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Natural statistics support a rational account
of confidence biases

TaylorW.Webb 1 , KiyofumiMiyoshi 2, Tsz Yan So3, Sivananda Rajananda4 &
Hakwan Lau 5

Previouswork has sought to understanddecision confidence as a prediction of
the probability that a decision will be correct, leading to debate over whether
these predictions are optimal, and whether they rely on the same decision
variable as decisions themselves. This work has generally relied on idealized,
low-dimensional models, necessitating strong assumptions about the repre-
sentations over which confidence is computed. To address this, we used deep
neural networks to develop a model of decision confidence that operates
directly over high-dimensional, naturalistic stimuli. The model accounts for a
number of puzzling dissociations between decisions and confidence, reveals a
rational explanation of these dissociations in terms of optimization for the
statistics of sensory inputs, and makes the surprising prediction that, despite
these dissociations, decisions and confidence depend on a common decision
variable.

When faced with a decision, we have the ability not only to choose
from a set of possible options, but also to assess how confident we
are in our choice. This capacity is an important part of the
decision-making process, allowing us to decide whether to gather
more information1, or how much to wager on the outcome of a
decision2. It has been proposed that this sense of confidence cor-
responds to an optimal prediction of the probability that a deci-
sion will be correct, and that confidence is computed based on the
same underlying decision variable as decisions themselves3–9.
Given certain distributional assumptions, this approach entails the
use of a decision variable that is proportional to the balance-of-
evidence (BE; Fig. 1a), incorporating sensory evidence both for and
against a decision10. This optimal view of confidence, however, has
been called into question by a number of puzzling dissociations
between decisions and confidence. These dissociations have led to
the formulation of an alternative model in which decisions are
made according to the BE rule, but confidence is estimated using a
simpler heuristic strategy that primarily considers the response-
congruent-evidence (RCE; Fig. 1b)11–17. That is, after weighing the
evidence and making a decision, confidence is based mainly on the
evidence in favor of the decision that was made.

These findings raise the question of why confidence would be
computed using an apparently suboptimal heuristic. This is especially
puzzling given findings suggesting that decisions are based on the
balance of evidence15, because it suggests that the evidence against
one’s choice is available in the decision-makingprocess, but simply not
incorporated into confidence judgments. One potential avenue for
resolving this puzzle is to reconsider the assumptions underlying the
low-dimensionalmodels that have been employed in previous work. In
particular, it has been shown that, given alternative assumptions about
the variance structure governing stimulus distributions, the optimal
approach to estimating confidence entails a more complex function
that differs from both the BE and RCE rules (Fig. 1c)18, with some evi-
dence that humandecision confidence follows this pattern19. However,
it has yet to be shown whether this alternative model can account for
the previously observed dissociations between decisions and con-
fidence. More importantly, this alternativemodel calls attention to the
fact that questions about optimality must be framed in relation to
stimulus distribution structure, which has typically been treated as a
modeling assumption in previous work.

In this work, we developed a model of decision confidence that
operates directly on naturalistic, high-dimensional inputs, avoiding the
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need for these simplifying assumptions. To do so, we first developed a
performance-optimized neural network model trained both to make
decisions fromhigh-dimensional inputs, and to estimate confidenceby
predicting the probability those decisions will be correct. Surprisingly,
a number of seemingly suboptimal features of confidence naturally
emerged from the model, including the positive evidence bias. We
then used unsupervised deep learning methods to extract a low-
dimensional representation of the model’s training data. We found
that the training data distribution displayed key properties that
undermined the presumed optimality of the BE model, and that an
ideal observer applied to this distribution replicated the observed
dissociations, thus yielding a rational account of these dissociations.
Consistent with this, we found that altering the distribution of the
training data altered the resulting biases in predictable ways, and that
the model employed a common internal decision variable for both
decisions and confidence, despite the observed behavioral dissocia-
tions. Finally, we found that the model also accounts for a range of
neural dissociations between decisions and confidence, including
some features akin to blindsight resulting from lesions to the primary
visual cortex.

Results
Figure 2 illustrates the architecture and training data for our
performance-optimized neural networkmodel of decision confidence.
Themodel was trained through standard supervised learningmethods
both tomake a decision about (i.e., classify) an input image, and also to
predict the probability that its own decision was correct (Fig. 2a). The
model was trained on two standard image classification benchmarks,
the MNIST and CIFAR-10 datasets, using supervised learning, and was
also trained on an orientation discrimination task using reinforcement
learning (RL) (Fig. 2b). Both contrast andnoise level were varied during
training, to give the model exposure to a broad range of conditions
(Fig. 2c). See “Methods” for more details on the model and training
procedures.

Behavioral dissociations between decisions and confidence
We first assessed whether the model accounted for a number of pre-
viously reported behavioral dissociations between decisions and
confidence. Despite not being directly optimized to produce these
dissociations, themodel naturally accounted for them in amanner that
closely resembled the previous findings.

Fig. 1 | Detection-theoretic formalization of confidence in two-choice tasks.
a Stimuli are modeled as samples from two-dimensional Gaussian distributions
(with means μs1 and μs2, and variance σ), schematized as circles labeled s1 and s2,
where each dimension represents the evidence in favor of one stimulus category.
Given these assumptions, the optimal procedure for estimating confidence is a
balance-of-evidence (BE) rule, based on the difference between the evidence in
favor of s1 and s2. b Many results are well modeled by an alternative response-
congruent-evidence (RCE) heuristic, according to which, after making a decision,

confidence is based entirely on the evidence in favor of the chosen stimulus cate-
gory, ignoring the evidence in favor of the alternative choice. c Bayesian ideal
observer with alternative variance assumptions. When stimulus distributions are
characterized by greater variance in the dimension in favor of the correct answer
(σtarget) than the dimension in favor of the incorrect answer (σnontarget), as proposed
in refs. 18 and 19, the optimal procedure for estimating confidence involves amore
complex function.

Fig. 2 | Performance-optimized neural network model of decision confidence.
aModel architecture. An image x, belonging to class y, was passed through a
deep neural network (DNN) encoder f (the exact architecture of this encoder
depended on the dataset, as detailed in “Encoder”), followed by two output
layers: gclass generated a decision ŷ classifying the image, and gconf generated
a confidence score by predicting p ŷ= y

� �
, the probability that the decision

was correct. b The model was trained through supervised learning using the
MNIST handwritten digits dataset and the CIFAR-10 object classification
dataset. For these datasets, the classification layer was trained to label the
class of the image, and the confidence layer was trained to output a target of
1 if the classification response was correct, and 0 if the classification
response was incorrect. The model was also trained through reinforcement
learning (RL) to perform an orientation discrimination task, in which, rather
than generating an explicit confidence rating, the model had the option to
opt-out of a decision and receive a small but guaranteed reward, allowing the
use of the opt-out rate as an implicit measure of confidence. c To evaluate
the relative influence of signal strength and noise on the model’s behavior,
images were modified by manipulating both the contrast μ and the noise
level σ.
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The positive evidence bias. Confidence is characterized by a positive
evidence (PE) bias11,12,14,16,17, as revealed by two related, but distinct,
manipulations. In one version of this effect, participants are presented
with two conditions, one with low signal and low noise (low PE con-
dition, Fig. 3a), and the other with high signal and high noise (high PE
condition). In the other version of this effect, participants are pre-
sented with a two-choice task involving stimuli that contain some
evidence in favor of both choices, and have to decide which choice has
more evidence in favor of it. For example, in the conditions depicted in
Fig. 3c, the task is to decide which of two superimposed digits (4 and 6
in this example) has a higher contrast. The high PE condition has both
higher positive evidence (evidence in favor of the correct answer) and
higher negative evidence (evidence in favor of the incorrect answer)
than the low PE condition. In both versions of the effect, the PE bias
manifests as higher confidence in the high vs. low PE conditions,

despite the fact that signal-to-noise ratio, and therefore decision
accuracy, is balanced across these conditions. This bias is considered a
key piece of evidence against the BEmodel (Fig. 1a), and in favor of the
RCE model (Fig. 1b), since the BE model gives equal weight to the
evidence both for and against a decision, whereas the RCE model
considers only the evidence in favor of a decision.

Figure 3b and d show that both versions of the PE bias naturally
emerged in our model across a range of conditions. For both the
MNIST and CIFAR-10 datasets, confidence was higher in the high vs.
low PE conditions, despite balanced accuracy, as previously observed
in studies of humandecision confidence11,12,17. The presence of this bias
therefore did not depend on the specific dataset used, or the archi-
tectural details of the model, since experiments on CIFAR-10 used a
more complex ResNet architecture for the encoder. In the orientation
discrimination RL task, the opt-out ratewas lower in the high vs. low PE

Fig. 3 | Behavioral dissociations between decisions and confidence. a Human
and animal decision confidence displays a positive evidence (PE) bias: higher
confidence (or lower opt-out rate) in the high vs. low PE conditions despite
balanced signal-to-noise ratio and balanced decision accuracy. b The PE bias
naturally emerges in performance-optimized neural networks across multiple
datasets, architectures, and learning paradigms (two-sided paired t-tests; accuracy:
MNIST, p =0.42; CIFAR-10, p =0.48; RL, p =0.97; confidence: MNIST, p = 1.4 × 10−20;
CIFAR-10, p = 4.3 × 10−50; RL, p = 4.4 × 10−20). See Supplementary Fig. S1 for con-
fidence distributions in correct vs. incorrect trials. Note that stimulus parameters
(contrast and noise) were set so as to target the threshold between chance per-
formance (dotted black lines) and 100%accuracy, resulting in ~ 55% accuracy for 10-
choice tasks and ~ 75% accuracy for two-choice tasks. The model achieved much
higher accuracy when presented with noiseless images (96.3%±0.03 for MNIST,
88.1% ± 0.05 for CIFAR-10). c An alternative test for the PE bias, involving super-
imposed stimuli presented at different contrast levels, where the task is to indicate
which stimulus is presented at a higher contrast. In the high positive evidence
condition, there is both higher positive evidence (evidence in favor of the correct

answer, 4 in this case), and higher negative evidence (evidence in favor of the
incorrect answer, 6 in this case), than in the low positive evidence condition. Visual
noise was also included in images, but is omitted here for clarity of visualization.
dThemodel also shows this alternative formulationof the PEbias (two-sidedpaired
t-tests; accuracy: MNIST, p =0.8; CIFAR-10, p =0.99; RL, p =0.83; confidence:
MNIST, p = 8.3 × 10−84; CIFAR-10, p = 2.8 × 10−48; RL, p = 2.8 × 10−10). e Adaptation of
behavioral paradigm from Maniscalco et al.13, s1 is presented at an intermediate
contrast, while the contrast of s2 is varied. f This produces a strong dissociation
between type-1 sensitivity (d') and type-2 sensitivity (meta-d'): when participants
respond s1, meta-d' decreases as d' increases (Behavior), a phenomenon which is
captured by the neural network model (Model). Results in (b) and (d) reflect
probability density over 100 trained networks, with mean accuracy/confidence in
each condition represented by circular markers, and maxima/minima represented
by the upper/lower line; results in (f) reflect mean d'/meta-d' over 100 trained
networks ± the standard of the mean; ns indicates p >0.05, ****p <0.0001. Source
data are provided as a Source Data file.
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conditions, as previously observed in studies using animal models14,16.
The presence of this bias therefore did not depend on the use of
supervised learning to train the confidence layer, but also emerged
when using a more realistic training signal (reward).

Dissociation between type-1 and type-2 sensitivity. Maniscalco et al.13

identified and confirmed a more specific, and surprising, prediction of
the RCEmodel: human confidence ratings are, under certain conditions,
characterized by a pattern of increasing type-1 sensitivity (as measured
by decision accuracy or d’) and decreasing type-2 sensitivity (as mea-
sured by meta-d’20). That is, confidence ratings become less diagnostic
of decision accuracy as decision accuracy increases. The RCE model
predicts that this pattern should emerge whenever a discrimination is
made between two stimulus classes, one of which (s1) is presented at a
fixed contrast, and one of which (s2) is presented at a variable contrast
(Fig. 3e). Under these conditions,meta-d’ increases as a function of d’ for
trials in which participants respond s2, and decreases as a function of d’
for trials in which participants respond s1, resulting in the crossover
pattern depicted in Fig. 3f (Behavior). This pattern is at odds with the BE
model, according to which meta-d’ should be equal to d’.

We simulated this paradigm in our model using a two-choice
variant of the MNIST dataset, in which each model was trained to
discriminate between two stimulus classes (e.g., 3 vs. 9). Toaccount for
the additional accumulation of noise between the time at which

decisions and confidence ratings are made, an additional noise para-
meter was added to the output of the network’s confidence layer. The
model showed a strikingly similar pattern to the previously observed
results (Fig. 3f, Model), capturing both the crossover effect and the
pattern of decreasing meta-d’ as a function of increasing d’ for trials
with an s1 response. Furthermore, even without the addition of the
noise parameter, these qualitative effects were still present (Supple-
mentary Fig. S2).

Latent ideal observer
The previous results show that our model captures a number of
established behavioral dissociations between confidence and
decision accuracy. How can these dissociations be explained? One
possibility is that, despite being extensively optimized to estimate
confidence by predicting its own probability of being correct, the
model nevertheless converged on a suboptimal heuristic strategy.
An alternative possibility is that these effects reflect a strategy that
is optimal given the actual distribution of the data for which the
model was optimized, which may violate the assumptions under-
lying the presumed optimality of the BE rule. We found strong
evidence to support this latter interpretation.

To answer this question, we first sought to quantitatively
characterize the distribution of the model’s training data. Because
it is not tractable to perform ideal observer analysis directly on

Fig. 4 | Latent ideal observer accounts for dissociations between decisions and
confidence. a Denoising variational autoencoder (VAE) used to extract low-
dimensional latent representation of training data. An image xwas passed through
aDNNencoder q (distinct from the encoder fused in the supervised neural network
model), which output the parameters (means and variances) of the latent posterior
q(z∣x), a two-dimensional Gaussian distribution. This distribution was sampled
from, yielding z, which was then passed through a DNN decoder h, yielding ~x, a
denoised reconstruction of the input x. The VAE was regularized based on the
divergence of the latent posterior from a unit normal prior (with means equal to 0
and variances equal to 1), encouraging efficient low-dimensional encodings of the
high-dimensional inputs. b Latent ideal observer model. After training the VAE,
Gaussian distributions were fit to the latent representations resulting from the
training images for classes s1 and s2. The distributions were used to construct an
ideal observer model that computed confidence according to p(correct∣z), the
probability of being correct given the low-dimensional embedding z. Concentric

ellipses represent distributions basedon the averageparametersof those extracted
from 100 trainedVAEs. The latent ideal observer accounted for both versions of the
PE bias, including (c) the version involving manipulation of contrast and noise
(Fig. 3a; two-sided paired t-tests, accuracy: p =0.97, confidence: p = 1.3 × 10−60), and
(d) the version involving superimposed stimuli presented at different contrast
levels (Fig. 3c; two-sided paired t-tests, accuracy: p =0.82, confidence:
p = 1.3 × 10−62). Confidence for correct and incorrect trials is shown in Supplemen-
tary Fig. S3. e The latent ideal observer also accounted for the dissociation between
type-1 and type-2 sensitivity. Results in (c) and (d) reflect probability density over
100 ideal observers (each based on distributions extracted by a separate trained
VAE), with mean accuracy/confidence in each condition represented by circular
markers, and maxima/minima represented by the upper/lower line; Results in (e)
reflectmeand'/meta-d' over 100 ideal observers ± the standardof themean; dotted
black lines represent chance performance; ns indicates p >0.05, ****p <0.0001.
Source data are provided as a Source Data file.
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the model’s high-dimensional inputs, we instead used unsu-
pervised deep learning techniques to extract the low-dimen-
sional, latent space underlying those inputs. Specifically, we used
a denoising variational autoencoder (VAE; Fig. 4a)21, which was
trained to map a high-dimensional input x to a low-dimensional
embedding z (consisting of just two dimensions), such that a
denoised version of x can be decoded from z. Figure 4b depicts a
summary of the low-dimensional latent distributions extracted by
the VAE. These distributions had two important properties. First,
these distributions had an elliptical shape, as quantified by the
ratio of the variance along the major and minor axes (σtarget/
σnontarget = 2.44 ± 0.04 over 100 trained VAEs). Second, the dis-
tributions underlying classes s1 and s2 fell along non-parallel axes
(θs1,s2 = 51. 4° ± 1.7). Under these conditions, the optimal approach
for estimating confidence follows a more complex function than
either the BE or RCE rules, as visualized in Fig. 4b. We then
constructed an ideal observer that computed confidence
according to p(correct∣z), using the distribution of the training
data in the low-dimensional space extracted by the VAE, and we
evaluated this function according to the distribution of the test
data in this space. This ideal observer model robustly captured
both versions of the PE bias (Fig. 4c, d), as well the dissociation
between type-1 and type-2 sensitivity (Fig. 4e), thus replicating
the same dissociations displayed by our performance-optimized
neural network model. A more comprehensive analysis is pre-
sented in Supplementary Figs. S4 and S5, showing that the
emergence of these biases depends on sensory evidence

distributions that are both asymmetrical (σtarget/σnontarget > 1), and
non-parallel (as quantified by 0° < θs1,s2 < 180°).

Importantly, we found that a key driver of this variance structure
was the presence of variable contrast in the model’s training data.
When the training data involved only images presented at a fixed
contrast, the distributions extracted by the VAE were characterized by
asymmetric variance (σtarget/σnontarget = 2.57 ± 0.06), but with a much
smaller angular difference (θs1,s2 = 10. 8° ± 1.6, two-sample t-test, stan-
dard training regime vs. fixed-contrast regime, t = 17.2, p < 0.0001). In
line with this observation, we show in “Dissociations are driven by
statistics of training data” thatmanipulating this feature of the training
data has a dramatic effect on the biases displayed by the model.

Comparing the latent ideal observer andRCEmodels. Given that the
observed behavioral dissociations can, in principle, be explained both
by the RCE heuristic model and our latent ideal observer model, we
next sought to determine which of these models best characterized
the behavior of the neural network. To do so, we employed a gen-
eralized version of the positive evidence manipulation, evaluating the
neural network model across a grid of conditions, each of which was
defined by a particular set of contrast levels for stimulus classes s1 and
s2 (Fig. 5a). This allowed for amore comprehensive characterization of
the model’s behavior as a function of the sensory evidence space.

We found that the model’s decision accuracy strongly resembled
the BE rule (Fig. 5b), whereas confidence displayed a more complex
pattern (Fig. 5c). To better understand the model’s confidence beha-
vior, we formally compared the pattern displayed in Fig. 5c to

Fig. 5 | Learned confidence strategy best explained by ideal observer.
a Generalized version of positive evidence manipulation used to comprehensively
evaluate both accuracy and confidence as a function of sensory evidence. Model
was trained on classification of individual stimuli over the standard range of con-
trast and noise levels, then tested on images consisting of two superimposed sti-
muli belonging to classes s1 and s2, with independently varying contrast levels μs1

and μs2 (visual noise was also included in images presented to the model).
b Decision accuracy resembled the BE rule, as expected given uniform sampling of
sensory evidence space. c Confidence displayed a more complex pattern.
d Confidence was best predicted by the latent ideal observer model, which out-
performed regressionmodels basedoneither the RCEor BE rules. Results reflect an
average over 100 trained networks. Source data are provided as a Source Data file.
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regression models based on the BE and RCE rules, as well as a
regression model based on the latent ideal observer. Confidence was
better explained by the RCE rule than the BE rule (RCE R2 = 0.82 ±0.01;
BE R2 = 0.42 ± 0.01; paired t-test, RCE vs. BE, t = 33.37, p < 0.0001), but
the ideal observer explained confidence better than either of these
rules (ideal observer R2 = 0.89 ± 0.01, Fig. 5d; paired t-test, ideal
observer vs. RCE, t = 28.4, p < 0.0001), and indeedwas very close to the
noise ceiling (the ability of the average pattern across networks to
predict the behavior of individual networks, R2 = 0.9 ± 0.01).

These results give rise to a fewquestions. First, given that the ideal
observer estimates confidence according to an optimal prediction of
its own accuracy, what explains the difference between the patterns
displayed by accuracy and confidence? This can be explained by the
fact that the ideal observer’s confidence estimates are based on the
probability of being correct given the training distribution, which
deviates from the distribution of the test conditions evaluated here. In
particular, the conditions employed in this evaluation are designed to
uniformly sample the sensory evidence space, whereas the training
data are not uniformly distributed in this space. Second, why does the
confidencepatterndisplayed by the ideal observer (Fig. 5d) differ from
p(correct∣z), the function it uses to compute confidence (Fig. 4b)? This
is because the test conditions depicted in Fig. 5a each contain their
own degree of noise, and donot correspond to precise point estimates
of the ideal observer’s confidence function. Thus, the pattern dis-
played in Fig. 5d reflects essentially a smoothed version of the ideal
observer model. Surprisingly, the result bears a strong visual resem-
blance to the RCE rule, though our quantitative analysis reveals that
these two models can be distinguished, and that the ideal observer
ultimately provides a better explanation of the confidence strategy
learned by the neural network.

Dissociations are driven by statistics of training data
The results of the ideal observer analysis suggest that the confidence
biases displayed by the model—previously viewed as evidence of a
suboptimal heuristic strategy—canbe explained insteadas arising from
a strategy that is optimal given the distribution of the model’s training
data. One implication of this view is that a change to this distribution
should lead to a change in the resulting biases.

To test this hypothesis,we studiedhow thePEbiaswas affectedby
the distribution of contrast and noise levels in the training data
(Fig. 6a). Under the standard training regime, involving variation in
both contrast and noise levels, the model displayed a PE bias (Fig. 6b,
Standard training), but we found that this bias could be eliminated,
reversed, or significantly enhanced, by altering this standard regime.
Networks trained ondatawith a fixed contrast-to-noise ratio (Fixed μ/σ
training), equivalent to being trained directly on the low and high PE
conditions in which decision accuracy is balanced, did not display any
bias at all. Networks trained under a regime inwhich contrastwasfixed
and only noise varied (Fixed μ training), displayed a reversed PE bias.
That is, confidence was higher in the low vs. high PE conditions. This
can be explained by the fact that, under this training regime, accuracy
is primarily a function of the noise level, so it makes sense to adopt a
confidence strategy based primarily on the level of sensory noise,
resulting in higher confidence in the low PE (low noise) condition.
Finally, networks trained under a regime in which noise was fixed and
only contrast varied (Fixed σ training), displayed amuch larger PE bias,
approximately five times as large as in the standard training regime
(average confidence difference between the low and high PE condi-
tions of 0.27 ± 0.005 in the fixed σ regime vs. 0.05 ±0.004 in the
standard regime), consistent with the highly predictive relationship
between contrast and accuracy in this training regime.

Fig. 6 | ThePEbias is driven by distributionof trainingdata. a Illustration of four
different training regimes. In the standard training regime, the model was trained
on the full range of variability in both contrast and noise levels. In the fixed μ/σ
regime, the model was trained on images with a fixed signal-to-noise ratio,
equivalent to being trained directly on the positive evidence manipulation. In the
fixedμ regime, themodelwas trainedon images that varied only in their noise level.
In the fixed σ regime, the model was trained on images that varied only in their
contrast level. b Effect of training regime on presence of PE bias. Variance in both
contrast and noise (standard training) resulted in PE bias (two-sided paired t-tests,
accuracy: p =0.42, confidence: p = 1.4 × 10−20). Fixed contrast-to-noise ratio (fixed
μ/σ training) resulted in no PE bias (two-sided paired t-tests, accuracy: p =0.7,

confidence: p =0.31). Variance in noise only (fixed μ training) resulted in reversed
PE bias—higher confidence in low vs. high PE conditions (two-sided paired t-tests,
accuracy: p =0.21, confidence: p = 4.8 × 10−35). Variance in contrast only (fixed σ

training) resulted in significantly larger PE bias than standard training regime (two-
sided paired t-tests, accuracy: p =0.47, confidence: p = 4.8 × 10−79). Results reflect
probability density over 100 trained networks, with mean accuracy/confidence in
each condition represented by circular markers, and maxima/minima represented
by theupper/lower line; ns indicatesp >0.05, ****p <0.0001. Confidence for correct
and incorrect trials is shown in Supplementary Fig. S6. Source data are provided as
a Source Data file.

Article https://doi.org/10.1038/s41467-023-39737-2

Nature Communications |         (2023) 14:3992 6



Furthermore, the confidence strategy learned in the context of
each training regime was generally the best strategy for that particular
regime, in the sense that, for any given test regime,meta-d’washighest
for models trained on that regime (Supplementary Fig. S7 and
Table S1). Thus, the biases exhibited by the model under different
training conditions can be viewed as the result of a confidence strategy
that is best suited to a particular statistical regime. In particular, the
presenceof variable contrast in themodel’s training data appears to be
a critical factor governing the emergence of a human-like bias toward
positive evidence.

Behavioral dissociations are consistent with common internal
decision variable
An additional implication of the ideal observer model is that, despite
the presence of dissociations at the behavioral level, decisions and
confidence should nevertheless be based on a common internal
decision variable. To investigate whether this was the case for our
neural networkmodel, we performed principal component analysis on
the representations in the penultimate layer (the output of the enco-
der f in Fig. 2a) of networks trained on the two-choice variant of
MNIST. We found that the model’s learned representations could be
characterized by a two-dimensional geometry involving only a single
decision variable. The top two principal components accounted for
>97% of the variance (Fig. 7a). Principal component 1 (PC1) predicted
both the stimulus class s1 vs. s2 (Fig. 7b; prediction accuracy = 0.88 ±
0.003), and the network’s decision output (Fig. 7e; R2 = 0.99 ±0.001).
Principal component 2 (PC2) predicted both whether a decision was
correct vs. incorrect (Fig. 7c; prediction accuracy = 0.88 ±0.003), and
the network’s confidence output (Fig. 7f; R2 = 0.9 ± 0.01). Most
importantly, PC2 corresponded closely to a rectification of PC1 (i.e.,
PC2∝ ∣PC1∣; Fig. 7d; R2 = 0.86 ±0.014), suggesting that these compo-
nents represented essentially the same decision variable. Indeed, the

same confidence biases displayed by the model were also exhibited by
a rectified version of PC1, which themodel used tomake decisions, and
even by a rectified version of the model’s decision output itself (Sup-
plementary Figs. S8–S10), consistent with the use of a common deci-
sion variable as in the ideal observer.

Analysis of single unit representations. The representational scheme
learned by the model, in which both confidence and decisions are
represented using a common decision variable, is reminiscent of
findings at the single neuron level in the lateral intraparietal cortex
(LIP)3,5. In those studies, nonhuman primates were presented with a
perceptual decision-making task in which they sometimes had the
option to opt out of the decision and receive a small but guaranteed
reward (referred to as the sure target, or TS), similar to the task that we
used when training our model using RL. It was found that LIP neurons
were both predictive of decisions, and implicitly encoded confidence,
in the sense that they weremore active for trials onwhich the neuron’s
preferred stimulus (Tin) was chosen vs. trials on which the sure target
(TS) was chosen. Similarly, these neurons were less active when their
non-preferred stimulus (Topp) was chosen. These neurons thus enco-
ded both decisions and (implicitly) confidence as a single decision
variable.

We tested whether our model would show similar effects, by
analyzing responses at the single neuron level in the version of the
model trained on the RL orientation discrimination task. Specifically,
we analyzed the response of individual neurons in the penultimate
layer of the network, which showed the same population-level repre-
sentational signatures as the version of the model trained with
supervised learning (i.e., a two-dimensional geometry representing a
single decision variable; Supplementary Fig. S11). We evaluated the
extent to which individual neurons were predictive of either the
model’s decision output (quantified by R2

decision), or the opt-out output

Fig. 7 | Learned representations extract a common variable for both decisions
and confidence. a Principal component analysis revealed that the learned repre-
sentations in the model’s penultimate layer were almost entirely explained by the
top two principal components. a Reflects probability density over 100 trained
networks, with the mean represented by circular markers, and maxima/minima
represented by the upper/lower line. b–f Depict results from a single trained net-
work for the purposes of illustrating the model’s learned two-dimensional

geometry, but this general representational scheme was shared by all networks.
b Kernel density estimates show that the distributions for s1 vs. s2 were separated
along PC1. c The distributions for correct vs. incorrect trials were separated along
PC2. d PC2 closely resembled a rectification of PC1. e PC1 predicted the model’s
decisions. f PC2 predicted the model’s confidence ratings. Note that (d–f) depict
trial-by-trial data points, not the predictions of a regressionmodel. Source data are
provided as a Source Data file.
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(quantified by R2
opt�out). We found that some neurons were strongly

predictive of decisions (Fig. 8a), while other neurons were strongly
predictive of the opt-out output (Fig. 8b). We classified neurons as
either decision neurons or confidence neurons, by computing
ΔR2 =R2

decision � R2
opt�out (see “Single unit analysis” and Supplementary

Fig. S12). The decision neurons in our model showed a pattern very
similar to the behavior of LIP neurons: they were more active on trials
where thepreferred stimuluswaschosen vs. opt-out trials (Fig. 8c), and
were less active on trials where the non-preferred stimulus was chosen
(Fig. 8d; paired t-tests, p <0.05 for 97 out of 100 trained networks).

It should be noted that, although we treat individual neurons as
belonging to discrete categories (decision vs. confidence neurons) in
order to compare with previous results, a closer analysis suggests a
more distributed pattern. This can be seen by comparing ΔR2 with the
projection of eachneurononto the top 2 PCs (Supplementary Fig. S12).
Neurons aligned with PC1 were strongly predictive of decisions, while
neurons aligned with PC2 were strongly predictive of confidence. But
there were also other neurons that interpolated between these clus-
ters, such that they were moderately predictive of both decisions and
confidence, and were not strongly aligned with either PC. Thus,
although it is possible to view the individual neurons in our model as
belonging to discrete categories, a more general interpretation is to
view them as jointly representing a low-dimensional geometry at the
population level.

Accounting for neural dissociations
In the previous section, we showed that the model learned to use a
single internal decision variable for both decisions and confidence,
despite the observed dissociations at the behavioral level. However, a
number of previous results have also reported dissociations between
the neural processes underlying decisions vs. confidence. Here, we
show that our neural network model can also account for many of
these neural dissociations, demonstrating that, contrary to previous
interpretations, these dissociations are consistent with the use of a
common decision variable.

Contribution of decoded neural evidence to confidence. One such
neural dissociation was reported by Peters et al.15, who recorded
whole-brain cortical electrophysiological signals while participants
performed a face/house discrimination task, and trained a classifier to
estimate the amount of neural evidence in favor of faces vs. houses on
a trial-by-trial basis. This decoded neural evidence measure was then
used to determine whether decisions and confidence were better
predicted by the balance of evidence for faces vs. houses, or by the
response-congruent evidence alone. Both receiver operating char-
acteristic (ROC) and choice probability (the area under the ROC curve)
analyses revealed that decisions were better predicted by the BE rule,
whereas confidence was predicted about equally well by either the BE
or RCE rules, meaning that the incorporation of decision-incongruent
evidence did not significantly improve the prediction. These results
seem to imply that decisions and confidence are based on distinct
neural decision variables (BE for decisions, and RCE for confidence), at
odds with the representation learned by our model.

We simulated this analysis in our model by training a separate
decoder to predict the stimulus class s1 vs. s2 given the concatenated
activation states of all layers in the network, mirroring the whole-brain
decoding approach in the original study. We were surprised to find
that, despite the use of a common decision variable represented in the
penultimate layer of the network, this analysis produced a strikingly
similar dissociation when decoding from all layers of the network
(Supplementary Fig. S13). By contrast, when decoding only from the
penultimate layer, both decisions and confidence were better pre-
dicted by the BE vs. RCE rules (Supplementary Figs. S14 and S15),
consistent with the presence of a common decision variable. In prin-
ciple, since the penultimate layer forms a part of the feature space in
the whole-network decoding analyses, and decisions are nearly per-
fectly decodable from this layer, the optimal decoder should be able to
ignore the earlier layers and produce the same results for both ana-
lyses.However, the very large number of features present in thewhole-
network analysis (11,236 neurons) necessitated the use of a decoding
method based on gradient descent, which is susceptible to local
minima, and therefore will not necessarily converge to the optimal
result. This likely explains the discrepancy between these analyses.

These results demonstrate how such whole-brain decoding ana-
lysesmayoffer amisleading characterization of the high-level decision
variables utilized by the brain. This may be especially true when ana-
lyzing data characterized by relatively low spatial resolution, given
previous findings that such analyses are more sensitive to neural sig-
nals from earlier sensory regions than higher-order decision-making
regions22. This suggests the need for direct intracellular recordings
from decision-making areas, e.g., lateral intraparietal cortex (LIP) or
dorsolateral prefrontal cortex (dlPFC), to test the predictions of
the model.

Dissociations resulting from brain stimulation. A few studies have
found that the application of transcranial magnetic stimulation (TMS)
to specific brain regions can have dissociable effects on decisions and
confidence. In one study, it was found that low intensity TMS to pri-
mary visual cortex (V1) led to a pattern of decreased type-1 sensitivity
(d’) combined with increased confidence23. We simulated this

Fig. 8 | Analysis of single unit representations. a Example decision neuron,
strongly predictive of decision output (R2

decision =0:83), but not opt-out response
(R2

opt�out =0:004). b Example confidence neuron, strongly predictive of opt-out
response (R2

opt�out =0:87), but not decision output (R2
decision =0:16). Kiani &

Shadlen3 found that decision-making neurons in the lateral intraparietal cortex
(LIP) implicitly coded for confidence. Decision neurons in our neural network
model showed this same pattern. c They showed higher activity for trials on which
their preferred stimulus (Tin) was chosen vs. trials on which a sure target (TS) was
chosen, whereas (d) they were less active for trials on which their non-preferred
stimulus (Topp)was chosen. Eachpoint in c andd represents the averagenormalized
(against the pre-stimulus baseline) activation of an individual neuron (over
N ≥ 2700 trials) ± the standarderror of themean. Black dots represent neuronswith
statistically significant deviations from the diagonal (two-sided two-sample t-tests,
p <0.05). White dots represent neurons with non-significant deviations (two-sided
two-sample t-tests,p >0.05). Note that error bars are present on these plots, but are
too small to be visible. Neural network results reflect a single example network, but
all 100 trained networks displayed a qualitatively similar pattern. Source data are
provided as a Source Data file.
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experiment in our model by adding random noise (with variance ξ) to
the activations in the first layer of the network, which captured the
simultaneous decrease in d’ and increase in confidence as a result of
increasing TMS strength (Fig. 9a). Another study found that theta-
burst TMS to dlPFC resulted in a greater impairment of type-2 sensi-
tivity (meta-d’) than type-1 sensitivity (d’)24. We simulated this experi-
ment in our model by adding random noise to the activations in the
penultimate layer of thenetwork,which captured thegreater impact of
TMS on meta-d’ vs. d’ (Fig. 9b). These results are both amenable to
standard detection-theoretic explanations—an explanation of the
effect of TMS to V1 was proposed in the original study23, and we pre-
sent an explanation of the effect of TMS to dlPFC in Supplementary
Fig. S16. However, they highlight the ability of the neural network
model to capture broad anatomical distinctions in the neural
mechanisms underlying confidence.

Blindsight. One particularly striking dissociation between decisions
and confidence comes from the condition known as blindsight25, in
which a lesion to V1 results in the subjective sensation of blindness
despite relatively preserved visual capacity. One way to characterize
blindsight is as a severe deficit in visual metacognition. Blindsight
patients typically have very low confidence in the visual discrimina-
tions made in their blind hemifield, routinely referring to them as
guesses25. Even in the rare cases where patients express high con-
fidence in their visual discriminations (e.g., in the case of blindsight
patient GY), their confidence ratings are generally not very predictive
of whether those discriminations will be correct or incorrect26,27. This
canbe formalized as a pattern of relatively preserved d’ combinedwith
very low meta-d’.

We simulated lesions to V1 by scaling the activations in the first
layer of the trained neural networkmodel by a factor of 0.01. The small
amount of signal remaining in the first layer of the network was
intended to model the intact visual signals from subcortical regions
that are thought tomediate residual visual function in blindsight28. We
found that, despite this significant scaling of activations, the model
retained substantial visual function, as indicated by high d’ values,
whereas the model’s confidence ratings were no longer predictive of
performance, as indicated by meta-d’ ≈0 (Fig. 10a). This is in contrast
to control networks, without a lesion, which displayedmeta-d’ ≈d’. We
note that, in our analysis, confidence criteria were selected based on
the empirical distribution of confidence outputs for each condition, so
meta-d’ ≈0 cannot be trivially explained by confidence ratings that all
fall below an arbitrary pre-lesion criterion. We also computed density
estimates for confidence ratings on correct vs. incorrect trials, which
further confirmed that, in lesioned networks, confidence ratings were
not only low but also had completely overlapping distributions for—
and thus could not discriminate between—correct and incorrect trials

(Fig. 10b). The model therefore captured the key metacognitive com-
ponents of blindsight.

It should be noted that the exact extent of the metacognitive
impairment in blindsight is currently unclear, with some data sug-
gesting that meta-d’ is significantly lower, though still above zero26.
Our model can also account for this pattern (Supplementary Fig. S17).
It should also be noted that the small negative values of meta-d’ in
Fig. 10a are most likely due to the highly non-Gaussian nature of the
confidence distributions, which violates the assumptions of meta-d’.

Prefrontal regions selectively involved in confidence. A number of
studies have found that impairment of specific brain regions—either
through lesions or temporary inactivation—can selectively impair
confidence, without affecting first-order judgments themselves29–32.
We investigatedwhether these effects couldbe capturedby simulating
a lesion to the penultimate layer of the network, but did not find any
such dissociation (Supplementary Fig. S18). This suggests the need for
further model development to capture the role that specific brain
regions play in confidence.

Discussion
The question of whether confidence judgments reflect an optimal
prediction of the probability of being correct has been hotly debated
in recent years3–9,11–19,33,34. Those debates have centered aroundmodels
that rely on strong assumptions about the representations over which
confidence is computed. Previousworkusing artificial neural networks
to model decision confidence has also generally relied on such
representational assumptions35–38. In this work, by contrast, we used
deep neural networks to study confidence in the context of realistic,
high-dimensional stimuli. We found that a relatively simple model,
optimized only to predict its own likelihood of being correct, captured
many of the biases and dissociations that have driven recent debates.
Furthermore, we found that an ideal observer applied to a low-
dimensional projection of the model’s training data yielded a rational
explanation of these biases, and provided a very closefit to the pattern
of confidence displayed by the model.

Our findings have an important link to models of decision con-
fidence in which sensory evidence distributions are characterized by
asymmetric variance18,19, according to which the optimal confidence
strategy follows a more complex function than a simple BE rule. We
found that a low-dimensional projection of our model’s training data
displayed this key property of asymmetric variance, driven to a sig-
nificant extent by the presence of variable contrast in the training data.
Consistent with this, we found that the PE bias could be eliminated, or
even reversed by manipulating this feature of the training data. More
broadly, these results suggest that human confidence biases may
emerge as a consequence of optimization for a particular statistical

Fig. 9 | Simulating TMS to visual and prefrontal cortices. TMS was simulated by
adding noise with variance ξ to activations in a specific layer. a Simulated TMS to
the first layer of the network resulted in both decreased type-1 sensitivity (d') and
increased confidence, as has been observed following TMS to primary visual cortex

(V1).bSimulatedTMS to thepenultimate layer of the network resulted in a selective
impairment of type-2 sensitivity (meta-d'), as has been observed following TMS to
dorsolateral prefrontal cortex (dlPFC). See Supplementary Fig. S16 for a detection-
theoretic explanation of this effect. Source data are provided as a Source Data file.
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regime, in particular one governed by variable signal strength, and it
therefore may be possible to reshape them through direct training
under specific task conditions. This idea is consistent with the results
of Maniscalco et al.13, who found that the dissociation between type-1
and type-2 sensitivity could be largely eliminated when participants
received feedback about the effectiveness of their type-2 responses.

Our model is also related to the recently proposed model of
Khalvati et al.34, in that both models propose a rational account of
seemingly suboptimal dissociations between decisions and con-
fidence. An important difference is that the model of Khalvati et al.
depends on a unidimenionsal representation of sensory evidence, and
therefore cannot account for effects that require a two-dimensional
sensory evidence space. These include the dissociation between type-1
and type-2 sensitivity, and the version of the PE bias involving super-
imposed stimuli, both of which our model accounts for. However, a
deep commonality is that both models invoke a distinction between
the sensory evidence distribution assumed by the experimenter, and
the actual distribution used by the decision-maker. In the case of our
model, we specifically propose that such dissociations arise because
they are globally optimal according to the broader distribution of the
decision-maker’s prior sensory experiences, even if they are not locally
optimal for the sensory evidencedistribution in a specific task. There is
also an interesting parallel to models of confidence in memory in
which fluency serves as a cue to the reliability of a memory39. There
too, onepossible explanation is that this heuristic is employedbecause
fluency is generally a reliable predictor of the accuracy of one’s
memories40, even if it is not necessarily diagnostic in every task
setting41.

We found that the representations learned by our model were
characterized at the population level by a two-dimensional geometry,
in which one dimension coded for decisions, and another dimension
coded for confidence. At the single neuron level, we found that some
neurons were both strongly predictive of decisions, and implicitly
coded for confidence, in the sense that they responded more to their
preferred stimulus class when the network displayed high confidence.
These results mirror previous findings from decision-making neurons
in LIP3,5. In addition to this implicit coding of confidence, we also found
that other neurons explicitly coded for confidence, in the sense that
confidence could be linearly decoded from their activation level,
regardless of which choice was made by the network. Such explicit

representations of confidence have been discovered at the single
neuron level in both orbitofrontal cortex42 and the pulvinar29.

A related finding is that a number of brain regions appear to play a
selective role in confidence. Temporary inactivation of either orbito-
frontal cortex31 or pulvinar29 affects confidence-related behaviors
without affecting decisions; temporary inactivation of specific pre-
frontal nodes (areas 9 and 6) has dissociable effects on memory con-
fidence, without affecting memory itself32; and lesions to anterior
prefrontal cortex cause a domain-specific impairment of perceptual
metacognitive accuracy, without impairing perceptual decision
accuracy30. Our model did not capture this segregation of confidence
vs.first-order decision-making capacities into distinct regions. Instead,
confidence and decision neurons were intermixed in the penultimate
layer of the network, and a simulated lesion to this layer didnot cause a
selective metacognitive impairment. One likely reason is that, unlike
the brain43,44, there is no pressure in ourmodel for neuronswith similar
functionality to cluster together spatially. Additionally, our model is
missing a number of architectural elements thought to be important
for the function of these brain regions, including recurrence, top-down
feedback connections, and convergent multimodal inputs. The incor-
poration of these elements is a promising avenue for future work.

An additional issue is the question of whether decisions and
confidence are computed based on a common decision variable
(which is distinct from the question of whether they are supported by
different brain regions). It has recently been proposed that confidence
and decisions are supported by distinct populations of neurons with
differing degrees of lateral inhibition, such that decisions and con-
fidence are based on different weightings of the sensory evidence37.
This model was motivated by, and can account for, some of the same
behavioral dissociations that we model in the present study. In con-
trast, our analyses of the neural network model’s learned representa-
tions provided strong evidence that it relied on a common decision
variable, and this conclusion is also consistent with the results of our
ideal observer model, which employs a common decision variable by
definition. A key contribution of the present study is thus to show how
the previously observed dissociations can arise despite the use of a
common decision variable. This also leads to the prediction that the
neural decision variable underlying decisions should be subject to the
same biases as confidence, even if decisions don’t display those biases
at a behavioral level.

Fig. 10 | Simulating blindsight. Lesions to V1 can cause the condition known as
blindsight, in which patients have the subjective sensation of blindness despite
preserved visual capacity. This pattern can be formalized as a combination of
preserved type-1 sensitivity (d'), low visual confidence, and low type-2 sensitivity
(meta-d'). a Lesions to V1 were simulated in the model by scaling activations in the
first layer of the trained network by a factor of 0.01. This resulted in a sharp

reduction in meta-d' despite relatively preserved d'. b Confidence ratings were
significantly lower following simulated lesions, and the distribution of confidence
ratings showed a nearly complete overlap for correct and incorrect trials, con-
sistent with meta-d'≈0. All results reflect an average over 100 trained networks ±
the standard error of the mean. Source data are provided as a Source Data file.
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We have presented a simple, high-level model that abstracts over
many important properties of biological neural networks, including
the presence of distinct cell types, temporal dynamics, etc. Though
this level of abstraction has proven useful, it will also be important to
expand the functionality and biological detail of the model in future
work. For instance, the model could be expanded by replacing the
feedforwardencoderwith a recurrent network45, allowing themodel to
make contact with the rich body of data on temporal evidence accu-
mulation in decision-making46,47, and to account for phenomena such
as the effect of post-decisional evidence on confidence judgments48.
Furthermore, recently developed techniques49 could be used to
incorporate distinct inhibitory and excitatory cell types, allowing the
model to implement lateral inhibition, which is thought to play a key
role in the evidence accumulation process50, and also figures promi-
nently in mechanistic accounts of decision confidence37. The present
approach therefore can be viewed as a general explanatory framework
that suggests a number of exciting prospects for future work.

Methods
Code and hardware
Simulations were carried out in Python using the following packages:
PyTorch51, NumPy52, SciPy53, scikit-learn54, and Matplotlib55. All code is
available at: https://github.com/taylorwwebb/performance_optimized_
NN_confidence

All simulations were performed using a single NVIDIA GeForce
RTX 2080 Ti GPU.

Datasets
Experiments were performed on three datasets. The first was the
MNIST handwritten digits dataset, consisting of grayscale images of
thedigits 0-956. Thisdataset has a training setwith 60, 000 images, and
a test set with 10, 000 images. The second was the CIFAR-10 object
classification dataset, consisting of color images of 10 common object
categories (cats, dogs, cars, etc.)57. This dataset has a training set with
50, 000 images, and a test set with 10, 000 images. Third, we used an
orientation discrimination task featuring oriented gabor patches.
Images had a size of 32x32, and each image contained a single gabor
patch, tilted either 5 degrees to the left or 5 degrees to the right. Gabor
patches were generated using a centered Gaussian envelope with a
standard deviation of 4 pixels, and a spatial frequency of 0.3 cycles
per pixel.

For experiments using the MNIST and CIFAR-10 datasets, all net-
works were trained and evaluated on the official training and test sets
respectively. Thus, for thesedatasets, all results presented in the paper
involve generalization beyond the images used for training. Images
from the MNIST dataset were resized from 28x28 to 32x32 using
bilinear interpolation. For training on the CIFAR-10 dataset (with an
original image size of 32x32), a random crop of size 32x32was selected
after zero-padding of size 4 on all sides, and images were flipped
horizontally with a probability of 0.5.

During training, images were scaled by a contrast factor μ. This
value was sampled online from a uniform distribution, and then mul-
tiplied by the values of each pixel (which had an original range of
[0, 1]). Images were then normalized to the range [ − 1, 1], and pixel-
wise noise was added. Noise was sampled from a Gaussian distribution
with variance σ. This value was also sampled online from a uniform
distribution. After adding noise, images were thresholded to the range
[ − 1, 1] using a hard tanh function. For training on CIFAR-10, contrast
was sampled fromthe range [μ =0.1, μ = 1] andnoisewas sampled from
the range [σ =0.1, σ =0.2]. For training on the orientation discrimina-
tion task, contrast was sampled from the range [μ =0.1, μ = 1] and noise
was sampled from the range [σ = 0.5, σ = 1]. For the standard MNIST
training regime, contrast was sampled from the range [μ =0.1, μ = 1]
and noise was sampled from the range [σ = 1, σ = 2]. Some experiments

on MNIST used alternative training regimes, as described in “Alter-
native training and test regimes”.

Model architecture
The model architecture involved three major components. The first is
a DNN encoder f that takes an image x, of class y. The output of this
encoder is then passed to two output layers gclass and gconf. The layer
gclass outputs a predicted class ŷ for the image:

ŷ= gclassðf ðxÞÞ ð1Þ

and the layer gconf predicts pðŷ= yÞ, the probability that the classifica-
tion response is correct:

pðŷ= yÞ= gconf ðf ðxÞÞ ð2Þ

The architectural details of these components depended on the spe-
cific datasets and experiments.

Encoder. For both handwritten digit classification (using the MNIST
dataset) and orientation discrimination (trained with RL), f consisted
of 3 convolutional layers followedby 3 fully-connected (FC) layers. The
convolutional layers had 32 channels each, a kernel size of 3, a stride of
2, batch normalization, and leaky ReLU nonlinearities with a negative
slope of 0.01. The first 2 FC layers had 256 and 128 units, batch nor-
malization, and leaky ReLU nonlinearities with a negative slope of 0.01.
The output of the encoder was generated by the final FC layer, which
had 100 units and no nonlinearity or normalization.

For experiments on CIFAR-10, a more challenging object classifi-
cation benchmark, f employed a more complex ResNet architecture
modeled closely on He et al.58. The basic building block of this archi-
tecture is the residual block, in which the input to a series of con-
volutional layers is added to their output, thus providing shortcuts in
the computational graph that facilitate learning in very deep archi-
tectures. Our implementation of this component used the following
formulation:

~xl = 1
b = ReLU BNl = 1

b conv l = 1
b ðxb�1Þ

� �� �
ð3Þ

~xl = 2
b = BN l = 2

b conv l = 2
b ð~xl = 1

b Þ
� �

ð4Þ

xb = ReLU ~xl = 2
b +xb�1

� �
ð5Þ

where xb−1 is the output of the previous residual block b� 1, conv l = 1
b

and conv l = 2
b are the first and second convolutional layers in the cur-

rent block b, and BN l = 1
b and BN l = 2

b are batch normalization layers. All
convolutional layers employed a kernel size of 3 and no bias term. The
default residual block employed layers with a stride of 1, and the same
number of output channels as input channels. In some cases (as
detailed in the next paragraph), a residual block had a different num-
ber of output than input channels, or employed a stride of 2 so as to
output a smaller feature map. In these cases, the first convolutional
layer conv l = 1

b implemented either the stride or change in number of
channels, and xb−1 was passed through an additional convolutional
layer (incorporating the stride or change in number of channels) and
batch normalization layer before being added to ~xl = 2

b , to ensure that
they had the same shape:

~xl = 3
b = BN l = 3

b conv l = 3
b ðxb�1Þ

� �
ð6Þ

xb = ReLU ~xl = 2
b + ~xl = 3

b

� �
ð7Þ
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Residual blocks were further arranged into stacks. Each stack
contained 9 residual blocks. Some stacks had a different number of
output than input channels, implemented by the first block in the
stack, and some stacks had an output stride of 2, implemented by the
last block in the stack. The input image was first passed through an
initial convolutional layer, with 16 channels, a stride of 1, batch nor-
malization, and ReLU nonlinearities. This was followed by 3 residual
stacks. The first stack had 16 output channels and anoutput stride of 2.
The second stackhad32output channels and anoutput strideof 2. The
third stack had 64 output channels and an output stride of 1. Alto-
gether, f had 55 layers (1 initial layer + 3 stacks × 9 blocks per stack × 2
layers per block). Finally, the output of the encoder was generated by
average pooling over the output of the third stack, yielding a 64-
dimensional vector.

Output layers. For experiments on the standard versions of CIFAR-10
and MNIST (both 10-way classification tasks), gclass parameterized a
categorical distribution indicating the predicted probability that x
belonged to each of the 10 possible image classes, using a linear layer
followed by a softmax nonlinearity. For the two-choice versions of
MNIST andCIFAR-10 (classification of two randomly selected classes s1
and s2), gclass parameterized a binomial distribution indicating the
predicted probability that x belonged to class s2, using a linear layer
followed by a sigmoid nonlinearity. For all experiments on CIFAR-10
and MNIST, gconf parameterized a binomial distribution indicating the
predicted probability that the classification response was correct.

For the orientation discrimination task, we used an actor-critic
architecture trained with RL. The actor and critic were separate output
layers that both took the output of the encoder f(x) as input. The actor
parameterized a categorical distribution over 3 possible actions (LEFT,
RIGHT, and OPT-OUT) using a linear layer followed by a softmax
nonlinearity. The critic predicted the reward thatwould be received on
the current trial, using a linear layer.

Training
MNIST. For the standard 10-choice version ofMNIST, gclasswas trained
with a cross-entropy loss over the 10 possible image classes. For the
two-choice version of MNIST, gclass was trained with a binary cross-
entropy loss. The target was 0 if x belonged to class s1 and 1 if x
belonged to class s2. The confidenceoutput layer gconfwas trainedwith
a binary cross-entropy loss. The target was 1 if the classification output
was correct and 0 if the classification output was incorrect. The clas-
sification and confidence losses were summed, and the entire archi-
tecturewas trained throughbackpropagation. Trainingwas performed
for 5 epochs using the Adam optimizer59, with a learning rate of 5e − 4
and a batch size of 32. Note that for the two-choice version, these
epochs were about 1/5 as long as they were for the standard version
(since they only involved 2 out of the 10 possible image classes). All
weights and biases were initialized using PyTorch defaults.

CIFAR-10. For the CIFAR-10 dataset, gclass and gconf were trained with
the same loss functions used for MNIST (either cross-entropy loss (10-
choice) or binary cross-entropy loss (two-choice) for classification,
binary cross-entropy loss for confidence), which were summed and
used to train the entire architecture through backpropagation. Net-
works were trained for 164 epochs using stochastic gradient descent
with weight decay of 1e − 4, momentum of 0.9, and a batch size of 128.
An initial learning rate of 0.1 was used, which was then set to 0.01 at
training epoch 82, and0.001 at training epoch 123. All weights in fwere
initialized using a Kaiming normal distribution60, and all weights in the
output layers gclass and gconf were initialized using an Xavier normal
distribution61.

Reinforcement learning. For the orientation discrimination task,
networks were trained using an actor-critic method62. During training,

an actionatwas selected on each trial by sampling from theprobability
distribution generated by the actor. If LEFT or RIGHTwas selected, the
reward rt received on that trial was 1 if the decision was correct and 0 if
the decision was incorrect. If OPT-OUT was selected, the network
received a smaller but guaranteed reward ropt−out. This value was
initialized to 0.5 at the beginning of training, and was then updated
after each training batch i according to the following formula:

ropt�outi
= minðpðcorrectÞi�1,0:75Þ ð8Þ

wherep(correct)i−1 is the average accuracy fornon-opt-out trials on the
previous training batch. This setup prevented networks from default-
ing to a strategy of always opting out early in training when accuracy
was low.

Networks were trained to maximize reward in this task using the
sumof two loss functions. The critic was trained using a smooth L1 loss
to generate vt, a prediction of the reward rt received on that trial. This
was then used to compute a reward prediction error:

δt = rt � vt ð9Þ

which was used to compute a loss function for training the actor:

Lactor = � log ðpat
Þδt ð10Þ

where � log ðpat
Þ is the negative log likelihood of the action sampled

on that trial. The actor and critic losses were summed, and the entire
architecture was trained through backpropagation. Networks were
trained for 5000 iterations, using the Adam optimizer, with a learning
rate of 0.001 and a batch size of 32. All weights and biases were initi-
alized using PyTorch defaults.

Latent ideal observer
Variational autoencoder. We used a denoising variational auto-
encoder (VAE)21 to learn a low-dimensional representation of the
neural networkmodel’s training data. Like a standard autoencoder, the
VAE involves a neural network encoder that maps a high-dimensional
input x to a low-dimensional embedding z (consisting of just 2
dimensions in our case), and a neural network decoder that is trained
to reconstruct x given z. However, unlike a standard autoencoder,
which produces a deterministic latent embedding, the VAE maps each
inputx to a latent distributionq(z∣x), by parameterizing themeans and
variances of this distribution using separate output layers from the
encoder. This distribution is then sampled from yielding z ~ q(z∣x),
which is passed to the decoder. Importantly, in addition to being
trained with a standard reconstruction objective, the latent repre-
sentations in the VAE are regularized according the DKL(q(z∣x), p(z)),
the Kullback-Leibler divergence between q(z∣x) and p(z), a unit normal
distribution with μ =0 and σ = 1. This regularization encourages effi-
cient use of the low-dimensional embedding space. We also chose to
use a denoising reconstruction objective, training the VAE to recon-
struct a denoised version of the input image, to encourage the VAE to
learn the low-dimensional structure of the data.

The encoder had the same architecture as used in the supervised
neural network model for experiments on MNIST and orientation
discrimination (“Encoder”), except that instead of a final layer with 100
units, the encoder had two output layers, each of which had only 2
units, to parameterize the means and variances of the latent posterior
q(z∣x). The decoder took a sample from this distribution as input, and
passed it through 2 FC layers, followed by 3 convolutional layers. The
FC layers had 128 and 256 units. The convolutional layers used trans-
posed convolutions to increase the size of the feature map by a factor
of 2 at each layer. All convolutional layers used a kernel size of 4. The
first 2 convolutional layers had 32 channels, and the final convolutional
layer had a single channel. All layers in the decoder used leaky ReLU
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nonlinearitieswith a negative slopeof0.01, except for theoutput layer,
which used a tanh function so as to produce outputs with values in the
range [ − 1, 1] (the same range as the input images). Each VAE was
trained for 20 epochs on a two-choiceMNIST training set, with a batch
size of 32 and a learning rate of 5e − 4, using the standard range of
contrast andnoise values (“Datasets”).Mean-squared errorwasused as
a reconstruction loss function, and was combined with the KL diver-
gence regularization term. 100 VAEs were trained with different ran-
dom initializations.

Ideal observer. For each trained VAE, we fit p(z∣xs1) and p(z∣xs2),
bivariateGaussiandistributions for classes s1 and s2 in the learned two-
dimensional latent space. To quantify the variance structure of these
distributions, we performed PCA on each distribution separately to
identify the major and minor axes, then measured the variance along
each of these axes and computed their ratio σtarget/σnontarget. We also
computed θs1,s2, the angular difference between themajor axes for the
s1 and s2 distributions. Bayes rule was used to compute p(y = s1∣z) and
p(y = s2∣z), the probability that the current stimulus belonged to clas-
ses s1 or s2:

pðy= s1∣zÞ= pðz∣xs1Þpðy= s1Þ
pðz∣xs1Þpðy= s1Þ+pðz∣xs2Þpðy= s2Þ

ð11Þ

pðy= s2∣zÞ= 1� pðy= s1∣zÞ ð12Þ

A prior of p(y = s1) = p(y = s2) = 0.5 was used. Choices were made
according to:

ŷ= argmax ðpðy= s1∣zÞ,pðy= s2∣zÞÞ ð13Þ

Confidence was computed according to:

pðŷ= yÞ= maxðpðy= s1∣zÞ,pðy = s2∣zÞÞ ð14Þ
For each of the experiments described below, we fit separate

latent distributions for the images from the test set. Choices and
confidence were computed by using these test distributions to evalu-
ate (i.e., compute a weighted average of) the training distributions for
p(y = s1∣z), p(y = s2∣z), and pðŷ= y∣zÞ.

Experiments and analyses
Unlessotherwise noted, experimentswereperformedover 100 trained
networks with different random initializations.

Meta-d’. To assess the metacognitive performance of our model, we
usedmeta-d’, a recently developed detection-theoreticmeasure20. Just
as d’measures the extent towhich decisions discriminate between two
stimulus classes, meta-d’ measures the extent to which confidence
ratings discriminate between correct and incorrect trials. Importantly,
similar to d’, meta-d’ is not susceptible to response bias, i.e., the overall
rate of high vs. low confidence ratings (except in extreme cases in
which the decision-maker responds with either high confidence or low
confidence on all trials). For these analyses, we used the python
implementation available at: http://www.columbia.edu/~bsm2105/
type2sdt/.

PE bias. We tested our model for the presence of two related, but
distinct, effects, both of which have previously been referred to as the
positive evidencebias (PE bias). In one effect (version 1), a classification
task is performedwith two conditions, onewith low contrast/lownoise
stimuli (low PE condition), and one with high contrast/high noise sti-
muli (high PE condition), such that decision accuracy is balanced
between the two conditions. To test for the this effect, we evaluated
networks at two different noise levels, performing a search over a

range of contrast levels to identify conditions with balanced accuracy.
For MNIST, the noise levels for the low and high PE conditions were
σ = 1 and σ = 2; for CIFAR-10, the noise levels were σ =0.1 and σ =0.2;
and for the orientation discrimination task, the noise levels were
σ = 0.5 and σ = 1. For eachof the twoconditions, weperformed a search
over 500 contrast levels. ForMNIST and the orientation discrimination
task, these contrast levels ranged from μ =0 to μ = 1. For CIFAR-10,
these contrast levels ranged from μ = 0 to μ =0.2. For MNIST and
CIFAR-10, networks were evaluated on the entire test set for each pair
of σ and μ values. For the orientation discrimination task, networks
were evaluated on 10, 000 trials for each pair of values.

We computed average decision accuracy across the networks
trained on each task, for each pair of noise and contrast levels. For the
orientation discrimination task, decision accuracy was computed by
ignoring the OPT-OUT response, and selecting the argmax of the dis-
tribution over LEFT and RIGHT actions (rather than sampling from this
distribution probabilistically as in training). For each noise level, we
identified the contrast level with average decision accuracy closest to a
target performance level. The target performance level was set to the
threshold halfway between chance performance and 100% accuracy,
since this is generally the most sensitive range for observing psycho-
physical effects. For MNIST and CIFAR-10, in which chance perfor-
mance is 10% accuracy, the target performance was 55% accuracy. For
the orientation discrimination task, in which chance performance is
50% accuracy, the target performance was 75% accuracy.

This procedure identified higher contrast values for higher noise
values, and vice versa, resulting in a balanced signal-to-noise ratio
across conditions. The procedure identified contrast values of μ = 0.27
(for σ = 1) and μ =0.54 (for σ = 2) forMNIST, contrast values of μ = 0.08
(for σ =0.1) and μ =0.16 (for σ = 0.2) for CIFAR-10, and contrast values
of μ =0.3 (for σ =0.5) and μ =0.48 (for σ = 1) for the orientation dis-
crimination task. We computed the mean and standard error of deci-
sion accuracy for these two conditions, and also performed paired t-
tests. This confirmed that decision accuracy was indeed balanced
between the low and high PE conditions.

Finally, for MNIST and CIFAR-10, we compared confidence in the
low and high PE conditions, by computing the mean and standard
error over all networks trained on each task, and by performing paired
t-tests. For the orientation discrimination task, we computed the opt-
out rate in each condition, where opt-out trials were those on which
the OPT-OUT response was the argmax of the distribution over all
three actions. We computed the mean and standard error of the opt-
out rate over all networks trained on this task, and performed paired
t-tests.

We also tested our model on a second version of the PE bias
(version 2). To test for this effect, we first trained the model on a
standard two-choice classification task, inwhich each trial involved the
presentationof either s1or s2, using the standard rangeof contrast and
noise values (described in 4.2). For the MNIST and CIFAR-10 datasets
(usually a 10-choice classification task), each network was trained on a
randomly selected pair of classes. After training, we evaluated the
model on images containing both classes s1 and s2 superimposed, with
different contrast levels. After applying the separate contrast values to
the image of each class, the two classes were superimposed according
to the following formula:

xcombined = maxðxs1,xs2Þ ð15Þ

such that the value of each pixel in the combined image was the
maximumvalueof that pixel for the imageof each class.We treated the
decision output of the model (trained to discriminate between classes
s1 and s2) as the model’s decision about which class had a higher
contrast.

For this version of the effect, the low and high PE conditions were
defined by the target contrast, the contrast of the stimulus
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corresponding to the correct answer (the higher contrast of the two
superimposed stimuli). For all three tasks, the low PE condition had a
target contrast of μtarget =0.5 and the high PE condition had a target
contrast of μtarget = 1. Images were presented at a noise level of σ = 1.5
for MNIST, σ =0.6 for CIFAR-10, and σ =0.75 for the orientation
discrimination task.

Weperformed a searchover values for the nontarget contrast, the
contrast of the stimulus corresponding to the incorrect answer (the
lower contrast of the two superimposed stimuli), in order to identify
conditions under which accuracy was balanced between the low and
high PE conditions. We targeted a performance level of 75% accuracy
for all three tasks, halfway between chance performance (50%) and
100% accuracy. For each target contrast, we searched over 500 non-
target contrast values ranging from μnontarget =0.1 to μnontarget = 1
(excluding values that were greater than the target contrast). For
MNIST, this resulted in nontarget contrasts of μnontarget =0.27 in the
low PE condition and μnontarget =0.7 in the high PE condition. For
CIFAR-10, this resulted in nontarget contrasts of μnontarget =0.32 in the
low PE condition and μnontarget = 0.67 in the high PE condition. For the
orientation discrimination task, this resulted in nontarget contrasts of
μnontarget =0.18 in the low PE condition and μnontarget = 0.63 in the high
PE condition. Finally, we computed the mean and standard error of
confidence (or the opt-out rate, in the case of the orientiation dis-
crimination task) over all networks, and performed paired t-tests
between the low and high PE conditions.

To test the ideal observer for the PE bias, we applied the same
search over stimulus parameters to identify conditions with balanced
decision accuracy. Since the ideal observer was only formulated for
two-choice tasks, we tested for both versions of the PE bias using the
two-choice variant of MNIST (whereas we tested the neural network
model for version 1 of the PE bias on the full 10-choiceMNIST test set).
We targeted a performance level of 75% accuracy. For version 1 of the
PE bias, this identified contrast values of μ =0.21 (for σ = 1) and μ = 0.36
(for σ = 2). For version 2 of the PE bias, this identified contrast values of
μnontarget =0.28 (for μtarget =0.5) and μnontarget = 0.68 (for μtarget = 1).

Dissociation between type-1 and type-2 sensitivity. To test for the
dissociation between type-1 and type-2 sensitivity identified by Man-
iscalco et al.13, we used a two-choice version of the MNIST dataset. For
each trained network, two randomly selected digit classes s1 and s2
were used. After training networks on this two-choice task, using
imageswith the standard range of contrast andnoise values (described
in “Datasets”), networks were evaluated on five conditions. In each of
these five conditions, images belonging to class s2 were presented at
one of five contrast values μi=1 through μi=5. Images from class s1 were
always presented at the intermediate contrast μi=3. The noise level was
set to σ = 2 in all conditions.

Contrast values were fit so as to reproduce the d’ values observed
in ref. 13, using the procedure described in ref. 37. First, we fit the
intermediate contrast μi=3. To do so, we evaluated all trained networks
on 200 contrast levels ranging from μ = 0.25 to μ = 0.45. For each
contrast level, we evaluated networks on the entire test set (presenting
both s1 and s2 at the same contrast) and computed the average d’. We
then used linear interpolation to identify a contrast value corre-
sponding to the target d’ for this condition. This resulted in an inter-
mediate contrast of μi=3 = 0.36. We then evaluated the networks again,
presenting s1 at this intermediate contrast, andpresenting s2 at a range
of 1000 contrast levels from μ = 0 to μ = 1. For each contrast, we again
evaluated networks on the entire test set, computed the average d’,
and used linear interpolation to identify contrast values corresponding
to the target d’ for the other conditions. This resulted in contrast
values for those conditions of μi=1 = 0.05,μi=2 = 0.16, μi=4 = 0.58, and
μi=5 = 0.81. We then evaluated networks on the entire test set for each
of these five conditions, recording the trial-by-trial decision and con-
fidence outputs generated by the networks.

Finally, we fit a type-2 noise parameter ξ, intended to model the
additional accumulation of noise between the time at which decisions
and confidence ratings are made. Type-2 noise was incorporated by
mapping trial-by-trial confidence ratings into the range [ −∞,∞] using
the logit function, adding Gaussian noise with variance ξ, and then
mapping back to the range [0, 1] using the sigmoid function. We
computed meta-d’ and response-specific meta-d’ (meta-d’ for s1 vs. s2
responses) for all five conditions, performing a grid search across 20
values from ξ =0.1 to ξ = 2.We identified the type-2 noise level resulting
in the closest fit to the observedmeta-d’ values, as measured bymean-
squared error, resulting in a value of ξ = 1.2. We then used the fitted
values for μi=1..5 and ξ, and computed the mean and standard error
(across all trained networks) of d’, meta-d’ and response-specificmeta-
d’ in each of the five conditions. We also performed a version of this
analysis without the additional noise term ξ (results presented in
Supplementary Fig. S2).

We also applied the same procedure to fit stimulus parameters
and a type-2 noise parameter for the ideal observer. This resulted in
contrast values of μi=1 = 0.08, μi=2 = 0.18, μi=3 = 0.37, μi=4 = 0.57, and
μi=5 = 0.81, and a type-2 noise parameter of ξ =0.9.

Analysis of confidence as a function of sensory evidence space. To
determine whether the neural network’s learned confidence strategy
was better explained by an RCE heuristic or the latent ideal observer,
we employed ageneralized versionof the task used to test for version 2
of the PE bias. Specifically, after training networks on the two-choice
classification variant of MNIST, using images with the standard range
of contrast and noise values (described in “Datasets”), we evaluated
them with images containing superimposed digits belonging to both
classes s1 and s2. For instance, if a network was trained to discriminate
the digits 7 vs. 2, we presented that network with images containing
overlapping 7’s and 2’s. The contrast values for each digit class, μs1 and
μs2, were independently manipulated. We evaluated networks on the
entire test set for 100 contrast values between μ =0.1 and μ = 1, testing
each combination of values for μs1 and μs2, yielding 10, 000 combina-
tions. For evaluation, the noise level was set to a value of σ = 1.5. We
treated the decision output of the network (trained to discriminate
between classes s1 and s2) as the network’s decision about which digit
class had a higher contrast. We then computed, for each combination
of contrast values μs1 and μs2, the average decision accuracy and con-
fidence over all trained networks. We also performed the same eva-
luation for the latent ideal observermodel, using the test distributions
for each combination of μs1 and μs2 to evaluate the ideal observer fit to
the training distributions.

We used linear regression models to formally compare the
neural network’s pattern of confidence behavior to the predic-
tions of the BE (BE = μs2 − μs1), RCE (RCE = μs1 if ŷ = s1,μs2 if ŷ= s2),
and ideal observer models. These regressions were fit for all
trained networks, and we computed the average predictions for
each regression across all combinations of μs1 and μs2. To assess
the fit of each regression, we computed the average and standard
error of R2 across all trained networks, and we compared the fit of
different models by performing paired t-tests on their R2 values.
We also estimated the noise ceiling of this analysis by fitting
regression models for each network using the average pattern
across all trained networks as a predictor.

Because the BE and RCE rules compute confidence as a linear
function of the sensory evidence (whereas the ideal observer com-
putes confidence according to a nonlinear function), we reasoned that
it may be useful to apply a logit function to transform the networks’
confidenceoutputs from the range [0, 1] to [ −∞,∞].We compared two
versions of each regressionmodel, one with and one without this logit
transformation, and selected the version that performedbest. Only the
BE model was helped by this transformation, so this is the only model
that uses it in the results that we present.
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Alternative training and test regimes. We compared the standard
training regime (contrast sampled from the range [μ =0.1, μ = 1], noise
sampled from the range [σ = 1, σ = 2]) to three alternative regimes. In
the fixed μ regime, contrast was set to a fixed value of μ =0.5, while
noise was sampled from the standard range [σ = 1, σ = 2]. In the fixed σ
regime, contrast was sampled from the standard range [μ =0.1, μ = 1],
while noise was set to a fixed value of σ = 1.5. In the fixed μ/σ regime,
contrastwas sampled from the standard range [μ =0.1, μ = 1], andnoise
was set to a fixed ratio of the contrast level σ = 3.75μ.

To test for the impact of these regimes on the presence of the PE
bias, we trained networks on the 10-choice version ofMNIST, sampling
contrast and noise values according to one of the four regimes
described above, and then followed the procedure described in “PE
bias” to test for version 1 of the PE bias.

To evaluate the metacognitive performance of networks trained
on these regimes, when tested on each of the regimes, we trained
networks on the two-choice version of MNIST, sampling contrast and
noise values according to one of the four regimes described above,
and then evaluated networks on the entire test set using contrast and
noise values sampled from each of the four regimes. For this experi-
ment, we trained 200 networks on each regime, since statistically
significant differences between some of the conditions could not be
established with only 100 networks per regime. For each combination
of training and test regime, we computed the average and standard
error of meta-d’ over all networks. For each test regime, we performed
two-sample t-tests for meta-d’ between networks trained on that
regime vs. networks trained on each of the other regimes.

Analysis of learned representations. To better understand the
representations learned by the model, we applied principal compo-
nent analysis (PCA) to the representations in the network’s penulti-
mate layer (the output of the encoder f). We evaluated networks
trained on the two-choice version of MNIST. Both training and eva-
luation used the standard range of contrast and noise values (descri-
bed in “Datasets”). To assess the dimensionality of the learned
representations, we computed the average and standard error of the
variance explainedby each principal component (PC) across all trained
networks. This revealed that the variance was almost entirely
explained (>97%) by the top two PCs alone. We computed density
estimates, using a Gaussian kernel, for stimulus classes s1 and s2 along
PC1, and density estimates for correct and incorrect trials along PC2.
We also performed regression analyses to determine to what extent
PCs 1 and 2 predicted DVs of interest. We performed two logistic
regressions: (1) PC 1 as predictor and stimulus class s1 vs. s2 as DV, and
(2) PC2 as predictor and correct vs. incorrect as DV. We performed
three linear regressions: (1) ∣PC1∣ as predictor and PC2 as DV, (2) PC1 as
predictor, and a logit transformation of the network’s decision output
ŷ as DV, and (3) PC2 as predictor and a logit transformation of the
network’s confidence output as DV. For each regression, we computed
the average and standard error for R2 across all trained networks.

We also performed an analysis to determine whether variables
other than the network’s confidence output were subject to version 1
of the PE bias. We applied the analysis described in “PE bias” to three
other DVs: (1) ∣PC1∣, (2) PC2, and (3) a rectified version of the network’s
decision output, which was computed by taking the network’s con-
tinuous decision output (a value in the range [0, 1] representing the
predicted probability that the input image belonged to class s2), and
applying a rectification at 0.5, resulting in a value representing the
predictedprobability that thenetwork assigned to its decision.Wealso
performed an analysis to better understand the representations along
PC1 for the low and high PE conditions. For each condition, we com-
puted the difference in themean along PC1 for s1 and s2 trials, and the
average variance along PC1.We also computed density estimates for s1
and s2 trials, for the low and high PE conditions, along PC1. Finally, we
applied the analysis described in “Analysis of confidence as a function

of sensory evidence space”, presenting images of two superimposed
digits, and computing, for each combination of contrast levels, the
average value for ∣PC1∣, PC2, and the rectified decision output.

Single unit analysis. We also analyzed the model’s learned repre-
sentations at the single unit level. This analysis was focusd on the
version of themodel trained on the RL orientation discrimination task.
We chose this version of themodel since the task mirrored a task used
in previous studies of decision confidence at the single neuron level3.
We first performed the population-level analyses described in the
previous section, confirming that the same two-dimensional geometry
was present for this version of the model (Supplementary Fig. S11).
Then, we performed linear regressions to quantify the extent to which
each unit in the penultimate layer was predictive of either decisions or
confidence. The output of the network for this version of the model
consisted of a three-dimensional categorical probability distribution,
in which the first two dimensions corresponded to the two choices (s1
vs. s2), and the thirddimension corresponded to the opt-out response.
In the first regression, the DV was a logit transformation of the output
unit corresponding to choice s2. In the second regression, theDVwas a
logit transformation of the output unit corresponding to the opt-out
response. These regressions provided two metrics for each neuron:
R2
decision and R2

opt�out . We classified neurons as decision neurons if
R2
decision >R

2
opt�out , and classified them as confidence neurons

if R2
opt�out >R

2
decision.

To determine whether decision neurons implicitly encoded con-
fidence, we performed an analysis reported by Kiani & Shadlen3. This
analysis utilizes a measure of normalized activity, defined as:

xnorm
i,j =

xi,j �mini = 1::Nðxi,jÞ
σi = 1::N,j = 1::M ðxi,jÞ

ð16Þ

wherexi,j is the activationof the jth neuron (out ofMneurons in a given
layer) on the ith trial (out of N trials), mini = 1::NðÞ computes the mini-
mum activation for jth neuron over all N trials, and σi=1..N,j=1..M() com-
putes the variance for allM neurons over allN trials. We computed this
measure for all decision neurons in the penultimate layer of themodel,
for all trials.

We then determined the preferred stimulus class (Tin) for each
decision neuron based on the slope of the decision regression model
(positive slope indicates Tin = s2, negative slope indicates Tin= s1).
Finally, we computed the average normalized activity in each of three
conditions, based on whether the model chose the neuron’s preferred
stimulus (Tin), the neuron’s non-preferred stimulus (Topp), or the opt-
out response (also called sure target, TS). We performed paired t-tests
(across all decision neurons) comparing the average normalized acti-
vation for Tin vs. TS, and for TS vs. Topp.

We also evaluated how the representations at the single neuron
level mapped onto the representations at the population level. To do
so, we computed the angle of projection for each neuron onto the top
2 PCs, and compared this with ΔR2 =R2

decision � R2
opt�out , a measure of

the extent to which each neuron was more predictive of either deci-
sions or confidence.

Decoding analyses. We applied the decoding analysis devised by
Peters et al.15 to our model in the following manner. First, we trained
networks on the two-choice version of MNIST, using images with the
standard range of contrast and noise values (described in “Datasets”).
We then evaluated networks on the entire test set for each of 500
contrast levels between μ =0.1 and μ = 1, with a noise level of σ = 2, and
selected the contrast level that resulted in performance closest to a
target accuracy of 75%. This procedure identified a contrast level of
μ =0.33. We used images with that contrast level and a noise level of
σ = 2 for training decoders.
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For each trained network, we trained a decoder to predict the
stimulus class of an image given the resulting state of the network. The
input to the decoder was formed by concatenating the activation
states for all layers in the network (using flattened versions of the
convolutional layers), yielding inputs of size 11, 236. The decoder was
itself a single neural network layer with a sigmoid nonlinearity, and no
bias term. The decoder was trained using a cross entropy loss to pre-
dict the class y of an image x passed to the network. This training was
performed for 5 epochs with the same training set used to train the
network, using the ADAM optimizer with a learning rate of 5e − 4 and a
batch size of 32.

We then simulated the ROC analyses from ref. 15. These analyses
depend on having, for any given input image x, an independent esti-
mate of the neural evidence in favor of each stimulus class s1 and s2
(i.e., an estimate of the evidence in favor of s1 independent of the
evidence in favor of s2, and vice versa). The following formulation was
used to obtain these estimates:

es1 =
∣ww<0∣~xw<0

Nw<0
ð17Þ

es2 =
ww > 0~xw > 0

Nw > 0
ð18Þ

where ~x is the concatenated state of all layers in the network following
presentation of the image x,w are the weights of the trained decoder,
w <0 are indices for weights that are <0, w >0 are indices for weights
that are >0, Nw <0 is the number of dimensions with decoder weights
<0, and Nw >0 is the number of dimensions with decoder weights >0.
Only images from the test set were used for these analyses.

These values were then used as inputs to four ROC analyses. For
each analysis, an independent variable (IV) was generated by applying
a decision rule to the neural evidence estimates, and both ROC curves
and choice probability (area under the ROC curve) were computed to
determine to what extent that IV could predict a binary dependent
variable (DV). The first analysis determined to what extent the BE rule
could predict the network’s decisions. The IV was the balance-of-evi-
dence, es2 − es1, and the DV was the network’s decision output (tar-
get = s2 decision). The second analysis determined to what extent the
RCE rule could predict the network’s decision outputs. For that ana-
lysis, two ROC curves were computed and averaged together: (1) using
es1 as an IV, and s1 decisions as targets, and (2) using es2 as an IV, and s2
decisions as targets. The third analysis determined to what extent the
BE rule could predict the network’s confidence outputs. The IVwas the
difference between the evidence in favor of the decisionmade and the
evidence against the decision made, i.e., es1 − es2 if an s1 decision was
made and es2 − es1 if an s2 decision was made, and the DV was the
network’s confidence outputs (target = confidence>0.75). The fourth
analysis determined to what extent the RCE rule could predict the
network’s confidence outputs. The IV was the response-congruent-
evidence, i.e., es1 if an s1 decisionwasmade and es2 if an s2 decisionwas
made, and the DV was the the network’s confidence outputs (target =
confidence> 0.75). For each analysis, the average and standard error of
the ROC curves and choice probability were computed across all
trained networks. Additionally, paired t-tests were performed to
determine whether there was a statistically significant difference
between decision rules (BE vs. RCE) for either decisions or confidence,
and whether there was a statistically significant interaction between
decision rule andDV (decisions vs. confidence). Finally, we also carried
out an alternative version of this analysis using only the activities from
the penultimate layer as input to the decoder (Supplementary
Fig. S14).

Simulating TMS. To simulate TMS, we added Gaussian noise with
variance ξ to the activations in a specific layer in the network. To

simulate TMS to V1, we added this noise to the first layer of the
network. After training networks on the two-choice variant of
MNIST, with the standard range of contrast and noise values
(described in “Datasets”), we evaluated these networks at 5 con-
trast levels from μ = 0.1 to μ = 1, with a noise level of σ = 2. We
tested 5 levels of simulated TMS intensity from ξ = 1 to ξ = 5, and
computed average confidence and d’ in each condition across all
100 trained networks. To simulate TMS to dlPFC, we added noise
to the penultimate layer of the network. We evaluated networks
with a contrast level of μ = 0.55 and a noise level of σ = 2. We
tested the same levels of simulated TMS intensity, and computed
average d’ and meta-d’ across all trained networks.

Blindsight. To test for the presence of blindsight-like effects, we
used networks trained on the two-choice version of MNIST, using
contrast values sampled from the range [μ = 0.1, μ = 1] and noise
values sampled from the range [σ = 3, σ = 4]. After training, we
simulated a lesion to the first layer of the network by multiplying
the activities in that layer by a scaling factor of 0.01. We then
evaluated the network on the entire test set at five contrast levels
from μ = 0.5 to μ = 0.9, with a noise level of σ = 4. For each con-
trast value, we computed the mean and standard error for both d’
and meta-d’ across all trained networks. We also computed den-
sity estimates, using a Gaussian kernel, for the network’s con-
fidence outputs for correct vs. incorrect trials. These measures
were compared to control networks without a lesion.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
All code is available at: https://github.com/taylorwwebb/performance_
optimized_NN_confidence.
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