethods, respectively (see
“Methods”).

nnSVG in application to human brain dorsolateral prefrontal
cortex
Based on previously published analyses8, the Visium human DLPFC
dataset is known to contain a number of biologically informative
SVGs, including a large number of SVGs associated with cortical
layers (Fig. 1a, top row), as well as a smaller set of SVGs associated
with blood vessels and immune processes (Fig. 1a, bottom row). The
manually labeled cortical layer labels8 (which we use as an approx-
imate ground truth for method evaluation) are shown in Supple-
mentary Fig. S1A, B as a reference. The spatial expression patterns
of the blood- and immune-associated SVGs vary over relatively
smaller distance ranges than the cortical layer-associated SVGs,
which is reflected by the smaller estimated length scale parameters
for the blood and immune-associated SVGs (̂l <0:1) compared to
the cortical layer-associated SVGs (̂l ≥0:1) from the nnSVG
models (Fig. 1b).

All four methods successfully identified two out of the three
cortical layer-associated SVGs (MOBP and SNAP25) within the top 100
ranked genes. While nnSVG, HVGs, andMoran’s I ranked the third SVG
(PCP4) around rank 100, SPARK-X did not rank PCP4 within the top
1000 genes (Fig. 1c, left columns). For the three blood and immune-
associated SVGs (HBB, IGKC, NPY), we found that HVGs ranked all 3
genes within the top 100, while nnSVG identified two out of the three
within the top 100 and the third around rank 300. Moran’s I ranked
these three genes at lower ranks (ranks ~ 100−1000), and SPARK-X did

Fig. 1 | nnSVG recovers biologically informative SVGswith gene-specific length
scale parameters. Using the Visium human DLPFC dataset8, nnSVG, SPARK-X,
HVGs, and Moran’s I were applied to identify SVGs. a Spatial expression plots of 6
known biologically informative SVGs, including cortical layer-associated SVGs (top
row) and blood- and immune-associated SVGs (bottom row). b Distribution of
estimated gene-specific length scale parameters from nnSVG, with the 6 SVGs from
(a) labeled in red. The blood- and immune-associated SVGs have smaller estimated
length scale parameters than the cortical layer-associated SVGs. cRank order of the
6 SVGs from (a) within the lists of top SVGs. Dashed vertical line divides the genes
into the 3 cortical layer-associated SVGs with large length scales (left) and the 3
blood- and immune-associated SVGs with small length scales (right). d Estimated
likelihood ratio (LR) statistic fromnnSVG (y-axis) compared to the rank per gene (x-

axis), with the 6 SVGs from (a) labeled, and 134 additional known layer-specific
marker genes (from manually guided analyses by Maynard et al.8) highlighted (red
circles). Orange dashed vertical line indicates rank cutoff for statistically significant
SVGs at a multiple-testing-adjusted p-value of 0.05 using LR test with 2 degrees of
freedom. e Estimated effect size (proportion of spatial variance) along y-axis
compared to themean log-transformednormalized counts (logcounts) along x-axis
for top 1000 SVGs from nnSVG, with the 6 SVGs from (a) labeled, and estimated LR
statistic per gene indicated with color scale. f Ranks of top 1000 SVGs from nnSVG
(y-axis) compared to ranks from baseline methods (x-axis) using HVGs (nonspatial
baseline method, left) and Moran’s I (spatially-aware baseline method, right), with
SVGs from (a) highlighted (black circles), and Spearman correlation (text labels).
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not identify any of the three genes within the top 1000 genes (Fig. 1c,
right columns).

To ensure a consistent comparison in these evaluations, we used
the same filtering to remove low-expressed genes for both nnSVG and
SPARK-X (3396 out of 21,803 genes passed the filtering threshold; see
“Methods”). To confirm that the performance of SPARK-X was not
affected by the filtering, we also ran nnSVG and SPARK-X without fil-
tering low-expressed genes, in line with the default setting for SPARK-
X27. The performance for nnSVG was comparable for all six SVGs (with
and without filtering). However, the performance for SPARK-X drop-
ped for identifying the blood- and immune-associated SVGs (Supple-
mentary Fig. S2A).

In addition to these 6 SVGs, this dataset also contains a set of 198
known cortical layer-specific marker genes (consisting of 195 addi-
tional genes and the 3 cortical layer-associated SVGs from Fig. 1a)
identified by manually guided pseudobulked analyses in the original
study8. Out of these 198 genes, 134 passed filtering for low-expressed
genes, and 133 of these 134 were identified as statistically significant
SVGs by nnSVG, out of a total of 2198 statistically significant SVGs
(from 3396 genes that passed filtering) at an adjusted p-value thresh-
old of 0.05. (The likelihood of correctly selecting 133 out of 134 genes
by chance in this case is p < 10−16 by Fisher’s exact test and assuming
independently selected genes.) All 3 of the blood- and immune-
associated SVGs from Fig. 1a were also included in the set of significant
SVGs from nnSVG (Fig. 1d). By contrast, SPARK-X identified 3394 (out
of 3396) genes as statistically significant SVGs, including all 134 of the
layer-specificmarkers that passed filtering, but one of the 3 blood- and
immune-associated SVGs (NPY) was not included within the set of
significant SVGs (Supplementary Fig. S2B). Using the default filtering
for SPARK-X (i.e., no filtering of low-expressed genes), 10,358 genes
were identified as significant SVGs, including 187 out of the 198 layer-
specific markers, but not including NPY (Supplementary Fig. S2C).
Considering the effect size defined as the estimated proportion of
spatial variance from nnSVG, following ref. 12 (see “Methods”), we
found that highly ranked SVGs (with large LR statistics) also hadhigher
proportion of spatial variance, which is also related to the mean
expression (Fig. 1e).

As another form of comparison, we evaluated the degree of
overlap between nnSVG and the baseline methods. In this dataset, the
main biological signals of interest are related to the spatial distribu-
tions of the cortical layers and other biological processes, which are
characterized by distinct gene expression profiles8. Therefore, we
expect thatmost SVGswill also be identified asHVGs, and thus a strong
agreement between nnSVG and HVGs gives further confidence in the
results from nnSVG. When comparing the ranks of the top 1000 SVGs
from nnSVG and HVGs, we found relatively close agreement (Fig. 1f,
left panel), along with a high overlap between the sets of top n SVGs
from nnSVG and top nHVGs (n = 10, 20, 50, 100, 200) (Supplementary
Fig. S2D). We found similar results and higher correlation when com-
paring between nnSVG and Moran’s I (Fig. 1f, right panel), demon-
strating that formost genes, these twomethods recover similar spatial
information. However, the largest mismatch in ranks between nnSVG
and Moran’s I occurs for the 3 blood- and immune-associated SVGs,
especially NPY, which have relatively small estimated length scale
parameters (Fig. 1b), thus further demonstrating the advantage of the
gene-specific length scale parameters in nnSVG and the improved
performance in this dataset for genes with small estimated length
scales (Fig. 1c). Further investigationof the estimated length scales and
effect sizes per gene revealed that nnSVG tends tooutperform(i) HVGs
for genes with larger length scales (≥0.15), (ii) Moran’s I for genes with
smaller length scales (< 0.15), and (iii) both baselines for genes with
relatively large effect sizes (Supplementary Fig. S3A–C; expression
plots of examples of genes where nnSVG outperforms the baselines
shown in Supplementary Fig. S3D). In addition, we observe that all
genes with extremely small length scales (< 0.01)—which may be hard

to estimate reliably—were either not ranked within the top 1000 SVGs
or were removed during our filtering step for low-expressed genes
(“Methods”), so these genes did not interfere with the final ranking of
top SVGs (Supplementary Fig. S4). In contrast, when comparing
SPARK-X to the baselinemethods, we found smaller overlap and lower
correlations using either HVGs andMoran’s I (Supplementary Fig. S2E).
The SPARK-X results did not substantially change when using default
filtering settings for low-expressed genes (Supplementary Fig. S2F).

Finally, we generated spatial expression plots of the top 20 SVGs
from nnSVG and SPARK-X, respectively. We observed that most of the
top 20 SVGs from nnSVG were related to differences in expression
between white matter and gray matter, where gray matter consists of
the cortical layers8 (Supplementary Figs. S1, S5). This is consistent with
previous analyses showing that the distinction between white matter
and gray matter represents the strongest differences in expression
patterns in this dataset, consistent with prior biological knowledge of
this brain region8. By contrast, the majority of the top 20 SVGs from
SPARK-X are not associated as clearly with the distinction between
white matter and gray matter (Supplementary Fig. S6).

nnSVG in application to mouse brain olfactory bulb
The second dataset we considered is the ST mouse OB dataset1. This
dataset contains a smaller set of spatial locations at lower spatial
resolution, which have been annotated with cell type layer labels1,12

(Supplementary Fig. S7A). Similar to the VisiumhumanDLPFCdata, we
observe variation in the estimated gene-specific length scale para-
meters fromnnSVG (Supplementary Fig. S7B), suggesting the need for
flexibility in this parameter. We considered 7 known layer-associated
SVGs1, and found that HVGs identified all 7 genes within the top 200
ranked SVGs,while nnSVG,Moran’s I, andSPARK-X identified 5, 3, and 1
out of the 7 genes within the top 200 ranked SVGs, respectively
(Supplementary Fig. S7C). Overall, nnSVG identified 559 genes as sta-
tistically significant SVGs (out of 4216 genes that passed filtering) at an
adjusted p-value threshold of 0.05 (Supplementary Fig. S7D), while
SPARK-X identified 2270 (out of 4216) significant SVGs (Supplemen-
tary Fig. S7E). When comparing the top 1000 ranked genes between
nnSVG and the baseline methods (HVGs and Moran’s I), we found a
higher correlation (Supplementary Fig. S7F) thanwhen using SPARK-X
(Supplementary Fig. S7G). Furthermore, when comparing the overlap
between the sets of top n = 10, 20, 50, 100, 200 SVGs and HVGs, we
found nnSVG had a higher overlap withHVGs compared to the overlap
between SPARK-X and HVGs (Supplementary Fig. S7H). This is expec-
ted as most of the biologically informative SVGs in this dataset are
related to the spatial distribution of cell type layers1,12. Finally, we also
provide spatial expression plots of the top 20 SVGs from nnSVG
(Supplementary Fig. S8) to illustrate that most of the top SVGs are
associated with the known cell type layers, as expected.

nnSVG in application to mouse embryo
The third dataset we considered is the seqFISH mouse embryo
dataset38, which consists of expression measurements of 351 targeted
genes summarized at single-cell resolution in a sagittal tissue section
from a mouse embryo (Supplementary Fig. S9A). Similar to the other
datasets, we observed a range of values for the gene-specific length
scale parameters from nnSVG (Supplementary Fig. S9B). We investi-
gated 12 known highly biologically informative SVGs38, and found that
nnSVG gave the highest rankings for 7 of these. In addition, nnSVG,
HVGs, and Moran’s I identified all 12 of these genes within the top 100
ranked genes, while SPARK-X identified only 9 out of 12 within the top
100 ranked genes (Supplementary Fig. S9C). Overall, both nnSVG and
SPARK-X identified all 351 genes as statistically significant SVGs (Sup-
plementary Fig. S9D, E). Similar to the Visium human DLPFC dataset,
we also found a relationship between the effect size (proportion of
spatial variance) and the mean expression (Supplementary Fig. S9F).
When comparing the ranks of the 351 genes between nnSVG or
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SPARK-X and the baseline methods (HVGs and Moran’s I), we found a
higher correlation for nnSVG than for SPARK-X (Supplementary
Fig. S9G, H). Similarly, we found that nnSVG had a higher overlap than
SPARK-X between the sets of top n = 10, 20, 50, 100, 200 SVGs and
HVGs (Supplementary Fig. S9I). As for the other datasets, this is
expected since the biologically informative SVGs in this dataset are
related to the spatial distribution of cell types at different develop-
mental stages38. Finally, we also provide spatial expression plots of the
top 20 SVGs from nnSVG (Supplementary Fig. S10).

nnSVG identifies SVGs within spatial domains
In this section, we apply nnSVG to an SRT dataset to demonstrate how
our method can be used to identify SVGs within an a priori defined
spatial domain by including the spatial domains as covariates within
the statistical models. Specifically, we consider the Slide-seqV2 mouse
hippocampus (HPC) dataset4, which contains separate anatomical
regions from the mouse HPC and has been annotated with cell type
labels by Cable et al.39 (Fig. 2a). We highlight two previously identified
SVGs (Cpne9 and Rgs14) from ref. 39, which exhibit spatial gradients of
expression within the CA3 region of the hippocampus (Fig. 2b). Here,
we apply nnSVG, SPARK-X, HVGs, and Moran’s I to identify SVGs and
compare their performance.

We found that both nnSVG and SPARK-X (which also provides
the option to include covariates for spatial domains) rank the Cpne9
and Rgs14 genes within the top 300 genes with similar performance
(Fig. 2c). In contrast, while Moran’s I is able to identify Rgs14 within
the top 300 ranked genes, HVGs does not rank Rgs14 within the top
1000 ranked genes, and neither HVGs or Moran’s I rank the Cpne9
gene within the top 1000 ranked genes. We note that the perfor-
mance of the HVGs baseline method differs from the results in the
Visium human DLPFC dataset, where HVGs performed well. We also
confirmed that using default settings for SPARK-X (no filtering of

low-expressed genes) did not substantially change the results for
SPARK-X, although nnSVG performed somewhat worse in this case
(genes ranked between top 100−500) (Supplementary Fig. S11A). At
an adjusted p-value threshold of 0.05, nnSVG identified 1024 genes
as statistically significant SVGs (out of 8883 genes that passed fil-
tering), including both Cpne9 and Rgs14 (Fig. 2d). SPARK-X identi-
fied 2053 (out of 8883) genes as significant SVGs (Supplementary
Fig. S11B), or 1809 (out of 21,011) without filtering low-expressed
genes (Supplementary Fig. S11C), including both Cpne9 and Rgs14 in
both cases.

We also compared the performance of nnSVG and SPARK-X to
identify SVGs across the entire tissuewithout incorporating any spatial
domain information. This reduced performance for both methods.
Both nnSVG and SPARK-X ranked Cpne9 and Rgs14 in approximately
the top 250 to 1000 genes (compared to the top 300 genes in the
models with covariates for the spatial domains) (Supplementary
Fig. S11D). In the models without covariates, nnSVG and SPARK-X
identified 3217 and 4821 (out of 8883) genes, respectively as statisti-
cally significant SVGs (Supplementary Fig. S11E, F). The reduced per-
formance when excluding the spatial domain covariates is expected,
since in this case many additional expression patterns are deemed
spatially variable.

In order to further evaluate performance for this dataset, we also
investigated an extended list of 74 known SVGs within the CA3 spatial
domain from the prior analyses39 (including Cpne9 and Rgs14). We
calculated how many of these 74 genes were identified within the top
1000 SVGs or HVGs by each method, which revealed that nnSVG
recovered the highest number (27 out of 74), followedby SPARK-X and
Moran’s I (23 out of 74), while HVGs performed poorly and recovered
only 3 out of 74 genes (Supplementary Fig. S12). Finally, we visualized
the spatial expression of the top 20SVGs fromboth nnSVGandSPARK-
X (including spatial domain covariates). For both methods, the

Fig. 2 | nnSVG recovers biologically informative SVGswithin spatial domains.Using the Slide-seqV2mouse hippocampus (HPC) dataset4, nnSVG, SPARK-X, HVGs, and
Moran’s I were applied to identify SVGs within an a priori defined spatial domain. a Computationally labeled cell types per spot (bead) with labels from ref. 39. b Spatial
expression plots of 2 known biologically informative SVGs identified by Cable et al.39 showing spatial gradients of expression within the spatial domain defined byCA3 cell
type labels (pink points in (a)). c Rank order of the 2 SVGs from (b) within the lists of top SVGs. d Estimated likelihood ratio (LR) statistic from nnSVG (y-axis) compared to
the rank per gene (x-axis), with the 2 SVGs from (b) highlighted. Orange dashed vertical line indicates rank cutoff for statistically significant SVGs at a multiple-testing-
adjusted p-value of 0.05 using LR test with 2 degrees of freedom.
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majority of these top SVGs are clearly associated with the known
spatial domains, in particular the dentate, CA1, CA3, and oligoden-
drocyte cell type labels (Supplementary Figs. S13, S14).

nnSVG to select genes for downstream clustering
One potential application of methods to identify SVGs is to select a list
of genes to use as the input for downstream clustering. Using SVGs
instead of (nonspatial) HVGs for downstream clustering has been
shown to improve clustering performance in SRT datasets40. We
compared clustering performance in the VisiumhumanDLPFC dataset
using either the top 1000 SVGs (nnSVG, SPARK-X, andMoran’s I) or the
top 1000 HVGs, in terms of the adjusted Rand index (which measures
the similarity between two sets of cluster labels, with values between 0
and 1, where 1 indicates perfect agreement) between the clustering and
the manually annotated cortical layer labels in this dataset (Supple-
mentary Fig. S15A–D). We used graph-based clustering from standard
single-cell workflows17 and applied the clustering algorithm to the top
50 principal components (PCs) calculated on the top 1000 SVGs or
HVGs. The results demonstrated that nnSVG andMoran’s I (which take
spatial information into account) outperformed HVGs (nonspatial). In
addition, nnSVG and Moran’s I outperformed SPARK-X, which is con-
sistent with the main results showing that the top SVGs from nnSVG
more closely reflect the biological structure in this dataset, compared
to SPARK-X (Supplementary Fig. S15E).

Evaluating nnSVG using simulations
We developed a simulation framework to evaluate the performance of
nnSVG in several ways. First, we built a dataset consisting of a set of
simulated SVGs with regions of relatively high expression, surrounded
by regions of background noise, across several scenarios where we
varied the length scale and expression strength. We also simulated a
set of noise genes without any spatial expression patterns. We
obtained empirical parameters for these scenarios from the Visium
human DLPFC dataset—mean and variance of log-transformed nor-
malized expression (logcounts) for the known SVG MOBP within the
highly expressed region (white matter) and low-expressed region
(cortical layers), respectively, as well as proportions of sparsity (zero
counts) within both regions. We simulated a total of 1000 genes,
consisting of 100 SVGs and 900 noise genes. For the SVGs, we varied
the length scale by simulating circular regions of elevated expression
with radius 0.25, 0.125, and 0.025 times the width of the tissue section.
We varied the expression strength as 1, 1/3, and 1/10 times the average
difference between the regions of elevated and low expression, above
background noise, for MOBP. Supplementary Fig. S16A displays the
spatial coordinate masks and relative expression strength for each
scenario, and Supplementary Fig. S16B shows the expression values
(logcounts). Then, we evaluated the true positive rate (TPR) and false
positive rate (FPR) for identifying the simulated subset of SVGs in each
scenario. Our evaluations showed that nnSVG achieved very high TPR
in all scenarios except the most difficult scenarios with small length
scale andmedium to lowexpression strength. In addition,weobserved
that nnSVG was conservative with respect to false positives—in the
medium length scale, medium expression strength scenario (middle
panel), we achieved FPR of 0.003, 0.016, and 0.031 at nominal p-value
thresholds of 0.01, 0.05, and 0.1 (Supplementary Fig. S16C).

We also developed an ablation simulation study41 to evaluate the
robustnessof nnSVGto increasing levels of noise. In this simulation,we
extended the medium length scale, medium expression strength sce-
nario by randomly shuffling a progressively increasing subset of spatial
coordinates (0%, 10%, ..., 100%) to introduce noise into the spatial
expression patterns (Supplementary Fig. S17A, B). We evaluated the
TPR at each step, and found that nnSVGwas highly robust to the noise
—the TPR started decreasing at 70% shuffled coordinates, and even-
tually reached near zero by 90% shuffled coordinates (Supplementary
Fig. S17C).

Finally, we performed a set of null simulations using two datasets
(Visium human DLPFC and ST mouse OB), where we permuted the
order of the spatial coordinates to remove any spatial correlation
structure. We observed the spikes in the distributions of the p-values
near 0were removed in the null simulations (Supplementary Fig. S18A,
B), confirming that the significant p-values in the main results are due
to the spatial correlation in expression. We also evaluated the pro-
portion of false positives in the null simulations, which further con-
firmed that nnSVG is relatively conservative and generates a low
proportion of false positives. Specifically, we evaluated the error
control by calculating the proportion of false positives at a p-value
cutoff of 0.05, which gave values below the nominal value of 0.05 in
both null simulations (1.5% and 1.0%, respectively) (Supplementary
Fig. S18C).

Evaluating the p-value distributions from nnSVG
Next, we investigated the p-value distributions from nnSVG for the
transcriptome-wide datasets presented in this work, prior to cor-
recting for false discoveries. If the LR test from nnSVG to assess the
statistical significance of SVGs is well calibrated, we expected to see a
flat, uniform distribution representing null tests for most of the
distribution with a spike close to 0 representing the non-null tests.
Whenwe apply filtering to remove lowly expressed genes (default for
nnSVG and the main results presented in this work), we found
approximately uniform distributions of p-values with additional
spikes near 0 and 1 for the three datasets Visium human DLPFC, ST
mouseOB, andSlide-seqV2mouseHPC, respectively (Supplementary
Fig. S19A–C). The spike near 0 represents the subset of significant
SVGs in each dataset, as expected,while the spike near 1 suggests that
the p-values for non-spatially-correlated genesmay be somewhat too
conservative overall, giving more values near 1 than expected. In
particular, we observe that the spike near 1 is much larger when
running nnSVG without filtering low-expressed genes (Supplemen-
tary Fig. S19D–F), indicating that many of the genes with p-values
near 1 are low-expressed genes. In this way, while the process of
filtering lowly expressed genes can lead to some false negatives
(depending on the stringency of filtering), overall, we view this fil-
tering step as helpful as nnSVG still recovers hundreds to thousands
of significant SVGs in each dataset after filtering, and the rankings of
the top SVGs are relatively unaffected by the stringency of the fil-
tering since these genes tend to be highly expressed (Fig. 1e).

nnSVG scales linearly with the number of spatial locations
Here, we illustrate how the computational complexity and runtime of
nnSVG scales linearly with the number of spatial locations, which is
crucial for identifying SVGs in datasets with thousands or more spatial
locations. To demonstrate the linear scalability of nnSVG, we gener-
ated simulations by subsampling the numbers of spots (n = 200,
500, 1000, 2000, 3639 in Visium human DLPFC, n = 1000, 2000,
5000, 10,000, 20,000, 40,000, 53,208 in Slide-seqV2 mouse HPC,
where the maximum number in each case is the full number of spots
available in the dataset, including low-quality and unannotated spots).
We ran nnSVG 10 times for a single gene at each number of spots using
a single processor core and recorded runtimes, demonstrating a clear
linear trend in the runtimes (Fig. 3a, b). We also compared the scal-
ability of nnSVG for the Slide-seqV2 mouse HPC dataset with and
without covariates for spatial domains included, and observed only a
minimal increase in runtimeswith covariates included (Supplementary
Fig. S20A, B). Next, we compared the scalability of both nnSVG and
SPARK-X against the earlier cubically scaling methods, SpatialDE12,42

and SPARK25, by subsampling spots from the Visium human DLPFC
dataset and running each method 10 times for two genes (SPARK and
SPARK-X require at least two genes to run without error) using a single
core, which clearly demonstrated the cubic scaling of SpatialDE and
SPARK (Supplementary Fig. S20C).
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Finally, we recorded runtimes for each of the three transcriptome-
wide SRT datasets presented in this work (while filtering for lowly
expressed genes) using both nnSVG and SPARK-X. We recorded run-
times of 520 s, 2788 s (46min), and 18,642 s (5 h) for nnSVG for the 3
datasets (ST mouse OB, Visium human DLPFC, Slide-seqV2 mouse
HPC), which contained 260, 3582, and 15,003 spots, respectively (after
quality control and retaining annotated spots only). This compared to
11, 34, and 119 s for SPARK-X, respectively (Supplementary Fig. S20D).
We used 10 processor cores on a high-performance compute cluster
for all datasets for nnSVG and the Slide-seqV2 mouse HPC dataset for
SPARK-X, and 1 core for the ST mouse OB and Visium human DLPFC
datasets for SPARK-X due to the higher efficiency of SPARK-X.

Deviance residuals from binomial model for baseline method
and preprocessing
As an alternative nonspatial baseline instead of HVGs, we also con-
sidered deviance residuals from a binomial model, which has been
shown to give an improved ranking of genes in the context of scRNA-
seq data and is more theoretically justified due to the use of a count-
based model20. We evaluated the binomial deviance residuals baseline
by comparing the rank order of the selected SVGs in the main results
against HVGs for each dataset, and found that while the individual
rankings changed for some genes, in particular NPY in the Visium
human DLPFC dataset and Rgs14 in the Slide-seqV2 mouse HPC data-
set, the overall performance and relative ranking of methods was
similar to HVGs (Supplementary Fig. S21).

We also evaluated the results from nnSVG using deviance resi-
duals from a binomial model for preprocessing, instead of log-
transformed normalized counts (logcounts) for preprocessing17 used
in the main results, which has been shown to give improved perfor-
mance in the context of scRNA-seq data20. We compared the rank
order of the selected SVGs from nnSVG using the two preprocessing
methods for each dataset, and found that the overall ranking of
methods was similar (Supplementary Fig. S22).

Applying nnSVG to datasets with multiple samples
The nnSVG model has been developed for data from one sample (tis-
sue section) at a time. To evaluate the stability of the rankings of SVGs
obtained from multiple samples, we applied nnSVG to each of the
additional samples available in the original source for the Visium
human DLPFC dataset (12 samples from 3 donors)8,43. We calculated
the Spearman correlation between the rankings from each pair of
samples and found that these correlations were relatively high (>0.8)
between samples within donors 1 and 3, respectively, moderate
(> 0.75) between samples between donors 1 and 3, and lower within
donor 2 and between donor 2 and the other donors (Supplementary
Fig. S23A). This reflects the known biological structure from prior

analyses of this dataset8, which found that the samples from donors 1
and 3 had all cortical layers present, while the samples from donor 2
were missing several cortical layers (Supplementary Fig. S23B; donors
in rows). We also visualized the rank comparisons for the samples with
the highest and lowest correlations with sample 151673 (the sample
used in the main results) (Supplementary Fig. S23C, D) to further
demonstrate these results.

In order to apply nnSVG to datasets with multiple samples in
practice, we have also developed an approach based on averaging the
ranks of the SVGs identified within each sample, which has been suc-
cessfully applied in a new dataset44 and is described in detail in the
package documentation (vignette).

Discussion
We have introduced nnSVG, a method to identify spatially variable
genes (SVGs) in SRT data based on statistical advances in computa-
tionally scalable parameter estimation in spatial covariance functions
in Gaussian processes using nearest-neighbor Gaussian process
(NNGP) models30,31. In summary, our method (i) identifies genes that
vary in expression continuously across the entire tissue or within a
priori defined spatial domains, (ii) uses gene-specific estimates of
length scale parameters within the Gaussian process models, and (iii)
scales linearly with the number of spatial locations (Table 1). We have
demonstrated the importance of fitting gene-specific length scale
parameters within the GP models in application of SRT datasets to
identify genes with different spatial ranges in their expression patterns
within the tissue of interest. The linear scalability aspect is crucial for
current technological platforms with thousands of spatial locations
per tissue sample and for emerging platforms at even higher resolu-
tions, such as 10x Genomics Visium HD. Compared to existing meth-
ods, while the runtime for SPARK-X27 is fast, this method fits a fixed
combination of covariance functions and length scale parameters
across all genes, thereby leading to reduced flexibility to identify SVGs
with different spatial ranges in expression. While earlier methods such
as SpatialDE12

fit gene-specific length scale parameters, these do not
scale linearly with the number of spatial locations. The importance of
fitting gene-specific length scale parameters is likely to represent a
general finding for the analysis of SRT datasets, with applicability
beyond the specific modeling approach used here.

Furthermore, unlike previous studies introducing methods to
identify SVGs12,27, we comprehensively evaluated our method against
baselinemethods.We compared against HVGs, deviance residuals from
a binomial model20, and Moran’s I statistic21, representing both non-
spatial and spatial baselinemethods, to assess the advantage in termsof
performance of applying ourmore statistically sophisticated (andmore
computationally intensive) approach instead of relying on simpler
baselinemethods.Wedemonstrated the degree of overlap between the

Fig. 3 | nnSVG scales linearly with the number of spatial locations. The runtime in seconds (y-axis) of nnSVG on a single gene (run n = 10 times on a single processor
core) using downsampled numbers of spots (x-axis) with two transcriptome-wide datasets, a Visium human DLPFC and b Slide-seqV2mouse HPC, without quality control
or filtering of spots. The dashed lines represent linear trends in scalability for each dataset. Boxplots showmedians, first and third quartiles, andwhiskers extending to the
furthest values no more than 1.5 times the interquartile range from each quartile.
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nonspatial HVGs and nnSVG in each dataset, with a higher overlap
expected in datasetswhere the biologically informative SVGs are largely
related to spatial distributions of cell types. In general, our baseline
comparisons demonstrate that HVGs provides excellent performance
and computational efficiency in many datasets (despite not using the
spatial information directly), especially where the spatial expression
patterns are largely due to spatially distributed cell types—while nnSVG
provides further improved performance in certain datasets with more
complex expression patterns at higher computational cost.

We envision two types of primary applications of nnSVG. First,
nnSVG can be used to generate lists of top SVGs during exploratory
unsupervised analyses of SRT datasets, with the aim of detecting pos-
siblemarkers of biological processes of interest for further experimental
validation. For example, ref. 8 applied this strategy using SpatialDE12,
using extensive computational resources due to the cubic scaling of this
method8. Theseanalyses aremore feasiblewithnnSVG thanwithexisting
scalable methods (e.g., SPARK-X27), since nnSVG fits a gene-specific
length scale parameter while also achieving linear computational scal-
ability. For these types of analyses, the user can either select an arbitrary
set of top-ranked SVGs (e.g., top 100 genes) or select a set of statistically
significant SVGs with adjusted p-values from the LR test.

The second application of nnSVG is to use the set of top-ranked
SVGs as the input for further downstream analyses, such as spatially-
aware unsupervised clustering, for example8,13,14, or registering the
spatial locations of scRNA-seq data11,15,16. This type of analysis is ana-
logous to standard workflows for scRNA-seq analyses17. In spatial data,
we canmodify this workflow by replacing the set of top HVGs with the
set of top SVGs from nnSVG, and then perform unsupervised cluster-
ing on the set of top SVGs. Since the set of SVGs has been generated by
methodology that takes spatial information into account, this gives a
spatially-aware clustering of cell populations8,40. Our results demon-
strated improved performance compared to using (nonspatial) HVGs
for clustering, consistent with previous results40.

Our method has some limitations, and we have identified several
open directions for future work to extend our approach. First, while
our method scales linearly with the number of spatial locations, the
computational requirements remain nontrivial. For transcriptome-
widedatasetswith≥10,000 spatial locations, runtimes areon theorder
of several hours when using 10 processor cores on a high-performance
compute cluster. Since runtime depends on the number of genes, this
can be reduced with more stringent gene filtering. In addition, our
implementation is parallelized, allowing the user to select more cores
if available, which will reduce runtimes. Future work could aim to
further improve runtimes for large datasets, for example using low-
rank statistical models that smooth the data into a smaller number of
knots or inducing points representing the spatial locations, or further
computational optimizations. Second, we observe some small

negative values in the estimated LR statistics, which are difficult to
interpret. Since this occurs mainly for lower-ranked genes, this does
not affect the rankings in the sets of top-ranked SVGs. This could be
improved by developing adaptive filtering thresholds that carefully
remove low-expressedgenes, which could also improve the calibration
of p-values for low-expressed genes. Similarly, constraints could be
placed on low values of the estimated length scale parameter within
the models, although we found that these were generally low-
expressed genes that were either filtered out or were not ranked as
top SVGs. Third, while nnSVG identifies individual SVGs, we have not
grouped these into gene groups or metagenes. Future work could
develop added functionality to group genes into biologically inter-
pretable metagenes in an unsupervised manner, similar to refs. 12,27.
Fourth, our model has been developed for a single sample (tissue
section) at a time. While we have implemented a practical approach to
apply nnSVG tomultiple-sample datasets based on averaging the ranks
of the SVGs identified within each sample, future work could focus on
developing a principled statistical approach for multiple-sample
datasets, for example by jointly estimating parameters across multi-
ple samples to improve power and robustness. Finally, while we cal-
culate an effect size defined as the proportion of spatial variance
(similar to ref. 12), this definition does not distinguish between tech-
nical and biological variance, in contrast to standard effect size defi-
nitions in scRNA-seq workflows17 (Supplementary Fig. S24). Future
work could aim to define a modified effect size that decomposes total
variance into technical and biological components as well as spatial
and nonspatial components, e.g., using a concept of biological spatial
variance, which would aid in the interpretation of top-ranked SVGs.

Our method is implemented as an R package within the Bio-
conductor framework34, and is freely available from Bioconductor at
https://bioconductor.org/packages/nnSVG.

Methods
Preprocessing
The nnSVGworkflowbeginswith preprocessing steps. For the analyses
in this manuscript, we applied standard quality control (QC) to each
dataset to filter out low-quality spatial locations (spots), using func-
tions to calculate QC metrics implemented in the scater45 R/Bio-
conductor package. The thresholds we used for eachQCmetric can be
found in our code repository (see “Code availability”).

Next, we filter out low-expressed genes andmitochondrial genes.
Low-expressed genes are assumed to largely represent noise and to be
unlikely to provide significant biological information about spatially-
resolved biological processes, so removing them improves computa-
tional performance while preserving most of the information. For the
analyses in this manuscript, we used the following filtering thresholds.
For the Visium human DLPFC dataset, we retained genes with at least 3
unique molecular identifier (UMI) counts in at least 0.5 percent of
spatial locations. For the Slide-seqV2 mouse HPC dataset, we retained
genes with at least 1 UMI count in at least 1 percent of spatial locations.
For the ST mouse OB dataset, we retained genes with at least 5 UMI
counts in at least 1 percent of spatial locations. For the seqFISHmouse
embryo dataset, no filtering was needed, as this dataset contains a
smaller set of targeted genes. By contrast, mitochondrial genes are
observed to be very highly expressed in most single-cell datasets, but
their expression is generally not considered to be informative for
distinguishing cell populations or states, so removing them reduces
noise17. For the analyses in thismanuscript, we removedmitochondrial
genes from all datasets. The nnSVG package provides a filtering func-
tion for both low-expressed and mitochondrial genes, with default
values appropriate for the 10x Genomics Visium platform, which can
also be adjusted or disabled by the user.

Next, we normalize and transform the raw UMI counts using
the log-transformed normalized counts methodology (also referred
to as logcounts) using library size factors implemented in

Table 1 | Summary of characteristics of methods included in
the performance evaluations and runtime comparisons

Method Spatial
information

Flexible length
scale
parameters

Covariates for
spatial
domains

Runtime

nnSVG ● ● ● ◐

SPARK-X ● ○ ● ●

HVGs ○ ○ ○ ●

Moran’s I ● ○ ○ ◐

SpatialDE ● ● ● ○

SPARK ● ● ● ○

For each method, the columns indicate whether (●) or not (○) the method: (i) takes spatial
information into account, (ii) fits models with flexible gene-specific length scale parameters, (iii)
provides an option to include covariates for spatial domains in themodels, and (iv) provides fast
runtimes. Half-filled circles (◐) indicate intermediate scores. The scalablemethods are shown in
thefirst 4 rows, and theearlier cubically scalingmethods (SpatialDEandSPARK)are shown in the
last 2 rows.
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the scran, scuttle, and scater R/Bioconductor packages45,46.
Normalization reduces technical biases between measurements
from different spots, while log-transformation transforms the
counts to a continuous and approximately normally distributed
scale, allowing the NNGP models to be fitted. As an alternative to
logcounts, we also demonstrate the use of the binomial deviance
residuals methodology implemented in the scry R/Bioconductor
package20, which has been shown to give improved performance in
scRNA-seq data20.

nnSVG model and parameters
In the nnSVG methodology, we assume that the input data consists of
preprocessed gene expression measurements for thousands of genes
at a set of spatial locations on a tissue slide, with the spatial locations
typically also numbering in the thousands. The core of the nnSVG
methodology consists of fitting a nearest-neighbor Gaussian process
(NNGP) model30,31 to the preprocessed expression measurements for
each gene, i.e., one model per gene. This model is defined as:

y∼NðXβ,eΣðθ,τ2ÞÞ ð3Þ

Here, y = (y1,…, yN) represents a vector of normalized and trans-
formed expression values for gene g (omitting the index g = 1, . . . ,G for
simplicity) at a set of spatial locations s = (s1,…, sN). The spatial loca-
tions are assumed to be two-dimensional, but may in principle be
generalized to higher dimensions. The eΣðθ,τ2Þ term represents the
NNGP covariance matrix, which provides a scalable (in linear-time and
storage) approximation to the covariance matrix Σ(θ, τ2) =C(θ) + τ2I
from a full GP model, which scales cubically in the number of spatial
locations. The GP covariancematrix C(θ) = (Cij(θ)) (also referred to as a
kernel) captures the spatially correlated variation and is parameterized
by a vector of parameters θ. We assume an exponential covariance
function, based on the observation that the widely used squared
exponential function (e.g., used previously in SpatialDE12) decays too
rapidly with distance in the context of SRT data36. The exponential
covariance function (or kernel) is defined as:

CijðθÞ= kðsi,sjÞ= σ2 exp
�∣∣si � sj∣∣

l

� �
ð4Þ

with covariance parameters θ = (σ2, l), and where ∣∣si − sj∣∣ represents
the Euclidean distance between two spatial locations si and sj. In this
parameterization, σ2 represents the spatial component of variance,
and l is referred to as the length scale (or bandwidth) parameter, which
controls the strength of decay of correlation with distance. The final
parameter τ2 in equation (3) is referred to as the nugget, which
represents the additional nonspatial component of variance.

Alternatively, theGaussianprocessmodel y ~N(Xβ,C(θ) + τ2I)may
also be written as:

yðsÞ=mθðsÞ+wðsÞ+ ϵðsÞ, ϵðsÞ ∼iid N 0,τ2
� � ð5Þ

where w(s) follows a Gaussian process, w(s) ~GP(0,Cθ(. , . )), and
mθ(s) = x(s)Tβ.

In most applications of nnSVG, we assume an intercept-only
model, whereX =X[N×1] = 1[N×1] andβ accounts for themean expression
level. In this case, we are interested in identifying genes with any sta-
tistically significant spatial correlation in expression.

However, in some datasets, we are also interested in identifying
SVGs within spatial domains, i.e., regions of the tissue slide corre-
sponding to anatomical features or tissue types, which have been
defined apriori, for example usingmorphology fromhistology images,
or alternatively using unsupervised clustering. The nnSVG methodol-
ogy facilitates these types of analyses by allowing the user to provideX
as an X[N×d] design matrix containing up to d − 1 covariates, with

covariate columns consisting of indicator variables for the spatial
domains at each spatial location, or other known values per spatial
location.

Our key parameter of interest in the model is σ2. We perform
model fitting and parameter estimation using the fast optimization
algorithms for NNGP models implemented in the BRISC R package32,
which we use to obtain maximum likelihood parameter estimates for
the covariance parameters θ = (σ2, l) and τ2, as well as the log-
likelihoods of the fitted models. The computational complexity of
themodel fitting isOðn*m3Þ, wheren =number of spatial locations,m=
number of nearest neighbors, and the initial steps of ordering coor-
dinates and calculating nearest neighbors are performed once only
and are re-used for all genes. Note that BRISC also provides the option
to obtain precise bootstrap estimates for the parameter estimates,
which we do not use here, due to the computational tradeoff when
fitting thousands of models (one model per gene) for SRT data.

Within the BRISC algorithm32, we use the parameter choices
order= “AMMD” (approximatemaximumminimumdistance ordering
of coordinates, see ref. 47 for details) and n.neighbors = 10 (10
nearest neighbors, which has been shown to retain a large proportion
of information30) as default values, while also allowing the user to
adjust these choices. Additional details are provided in the nnSVG and
BRISC package documentation.

Next, we perform inference on the estimated σ2 parameters per
gene, where we test H0: σ

2 = 0 vs. H1: σ
2 > 0. We use a likelihood ratio

test (LR) for the inference, where we compare the log-likelihood of the
fitted model against a classical linear model that assumes σ2 = 0 and
hence does not account for spatial correlation in the data. We use the
estimated LR statistics to generate an overall ranking of SVGs in terms
of the strength of their spatial expression patterns. We also calculate
approximate p-values for statistical significance per gene using an
asymptotic χ2 distribution with two degrees of freedom (since there
are 2 fewer parameters, θ = (σ2, l) in the simpler model) and apply the
Benjamini-Hochberg method48 to adjust the p-values for multiple
testing across genes. The user can then select either (i) an arbitrary
number of top-ranked SVGs (e.g., top 100 or 1000) for further inves-
tigation or to use as the input for downstream analysis methods,
analogous to scRNA-seq workflows17, or (ii) a set of statistically sig-
nificant SVGsby applying a threshold (e.g., 0.05) to themultiple testing
adjusted p-values.

Since thennSVGmethodologyfits a separatemodel for eachgene,
the length scale parameter l is estimated individually per gene. This
flexibility is the most important reason explaining the improved per-
formance of nnSVG compared to other scalable methods, since the
gene-specific length scale parameter allows nnSVG to identify SVGs
from distinct biological processes with different spatial ranges in
expression within the same tissue slide.

Finally,wealsocalculate an estimated effect size per gene, defined
as the proportion of spatial variance (out of total variance), i.e., the
proportion of variance explained by spatial dependencies, as pre-
viously defined by ref. 12:

propSV=
σ2

σ2 + τ2
ð6Þ

Computational implementation
nnSVG is implemented as an R package within the Bioconductor34

framework, using the BRISC R package32 for model fitting and para-
meter estimation, and the BiocParallel R package49 for parallelization.
We extended the BRISC package (version 1.0.4) to apply these meth-
ods to SRT data, in particular, to extract the fitted log-likelihoods (for
the LR tests) and to improve runtimewhen fitting thousands ofmodels
(one per gene) by re-using the ordering of spatial coordinates and
calculating nearest neighbors.
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The nnSVG package re-uses existing infrastructure for scRNA-seq
and SRT data within the Bioconductor framework17,35, e.g., the Spa-
tialExperiment object structure35 to load input data and store
results, which streamlines integration into existing Bioconductor-
based analysis workflows.

Visium human DLPFC dataset
The Visium human DLPFC dataset consists of a single sample of human
brain tissue from the dorsolateral prefrontal cortex (DLPFC) region,
measured with the 10x Genomics Visium platform50. This dataset was
published by Maynard et al.8 and previously released through the
spatialLIBD R/Bioconductor package43. The Visium platform mea-
sures transcriptome-wide gene expression at a hexagonal grid of spatial
locations (referred to as spots) on a tissue slide, with overall dimensions
6.5 mm×6.5 mm, spots 55 μm in diameter, and 100 μm between spot
centers50. The dataset used here consists of one biological sample
(sample 151673) from one donor, out of the 12 samples (3 donors) in the
original study by Maynard et al.8. This sample contains transcriptome-
wide gene expressionmeasurements at 3639 spots overlappingwith the
tissue area. We use all 12 samples for the additional multiple-sample
analyses. In theoriginal study, spotsweremanually annotatedwith labels
for the six cortical layers and white matter8, which we use as approx-
imate ground truth labels for method evaluation.

Slide-seqV2 mouse HPC dataset
The Slide-seqV2 mouse HPC dataset consists of gene expression mea-
surements in a tissue sample from the mouse hippocampus (HPC),
measured with the Slide-seqV24 platform and published by Stickels
et al.4. Spot-level annotations for cell types were generated computa-
tionally by Cable et al.39, which we use here to define spatial domains
representing anatomical regions within the hippocampus (in particular
the regiondefinedbyCA3cell type labels). Thisdataset consistsof a total
of 53,208 spatial locations (referred to asbeads for this platform), 15,003
ofwhichhavebeen annotatedwith cell type labels byCable et al.39. In the
analyses of this dataset, we are especially interested in geneswith spatial
gradients of expression within the CA3 region of the hippocampus,
which have previously been identified by Cable et al.39.

ST mouse OB dataset
The ST mouse OB dataset was generated by Ståhl et al.1, consisting of
gene expression measurements in the olfactory bulb (OB) region of the
mouse brain. This technological platform (Spatial Transcriptomics) was
subsequently further developed (e.g., to increase resolution and simplify
experimental procedures) by 10x Genomics as the Visium platform.
Therefore, ST represents an earlier iteration of the 10x Genomics Visium
platform. The STmouseOBdataset consists of transcriptome-wide gene
expression measurements at 260 spatial locations (referred to as spots)
after quality control filtering, from a single sample from the original
study1, andhaspreviouslybeen re-analyzed in several studies including12.

seqFISH mouse embryo dataset
The seqFISH mouse embryo dataset consists of expression measure-
ments of 351 targeted genes within a sagittal tissue section of a mouse
embryo from a study investigating mouse organogenesis38 using the
seqFISH platform33. The seqFISH platform is a molecule-based SRT
platform, which allows individual mRNA molecules to be identified at
sub-cellular resolution. In the subset of the data used here, these
measurements are summarized at single-cell resolution. The data used
here consists of the cells from a single embryo and section (embryo 1,
z-slice 2) from the original study38.

Baseline methods
We compared performance against the following baselinemethods: (i)
highly variable genes (HVGs)17, (ii) deviance residuals under a binomial
model20, and (iii) Moran’s I statistic21.

HVGs are widely used in scRNA-seq analysis workflows, with
implementations provided in the Bioconductor17, Seurat18, and
Scanpy19 frameworks. Here, we used the standard definition of HVGs
from ref. 17 implemented in the modelGeneVar() function in the
scran R/Bioconductor package46. In this definition, the HVGs metho-
dology fits a mean-variance trend to the log-transformed normalized
expression values (logcounts) per gene and ranks genes by excess
biological variation, defined as the excess variance above the trend for
each gene, under the assumption that the trend represents technical
variance17. To apply HVGs to SRT data, we calculate the gene-specific
means and variances by treating each spot as equivalent to a cell. This
method does not make use of any spatial information.

The deviance residuals methodology assumes a binomial model
(i.e., count-based instead of log-transforming to continuous values)
and ranks genes by the deviance residuals from the fitted binomial
models20. Compared to HVGs, this approach has been shown to give
an improved ranking of genes in scRNA-seq data, and is more theo-
retically justified due to the use of a count-based model20. We apply
this method to SRT data by treating each spot as equivalent to a cell.
As for HVGs, this method does not make use of any spatial
information.

Moran’s I statistic21 is a standard statistical measure of spatial
autocorrelation, which can be calculated from the log-transformed
normalized expression values for each gene. Values range from +1
(perfect spatial correlation) to 0 (no spatial correlation) to −1 (per-
fect spatial anticorrelation). In SRT data, the values for most genes
are between 0 and 1, and negative values usually do not have a clear
biological meaning. We useMoran’s I statistic to rank genes as SVGs,
with the highest values (close to +1) representing the top-ranked
SVGs. The Moran’s I formula requires an assumed weights matrix,
which we calculate as the inverse squared Euclidean distances
between spots, which is consistent with implementations provided
in the Seurat workflow18 and in the 10x Genomics Space Ranger/
Loupe software (which also includes truncation at 36 neighbors)51.
We use the Rfast2 R package52 to calculate the Moran’s I statistic
values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedatasets used for the analyses in thismanuscript canbedownloaded
in SpatialExperiment format35 from the STexampleData Bio-
conductor package53, which includes annotation labels from the original
sources, and the spatialLIBD Bioconductor package43. The original
datasets and annotations are sourced from refs. 8,43 (Visium human
DLPFC dataset), refs. 4,39 (Slide-seqV2 mouse HPC dataset), ref. 1 (ST
mouseOBdataset), and ref. 38 (seqFISHmouse embryodataset). Source
data files to reproduce figures in the manuscript are also available from
Figshare at https://doi.org/10.6084/m9.figshare.23561439.v2. All other
data supporting the findings of this study are available within the article
and its supplementary files. Any additional requests for information can
be directed to, and will be fulfilled by, the lead contact.

Code availability
nnSVG is freely available as an R package from Bioconductor (as of
2023-06-14: nnSVG version 1.4.1 available in Bioconductor release
version 3.17) at https://bioconductor.org/packages/nnSVG. The pack-
age is also available from GitHub at https://github.com/lmweber/
nnSVG. Code to reproduce all preprocessing, analyses, and figures in
this manuscript is available from GitHub at https://github.com/
lmweber/nnSVG-analyses. An archived version of this code reposi-
tory as of the time of publication is also available54. We used nnSVG
version 1.3.10 for the analyses in this manuscript.
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