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Functional decomposition of metabolism
allows a system-level quantification of fluxes
and protein allocation towards specific
metabolic functions

Matteo Mori 1,3 , Chuankai Cheng2,3, Brian R. Taylor 1, Hiroyuki Okano1 &
Terence Hwa 1

Quantifying the contribution of individual molecular components to complex
cellular processes is a grand challenge in systems biology. Here we establish a
general theoretical framework (Functional Decomposition of Metabolism,
FDM) to quantify the contribution of every metabolic reaction to metabolic
functions, e.g. the synthesis of biomass building blocks. FDM allowed for a
detailed quantification of the energy and biosynthesis budget for growing
Escherichia coli cells. Surprisingly, the ATP generated during the biosynthesis
of building blocks from glucose almost balances the demand from protein
synthesis, the largest energy expenditure known for growing cells. This leaves
the bulk of the energy generated by fermentation and respiration unac-
counted for, thus challenging the common notion that energy is a key growth-
limiting resource. Moreover, FDM together with proteomics enables the
quantification of enzymes contributing towards each metabolic function,
allowing for a first-principle formulation of a coarse-grained model of global
protein allocation based on the structure of the metabolic network.

Living cells perform thousands of distinctmetabolic reactions in order
to grow, maintain homeostasis, and respond to environmental stimuli.
Understanding the coordination of these reactions, their associated
costs, and their contribution to cellular fitness are grand challenges of
systems biology. Protein allocation has been established to be a key
factor determining bacterial growth, owing to constraints in protein
synthesis for rapidly growing bacteria1–4; accordingly, the abundances
of proteins catalyzing these metabolic reactions have been shown to
follow simple rules of allocation5–9. In order to integrate genome-scale
data of metabolic fluxes and protein abundances, metabolic models
are increasingly used as multi-omics platforms10–15. The inference of
intracellular fluxes based on mass-balance constraints and optimiza-
tion principles is a mature subject16, with Flux Balance Analysis (FBA)

being the most celebrated framework for studying the metabolic
capabilities of a wide variety of organisms17. Extensions of FBA have
been developed to predict how global protein allocation impacts
metabolic activities of the cell and vice-versa13,18–23. Despite the need of
inferring a large number of unknownmolecular parameters24–26, these
models were able to recapitulate known metabolic features, e.g. the
emergence of overflowmetabolism23,27, or the global utilization of the
proteome28, in relation to cell growth.

Given the global constraint in protein synthesis, knowledge of the
amount of protein needed for specific metabolic functions, e.g. the
synthesis of a specific amino acid, is important for quantifying the link
between metabolism and cell growth. However, the deeply inter-
connected nature of the metabolic networks also complicates its
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decomposition into individual components29. For example, central
carbon pathways such as glycolysis and the TCA cycle are not only
tasked with the production of metabolic precursors for biomass
building blocks, but also with balancing the currency metabolites, e.g.
ATP and NAD(P)H30, consumed by each biosynthetic pathway. Thus, it
can be difficult to associate reaction fluxes, and the corresponding
enzyme concentrations, to individual metabolic functions. Indeed, the
intuitive notion of individual metabolic pathways is largely concocted,
as the production and consumption of currency metabolites have to
be balanced across conditions, thus effectively coupling the fluxes
through all pathways. Thus, the calculation of costs and yields for the
production of individual metabolites are often performed by making
use of coarse-grained metabolic networks in which the balance of
currency metabolites or pathway byproducts is simplified or
neglected31,32.

Here, we sought to develop a systematic computational method
to define themetabolic costs and the enzymeamounts associatedwith
each metabolic function, thus cutting through the complexity of the
network. We introduce a Functional Decomposition of Metabolism
(FDM) based on the decomposition of metabolic fluxes into a set of
flux components, each associated with a metabolic function. Being
based on properties of optimal flux pattern such those obtained with
FBA, FDM is generally applicable to any metabolic network, and does
not require additional parameters. We applied FDM to the study of
Escherichia coli cells grown in carbon minimal media, under
translational-limiting antibiotics, and in anaerobic growth. The result-
ing functional characterization of the metabolic reactions allowed us
to analyze in detail how cells allocate nutrients towards biosynthesis

and energy generation, as well as the metabolic costs and yields of the
production of different biomolecules. Together with experimental
protein abundances, FDM allowed us to quantify the total amount of
enzymes allocated to each function. Finally, FDM enabled a genome-
wide classification of the proteome according to metabolic function,
and the formulation of a coarse-grained model of protein allocation
which quantitatively captures the global changes of the proteome
across conditions.

Results
Functional decomposition of metabolic fluxes
In silico genome-scale models of metabolism (GEMs) enable the
quantitativemodeling of cellularmetabolismby including information
on thousands of cellular metabolites and reactions, as well as on the
cellular biomass composition and the enzyme-reaction assignation33.
The prototypical use of GEMs is the inference of intracellular fluxes by
using a combination of empirical constraints and optimization, an
approach that is generally termed Flux Balance Analysis (FBA)17. In
brief, growing cells accumulate biomass building blocks (e.g. amino
acids and nucleotides) at rates set by the cellular biomass composition
and the growth rate, while also regenerating the ATP required for
homeostasis and growth (the so-called maintenance energy flux)
(illustrated in Fig. 1a, top diagram). Both biomass-associated and
energetic demand fluxes are fixed empirically by the biomass com-
position and the fluxes of metabolite uptake or excretion. Then, the
intracellular fluxes can be estimated by taking the flux pattern(s) that
maximize a given objective function. Such optimal flux patterns are
generally in good agreement with experimental data on intracellular

a b c

d e

Fig. 1 | General approach to the functional decomposition of metabolic fluxes.
a Functional Decomposition of Metabolism (FDM) is a method to decompose
metabolic fluxes v (top diagram, in blue) estimated via Flux Balance Analysis (FBA)
or similarmethods into several components v(γ) (bottomdiagram, colored lines). In
this simple example, fluxes are split into three components: energy production
(orange) or the biosynthesis of two biomass precursors (shades of green). These
flux components allow to quantify for each reaction (white arrows) the fraction of
flux that is associated with each metabolic function, indicated here by the pie
charts.bThe applicationof thismethod to E. coli cells grown aerobically inminimal
glucose media requires overcoming two main problems. First, the presence of a
constraint on acetate excretion, necessary to obtain a good agreement with
experimental data, requires the presence in the flux decomposition of an acetate-
associated component v(ac) (cyan) which has no clear interpretation in terms of
biological functions. Second, the flux components associated with TCA reactions
are found to have both positive terms, e.g. in the energy-associated component
v(ATPM), and negative terms, e.g. in the acetate-associated component. This sign
mismatch does not allow us to define the functional shares of these reactions as

ratios of flux components, v(γ)/v (see text). c By linearly combining the flux com-
ponents associated with energy and acetate production, it is possible to define two
new flux components associated with energy production via respiration (v(E,r), yel-
low) and fermentation (v(E,f), in red). These flux components have a clear biological
interpretation, and do not lead to inconsistent flux directions for TCA reactions.
d In some cases, sign mismatch among flux components is an inevitable con-
sequence of the network structure. In this simplified example, NADPH is produced
along with energy (e.g. by the ICD reaction in the TCA cycle) and consumed in
biosynthetic reactions. In order to preserve a steady concentration of NADPH, the
flux through the Pentose Phosphate Pathway (PPP) has to adjust upon changes in
energetic or biosynthetic cellular demands, thus leading to negative flux compo-
nents. e A functional decomposition can be defined even in presence of negative
flux components. Negative components partially cancel out the positive compo-
nents; the magnitude of the cancellation defines a mixed fraction Fmix not asso-
ciated with any specific biological function. The rest of the flux components are
then associated with the remainder, 1 − Fmix (see Supplementary Note 2.3 for
details).
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fluxes for carbon-limited growth34. Our application of FBA to E. coli
cells, with a detailed description of all constraints, is given in Supple-
mentary Note 1.

Given afluxpatternobtained via FBA,we sought a generalmethod
to quantify how much a given metabolic reaction contributes to
anothermetabolic process γ, e.g. howmuchof the carbon intake flux is
used for the production of a given amino acid, or howmuch of the flux
through a given glycolytic reaction is associated with the regeneration
of ATP. Answering these questions is tantamount to expressing the
metabolic fluxes in the network in terms of the consumption (demand)
fluxes of biomass building blocks or the production of energy in each
growth condition.

It is possible to provide anexplicit expression that relates the FBA-
derived flux vector v, which has entries vi for each reaction i, to the
demand fluxes Jγ. The set of the demand fluxes appearing in such
expression is not arbitrary and it depends on the specific FBA for-
mulation used to model the metabolic fluxes. As discussed in depth in
Supplementary Note 2, each non-dimensionless constraint applied to
the networkmust be associated with a demand flux; In the case shown
in Fig. 1, demand fluxes are associatedwith the synthesis fluxes of each
biosynthetic building block and the maintenance ATP flux. (We will
discuss the effect of additional constraints later below.) Because of the
linear properties of the optimization problem, and as long as the flux
solution is unique, the nonzero fluxes can be expressed23 as a linear
combination of the demand fluxes Jγ:

v=
X

γ

ξ ðγÞJγ: ð1Þ

This expression represents a parameterization of the optimal fluxes in
terms of the demand fluxes Jγ, and allows to analyze how the flux v
changes in response to perturbations of the demand fluxes. The terms
ξ (γ) determine how variations in the demand fluxes Jγ affect each
reaction. To determine these coefficients we note that they match the
derivatives of the fluxes with respect to the demand fluxes. Thus, they
can be obtained numerically by computing the optimal fluxes upon a
small perturbation of each demand flux Jγ. Taken to face value, Eq. (1)
suggests that the flux pattern v can be partitioned into the sum of
several flux components

vðγÞ � ξ ðγÞJγ, ð2Þ

where each component v(γ) satisfies the mass-balance constraints of
the network and is associated with a single demand flux Jγ. For
example, if γ represents the production of the amino acid glutamine,
then both ξ (γ) and v(γ) represent a complete pathway transforming the
carbon and nitrogen sources to glutamine; the two only differ by an
overall normalization factor. We will use this example to illustrate our
results later below.

In the context of metabolic networks, the production of biomass
and energy represent natural definitions of biological functions which
the cell has to perform in order to survive and grow. This offers a
biological interpretation of the linear relation, Eq. (2), between cellular
and demand fluxes: it represents a functional decomposition of the
metabolic fluxes in which each reaction i contributes to the function γ
(with associated demand flux Jγ) by a fraction F ðγÞ

i � vðγÞi =vi of the total
flux vi. This is illustrated in Fig. 1a, where thefluxof eachactive reaction
(blue in the top diagram) is split into several components (in different
colors in the bottomdiagram), and therefore to each reaction (arrows)
is assigned a breakdown into different biological functions (piecharts).

We term the definition of function-specific shares for individual
metabolic reactions (and, later, metabolic enzymes) Functional
Decomposition of Metabolism (FDM). In the next sections we will
discuss the application of FDM to the concrete case of exponentially
growing E. coli cells in carbon minimal media. However, we will first

highlight two challenges that emerge when applying the method on
realistic networks, and how both issues are solved by adjusting the set
of biological functions used to define the functional decomposition.

Additional constraints and mixed flux components
While the simple example in Fig. 1a illustrates the general idea of the
method, it does not capture two important obstacles that prevent the
straightforward application of FDM to realistic networks. Firstly,
additional constraints are often needed to correctlymodel the cellular
fluxes. Such additional constraints have to be accounted for in the flux
decomposition, Eq. (1), but the biological interpretation of the corre-
sponding flux components can be opaque. For example, acetate is
excreted by fast-growing E. coli cells even in presence of oxygen, but
FBA fails to model overflow metabolism without additional con-
straints. The simplest approach to improve FBA’s ability to model the
intracellular fluxes is to set the acetate production to a non-zero value
Jac determined experimentally across growth conditions. This con-
straint leads to the appearance in Eq. (1) of a flux component vac = ξ acJac
(Fig. 1b, cyan). However, inspection of this component reveals that it
does not contribute to either the production of energy or biomass
components. As a result, its interpretation in terms of biological
functions is not immediately apparent. Moreover, a deeper examina-
tion of the flux component revealed a second issue: reactions
belonging to the TCA cycle presented negative entries vðacÞi <0 (indi-
cated in figure by the counterclockwise arrows), corresponding to
carbon fixation. This is opposite to the positive direction of the overall
fluxes, corresponding to that of the oxidative TCA cycle (Fig. 1b,
orange, clockwise arrows). Such sign mismatch is not only difficult to
interpret from a biochemical standpoint, but also hinders a consistent
functional decomposition for the TCA reactions: a ratio vðγÞi =vi<0 can
hardly be interpreted as the share F ðγÞ

i of flux associated with the
function γ.

Fortunately, the linear structure of Eq. (1) allows us to couple
different biological functions, expressing the flux vector as a different
linear combination of flux components (see Supplementary Note 2). In
this example, the negative components in the TCA flux can be elimi-
nated by linearly combining the energy- and acetate-associated com-
ponents into a new component vðE,fÞi (Fig. 1c, red) which describes
aerobic fermentation, leading to new vectors with no negative entries
and a clear biological interpretation. The example of acetate excretion
shows how negative flux components can be an indication that two
metabolic activities (e.g. energy generation and acetate production)
are tightly coupled, and it is more sensible to consider them as a
unique process (e.g. fermentation). However, not all sign-mismatched
components can, or need, to be removed by coupling different bio-
logical functions. In fact, this phenomenon is generically expected in
association with intermediate metabolites which are differentially
producedor consumed in association todifferentmetabolic functions.
This is illustrated in Fig. 1d where we show a simplified picture of the
cellular balance of NADPH. The electron donor NADPH is consumed in
biosynthetic processes, and produced during aerobic respiration (by
isocitrate dehydrogenase). The flux through the Pentose Phosphate
Pathway (PPP) is regulated to keep the concentration of NADPH con-
stant upon variations in the energetic and biomass-associated fluxes35.
This particular role for PPP is reflected in the sign-mismatch among the
flux components associated with energy and biomass biosynthesis. To
account for such role, we introduced an additional mixed function,
proportional to the amount of cancellation between positive and
negative flux components:

Fmix
i =

P
γ∣v

ðγÞ
i ∣� ∣vi∣P
γ∣v

ðγÞ
i ∣

ð3Þ

This quantity is equal to zero in absence of negative flux components,
and approaches one in presence of large flux components of opposite
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signs. As shown in Fig. 1e, we associated the remainder of the func-
tional share F ðγÞ

i to the predominant metabolic functions (see also
Supplementary Note 2). This allowed us to consistently define a
genome-wide functional decomposition F ðγÞ

i even in presence of sign-
mismatched flux components.

Application to E. coli growing on glucose minimal medium
To model the intracellular fluxes, we made use of the most recent E.
coli genome-scale model of metabolism, iML151513, including 2719
reactions and associations to 1515 protein-codinggenes.We assembled
physiological data for exponentially growing E. coliK-12NCM3722 cells
across conditions, including a reference condition corresponding to
glucose minimal media, and slower growth conditions attained by
either titrating the uptake of glucose (C-limitation), or by inhibiting
protein synthesis using sublethal doses of chloramphenicol (R-limita-
tion). (SeeMethods and Supplementary Table S1 for the strains used in
this study). For each of these conditions, we used the macromolecular
composition of the cell (Fig. 2a and Supplementary Fig. 1), and deter-
mined the demand fluxes for individual amino acids, nucleotides,
lipids and other small molecules (Supplementary Fig. 1). In particular,
the abundance of cysteine and glycine residues were found to be quite
different compared to the values in the default iML1515 model across
all conditions (Supplementary Fig. 1k). Three versions of the iML1515
model, with modified biomass composition tuned to specific growth
conditions, are available in Supplementary Data 1.

For each growth condition, the metabolic model was constrained
using the condition-specific biomass composition to set the demand
flux of each biomass building block (Methods, Supplementary Data 2);
the measured acetate excretion fluxes (Fig. 2b); and the ATP main-
tenance flux. The latter was estimated separately for the two growth
limitations by matching the minimal glucose intake allowed by the
metabolic model to the measured glucose intake flux (Methods),
shown in Fig. 2c. This allowed us to define maintenance fluxes specific
for each of the two growth limitations explored (Fig. 2d). Finally, the
metabolic fluxes were then computed with parsimonious FBA, by first
minimizing the glucose uptake, and then minimizing the L2-norm of
the fluxes, which guarantees the uniqueness of the solution (see Sup-
plementary Note 1). This approach allows to model the intracellular
fluxes in E. coli with remarkable accuracy36.

We then turned to the decomposition of themetabolic fluxes into
separate components. Because of the constraints applied to the
metabolic model, the set of demand fluxes (Jγ in Eq. (1)) included the
demand of each biomass building block, the acetate excretion flux,
and the ATP maintenance flux. By applying FDM, we separated the
metabolic fluxes into individual components (Supplementary Data 3).
Flux components associatedwith the respirationofglucose toCO2 and
aerobic fermentation to CO2 and acetate were obtained by coupling
the two flux components associated with ATP maintenance and acet-
ate production, as illustrated before (Fig. 1b, c). The flux components
associated with several biomass components were also found to be
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Fig. 2 | Application of FDM to carbon- and translation-limited E. coli cells.
a Summary of the growth-dependent biomass composition of carbon-limited (red)
and translational inhibited (green) E. coli cells. See Supplementary Fig. 1 for a
detailed breakdown of the biomass composition. b Acetate excretion rate against
growth rate in C-limitation (red) and R-limitation (green). The solid lines are best fit
to the data, and have been used to prescribe the acetate demand flux Jac as a
function of growth rate in the two growth limitations. c Glucose uptake rate. Filled
circles and squares indicate measurements (see Methods). Solid lines and shaded
areas indicate the flux prediction (mean and 68% confidencebands) corresponding

to the best fitting ATP maintenance flux parameters (see next panel). d The ATP
maintenance flux is modeled as a linear function of the growth rate μ,
JATPM = σ0 + σ ⋅ μ. The solid lines and shaded areas indicate thebestfit relation (mean
and 68% confidence bands; parameter values in Supplementary Table S2). e Flux
decomposition of the central carbon metabolic pathways across growth rates for
C-limited (left) and R-limited (right) conditions. The reactions shown are G6P
dehydrogenase (G6PDH), enolase (ENO), pyruvate dehydrogenase (PDH), citrate
synthase (CS) and glutamate dehydrogenase (GDH). f Flux decomposition of glu-
cose, ammonia and phosphate intake fluxes.
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coupled to the ATPmaintenance-associated flux component, andwere
similarly combined (see Supplementary Note 2.3 for details). We
illustrate in Fig. 2e and Supplementary Fig. 2a the flux decomposition
for some representative reactions from the central carbon pathways
across growth rates. As the carbonflows fromupper to lower glycolysis
and the TCA cycle, precursors are diverted towards biosynthetic
pathways, and therefore reactions are increasingly focused toward
energy production. Biosynthetic fluxes, e.g. the glutamate dehy-
drogenase reaction (GDH) are similar between the two growth limita-
tions. The decomposition of the intake fluxes (Fig. 2f, Supplementary
Fig. 2b) reveals the fraction of nutrient sources associated with energy
production and to the synthesis of biomass precursors. The functional
decomposition of the carbon uptake flux mirrors that of upper/mid
glycolysis (e.g. enolase, ENO): depending on the condition, 25% to 50%
of the carbon is consumed for energy production ( ~ 30% in the refer-
ence condition),while the remainder is allocated to the biosynthesis of
biomass precursors,mostly amino acids (shades of blue). Nitrogen and
phosphate are insteadused exclusively for the biosynthesis of biomass
components, in particular amino acids (nitrogen) and nucleotides
(phosphate).

As mentioned above, the flux to the Pentose Phosphate Path-
way (PPP) is mostly associated with biomass production, but has a
large mixed component Fmix

i , as shown for the G6P dehydrogenase
(G6PDH) reaction. To explore the prevalence of sign-mismatched
flux components across the entire network, we computed Fmix

i
before (Supplementary Fig. 3a–c) and after (Supplementary
Fig. 3d–f) the flux coupling procedure. Mixed functional fractions
for TCA and oxidative phosphorylation reactions are greatly
reduced by the coupling. Instead, large mixed functional compo-
nents for reactions in the PPP, upper glycolysis and nucleotide
metabolism persist after the coupling. We studied the origin of such
mixed components by dissecting the synthesis and consumption
fluxes of each metabolite in terms of flux components (Supple-
mentary Fig. 3g–i, Supplementary Note 3), and identified key
metabolites such as NADPH and DHAP that are produced and

consumed in association with different metabolic functions, thus
necessitating anaplerotic reactions with mixed functional
assignation.

Energetic metabolism
The functional decomposition of the network fluxes allowed us to
study in detail the energetic metabolism of the cell. The maintenance
ATP hydrolysis fluxmodels the energetic requirements of homeostasis
and growth in metabolic models. As a result of our flux coupling
procedure, each flux component has an associated net ATP hydrolysis
flux, which is balanced through the ATP maintenance reaction.
Depending on its sign, we refer to this flux as the ATP/energy pro-
duction or consumption associated with the flux component; for flux
modes, this flux represents the ATP/energy cost or yield associated
with the metabolic function.

Protein synthesis (tRNA charging and AA polymerization) is gen-
erally thought to be the major energetic burden to the cell37, at 4 ATP
equivalents per residue. The estimated ATP demand is shown as green
bar in Fig. 3a–c for reference and slow C- or R-limited growth condi-
tions. We estimated the energy consumption associated with other
ATP-consuming processes, namely mRNA turnover and chemotaxis,
and we found that these are negligibile compared to protein synthesis
(Supplementary Note 4.5). This suggests that the cost of protein
synthesis well represents the cost due to the known cellular processes.
However, there may be additional sources of ATP consumption, such
as metabolic futile cycles, including those originating frommembrane
leakage, which are not fully understood and remain largely unknown38.

When comparing the ATP production fluxes to the estimated
consumption due to protein synthesis, we found that the total pro-
duction flux was several-fold higher than the expected consumption
flux (compare the filled bars in Fig. 3a–c; see also Supplementary
Fig. 4a). Most of the energy production, about 70 mmol ATP/gDW/h in
the reference condition, is associated with the respiration and fer-
mentation pathways (yellow and red, respectively, yielding ~ 55 ATP/
gDW/h combined). In slow, C-limited growth, only the respiration
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Fig. 3 | Energetic balance in E. coli cells. a Comparison of the cellular ATP con-
sumption (dominated by protein synthesis, green) and production in aerobic glu-
cose minimal medium. The ATP production is broken down according to the
source: respiration (yellow), aerobic fermentation (red) and the synthesis of bio-
mass precursors (blue) sources. Filled bars indicate the estimated ATP production
using the FBA solution with maximum yield (using the efficient NADH dehy-
drogenase I, encoded by the nuo genes). Empty bars are obtained in flux solutions
using the less efficient NADH dehydrogenase II (ndh gene; see text). b, c Same as
the previous panel, but for slow, C-limited and R-limited growth. d The same

breakdownof energy production and consumptionwasobtained for anaerobically-
grown cells. Application of FBA and FDM to this case is analogous to the aerobic
case, and is described in Supplementary Fig. 5 and Supplementary Note 2), and
allowed us to determine the ATP production flux from twodistinctmodes ofmixed
acid fermentation (purple and cyan, see Supplementary Fig. 5g) and the ATP con-
sumption associated with the biosynthesis of biomass precursors (blue). The esti-
matedproduction and consumptionfluxes are close to eachother, around35mmol
ATP/gDW/h.
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pathway is active, and the ATP flux is reduced (Fig. 3a). However, in the
case of R-limitation, the energetic fluxes appear to be similar to those
observed in the reference condition, with a roughly equal share forflux
associated with respiration (yellow) and aerobic fermentation (red)
(Fig. 3b). This is due to the combination of acetate production (Fig. 2c)
and high total ATP production (Fig. 2d) observed for slow-growing R-
limited cells.

Counter intuitively, the biosynthesis of biomass building blocks
also has a positive net contribution to the cellular energy budget —a
fact that we will discuss below. In fact, the ATP produced in conjunc-
tion with the biomass building blocks (filled blue bars) is close to the
energetic demand associated with protein synthesis (in green). Even
under fast-growth conditions, it seems that most of the flux through
the respiration and fermentation pathways, which are solely dedicated
toATP synthesis, is not needed to power the known energy-consuming
processes.

Efficiencyof the electron transport chain.While it is possible that the
ATP in excessmight be consumed inmetabolic futile cycles or by other
unknown processes, an alternative explanation could be that the
metabolic model overestimated the ATP production fluxes. The cell
canmodulate the efficiency of the electron transport chain (ETC), and
thus the overall production of ATP by oxidative phosphorylation, by
expressing different NADH dehydrogenase enzymes39. FBA fluxes are
obtained under the assumption of minimal carbon consumption,
which leads to the use of the efficient NDH-I protein complex (nuo
genes). On the other hand, quantitative proteomics data9,40 showed
that the concentration of NDH-I varied across conditions. Instead, the
concentration of the inefficient NADH dehydrogenase II (NDH-II, ndh
gene) showed trends to those of NDH-I opposite trend across condi-
tions, and became comparable at either fast or slow, R-limited growth
(Supplementary Fig. 4b). This led us to hypothesize that the cell might
use the inefficient NDH-II enzyme at least in some growth conditions.

When recalculating the FBA fluxes assuming that NDH-II was used
instead of NDH-I (i.e. modeling a nuo− strain), both the energetic yield
of reduced electron carriers through the ETC, and the efficiency of
both respiration and fermentation pathways were reduced (Supple-
mentary Fig. 4c,d). Consequently, the predicted energy production
fluxes were reduced by about 40%, thus partially reconciling the esti-
mated energy production flux with the theoretical cellular demand
(Fig. 3a–c, open columns; see also Supplementary Fig. 4e), but still
exceeding the energy consumption flux by 2-4 fold.

Energy balance in anaerobic growth. If the reduced efficiency of the
ETC is indeed responsible for the excess ATP production observed,
then we would anticipate a better agreement between produced and
consumedATPunder anaerobic conditions, inwhichATP is exclusively
generated through substrate-level phosphorylation with well-
established stoichiometries. To test this hypothesis, we measured
the growth rate and main metabolic fluxes of glucose-limited cells in
anaerobic growth (see Methods), and used the data to model the
intracellular fluxes with FBA (Supplementary Fig. 5a–f). The estimated
maintenance ATP flux is much lower compared to the aerobic case,
and almost growth-independent at ~ 20 mmol ATP/gDW/h. This lower
value is also consistent with data from an earlier report13 in which,
however, the difference between aerobic and anaerobic growth was
not emphasized.

Application of FDM to anaerobic growth is similar to that of
aerobic growth, except the constraint on acetate excretion is sub-
stituted by a constraint on succinate production, leading to the pre-
sence of two distinct mixed acid fermentation functional modes
(Supplementary Fig. 5g). After minimizing the prevalence of mixed
functional components across the network (Supplementary Fig. 5h,i),
we obtained the functional decomposition for all fluxes in anaerobic
conditions (Supplementary Data 4). The total ATP synthesized by the

energetic pathways is about ~ 35 mmol ATP/gDW/h in the reference
condition (Fig. 3d, cyan and purple), and matches well the predicted
consumption by biosynthetic activities (blue and green). This result
further suggest that the disagreement between the ATP produced and
consumed in aerobic conditions is at least partially caused by the ETC
operating with a reduced efficiency.

Biosynthesis-associated energy flux. As noted above, the biosyn-
thetic pathways are associated with a net production of energy in
aerobic conditions, and a net consumption in anaerobic conditions.
Further analysis of the biosynthetic flux components (Supplementary
Data 6 and Supplementary Note 4) reveals that, in aerobic conditions,
the net energy production derives from the NADH produced by the
central carbon pathways as they supply carbon precursors to the
biosynthetic pathways (Supplementary Fig. 5j). However, in anaerobic
conditions, the cell is unable to convert such NADH to energy via
oxidative phosphorylation (Supplementary Fig. 5k). Since substrate-
level phosphorylation is unable to generate sufficient ATP to drive the
biosynthetic reactions, the ATP requirement of the biosynthetic
pathways must be met by the fermentation pathways.

Global definition of functional modules and costs
We then turned to the analysis of the global structure of the flux and
functional decomposition. From this point on, we focused on the flux
solutionsobtained in aerobic conditionswith thehigh-efficiencyNDH-I
enzyme. We first considered the functional decomposition in the
reference condition, μ ≈ 1/h, and performed a hierarchical clustering of
the functional shares F ðγÞ

i . The analysis, summarized in Fig. 4a and
reported in Supplementary Data 5, uncovered a modular structure of
the metabolic network: most reactions are highly specialized, and
contribute to few biological functions. Groups of functionally similar
reactions can be obtained as a function of a threshold on their mutual
distance (see Methods), thus allowing us to define a hierarchy of
functional modules in the metabolic network of E. coli. These func-
tional modules were associated with the synthesis of individual (pro-
line, histidine, arginine, lysine) or groups of amino acids (aromatic AA,
alanine/valine/leucine, cysteine/methionine); these modules match
well known biosynthetic pathways and superpathways41. As expected,
TCA cycle reactions are mostly associated with energy production,
while other reactions from the central carbon pathways, such as those
included in upper/lower glycolysis, electron transport chain and pen-
tose phosphate pathway, have more broadly distributed functions
associated with the synthesis of several amino acids and/or energy. In
sum, these results indicate that our approach is able to recapitulate the
known biological functions of the metabolic network of E. coli.

Each flux component, Eq. (2), describes the pathway used by the
cell to synthesize either ATP or biomass building blocks, including
their associated ATP production or consumption, including contribu-
tions from both the synthesis of biosynthetic precursors and due to
the flux coupling (Fig. 1b, c and SupplementaryNote 2). As an example,
the flux mode describing the synthesis of glutamine from glucose is
shown in Supplementary Fig. 6. Using the flux components, we com-
puted carbon and energy costs for each biomass component and, in
particular, for amino acids and nucleotides. These are shown in Fig. 4b,
c in either costs per molecule (Fig. 4b) or per amount of cellular bio-
mass (Fig. 4c) in glucose minimal medium, and reported in Supple-
mentary Data 8. We observed that the overall ATP balance is positive
for many amino acids, especially for the most represented in the bio-
mass composition (glycine, leucine). On the other hand, nucleotide
biosynthesis is expensive in terms of both energy and carbon
consumption.

We validated these results in two ways. Firstly, the energetic costs
associated with the biosynthetic pathways of each amino acid have
been well characterized31. These costs are computed for each pathway
starting from carbon precursors, rather than from the external carbon
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source. In order to compare to these costs, we removed from the flux
components all reactions belonging to the central carbon pathways,
and computed the energetic balance for the biosynthetic reactions
only. Reassuringly, the resulting energy costs were positive and mat-
chedwell those reported in ref. 31 (Supplementary Fig. 7a). As a second
test, we compared our carbon and ATP costs to those obtained in a
previous analysis from ref. 32. In this study, the costs were computed
either by manual counting or through optimization on a simplified E.
coli network. The comparison displayed a general agreement for most
amino acids, see Supplementary Fig. 7b,c. However, our approach led
to much smaller ATP costs for the biosynthesis of a few amino acids
compared to ref. 32. As illustrated in Supplementary Fig. 7d, this was
traced back to the different assumptions involved in the methods:
while NADPH requirements were simply converted to energetic costs
in ref. 32, our methods enforces the complete flux balance of NADPH,
leading to significant differences for some amino acids.

By using experimentally determined acetate production fluxes
from ref. 7, as well as the biomass composition for C-limited cells
(Fig. 2a), wewere able to repeat the analysis for cells grown aerobically

on a variety of carbon sources.We found that the efficiencyof both the
energetic and biosynthetic pathways depended strongly on the sub-
strate, as seen in Fig. 4d. The energy yields of the respiration pathways
(Fig. 4d) are ~ 4 ATP per C atom for glycolytic carbon sources (open
circles), and 2.5 to 3 ATP/C atom for gluconeogenic carbon sources
such as acetate, succinate, fumarate and pyruvate (filled symbols). The
energetic efficiency of the fermentation pathway is typically 2 ATP/C
atom for glycolytic carbon sources, while gluconeogenic carbon
sources yield between 1 ATP/C atom (pyruvate) to ~ 2.6 ATP/C atom
(glycerol).

The net energy yield associated with amino acid biosynthesis is
also strongly affected by the carbon substrate on which the cells are
grown (Fig. 4e). Amino acid biosynthesis is on average much more
expensive for cells grown on gluconeogenic carbon sources (empty
symbols), compared to glycolytic substrates. For example, the synth-
esis of an amino acid on mannose produces about 3 ATP, while it
consumes more than 4 ATP’s when cells are grown on acetate. (See
Supplementary Fig. 7e-l for a breakdown of the costs for individual
amino acids and nucleotides.)
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Fig. 4 |Metabolic costs forbiosynthetic activities. aHierarchical clustering of the
functional decomposition F ðγÞ

i , restricted to the production of energy, amino acids
and nucleotides, in the reference condition (214 reactions). Clustering reactions
based on the similarity of the functional profiles allows to define a hierarchy of
functional modules. Here we show the modules arising from two different choices
of the similarity threshold (horizontal lines in the top dendrogram); the resulting
functionalmodules are summarized in SupplementaryData 5.bCarbon and energy
(ATP) costs associated with the biosynthesis of amino acids (blue circles) and
nucleotides (green squares), in glucose media. Nucleotides are more expensive
than most amino acids, both in terms of carbon substrate and energy. Instead, the
biosynthesis of several amino acids is associated with the net production of energy
(i.e. a negative cost). Such coupling emerges from flux-balancing the pathway
intermediates (since the flux components ξ(γ) are flux-balanced) and from the
removal of sign-mismatched flux components (see Supplementary Note 2). c Same
as before, but weighting the costs by the demand of the building blocks (in mmol
per gram of dry weight). Leucine production is associated with a large glucose

uptake, but also to a large ATP synthesis flux. d Scatter plot of respiration and
fermentation ATP yields per intaken carbon atom, for a variety of carbon sources
(Supplementary Data S5 and S7). The yields were calculated by repeating the FBA
and FDM calculations for cells growing on different substrates, constraining the
growth rate and fermentation fluxes to the experimental data from ref. 7, and
further assuming the same ATP maintenance flux parameters and growth-
dependent biomass composition as for carbon-limited growth. Open symbols
indicate the yields for the glycolytic carbon sources, while filled symbols indicate
the yields for gluconeogenic substrates. An ATP yield of 0 is shown for the fer-
mentation pathway if cells do not produce acetate in the corresponding condition.
eThe average net ATPproductionper AA (weightedbyAAabundance) for different
carbon substrates, as a function of the corresponding growth rate (Supplementary
Data S5 and S7). For most glycolytic carbon sources, 3 to 5 ATP molecules are
regenerated for each amino acid synthesized. Instead, the net energy balance is
close to zero, or negative (net consumption), in cells growing on gluconeogenic
carbon sources (open circles), and acetate in particular.

Article https://doi.org/10.1038/s41467-023-39724-7

Nature Communications |         (2023) 14:4161 7



Interestingly, no particular differences among glycolytic sub-
strates is seen in either the energetic efficiencies (Fig. 4d, filled circles)
or the average ATP produced per synthesized amino acid (Fig. 4e), in
contrast to the wide range of growth rates achieved by cells reared on
these substrates (shown as x-axis in Fig. 4e). For example, owing to
their similar chemical composition, mannose and glucose have very
similar energetic yields, but the growth rates for cells grownon the two
substrates differ by a factor 3. Therefore, the growth rates achieved
with different glycolytic substrates do not appear to be determined by
differences in the energetic parameters of each carbon source.

The comparison between aerobic and anaerobic growth also
suggests that cellular energetics do not impact cellular growth on
glycolytic sources significantly. In anaerobic conditions, the glucose
intake flux for wild-type E. coli is > 2 times than that in aerobic condi-
tions, with a corresponding reduction in growth yield (Supplementary
Fig. 5l). The increase in overall glucose flux is mainly driven by the ~ 7-
fold increase in energy-associated glucose intake required for aerobic
growth ( ~ 2 mmol/gDW/h, Fig. 2f) compared to anaerobic growth
( ~ 15mmol/gDW/h, Supplementary Fig. 5m) at the same growth rate
of ~ 0.75/h. This increase is necessary to compensate for the drop in
energetic efficiency in anaerobic conditions, yielding at most 2.5 ATP
per glucose molecule (Supplementary Fig. 5g), compared to up to 24
ATPs aerobically (Supplementary Fig. 4d). Despite these large changes
in growth yield and energetic efficiency, the maximum growth rate on
glucose is only reduced by less than 20%. Overall, our results suggest
that neither carbon availability nor energy is the main limiting factors
for aerobic growth on glycolytic carbon sources. Rather, the differ-
ences in growth rates might stem from the varied expression levels of
the catabolicproteins9,42 and arepossiblymodulatedby the expression
of other underutilized proteins28.

Functional decomposition of the proteome
The functional decomposition described above defined functional
shares for each flux-carrying metabolic reaction in the cell. In turn,
these functional shares can be used to generate a functional decom-
position for the correspondingmetabolic proteins. To do so, wemade
use of highly accurate experimental protein abundances9,40 obtained
for cells grown in conditions matching those explored above, namely
carbon and translational limitation. We obtained protein abundances
for a total of 2017 out of 4312 protein-coding genes in E. coli (Fig. 5a),
expressed as fraction of the total proteinmass. Proteinmass fractions,
a direct output of mass-spectrometric analysis pipelines, are a con-
venient measure of absolute protein abundance9 approximately pro-
portional to protein concentrations (because of the constancy of the
total concentration of proteins across conditions in E. coli 3,43). After
computing the functional decomposition ineachgrowth condition,we
made use of the gene-protein-reactionmatrix of the iML1515 model to
associate the reactions to expressed proteins. Overall, 412 proteins
were both associated with flux-carrying reactions and detected in the
reference condition; the numbers are similar for the other growth
conditions. For these reactions, the joint use of the experimental
protein abundances andof the functional decomposition allowedus to
quantify the contribution of each enzyme to the various metabolic
functions, as illustrated in Fig. 5b for the enzyme enolase. For enzymes
catalyzing multiple reactions (including various promiscuous biosyn-
thetic enzymes such as ArgD, AspC and Ndk), we took the average
functional shares of each reaction, weighted by the flux magnitudes
(see Supplementary Note 5 for details).

Protein costs associated with energy production
The protein fraction associated with energy production in carbon-
limited growth is similar to previous estimates7,23, increasing from
about 8% to 12% of the total proteome (Fig. 5c) and switching from a
mix of respiration and aerobic fermentation at fast growth, to
respiration only at slow growth. Given the decreased energetic flux in

slow, carbon-limited conditions (Fig. 3a, b and Supplementary Fig. 4a),
the overall energetic efficiency of the cell (ATPflux per unit of invested
proteins) decreases at slow growth (Supplementary Fig. 8a, red cir-
cles). The observed patterns are quite different in R-limited cells: the
proteome shares allocated to energy production via either respiration
or fermentation are mostly independent on the growth rate (Fig. 5d),
mirroring the lack of change observed for the energy flux (Fig. 3c). As a
consequence, the efficiency of the energetic pathways is mostly con-
stant across growth rates (Supplementary Fig. 8a, green squares). The
protein efficiency for the respiration and fermentation pathways can
be obtained by comparing the associated protein shares to the cor-
responding ATP fluxes. Respiration pathway requires about twice the
proteins associated with aerobic fermentation (Fig. 5e), consistently
with previous analyses7,23.

Protein costs associated with biomass production
Globally, the protein fraction associated with biosynthetic activities
(Fig. 5f, g) ranges between 20 and 30%, and decreases in slow growth
conditions. The protein cost is dominated by amino acid synthesis
(shades of blue). The biosynthesis of the other components (RNA,
DNA, lipids, cofactors) only makes use of a small fraction of the total
proteome, less than 10% in total. In the reference condition, the
synthesis of methionine was by far the most expensive process,
requiringmore than 6% of the total proteomemass (red bar in Fig. 5h).
Most of this cost is due to the highly inefficient enzyme homocysteine
methyltransferase (MetE). Instead, the relatively small production
costs of proline, glutamine and glutamate were the only ones domi-
nated by the shared central carbon pathways (Supplementary Fig. 9a).

We looked at the relationships between enzyme abundances
and demand fluxes for individual amino acids. Across conditions,
the protein mass fractions associated with each amino acid and
nucleotide scaled remarkably linearly with the corresponding
demand flux, with more proteins being allocated in presence of
higher fluxes (Fig. 5i, Supplementary Fig. 10a–d). These results are
consistent with linear relations observed for transcriptional
reporters5 or for protein sectors6,9 in E. coli, and more recently in
yeast44. The slopes and y-intercepts (offsets) of the linear relations
(Supplementary Data 8), are important parameters that reflect the
overall efficiency of the pathway6,27 and the capacity of the path-
way to rapidly change flux in dynamic conditions40,45, respectively.
The slopes and offsets are summarized in Fig. 5j, k. Overall, the
protein offsets were similar (at most a 25-fold difference, with 16
out of 20 in the range 0.15% to 0.35%) for most amino acids, while
slopes varied over a broader range (more than two orders of
magnitude). Methionine (M) biosynthesis (inset in Fig. 5i) is by far
the most expensive process across all conditions, and had the
steepest slope among all amino acids (Fig. 5j). Other expensive
processes are the biosynthesis of tryptophan (W) and histidine (H),
as indicated by their large slopes; intriguingly, these three amino
acids were also reported to be the most expensive in yeast46. On
the other hand, leucine (L) and arginine (R) stand out as the amino
acids whose associated proteome had the largest offsets (Fig. 5k),
while having only moderate slopes in C-limitation. In contrast, the
biosynthetic enzymes are expressed at very low levels in rich
media (Fig. 5l). This suggests that glucose limitation specifically
impacts the expression of biosynthetic enzymes for arginine and
leucine, possibly indicating that their biosynthesis becomes
growth-limiting in slow, carbon-limited growth.

Overall, results for R-limited growth were similar to those
obtained for C-limitation (Supplementary Fig. 10a–d), with the notable
exception ofmethionine which presented amuch larger protein offset
(Supplementary Fig. 10e, f). Protein costs for the synthesis of purines
was 3 to 4 times that of pyrimidine (Supplementary Fig. 10b,d), and
larger than most amino acids other than methionine, although the
overall allocation towards nucleotide synthesis is small compared to
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the amino acid (Fig. 5f,g, compare green to blue), due to the much
smaller number of nucleotides compared to amino acids.We observed
that for most amino acids, the slopes of the protein-flux relationships
were slightly more steep in R-limitation compared to C-limitation,
while the opposite was true for nucleotides. Such small systematic
patterns were mostly due to changes in the flux through the central
carbon pathways (glycolysis and TCA cycle), which influence how the
corresponding proteins are allocated (Supplementary Fig. 9b–d).
Slopes were tightly correlated to the ratio of allocated protein and
demand flux in the reference condition, related to the so-called
effective turnover rate of the pathway, and presented weaker corre-
lations with other quantities such as the carbon costs and demand flux
of each amino acid (Supplementary Fig. 11).

Coarse graining of the proteome according to metabolic
function
The functional decomposition described above defined functional
shares for each flux-carrying metabolic reaction in the cell. As sum-
marized in Fig. 6a, this corresponds to about 40% of the proteome in
the reference condition, of which 7% is associated with energy pro-
duction (energyprotein sector) and33% to thebiosynthesis of biomass
precursor (biomass sector). About half of the proteome is not asso-
ciated with the metabolic model, and an additional 10% is associated,
but the corresponding reactions carry no flux. We associated these
proteins to specific cellular functions via an iterative GO-terms based
categorization. By sequentially selecting the GO-terms associated with
the largest protein shares, we were able to categorize > 90% of the

Fig. 5 | Cellular allocation of metabolic proteins across conditions. a Overlap
between metabolic proteins (included in the iML1515 metabolic model), proteins
associated with active reactions in the reference condition, and proteins detected
in the same condition40. b Experimental protein abundances can be matched with
the reaction functional decomposition to obtain a functional decomposition for
metabolic proteins. In this example we combine protein mass fractions for the
Enolase enzyme in glucose-limited cells (red dots, from Ref. 40) with the functional
decomposition in the same conditions, allowing us to define function-specific
protein shares (colored bands; see legend on the right). c Total abundance of
energy-associated proteomeϕE inC-limited growth, obtainedby summing over the
energy-associated protein shares of all metabolic reactions. Colors indicate
respiration (ϕE,r, yellow) and fermentation (ϕE,f, red). d Same as (c), but for
R-limited conditions (protein data from Ref. 9). e Protein cost of the respiratory
(yellow) and fermentative (red) pathways. Solid lines are best fits lines passing
through the origin; the slopes indicate the inverse of the protein efficiencies of the
two pathways. We obtained εres = 5:33±0:15 and εfer = 9.62 ± 0.37 (mean ± standard
error), in units of ATPflux (mmol/gDW/h) per percent of allocated proteome. fTotal
proteome mass fraction associated with the biosynthesis of biomass building

blocks in C-limited conditions, obtained in the same way the energy-associated
proteome fraction was computed in (c). Colors indicate individual building blocks.
g Same as (f), but for R-limited conditions. h Proteinmass fractions associatedwith
each amino acid in the reference condition. i As the growth rate is varied in
C-limited conditions, theprotein shares allocated to the biosynthesis of each amino
acid (symbols) are well described by linear function of the demand flux of the
amino acid (solid lines indicate best fits). The inset shows the proteinmass fraction
associated with the biosynthesis of methionine, which is dominated by MetE. Let-
ters indicate a few amino acids; colors match those used in the bars in panel (h).
Similar linear relations are also observed in R-limitation (Supplementary Fig. 10c);
the valuesof slopes andoffsets (y-intercepts) for both limitation series are reported
in Supplementary Data 8. j,k Slopes and offsets (y-intercepts) of the linear relations
shown in panel (i). l Protein mass fractions in the reference condition and in rich
defined medium (from Ref. 40) of the biosynthetic enzymes for arginine and leu-
cine (arg and leu genes, respectively). Levels in rich media are much lower than in
glucose minimal media, as opposed to the lack of change observed in C-limitation
for these two amino acids, see panel (i).
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proteome mass using ~ 50 GO-terms, Fig. 6b. In order to simplify the
description of the proteome, we grouped all translation-associated
GO-terms into a translation sector; similarly, GO-terms associatedwith
nutrient transport and catabolism, as well as motility, were grouped

into a single foraging protein sector; the remainder of the GO-terms
were grouped into a housekeeping sector. Together with the energy
and biomass metabolic sectors, these define a five-way function-based
classification of the proteome.

Fig. 6 | Function-based global classification and coarse-graining of the
expressed proteome. a Summary of the functional decomposition of E. coli pro-
teome in glucose minimal medium. The fraction of the proteome contributing to a
definedmetabolic function (GEM-assigned) is about 40%, with proteins involved in
the biosynthesis of cellular building blocks ("biomass" sector) about 32%, and
energy-producing proteins (energy sector) close to 8%. The remainder of the
proteome is divided between non-metabolic proteins (e.g. ribosomal or motility
genes), andproteins associatedwith zero-flux reactions (e.g. nutrient transporters).
Using a GO-term enrichment analysis (see next panel) these were assigned to three
translation, foraging (motility andnutrient assimilation) andhouse-keepingprotein
sectors. b An iterative GO-term assignment procedure (see Methods) was used to
assign specific biological functions to non-metabolic proteins. At each steps, the
GO-term associated with the largest proteome share is selected, and the corre-
sponding genes are assigned exclusively to that GO-term. Bars and error bars
indicate mean± SD (n = 3, data shown as dots). Colors indicate the three coarse-
grained sectors indicated in the previous panel. c For each protein in the five
functional sectors, we summarized changes in protein levels with a binary

classification6 describing whether the protein is up- or down-regulated in C- or R-
limitation, as indicated by the arrows. For all sectors except the “housekeeping",
most of the proteome (here corresponding to the reference condition) is asso-
ciated with only one of the four possible combinations, indicating that most pro-
teins are consistently regulated across conditions. d Protein mass fractions
associated with the five functional sectors across growth rates for C-limited (red
circles) and R-limited (green squares) growth. Solid lines indicate the best fit for a
coarse-grained model of protein allocation. e Using the calculated energy pro-
duction fluxes and protein efficiencies for the respiration and fermentation path-
ways, as well as the modeled total protein abundance, the coarse grained model
predicts thepartitioningbetween respiration and fermentation-associatedproteins
(see Supplementary Note 6). Here we show the predicted allocation towards fer-
mentation proteins and the associated acetate excretion flux (the solid lines and
bands indicate mean and 68% confidence bands, obtained by propagating mean
and SEM for the efficiencies), as well the experimentally determined acetate
excretion fluxes (same symbols as in the previous panel), for C-limited and
R-limited growth.
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We first assessed whether proteins within the same functional
sector are similarly regulated across conditions. Each protein was
previously classified depending on their change in protein abundance
upon carbon starvation or translation limitation9. Hence, we were able
to break down each functional sector into four different components,
corresponding to the four possible combinations of up- and down-
regulation in the two growth limitations (Fig. 6c; see also Supple-
mentary Fig. 12a–c). Formost functional groups, proteins appear to be
consistently regulated across conditions, with the vast majority of the
associated proteome belonging to only one of the four regulatory
groups. This is most evident for the translation functional group,
where the vast majority of proteins are similarly upregulated in
translation-limited conditions and downregulated in carbon-limiting
conditions. Most proteins in the energy and foraging groups show the
opposite behavior, i.e. are upregulated in carbon-limited conditions
and downregulated in translation-limited conditions. Proteins in the
biomass sector are downregulated in both growth limitations. Finally,
housekeeping proteins are regulated more heterogeneously. This was
also expected given the wide variety of GO-terms associated with the
proteins in this functional group. Similar results were obtained by
considering a more detailed binary classification based on three
(rather than two) different growth limitations (Supplementary
Fig. 12d–g). We then computed the protein abundance of the func-
tional sectors as a whole, which canbe seen plotted against the growth
rate in Fig. 6d. The growth-dependence of the sectors recapitulates
what was seen at the level of individual proteins in Fig. 6c: The energy
and foraging sectors increase strongly in carbon-limited conditions,
while the translation sector is upregulated in R-limited conditions.
Allocation towards the biomass sector is proportional to the growth
rate, while the housekeeping sector changes little across conditions.

The trendsobserved for theprotein sectors, aswell as theobserved
switch between respiration and fermentation, can be captured quanti-
tatively by a single phenomenological model of protein allocation. The
protein mass of each sector changes according to two model para-
meters, the quality of the carbon source νC and the translational capa-
city of the cell νR. These two parameters determine the cellular
phenotype2: changes in either parameter leads to simultaneous changes
in both the cellular growth rate μ and in the size of the protein sectors.
The expression of the foraging (including a variety of transporters and
chemotactic proteins) and translation sectors respond specifically to
changes in the carbon quality and in the translation capacity, respec-
tively. Expression of the biomass sector is linearly related to growth
rate, while the housekeeping sector is constant. Finally, we assumed a
regulatory constraint setting the energy sector in response to carbon
starvation and translational limitation of the following form:

ϕE =ϕE,0 + κC
μ
νC

+ κR
μ
νR

, ð4Þ

where κC and κR determine change in protein allocation in response to
the specific growth limitation. As detailed in Supplementary Note 6.3,
these two terms arise from the reduced efficiency of the energetic
pathways in carbon-limited conditions (Supplementary Fig. 8a), and
from increased energetic demands per unit of biomass in translational-
limited conditions (Supplementary Fig. 8b). The fitted model (solid
lines in Fig. 6d) correctly recapitulates the experimental data. Because
the model explicitly accounts for the protein share associated with
energy production, it can also account for the impact of protein
allocation on acetate overflow. Assuming that the respiration and
fermentation-associated components of ϕE generate an ATP flux in
proportion to their proteome share (using the efficiencies determined
in Fig. 5e).Without changing any of the parameters leading to the fit in
Fig. 6d, the model predicts a sharp decrease in the protein share
associated with fermentation ϕE,f in carbon-limited growth, and
sustained fermentation in R-limited growth (Fig. 6e, solid lines), in

agreement with the experimental acetate excretion fluxes (Fig. 6e,
symbols). Thus, the model is able to simultaneously capture the
observed protein allocation patterns and the metabolic switch
between respiration and fermentation.

Discussion
In thiswork, we presented a computationalmethod termed Functional
Decomposition ofMetabolism (FDM) for studying cellularmetabolism
andprotein allocation based on the decompositionofmetabolicfluxes
into distinct functional components. This framework allowed us to
comprehensively evaluate metabolic costs and protein burdens asso-
ciated with eachmetabolic function, a feat impossible to achieve from
the analysis of single reactions or protein abundances because of the
deeply interconnected nature of metabolic networks.

The flux decomposition at the core of FDM is fundamentally
derived frommathematical properties of FBAsolutions. Furthermore, it
does not rely on parameters such as kinetic constants, nor requires
simplifying hypothesis on the structure of themetabolic network: FDM
can be generally applied to any network, as long as the application of
FBA (or other optimization approaches) estimates correctly the intra-
cellular fluxes. At the core of FDM is a quantitative definition of system-
level metabolic functions for each reaction and protein. Each of these
metabolic functions can be associated with multiple activities, e.g.
synthesis of amino acid and ATP production, when these are tightly
coupled. Furthermore,flux constraints are often applied to thenetwork
in order to improve the agreement with experimentally determined
fluxes; these constraints are fully accounted for by the flux decom-
position, at the cost of introducing associated metabolic functions, as
shown in Fig. 1b for the constraint on acetate production. However, the
interpretation of such flux components might be not straightforward
due to sign-mismatch issues which arise when, for a given reaction,
different flux components have opposite signs. These flux patterns are
expected to arise generically even in the absence of external con-
straints, for example when the synthesis of a biomass component is
coupled to the net production of energy. Coupling flux components by
combining different metabolic functions is an effective strategy to
make their biological interpretation more direct and reduce the sign-
mismatch prevalence across themetabolic network (as shown in Fig. 1c
for the case of acetate). However, when applying FDM toother systems,
the choice of which processes to couple depends on the network,
optimization process, and constraints at hand, and must be evaluated
on a case-by-case basis. In this work, we observed that minimizing the
prevalence of sign-mismatch also provided the most transparent and
intuitive set ofmetabolic functions.We thuspropose that this approach
could guide the application of FDM in other organisms.

One of the most immediate results enabled by FDM was the cal-
culation of specific ATP and carbon costs for the biosynthesis of
individual biomass component, as well as the ATP yields of the ener-
getic pathways. These were generally uncorrelated with the rate of
aerobic growth, although we noticed that gluconeogenic carbon
sources tended to yield less energy and allow for slower growth rates
compared to the best glycolytic carbon sources (compare e.g. succi-
nate vs glucose in Fig. 4d, e), or similar to the worst glycolytic sources
(e.g. acetate and mannose, both yielding growth rates close to 0.3/h).
This suggests that the energetic metabolism might play a more sig-
nificant role in gluconeogenic growth than in growth on glycolytic
substrates. In fact, the determination of carbon and energetic fluxes
associated with the biosynthesis of cellular components showed that,
for aerobic growth on glucose, theATPfluxproduced as by-product of
biosynthesis on glucose media is already sufficient to supply for the
need for amino acid polymerization, the single biggest ATP expendi-
ture for growing cells (Fig. 3a–c). These results raise fundamental
questions on the metabolic purposes of energy biogenesis by
respiration and fermentation,which comprise 30%ormoreof the total
carbon flux during aerobic growth on glucose, and are apparently not
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needed. Our analysis suggests two possibilities: first, the cell might be
inefficiently producing energy via respiration, so that the actual
energetic flux is lower than what could be estimated from the
observed exchange fluxes. Second, the excess energy might be con-
sumed by unknown processes, including puzzling wasteful energy-
spilling pathways47,48.

We suspect that both possibilities might hold true in the condi-
tions studied here. The opposite changes observed in the levels of the
two NADH dehydrogenases NDH-I and NDH-II across conditions
(Supplementary Fig. 4b) suggest that E. coli cells are able to decouple
electron transport fromATPproduction, thus reducing theproduction
of ATP and bringing it closer (but not equal) to the estimated con-
sumption. In anaerobic conditions, when the electron transport chain
is not used, the predicted ATP productionmatches the costs (Fig. 3d).
These results suggest that the energetic pathways in fast-growing E.
coli cells in aerobic conditions operate with and efficiency far from the
maximum allowed by the biochemical constraints. For cells grown in
R-limited conditions, we observed high, constant energy production
fluxes for both the respiration and fermentation pathways, despite a
predicted reduction in ATPdemand at slow growth. Such constant flux
is accompanied by a constant share of proteome allocated to energy
production, irrespective of the growth rate. This might suggest the
presence of additional energy-consuming processes in slow, R-limited
growth, e.g. additional ribosome turnover due to biogenesis defects49.
Alternatively, the flux of carbon substrate towards energy production
might be set by the carbon availability (which is constant in R-limited
conditions), while being independent on the actual energetic demand;
the latter couldbematched instead bymodulating the ATP yield of the
energetic pathways, in agreement with the analysis discussed above.

Combining FDMwith proteomics data allowed us to calculate the
proteome costs associated with the de novo biosynthesis of each cel-
lular component, including not just the contributions from the curated
pathways, but also the prorated cost of carbon/nitrogen uptake and
energy biogenesis needed for biosynthesis. For the biosynthesis of
amino acids and nucleotides, we found the total abundance of the
allocatedproteins tobe linearly increasing functionsof the growth rate
under carbon catabolic limitation. In addition to the well-known large
cost of methionine biosynthesis, we found large protein reserves at
slow growth for the production of several amino acids, particularly
leucine and arginine. These large protein reserves might indicate that
the synthesis of these two amino acids becomes growth-limiting in
poor carbon conditions.

The whole-proteome, function-based model of protein allocation
enabled by FDM is a step forward in the quantitative modeling of
bacterial protein allocation. Ourwork allowedus reconcile twodistinct
classes of protein allocation models. The first class includes models
based on regulation-based protein sectors6,9. In these models, protein
sectors are defined based on protein expression patterns, but they do
not always correspond to unique biological functions. Models in the
second class are formulatedwith function-based sectors7,23, and have a
narrower scope (e.g. focusing on energeticmetabolism). The design of
a systematic procedure to functionally classify all of the expressed
proteome across conditions (Fig. 6a, b), and the finding that most
proteins within each condition-dependent protein sector were con-
sistently regulated across conditions, enabled us to build a quantita-
tive model of protein allocation bridging the two model classes.

Still, the regulation of the energy sector in poor carbon sources is
only accounted for by an effective constraint, and linking its share to
the underlying regulatory processes is an open problem. The increase
in the protein share assigned to energy production might be a reg-
ulatory strategy to more efficiently divert flux from biosynthetic
activities, or to prepare for a switch to gluconeogenic substrates50. In
either case, fully explaining the observed patterns likely requires
including information on the concentrations of metabolites and the
kinetics of the respiration pathway51,52.

FDM’s versatility as a method for analyzing cellular metabolism
and protein allocation opens up a wide range of possibilities for future
research in bioengineering and systems biology. The systematic eva-
luation of yields and costs for the production of individualmetabolites
(Supplementary Data S3 and S8) enabled by FDM has natural appli-
cations to the study of microbial cell factories in which the production
of a metabolite of interest is maximized. FDM also allowed us to
uncover a hierarchy of functional modules in cellular metabolism
without supervised knowledge on curated metabolic pathways. Thus,
FDM could facilitate the rational design of heterologous metabolic
pathways with varying degrees of coupling to other metabolic
activities53. Consistently with the modularity exhibited by bacterial
metabolic networks54,55, the functional patterns displayed a rich
structure (Fig. 3a), with clusters of reactions with similar metabolic
functions providing the quantitative counterpart of known biochem-
ical pathways. Thus, the definition of functional shares for each reac-
tion represents a simple alternative to other system-level approaches
to the analysis of metabolic function, e.g. based on the exhaustive
enumeration of extreme pathways or elementary modes56.

The simplicity of FBA allows the method to be generally applic-
able on a variety of organisms and conditions, while the ability to
integrate a wide variety of physiological, flux, and protein data using
genome-scale metabolic models (as illustrated in Supplementary
Fig. 13) provides a general avenue to the analysis of complex multi-
omics datasets. Other studies46,57,58 quantified protein costs using
marginal costs within more complex models that require effective
enzyme kinetic parameters, which are difficult to determine26 and can
largely affect the flux solutions25. Not only our approach is based on a
simple (vanilla) FBA framework, but it also provides a concrete inter-
pretation of marginal costs as flux modes. The complete decomposi-
tion of fluxes into the complete set of components, Eq. (1) and (2),
enables the global functional analysis and permits the application of
the flux-coupling procedure, which is necessary to obtain realistic
pathways from the original flux modes (as demonstrated in Fig. 1b for
the case of acetate excretion). On the other hand, adapting FDM to
more complex frameworks, including ME-models20, RBA59 and other
approaches dependent on enzyme parameters27,60,61 could provide
additional information on cellular fluxes and proteome utilization for
processes not captured by simple GEM models. In sum, our findings
demonstrates the power of FDM as a framework for analyzing cellular
metabolism and protein allocation, and its potential to advance our
understanding of metabolic networks in a range of contexts.

Methods
Experimental methods
Bacterial strains. All strains used in this work are derived from
Escherichia coli K-12 NCM372262–64 and listed in Supplementary
Table S1.

Growth media. The growth media for aerobic growth is the MOPS-
buffered minimal medium from ref. 7. The phosphate-based growth
media used for anaerobic growth and for other control samples in
aerobic conditions contained 10 mM glucose, 80mMK2HPO4, 20 mM
KH2PO4, 10 mM NaCl, 10 mM NH4Cl, 0.5 mM Na2SO4, a phosphate
buffer and a 1000x micronutrient solution. The 1000x micronutrient
solution contained 20mMFeSO4, 500mMMgCl2, 1mMMnCl2.4H2O, 1
mM CoCl2.6H2O, 1 mM ZnSO4.7H2O, 1 mM H24Mo7N6O24.4H2O, 1 mM
NiSO4.6H2O, 1 mMCuSO4.5H2O, 1 mMSeO2, 1 mMH3BO4, 1 mMCaCl2,
and 1 mM MgCl2 dissolved in a 0.1 M HCl solution. Carbon limitation
was implemented by titrating 3-methyl-benzylalcohol (3MBA) con-
centration in strains NQ1243, NQ1448, and NQ1554 as well as by
growing strain NQ1261 (ptsG deletion) in glucose. Translational lim-
itation was obtained by adding sublethal doses of chloramphenicol.
Concentrations of nutrients, 3MBA and chloramphenicol in each
experiment are reported in Supplementary Data S2.
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Growth measurements. Growth measurements for aerobic culture
were performed as in ref. 5. Briefly, exponential cell growth was
performed in a 37 °C water bath shaker at 240 rpm. Cultures were
grown in the following three steps: seed culture, pre-culture, and
experimental culture. Cells were first grown as seed cultures in LB
broth for several hours, then as pre-cultures overnight in an iden-
tical medium to the experimental culture. Experimental cultures
were started by diluting the exponentially growing pre-culture to an
optical density at wavelength 600 nm (OD600) of ~ 0.01–0.02.
Growth rates were calculated from at least seven OD600 points
within a range of OD600 of ~ 0.04–0.4.

Anaerobic growthwas performed similarly to aerobic growthwith
a few exceptions. All transfers were performed with disposable syr-
inges to avoid oxygen contamination. Aerobic seed cultures were
diluted into Hungate tubes for preculture. After overnight growth, the
precultures were diluted into fresh Hungate tubes for experimental
culture. To avoid atmospheric exposure from removing samples, OD
measurementswere performedwith a ThermoGenesys 20modified to
hold Hungate tubes in place of cuvettes. The culture temperature was
kept stable during OD measurements by removing and replacing the
Hungate tubes from the water bath shaker within 30 seconds. The
OD600 measured through the Hungate tubes was equivalent to the
OD600 measured through a cuvette for the range of 0.04–0.5.

Metabolite measurements. Metabolites were prepared and quanti-
fied as in ref. 65. Four samples of 200 μL were pipetted from culture
tubes at regularly spaced ODs during exponential growth. For anoxi-
cally grown cultures, samples were removed with tuberculin syringes
inserted into the rubber stopper. Samples were then transferred to
0.22 μm nylon filter centrifuge tubes (Corning Costar Spin-X Cen-
trifuge Tubes) and quickly filtered by centrifugation. Samples were
then stored at −20 °C until HPLC analysis, which was performed using
the Rezex RoA (H+) organic acid column with 10 mM H2SO4 as the
mobile phase.

Computational and numerical methods
Calculation of FBA solution and numerical derivatives. The for-
mulation of the FBA and FDM optimization problems is described in
detail in Supplementary Note 1. The FBA calculations were performed
in Python (version 3.9) using CVXPY (version 1.3.1)66,67 and the GUROBI
solver (GUROBIpy, version 9.5.2). In order to estimate the numerical
derivatives reliably, we set the following GUROBI parameters: max-
imum iteration to 1000, “BarConvTol” and “BarQCPConvTol” to 10−12,
“FeasibilityTol” and “OptimalityTol” to 10−9. Additionally, COBRApy
version 0.26.3 was used to parse the metabolic models. Details on the
implementation of FBA and of the functional decomposition are pro-
vided in Supplementary Notes 1 and 2, respectively. Additional analysis
were performed in MATLAB, version R2015b.

Hierarchical clustering. The hierarchical clustering in Fig. 4a
was performed on reactions whose fluxes were larger than
10−4 mmol/gDW/h and only considering the metabolic functions
associated with energy production, biosynthesis of amino acid
and nucleotides, plus the mixed functional component; clusters
were determined based on the cityblock distance among the
functional shares F ðγÞ

i . Full results including all the metabolic
functions are reported in Supplementary Data 5.

GO term-based decomposition. We used the “biological process"
terms to define the biological functions of E. coli proteins which
were not categorized using the functional decomposition (Fig. 6b),
as follows. We considered the average protein mass fractions
between the reference condition and extreme C/R-limitations. The
GO-term associated with the largest protein mass fractions was
identified, and the genes associated with that GO-term were

assigned to the corresponding biological function. This process
was iterated on the remainder of the genes until the largest protein
mass fraction for each GO-term was less than 0.1%.

Fit procedures. Best fit parameters for the ATP maintenance flux
were obtained by minimizing the squared residuals between the
experimental and modeled glucose intake fluxes,

P
iðΔJglc,iÞ2,

where i indicates the samples. The best-fit parameters for the
coarse-grained model, including the values of νC and νR in each
growth condition, were obtained by minimizing the sum of two
terms. The first term is the sum of squared residuals between the
protein mass fractions of the five protein sectors α and the mod-
eled mass fractions

P
α,iðΔϕα,iÞ2; the second term are the squared

residuals between modeled and experimental growth rates for
each condition

P
iðΔμiÞ2. The overall function to be optimized

takes the form χ2 =
P

iðΔϕiÞ2 + c
P

iðΔμiÞ2, where the scale factor c is
needed to compare the two terms since they have different phy-
sical units. We chose c = 0.1h2 so that the residuals of the growth
rates are close to the typical experimental uncertainty on the
growth rates (0.02/h or less).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Modified iML1515 E. coli metabolic models with biomass composition
tailored to specific growth conditions are provided in Supplementary
Data 1. Growth rate and flux data obtained in this work are provided in
Supplementary Data 2. The functional decomposition of reaction
fluxes and proteins in various conditions are provided in Supplemen-
tary Data 3 and 4. Energy, carbon and protein costs of biosynthetic
activities are provided in Supplementary Data 6 and 8.

Code availability
The Python code necessary to perform the functional decomposition
on agivenmetabolicmodel is available onGitHub (https://github.com/
ahoiching/FDM), and was deposited in ref. 68.
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