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Built structures influence patterns of energy
demand and CO2 emissions across countries

HelmutHaberl 1,5 ,Markus Löw1,5, AlejandroPerez-Laborda2,5, SarahMatej 1,
Barbara Plank 1, Dominik Wiedenhofer 1, Felix Creutzig 3,4,
Karl-Heinz Erb 1 & Juan Antonio Duro2

Built structures, i.e. the patterns of settlements and transport infrastructures,
are known to influence per-capita energy demand and CO2 emissions at the
urban level. At the national level, the role of built structures is seldom con-
sidered due to poor data availability. Instead, other potential determinants of
energy demand and CO2 emissions, primarily GDP, are more frequently
assessed. We present a set of national-level indicators to characterize patterns
of built structures. We quantify these indicators for 113 countries and statis-
tically analyze the results along with final energy use and territorial CO2

emissions, as well as factors commonly included in national-level analyses of
determinants of energy use and emissions. We find that these indicators are
about equally important for predicting energy demand and CO2 emissions as
GDP and other conventional factors. The area of built-up land per capita is the
most important predictor, second only to the effect of GDP.

Increasing global temperature driven by growing greenhouse gas
(GHG) emissions is a major global concern1. GHGs mainly result
from the energy-related combustion of fossil fuels2. The question
emerges, which factors drive energy demand and emissions, and to
what extent they are malleable. This question is relevant at many
levels, from products to individuals, households, and cities up to
continental and even global totals. We here focus on countries,
because many decision-making processes occur at the national level.
A widespread approach for cross-country analyses classifies the
factors influencing resource use and emissions into population,
affluence, and technology3–5. These factors are captured in the
STIRPAT (Stochastic Impacts by Regression on Population, Affluence
and Technology) framework3, derived from the classical IPAT
(impact = population × affluence × technology) approach5,6.

Economic activity (called affluence in IPAT-style analyses, usually
measured as Gross Domestic Product or GDP) is acknowledged as
a major determinant of energy use and greenhouse gas (GHG)
emissions7–9. The discussion mainly focuses on whether GDP can be
decoupled from emissions, i.e., whether energy use and emissions can

be reduced while GDP is growing. This may be possible e.g., through
more efficient technologies, but the debate is so far inconclusive10,11.
While recent studies revealed examples of growing national econo-
mies where policies implemented in the last decade achieved reduc-
tions in energy demand and CO2 emissions12–14, neither those studies
nor ameta-analysis15 yielded evidence for reductions in energy use and
GHG emissions consistent with ambitious climate targets.

Other potential determinants of energy demand and emissions
receive less attention thanGDP, even though additional entry points to
accelerate decarbonization are urgently required. Population density
has been studied with varied outcomes. An econometric study
of OECD countries 1980–2011 suggested an inverse relation between
population density and CO2 emissions16; a regression analysis of
materials used in >100 countries in 2000 found a similar effect17.
A global regression analysis18 found no effect of population density on
energy demand, whereas a panel analysis of 11 Asian countries from
1960–200419 to conditions that influence energy demand for heating
or cooling of buildings20, fuel prices affecting demand for transport
energy21, and the urbanization rate (urban population as percent of the
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total population). A suitable proxy for the climate dependency of
heating energy demand are heating-degree days (abbreviated as
HDD)20. The price of gasoline (abbreviated as PGAS) is an energy price
indicator that is strongly related to settlement patterns21. Some studies
used urban population as a percent of the total population (abbre-
viated as UPOP) as a development indicator22.

At the urban scale, the influence of population density and the
spatial layout of urban areas on cities’ resource demand has been
widely studied20,23–28. There are several reasons why the extent and
spatial layout (density and form) of built structures—henceforth
denoted as material stock patterns29, i.e., the spatial patterns of
societies’material stocks in infrastructures and buildings—could affect
energy demand and CO2 emissions. The accumulation of material
stocks requires massive amounts of resources such as steel-reinforced
concrete, mortar, bricks, timber, plastics, glass, gravel, or sand30–33,
which are associated with high GHG emissions34. Heating, cooling, and
lighting of buildings and production processes in industrial plants
requiremuch energy20,23,26,35, as does themobility of goods and people
on roads and railways33,36.

Despite these insights from urban studies, material stock pat-
terns are seldom considered in debates on national-level analyses of
factors determining levels of energy demand and emissions, as well
as their possible decoupling from GDP11,15. A systematic review of the
empirical literature on these questions15,37 revealed only one study38

considering material stock patterns in analyzing transport-related
emissions. Hence little is known about the effects of material stock
patterns on energy demand and CO2 emissions beyond the city level.
This results from a scale mismatch: maps of material stock patterns
provide fine-grained spatial detail30, often focused on specific
regions, that cannot be included in national-level analyses of factors
driving energy demand and emissions. For cross-country analyses,
consistent indicators need to be developed from spatial data and
then aggregated at the national level in amannerwhich preserves key
information on patterns and supports comparative analyses across
countries and world regions.

In this work, we develop national-level indicators of character-
istics of built structures that, based on urban studies, can be potential
determinants of resource use and emissions. We quantify them for 113
countries comprising 91.2% of the world population and 97.3% of
global GDP.We analyze two independent variables: (1) yearly total per-
capita final energy consumption (abbreviated as TFC) and (2) yearly
per-capita CO2 emissions (abbreviated as CO2). We test material stock
pattern indicators against other variables thathavebeenwidely used in
national-level analyses of determinants of energy use and emissions,
here denoted as conventional factors. As conventional factors, we use
GDP/cap/yr (abbreviated as GDP), population density (DENS), UPOP as
a development indicator, HDD as a proxy of climate dependency of
energy demand, and PGAS as an energy price indicator. Extensive
variables are expressed as per-capita values to facilitate country
comparisons and remove countries’ population numbers from the
analysis.

Results
National-level indicators of material stock patterns
We test three hypotheses based on aggregated indicators of material
stock patterns (Fig. 1).Material stockpatterns are represented by three
types of indicators: (1) The area of built-up land is represented by two
indicators, one as a fraction of a nation’s inhabited land, the other per
inhabitant. Other indicators describe patterns of built-up areas,
including their spatial clustering, form, and distribution, which reflect
geomorphological factors as well as historical contingencies. (2) Road
indicators that describe the density (length per unit area) of roads in
urbanand rural regions and the relations betweenurbanand rural road
lengths and densities. (3) Railway indicators are defined in the same
manner as those for roads (Table 1).

Bivariate and semi-partial correlations
In terms of their Pearson coefficients in bivariate correlations, several
indicators of material stock patterns are as strongly correlated with
TFC and CO2 as the conventional factors (Fig. 2a). GDP is positively
correlated with both TFC and CO2. HDD and the fraction of the urban
population also show the expected pattern, while PGAS and DENS
are largely uncorrelated. Almost all material stock pattern indicators
are correlated with both TFC and CO2. The extent of built-up land
(BLcap andBLfract) is positively correlatedwith bothTFC andCO2, as are
total and rural road density and the dispersion of built-up land and
most railway-related indicators. The correlation coefficients of BLcap
with TFC and CO2 are both ~0.7; BLcap is the second-best predictor of
both TFC and CO2 after GDP. As expected from the urban literature,
urban population density (UPdens) is inversely correlated with CO2

and energy, whereas the share of urban population (UPOP) is strongly
positively correlated with CO2 and TFC. Inverse relations prevail
for BLmono, BLcomp, and the urban-to-rural relations of infrastructure
density.

Semi-partial correlations of the material stock pattern indicators
controlled forGDPandpopulationdensity (DENS) are shown inFig. 2b.
The part of each material stock pattern indicator correlated with GDP
and DENS is removed, revealing the strength of the linear correlation
between TFC or CO2 and the remaining part of the respective variable.
The distance from the vertical axis either to the right (positive corre-
lation) or to the left (inverse correlation) depicts the additional
explanatory power of the respective indicator over a model con-
sidering only GDP and DENS. Several indicators provide additional
explanations over GDP andDENS alone. The area of built-up land (both
BLcap and BLfract) is positively correlated with TFC and CO2, as are the
density of rail and road infrastructures, especially in rural areas. UPOP
is inversely correlated with TFC and CO2, as is urban road density
(not significant) and BLmono. PGAS, which had not been significant in
the bivariate correlations, emerges as an important factor, which is
also observed for RDurban andother indicators. UPdens lose importance,
most likely due to its high correlation with GDP.

Multivariate lasso analysis
The capability of the material stock pattern indicators to add insights
beyond conventional factors is further analyzed in Table 2. We use the
least absolute shrinkage and selection operator (lasso) approach to
select variables for multivariate statistical models capable of predict-
ing cross-country patterns of TFC and CO2. Lasso is a widely-
used procedure for automatically performing variable selection in
linear regressionmodels39,40. It overcomes the drawbacks of overfitting
and multicollinearity associated with ordinary least square (OLS)
methods41. The lasso method penalizes complexity to derive the best
parsimonious model for any predefined value of λ (the factor deter-
mining how strongly model complexity is penalized; for detail, see
Methods section), thereby allowing to identify the factors that most
strongly affect TFC and CO2. The standard procedure to select λ is
cross-validation, where randomly chosen samples of countries are
used to develop a model used for the prediction of patterns in out-of-
sample countries. The procedure gradually reduces λ, which generally
results in more indicators being selected41. Alternative Lasso schemes
and other variable selection techniques, such as stepwise regression,
yield very similar results (SI).

The leftmost three columns of Table 2 show the knots in the lasso
paths, i.e., the λ values at which indicators are added (or removed due
to collinearity). Knots are arranged in decreasing order of λ, with
indicators being ranked in order of selection. In the first column, the λ
valuemarkedwith an asterisk (*) indicates theoptimalmodel identified
by the cross-validation. GDP is always selected as thefirst indicator, but
various material stock pattern indicators appear very early on (i.e., at
high λ values), and remain active in the optimal model. BLcap is the
second-chosen indicator for both CO2 and TFC, and several other
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Fig. 1 | Workflow of this study. National-level indicators of the extent and spatial
patterns of settlements and infrastructures (material stock patterns) were derived
fromglobalmaps, here illustratedusing Paraguay, theUK,Kenia, andBangladesh as
examples. Results were statistically analyzed along with the conventional factors

assumed to co-determine energy use and CO2 emissions. The main aim was to test
the hypotheses formulated in the lower-right box. Copyright for administrative
boundaries: © Eurogeographics.
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material stock pattern indicators are selected much earlier than
widely-used conventional factors such as population density (DENS).
Heating-degree days (HDD) and the price of gas (PGAS) are important
for both CO2 and TFC, whereas UPOP is important for predicting CO2

but not selected by lasso for TFC.
The rightmost three columns of Table 2 report the estimated

coefficients ofmodels selected by cross-validation as well asmeasures
of in-sample and out-of-sample fit (r2). Models A comprises only vari-
ables selected by lasso (path shown in the left part of the table) among
all indicators. For the benchmark Models B, only conventional factors
are selected. Including material stock pattern indicators in Model A
yields better prediction than Models B for both CO2 and TFC in terms
of in-sample and out-of-sample goodness of fit, and improves the
Bayesian Information Criterion (BIC) of model selection. Other criteria
to develop optimal models, and alternative variable selection proce-
dures yielded similar results (section 5 in the SI). Even models that
include only material stock pattern indicators and exclude all con-
ventional factors (including GDP) achieve good predictions (out-of-
sample r2 of 0.65 for TFC and 0.62 for CO2; see results for Model C
shown in section 5.2 of the SI).

Discussion
The analysis shows that extent and spatial patterns of built struc-
tures, here denoted asmaterial stock patterns, play an important role
in co-determining and predicting the level of resource use, here TFC
and CO2, in a cross-country analysis. This implies that insights from
urban studies23–26,42 generally hold at the national scale. Despite the
unavoidable loss of information resulting from the aggregation of
maps to the national scale, the indicators in Table 1 maintain key
information representing important characteristics of material stock
patterns that strongly affect cross-country patterns of TFC and CO2.
The indicators have substantial additional explanatory and pre-
dictive power over conventional factors. They can help develop
much strongermodels of national-level TFC andCO2 than usual IPAT-

type approaches, and will enable researchers to broaden their ana-
lysis and scenario modeling capabilities by including material stock
patterns as crucial factors for analyzing the possible decoupling of
energy use and emissions from GDP.

Population density plays a smaller role thanwidely assumed,while
many material stock patterns strongly influence the cross-country
differences in energy demand and CO2 emissions. The material stock
pattern indicator with the most consistent predictive power across all
analyses is the area of built-up land per capita (BLcap), which emerges
as the second-most important variable (after GDP) in most of our
statistical analyses, even in analyses considering the GDP effect. This is
plausible because infrastructures and buildings require energy for
being built and used, which results in CO2 emissions in current fossil
fuel-dominated energy systems34,43. Higher BLcap also means larger
floor size and longer distances between destinations, which all raises
energy demand in buildings and transport. These findings corroborate
and expand on previous analyses (that used entirely different models,
did not capture spatial patterns, and mostly referred to temporal
trends), suggesting that challenges for climate-change mitigation
strongly depend on the past and future accumulation of material
stocks in buildings and infrastructures43–46. This is worrying because
material stocks are growing globally largely in unison with GDP32,46.

Our indicators and results create options for analyzing which of
the characteristics of material stock patterns are most important in
determining and predicting energy demand and emissions in cross-
country analyses. Analyses presented in Fig. 2, Table 2 as well as the SI
clearly show thatmany specific aspects of material stock patterns play
a role in determining cross-country differences in energy demand and
emissions. The multivariate analysis also shows that these patterns
interact in many ways that are difficult to disentangle due to the col-
linearities of the material stock pattern indicators. Future research
could employ refined study designs addressing howchanges over time
and space affect these relationships and elucidate the different causal
pathways involved.

Table 1 | Indicators of the extent and patterns of built-up land and transport infrastructures

Name Abbreviation Description and interpretation Unit
(1) Indicators for the extent and pattern of a nation’s built-up land

Fraction of built-up land BLfract Built-up land (buildings & infrastructures) as % of the inhabited land area. m²/m²

Built-up land per capita BLcap Built-up land per capita. m²/cap

Dispersion of built-up land BLdisp Index based on the averagedistance of each patch of built-up land to the nearest adjacent patch. High
values indicate strong dispersion.

–

Monocentricity of built-up land BLmono Area of the largest contiguous built-up patch as % of the sum of the areas of the ten largest patches.
High values indicate dominance of one large center.

m2/m2

Compactness of built-up land BLcomp Index describing how round or compact the shapes of a nation’s built-up land patches are on average. –

Urban population density UPdens Urban population per unit of urban built-up land cap/m2

(2) Indicators of road density and distribution

Road density RDtotal Length of roads per unit area of inhabited land. m/m²

Urban road density RDurban Length of roads in urban areas per unit area of urban areas. m/m²

Rural road density RDrural Length of roads in rural areas per unit area of rural areas; proxy of rural accessibility and connectivity
between urban centers.

m/m²

Ratio of urban-to-rural road lengths RLurb-rur Ratio of urban to rural road lengths, indicating the extent to which roads are concentrated in cities. –

Ratio of urban-to-rural road density RDurb-rur Ratio of RDurban and RDrural, indicating the difference between urban and rural road densities. –

(3) Indicators of railway density and distribution

Railway density RWDtotal Length of railways per unit area of inhabited land. m/m²

Urban railway density RWDurban Length of railways in urban areas per unit area of urban areas. m/m²

Rural railway density RWDrural As RDrural for railways. m/m²

Ratio of urban-to-rural railway
lengths

RWLurb-rur As RLurb-rur for railways. –

Ratio of urban-to-rural railway
density

RWDurb-rur As RDurb-rur for railways. –

These indicators condense spatially explicit information inmaps to national-level indicator values assumed to co-determine a nation’s per-capita level of energy demand andCO2 emissions. Global
maps showing the indicator values are in Supplementary Figs. 5–7 (SI).
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Our results have implications for countries pursuing ambitious
climate targets2,43. They demonstrate that insights from urban-level
studies translate to the national scale, which could so far not be
investigated at that level due to lacking data. This suggests that the
indicators presented above offer opportunities to investigate the
importance of built structures also for other aspects of national
economies’ resource use than those analyzed here. Empirical urban
studies have consistently shown that urban form and infrastructure
affect travel demand and, therefore, GHGemissions47. The relationship

between built structures and GHG emissions has also been predicted
by theoretical analyses in urban economics21,48. This suggests that our
national-level observations—e.g., that large, sprawling material stocks
in built structures represent an important determinant of a nation’s
per-capita level of energy demand and emissions—are very likely
underpinned by similar causal relationships. Of course, more research,
in particular on how these relationships change over time, would be
desirable. Because high-resolution maps of decadal trends in built
structures are gradually becoming available49,50, such analyses may
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Fig. 2 | Correlation analyses of total final energy demand per capita (TFC) and
per-capita CO2 emissions (CO2) with conventional factors and material stock
pattern indicators. a Pearson’s zero correlation coefficients of correlations
between TFC (left) and CO2 (right) and material stock pattern indicators as well as
conventional factors. Natural logarithms of the variables were analyzed. Squaring
the correlation coefficients gives the percentage of the cross-country variation of
CO2 or TFC explained by the respective indicator alone. Correlations were not

significant for variablesmarkedwith an asterisk (p <0.1).b Semi-partial correlations
betweenmaterial stockpattern indicators andTFC (left) andCO2 (right) controlling
for GDP and DENS. Distance from the vertical axis indicates the correlation coef-
ficient of the semi-partial correlation, and distance from the horizontal axis is the
correlation coefficient of the bivariate (uncontrolled) correlation. Red contours
indicate insignificant results (significance level p <0.1).
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soon be feasible. We conclude that the area and patterns of built-up
land emerge as an important entry point for efforts at reducing energy
demand andCO2 emissions at national levels51, suggesting that limiting
built-up area per capita could be a worthwhile policy goal, not only
from a land-use perspective, but also to limit future GHG emissions.

Methods
The material stock pattern indicators were derived from crowd-
sourced data on infrastructures (roads and railways)52 as well as high-

resolution land-cover data53. The indicators refer to the years 2015
(built-up land) and 2020 (roads and railroads). To reduce random
fluctuations for the energy and emission data as well as the conven-
tional factors, we calculated averages for as many years in the period
2015-2020 as were available in the statistical sources. Extensive vari-
ables were represented by per-capita values to facilitate comparisons
between different-sized countries, following the convention to regard
population as a scaling factor with an elasticity of one in STIRPAT
analyses5.

Table 2 | Multivariate analysis using cross-validation lasso

Models predicting TFC

Lasso path for model A Estimated coefficients

λ (A)dded, (R)emoved CV MPSE Model A Model B

0.711 GDP(A) 0.703 GDP 0.494 0.572

0.371 BLcap(A) 0.319 DENS −0.017 −0.039

0.161 HDD(A), RWDtot(A) 0.179 UPOP

0.121 RDurb-rur(A) 0.166 HDD 0.021 0.051

0.111 PGAS(A) 0.161 PGAS −0.352 −0.288

0.101 RDurb(A) 0.155 BLcap 0.184

0.076 RWDurb(A) 0.135 BLmono −0.017

0.063 RWDtot(R) 0.125 RDurb −0.392

0.048 DENS(A) 0.115 RLurb-rur −0.024

0.030 BLmono(R) 0.108 RDurb-rur −0.074

0.027 RLurb-rur(A) 0.107 RWDurb 0.045

0.017* (Unchanged) 0.105 Intercept 3.457 2.542

0.016 RWDurb-rur(A) 0.105

0.013 BLcomp(A) 0.105 Measures of in-and-out-of-sample fit

0.011 (Unchanged) 0.106 BIC 84.17 100.32

r2 0.900 0.851

oSr2 0.865 0.833

Models predicting CO2

λ (A)dded, (R)emoved CV MPSE variable Model A Model B

0.867 GDP(A) 1.278 GDP 0.449 0.582

0.544 BLcap(A) 0.801 DENS −0.061 0.023

0.496 UPOP(A) 0.738 UPOP 0.466 0.558

0.452 RWDtot(A) 0.683 HDD 0.055 0.109

0.312 HDD(A) 0.530 PGAS −0.680 −0.688

0.215 PGAS(A) 0.446 BLfract 0.201

0.135 RDurb-rur(A) 0.338 BLcap 0.176

0.123 BLfract(A) 0.323 BLcomp 0.489

0.085 RWLurb-rur(A) 0.289 RDurb −0.201

0.070 BLfract(R) 0.280 RWDurb 0.130

0.048 BLcomp(A) 0.269 RWDrur 0.017

0.044 RDurb(A) 0.266 Intercept −2.723 −4.294

0.037 RWDurb(A) 0.262

0.025 BLfract (A) 0.256 Measures of in-and-out-of-sample fit

0.023 DENS(A) 0.255 BIC 178.44 190.82

0.021 RWLurb-rur(R) 0.254 r2 0.873 0.812

0.016 RWDrur(A) 0.251 oSr2 0.817 0.785

0.016 RDurb-rur(R) 0.251

0.014 RWDtot(R) 0.250

0.012* (Unchanged) 0.249

0.006 (Unchanged) 0.250

The leftmost three columns show the lasso path for predicting cross-country patterns of TFC (above) and CO2 (below) using all variables. In the first column, the λ value marked with an asterisk
denotes the optimalmodel (Model A) emerging from the cross-validation. CVMSPE is the cross-validatedmean-square prediction error evaluatedwith tenfolds (for detail, see Methods section). For
Model B, only conventional factors are selected. The same folds are used for the assessment of allmodels. BIC is the Bayesian InformationCriterion formodel selection. r2 is thegoodness offit within
the sample of countries, and oSr2 refers to the (cross-validated) out-of-sample goodness of fit.
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Data used to derive spatial indicators
The spatial indicators presented in this study rely on three spatially
explicit datasets; (1) built-up features and urban agglomerations, (2)
main infrastructure features (road and railway), and (3) an inhabited
land area layer used for reference. All variables that express quan-
tities as fractions of a country’s area, relate to inhabited land. We
used the LC100 grid of the Copernicus Global LandCover Service53 to
derive relevant land cover information. The choice of input data and
data quality checks are discussed in the SI; see also Supplementary
Fig. 1 (SI). In contrast to other built-up land datasets54–56, the LC100
not only provides globally consistent information onbuilt-up areas, it
also includes all other complementary land cover types at a global
scale. For data preparation, we vectorized the LC100 grid to allow
further spatial intersection procedures (e.g., to clip to national bor-
ders). The NOAA-DEM grid was used as a global digital elevation
model.We utilized theGeofabrik-download hub57 to obtain the entire
global OSM data. The GISCO archive from EUROSTAT58 provides the
applied country borders. Details on the data sources are given
in Supplementary Table 1 (SI); datasets59 and software code60 are
available online.

Sources of energy and emission data as well as conventional
factors
Gross domestic product (GDP) in constant 2015 US$ was sourced from
UN Statistics Division National Accounts61. Population data used to
calculate population density (DENS) and urban population rates
(UPOP) were taken from official census data 2017 of the World
Bank62,63. The World Bank database was also used to source data on
pump prices for gasoline (PGAS)64. Heating-degree days (HDD) were
calculated as a population-weighted average of °C days above 18 °C
and sourced from the International Energy Agency (IEA) Weather for
Energy Tracker65. Territorial CO2 emissions from fossil fuel combus-
tion and cement production (CO2) were sourced from the Global
Carbon Project database66,67 and total final energy consumption (TFC)
from the IEA energy balances, which could only be accessed for the
latest year 201768. The recorddate for thedownloadof these indicators
was 25 March 2021. We always used the latest available year for our
cross-sectional analysis, but also conducted robustness checks using
arithmetic averages over the latest five years for all indicators to
exclude potential bias from outstanding annual values. Details on the
data are available in Supplementary Table 2 in the SI.

Deriving the built-up land layer
The built-up land vector (BL) for every country is one primary data
product derived by the vectorized LC100 grid. This standard BL layer
comprised all national built-up features and was used to derive the BL-
related indicators shown in part (1) of Table 1. To map each country’s
urban agglomerations, and thereby distinguish urban from rural land
respectively infrastructures (see Supplementary Figs. 2–4, SI), we
clustered features of the BL vector layer using an empirical growing-
neighborhood approach: We started with the country’s largest BL
feature and created convex hulls, which were buffered with the fifth of
the area-equal radius. We then identified intersecting BL features
within this buffered hull and created a new hull and buffer. These two
steps were repeated as long as the BL area of all intersecting features
reached 33.3% of the area of the buffered hull (used to check the
intersections), and theBL area increased at least0.5%, compared to the
BL area of the previous iteration. If these criteria were not given, the
growing procedure terminated and the collected BL features dissolved
to one BL agglomeration. The algorithm subsequently went on with
thenext-biggest BL feature, whichhadnot been assigned to analready-
created agglomeration, again starting the growing-neighborhood
procedure. The whole process terminated when the next BL feature
(to restart the growing-neighborhood procedure again) represented
less than 0.1% of the total BL area of the respective country. The maps

in Supplementary Fig. 5 (SI) show the built-up (BL) land indicators.
Fractions of land areas refer to inhabited land.

The infrastructure layers
ThepreprocessedOSMdatabase comprises globally consistent road (R)
and railway vector data (RW), but the availability of OSM data varies
strongly between countries. While the OSM data in countries of the
global North (industrial or even postindustrial countries) also include
minor road and train track categories (e.g., cycleways, steps, or private
gauges), OSM data in countries of the global South only comprise the
main road and railway network. To reduce this inconsistency, we
excluded minor OSM classes in order to derive a more comparable
global database (Supplementary Table 3). The maps showing the road
network indicators are in Supplementary Fig. 6 (SI). Fractionsof the area
refer to an inhabited land. The railway indicators were derived from
OSM in the same manner as those for roads and are shown in Supple-
mentary Fig. 7 (SI). The railway types considered are defined in Sup-
plementary Table 4. Fractions refer to an inhabited land. The planar
extent of road and railway networks was calculated using width data
reported in Supplementary Table 5. The distinction between urban and
rural infrastructures was based on a spatial intersection of OSM road
and railway data with the BL features, which resulted in layers of urban
and rural networks (example shown in Supplementary Fig. 4, SI).

Reference layer for inhabited land
The definition of some material stock pattern indicators requires a
reference area (AREF). The area of the total national territory (ANT) may
not be suitable, given that in somecountries (almost), the entire area is
inhabitable, whereas other countries contain large tracts of land
unsuitable for human habitation and hence largely uninhabited. We,
therefore, developed the proxy layer inhabited land (IH) as a more
suitable area reference (AIH). In contrast to existing similar datasets69,
this IH mainly uses land cover information of the LC100 grid. This
guarantees thematic consistency in spatial intersections with BL data
thatwerederived using the samedataset. The IH includes not only area
that is covered with settlements or infrastructures, but also cropland
areas and areas with ambiguous land cover that fall within a zone of
influence around existing built-up areas, which is approximated by a
buffer that depends on the area of a built-up land feature (Eq. 1). The IH
is based on the current settlement and cropland extent, as well as the
spatial distribution, density, and elevation occurrenceof built-up areas
according to the LC100 grid.

To calculate IH, we first cut out high-altitude regions from the
country’s total territory. We calculated the elevational distribution of
BL features and excluded all areas above the area-weighted 99th per-
centile of BL-elevations. In a second step, we excluded the LC100 land
cover types bare/sparse vegetation (deserts and rocks), moss & lichen,
snow & ice, and permanent water bodies. Thirdly, we spatially inter-
sected the map resulting from the previous two steps with a synthetic
layer that represents the gapless inhabited land area. To derive this
layer, we applied an area-dependent buffer for all BL features. See Eq.
(1) for the dynamic BL buffer width (wBL); ABL feature denotes the area of
an exemplary built-up land feature.

wBL =ABL f eature
2
3 ð1Þ

maxfwBL : 100kmg

Finally, we added cropland areas (from LC100) and the original BL
areas to re-include those BL areas excluded by the elevation threshold.
Please note that for spatial indicators that depend on AREF , the specific
spatial pattern (shape) of IH is not relevant: we just use the national
total area of IH instead of the area of the national territory as reference
value. The potential usefulness of this IH layer for other research
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questions, in particular where its spatial accuracy is of high impor-
tance, needs to be tested and is not in focus in this study.

Definitions of spatial pattern indicators
The spatial pattern indicators were derived from the built-up, road,
and railway layers. Details on the definitions of the indicators (Table 1)
are given in the SI in section 3, Supplementary Tables 6–8.

Pearson correlations
The Pearson correlation is ameasure of linear association between two
variables. The coefficient can be obtained from bivariate data

X 1,Y 1

� �
,:::, Xn,Yn

� �� �
as rXY = SXY=SXSY , where SXY and Si denote the

sample covariance and standard deviation. The correlation coefficient
is between −1 and 1. Correlations equal to 1 (or −1) indicate a perfect
linear association, with data points lying exactly on a positive (nega-
tive) line. A value equal to zero indicates the absence of any linear
association. The squared correlation coefficient r2xy is the coefficient of
determination (R-squared) of the linear regression of variable x on
variable y; it measures the fraction of the variance explained by the
regression line.

Semi-partial correlations
Suppose thatY is determinedbyX = X 1,::::,Xk

� �
. Then, the semi-partial

correlation between Y and Xi, controlled for the other predictors X�i,
attempts to measure the correlation between Y and Xi that would be
observed if the effect ofX�i would be removed from Xi but not fromY .
This means that the semi-partial regression measures the correlation
between Y and the part of Xi that is orthogonal to the other variables
X�i. It is calculated by constructing a new variable X 0

i that is orthogonal
(i.e., entirely uncorrelated) to all previously considered variables (i.e.,
those controlled for).

The squared semi-partial correlation coefficient measures the
fraction of the variance of the dependent variable Y that is uniquely
explained by Xi. Thus, it can also be interpreted as the increase
(decrease) in the model R-squared value that results from including
(removing) Xi from the set of predictors X.

The semi-partial correlation is calculated by first fitting a linear
regression of Y on X and computing the coefficient as:

rY Xi ∣X�ið Þ = sign tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 1� R2
� �

n� k

vuut ð2Þ

In (2) t is the t-statistic of variableXi in the previous regression, R2

is the R-squared, k is the number of independent variables plus the
constant, and n is the sample size. Finally, the significance level is given
by 2=Pr tn�k > ∣t∣

� �
, where Pr is the probability, t is as described above

and tn�k follows a Student’s t distribution with n� k degrees of free-
dom. Further details on the correlation techniques used are available
e.g. here70.

Lasso analysis
The least absolute shrinkage and selection operator (lasso) approach is
used to select variables for multivariate statistical models for pre-
dicting cross-country patterns of TFC and CO2

41,71. Lasso is a standard
regularization technique for model selection and prediction that
overcomes the disadvantages of other regularization techniques such
as Ridge regression72. It can select a parsimonious set of variables from
many potential covariates, even if covariates are collinear. Lasso
minimizes the sum of squared residuals, but unlike standard least
square fit approaches, it penalizes complexity in the objective function
to derive the best parsimonious model for any predefined value of λ,
i.e., the factor penalizing model complexity. If λ is set to zero, lasso
delivers standard least squares estimates, which corresponds to a

model with the maximum complexity. In general, the larger the λ, the
smaller the number of non-zero coefficients.

Consider a linear specification Y =B0 +B1X 1 + . . . +BPXP + ϵ,
where variables have been previously standardized to account for
differences in scales. Lasso finds estimates for model coefficient B
keeping the model sparse by minimizing the following term:

1
2N

Y � XBð Þ0 Y � XBð Þ+ λ
XP

j = 1
∣Bj ∣ ð3Þ

The first part of the term (3) is the in-sample squared error mini-
mized by a classical least-squares approach. Lasso also includes the
absolute sum of coefficients in the objective function, which penalizes
complexity driving some of the estimated coefficients to zero.

The value of λ is typically chosen so that the estimated model
satisfies a predetermined condition. Several criteria can be employed,
themost commonofwhich is cross-validation. Cross-validation selects
the λ to minimize the out-of-sample prediction error. First, sample
observations are split into K random folds (validation sets). For each
validation set, the model is fitted using data from the other folds, and
the out-of-sample deviance for the observations in the validation set is
computed (i.e., using data not employed for estimation). Finally, the
overall out-of-sample performance of the model in all the validation
sets is assessed by the mean-square prediction error (MSPE), a statis-
tical parameter in squared (log) units required for model selection.
Cross-validation selects the λ over a grid of possible values such that
the correspondingmodel has theminimumMSPE71. In Table 2, MSPE is
transformed into r2, i.e., the goodness of fit within the sample of
countries, and oSr2, i.e., the cross-validated out-of-sample goodness of
fit for the optimal models. If no variable is added or removed at λ*, this
is reported in the left columns of Table 2 as Unchanged. Note that
beyond λ*, more variables could be added but would not further
improve the out-of-sample prediction.

Data availability
Datasets on spatial data on patterns of global infrastructure and set-
tlements, the inhabited land layer, as well as the indicator values of
dependent and independent variables used in the statistical analyses is
freely available here: https://doi.org/10.5281/zenodo.5876941. An
interim result that was too large to be uploaded as zenodo archive is
available from the authors for non-commercial research purposes
upon reasonable request (for detail, see ref. 59).

Code availability
The code used for calculations of maps is freely available here: https://
doi.org/10.5281/zenodo.5883652.
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