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Genome-wide mapping of cancer depen-
dency genes and genetic modifiers of che-
motherapy in high-risk hepatoblastoma
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A lack of relevant genetic models and cell lines hampers our understanding of
hepatoblastoma pathogenesis and the development of new therapies for this
neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like
murine model that recapitulates the pathological features of embryonal type
of hepatoblastoma, with transcriptomics resembling the high-risk gene sig-
natures of the human disease. Single-cell RNA-sequencing and spatial tran-
scriptomics identify distinct subpopulations of hepatoblastoma cells. After
deriving cell lines from the mouse model, we map cancer dependency genes
using CRISPR-Cas9 screening and identify druggable targets shared with
human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also
reveals oncogenes and tumor suppressor genes in hepatoblastoma that
engage multiple, druggable cancer signaling pathways. Chemotherapy is cri-
tical for human hepatoblastoma treatment. A genetic mapping of doxorubicin
response by CRISPR-Cas9 screening identifies modifiers whose loss-of-
function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes)
the effect of chemotherapy. The combination of PRKDC inhibition and
doxorubicin-based chemotherapy greatly enhances therapeutic efficacy.
These studies provide a set of resources including disease models suitable for
identifying and validating potential therapeutic targets in human high-risk
hepatoblastoma.

Hepatoblastoma and hepatocellular carcinoma (HCC) are the most
common primary liver malignancies in children and adolescents/
young adults. While primary liver cancers account for only 1–2% of all
pediatric tumors1, the largest incidence increase has been observed for
hepatoblastoma in children under 5 years in nearly all regions of the

world2. The rate is increasing at more than 4.3% annually in the US3.
Hepatoblastoma is an embryonal neoplasm that likely arises from
hepatic cell precursors4,5. Genetically, hepatoblastoma has the fewest
somatic mutations among all human cancers6, suggesting that hepatic
precursor cells during the early stage of liver development may be
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particularly susceptible to fundamental events resulting in oncogenic
transformation. In line with previous findings as reviewed7,8, genomic
sequencing studies have confirmed that mutations in the Wnt-β-
catenin signaling pathway are the most common genetic event
in hepatoblastoma9–17. The gene for the antioxidant transcription
factor, NFE2L2, is also altered in a subpopulation of high-risk
hepatoblastomas9,10,15,17, suggesting that liver cells undergo oxidative
stress during cellular transformation or disease progression.

The Hippo signaling pathway plays a critical role in liver organo-
genesis and cancer18–20. The dysregulated downstream effector mole-
cule of Hippo signaling, YAP1, is involved in hepatoblastoma
tumorigenesis21–25. Combination of the activated formof YAP1 (YAPS127A)
with either hepatoblastoma relevantNFE2L2mutant or CTNNB1mutant
promotes liver tumorigenesis although either alone is unable to trans-
formnormal liver cells in thesemousemodels26. Hepatic developmental
pathways may determine the differentiation capacity of mutated liver
progenitor/stem cells, and differentiation status may determine the
aggressiveness of hepatoblastoma9. Hepatoblastomas with high
expression levels of stem/progenitor cell markers (EpCAM, LIN28B,
SALL4, HMGA2, AFP) are usually associated with poor prognosis9. Such
liver stem/progenitor cells have the ability to accumulate mutations
following chemotherapy, leading to the development of post-treatment
residual disease resulting in relapse and metastasis17.

The MYC oncogenes are involved in many cancers including
hepatoblastoma11,27–31. Gain of chromosome 2 and 8 (with MYCN and
MYC oncogenes, respectively) is common (25–50%) in
hepatoblastoma7,11,32,33. While β-catenin mutation alone (CTNNB1) is
usually insufficient to transform liver progenitor cells into
hepatoblastoma26, MYC cooperates with β-catenin and YAP to sustain
tumorigenesis29 and is an essential requirement for tumormaintenance
in a β-catenin-based hepatoblastoma mouse model28. β-catenin drives
MYC expression30 andMYC silencing prevents tumor growth in human
hepatoblastoma cancer cell line-based xenograft models11. These data
indicate that MYC plays an essential role in hepatoblastoma growth.

Due to a lack of targetable somatic mutations and a paucity of
genetic animal disease models and cell lines34,35, identification of
therapeutic targets in hepatoblastoma remains challenging. Conven-
tional chemotherapy is critical for most hepatoblastoma treatment.
However, the genetic response of hepatoblastoma cells to che-
motherapy is not well defined, which impedes development of more
effective therapies because of an incomplete understanding of the
mechanism of therapeutic response and resistance.

Here we generate a hepatocyte-specific MYC-driven multifocal
hepatoblastoma-like tumor model that resembles high-risk
human hepatoblastoma. The transcriptomics of this transgenic
hepatoblastoma-like model are characterized by bulk RNA-seq, single
cell RNA-seq, and pathology-based spatial transcriptomics, all of which
confirm its similarity with human hepatoblastoma. Cell lines generated
from thismodel are readily passaged in vitro. Cancer dependencygenes
are mapped by a genome-wide CRISPR-Cas9 screening approach. We
also perform genetic mapping of cellular responses to doxorubicin, a
commonly used chemotherapeutic for hepatoblastoma treatment, with
a genome-wide CRISPR-Cas9 screen and identify genes that synergize
with and antagonize the effect of chemotherapy. Based upon this
screen, a combination therapy is developedwhich shows better efficacy
than doxorubicin treatment alone. Our studies characterize hepato-
blastoma disease models (mouse and cell lines) that recapitulate
pediatric hepatoblastoma and identify potential therapeutic targets of
hepatoblastoma that are conserved across mouse and human species.

Results
Hepatocyte-specific MYC overexpression drives rapid hepatic
oncogenesis
Previous genetic hepatoblastoma mouse models have provided
invaluable information toward our understanding of the role of

oncogenic drivers in this cancer. However,most of thesemodels have
only addressed well differentiated hepatoblastoma, which has a
relatively good clinical outcome, or they donot alignwith the onset of
liver development in children. To overcome these limitations, we
generated a model in a C57BL/6J genetic background by crossing
hepatocyte-specific transgenic Alb-Cre mice (Cre recombinase under
the control of the mouse albumin enhancer/promoter hybrid)36 with
CAG-STOPflox/flox-Myc mice (CAG promoter-driven human c-MYC,
whose expression is prevented by a LoxP site flanked STOP cassette)37

(Fig. 1a). Hepatocyte-specific, Cre-mediated excision of the floxed
STOP cassette allows expression of the CAG promoter-driven human
Myc, leading to a typical phenotype with hepatomegaly and para-
neoplastic alopecia in double transgenic Alb-Cre;CAG-Myc mice
(ABC-Myc, Figs. 1b and S1a). Strikingly, activation of one allele of the
Myc oncogene led to rapid onset of liver tumors in neonatal mice; all
these mice died within 1–10 weeks after birth (Fig. 1c). which is con-
sistent with the known role for MYC in sustaining hepatoblastoma
growth. Embryonic lethality was not induced by Myc activation as all
possible genotypes were recovered at the expected Mendelian ratio
(Table S1). Western blot and immunohistochemistry validated MYC
overexpression in non-neoplastic hepatocytes and liver tumor tissues
at fetal (E17.5) anddifferent postnatal stages (Figs. 1d, S1b), suggesting
that MYC is activated in the fetal stage. In parallel, we also developed
an ABC-Myc;TdTomato model that had a similar tumor penetrance
and lethality but that also expressed TdTomato as a lineage reporter
(Fig. 1c). Together the data demonstrate that the introduction of
human MYC alone is sufficient to quickly drive tumorigenesis in sus-
ceptible murine hepatic stem/progenitor cells in the fetal livers of
transgenic mice.

Pathological analyses define the ABC-Myc-driven liver neoplasm
as a hepatoblastoma-like malignancy
Hepatoblastoma is histologically heterogenous, with two main histo-
logic patterns (epithelial, and epithelial mixed with mesenchymal
components). Epithelial patterns are further delineated into fetal,
embryonal, mixed fetal and embryonal, cholangioblastic, small cell
undifferentiated, macrotrabecular, mixed and others38,39. Tumors
arising in the ABC-Mycmodel effacedmost of the sampled liver tissues
and had a highly resembling human hepatoblastoma histology with
embryonal or combinations of both fetal and embryonalmorphologies
comprising the bulky tumors, as well as scattered foci of extra-
medullary hematopoiesis (Fig. 1e, Table 1). These multifocal tumors
involving all liver lobes correspond to human PRE-Treatment EXTent
of tumor (PRETEXT) stage IV disease40. Clinically, 35% of patients with
hepatoblastoma present as multifocal tumors at diagnosis, and 43% of
these are PRETEXT stage IV41, a poor prognostic factor that usually
requires high-intensity, dose-dense cisplatin and doxorubicin-based
chemotherapy, and often liver transplantation42. Samples at time
points E14.5, E17.5, and postnatal day 7 (P7) were evaluated to assess
the presence of pre-neoplastic lesions. Neoplastic transformation was
first observed in E17.5 livers in low numbers of scattered developing
hepatocytes with abnormal nuclear morphologies (Fig. S1c). Nuclear
changes consisted of karyomegaly, marginalization of chromatin, and
a single, centralized, and prominent nucleolus that is consistent with
other cancers where constitutive MYC activation is present. These
dysplastic cellswere interpreted as pre-neoplastic lesions based on the
biological time course of the ABC-Myc mouse model described in
this paper.

Neoplastic noduleswere grossly visible in all liver sections of ABC-
Mycmice starting at P7.Multifocal to coalescingneoplastic fociwith an
embryonalmorphology could be observed in the livers of P7 ABC-Myc
mice (Fig. 1e), consistent with the hypothesis that hepatoblastoma-like
neoplasia may arise from epithelial-lineage committed hepatic stem
progenitor cells with the introduction of human oncogenic Myc sig-
naling resulting in impaired differentiation. Further evaluation of the
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hepatoblastoma-like tumors from time points P25 to P67 showed a
coexistence of distinct subpopulations of neoplastic cells with
embryonal, fetal, and rarer cholangioblastic-like morphologies
(Fig. 1e). The co-existence of these morphologies in advanced
hepatoblastoma-like tumors is most consistent with human pediatric
hepatoblastoma with a mixed epithelial phenotype. Small cell undif-
ferentiated, rhabdoid, teratoid, and mesenchymal morphologies were

not observed. There were no definitive well-differentiated fetal
morphologies identified in the sections except within P67 tumors
(Fig. 1e). All tumors had combinations of primitive morphologies
comparable to the previously describedC2morphologic phenotype as
described by Cairo et al.11. Hepatoblastomas characterized as C2 are
documented to have aggressive biological behavior and an unfavor-
able prognosis, which is observed in this model.
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TheMyc-drivenmurine hepatoblastoma-like tumors demonstrate
phenotypic plasticity of hepatocyte lineage committed stem/pro-
genitor cells. While the co-existence of embryonic and fetal
histological features of ABC-Myc tumors resemble the human hepa-
toblastoma (Fig. 1f), it is important to differentiate hepatoblastoma
from hepatocellular carcinoma in pediatric patients, because of dif-
fering treatment and prognosis38. While the poorly differentiated his-
tology is consistent with the pediatric C2 phenotype, some tumor
areas also contain histologic features of the subclassification of
pediatric hepatoblastomas with hepatocellular carcinoma features
that were previously called transitional liver cell tumors (TLCT)9

(Fig. 1g), indicating that some ABC-Myc tumor cells have features of
HCN-NOS (Hepatocellular Malignant Neoplasm, Not Otherwise Speci-
fied) that frequently presents phenotypic plasticity.

We further determined the pathological features of this
hepatoblastoma-likemalignancy using immunohistochemical markers
of human pediatric hepatoblastoma, and observed overexpression of
hepatic stem/progenitor cellmarkersdocumented inC1 andC2human
pediatric hepatoblastomas11 (Fig. 1h). Murine hepatoblastoma-like
neoplasms had diffuse immunopositivity for alpha fetoprotein (AFP)
and glypican 3 (GPC3), two stem cell markers used to distinguish
neoplastic hepatocellular cells39,43,44, as well as immunoreactivity for
glutamine synthetase (GLUL or named as GS), a β-catenin target and a
marker of β-catenin activated hepatocytes38,39, SALL4, another
embryonal type of hepatoblastomamarker45,46, andArginase-1 (ARG-1),
a marker used to distinguish primary hepatocellular tumors from
metastatic tumors47. Immunoreactivity was visually observed in
greater than 75% of the bulky hepatoblastoma-like neoplasms and
staining intensity for all markers was visually graded as moderate to
strong in staining intensity for all markers (Table 1). Rare subpopula-
tions of poorly differentiated neoplastic cells, visually quantified at less
than 1% of the neoplasm, had immunoreactivity for cytokeratin 19
(KRT19), a marker for biliary cancer or small-cell undifferentiated type
hepatoblastoma38, as well as non-neoplastic, entrapped bile ducts. INI1
(SMARCB1) was retained in all neoplasms, further demonstrating the
hepatocellular origin of these cells. The strong cytoplasmic staining of
β-catenin may suggest an activation of the Wnt/β-catenin signaling
pathway in these tumors (Fig. 1h). Ki67 staining showed that 3–6% of
cells were positive (Fig. S1d, e). In summary, the ABC-Myc hepato-
blastoma-likemodel overall recapitulates the embryonal ormixed fetal
and embryonal histologic features of human hepatoblastoma, with
some bearing HCN-NOS features, and has anatomic and molecular
characteristics of human disease highly associated with the high-risk
C2 subtype11.

C1 and C2 hepatoblastoma subclasses were initially defined by
gene expression profiling and can be delineated by epithelial cell type,
proliferation differences, and expression of stemcellmarkers thatmay
be assayed by IHC. C1 and C2 features have been further correlated
with the phase of hepatic differentiation in which susceptible lineage-
committed subpopulations may undergo tumorigenesis. C2 tumors
have molecular features of non-neoplastic murine liver at E11.5 and
E12.5, while C1 tumors have features of hepatic differentiation in late
and postnatal stages11. Some retention of both C1 and C2 character-
istics by our murine hepatoblastoma-like neoplasms may result from

differences in transgene copy number expression in the embryonal
liver; this differencemay affect the timing ofmalignant transformation
in susceptible hepatocyte specified stem-progenitor populations
starting at E9.5, when albumin expression can first be detected48.
Neoplastic transformation was first observable in E17.5 livers in small
subpopulations of atypical appearing cells by histology, suggesting
that tumorigenesis is occurring along a continuum of time in this
model that is based on the increasing expression of albumin into
adulthood. Therefore, hepatoblastoma-like neoplasms with hybrid
features of C2 and C1 may be expected in the model. Thus, the ABC-
Myc hepatoblastoma-like model recapitulates the morphologic fea-
tures of human hepatoblastoma, histologically most similar to the
high-risk C2 class of hepatoblastoma, with some bearing HCN-NOS
features, but also retains some immunohistochemical and molecular
characteristics of low-risk C1 neoplasms. These subtypes may occur
sequentially or randomly. Nevertheless, we only observed well differ-
entiated hepatoblastoma in P67 while embryonal and cholangioblastic
subtypes occur at an early time (P7, P25) (Fig. 1e), suggesting that there
could be a sequential event during MYC-mediated cellular transfor-
mation that coopts with liver developmental program. C2 aggressive
type may be derived from stem/progenitor cells in hepatoblast, and
thus appeared at an early developmental stage, while the C1 type may
be derived from a more differentiated cells at late
developmental stage.

Serumchemistry panel analysis reveals liver dysfunctionofABC-
Myc mice similar to that of human hepatoblastoma
To assess the liver function of ABC-Myc mice, we performed serum
chemical analysis (Fig. 2a, b). Not surprisingly, ABC-Myc mice showed
abnormal elevation of AFP (Fig. 2a), alkaline phosphatase (ALP), ala-
nine transaminase (ALT), and total bilirubin (Fig. 2b), the three com-
monly used biomarkers of liver function, indicating that the livers in
ABC-Myc mice are damaged. One clinical study showed that 80% of
hepatoblastoma patients had abnormal levels of ALP and 12.5% had
increasedALT49. As liver is themajor organ thatproduces glucose, liver
cancer can cause hypoglycemia. Indeed, the serum glucose levels in
ABC-Myc mice were remarkedly reduced (Fig. 2b). The serum levels of
creatinine and blood urea nitrogen (BUN) in ABC-Myc mice were also
declined in comparison with the age-matched normal mice although
not statistically different. While creatinine and BUN are the commonly
used chemical markers to assess kidney function, liver cancer can lead
to less production of creatinine, a break-down product of creatine in
liver through transamination of amino acids. Low levels of BUN may
indicate liver disease in the clinic due to less production of urea.
However, the albumin and globulin levels seemed to be in the normal
range, and no abnormal levels of common electrolytes (Sodium,
Potassium, Calcium and Phosphorous) were observed (Fig. 2b). We
further performed complete blood count (CBC) measurements to
assess if ABC-Mycmice had developed additional complications.While
white blood cell counts showed no difference between normal mice
and ABC-Myc mice, the absolute number of circulating eosinophils
tended to be increased although the difference was not statistically
significant (Fig. S2). However, the ABC-Mycmice developedmicrocytic
anemia, as indicated by a reduction in the proportionof redblood cells

Fig. 1 | ABC-Myc drives hepatoblastoma-like tumor development. a Breeding
strategy to generate Alb-Cre;CAG-Myc (ABC-Myc) compound mice.
b Hepatomegaly with tumor nodules in ABC-Myc liver in comparison with age
matched normal mouse liver. c Inferior overall survival of ABC-Myc (green color,
n = 33), andABC-Myc/TdTomato (pink,n = 11)mice, respectively. Log-rank (Mantel-
Cox) test used for statistical analysis in Kaplan-Meier survival. d Western blot
showing overexpression of C-MYC in ABC-Myc livers at postnatal day 5 (P5), 10
(P10),15 (P15) and 36 (P36) in comparison with the normal controls. The blots are
representative of three independent experiments. e Hematoxylin and Eosin (H&E)
shows histology of ABC-Myc tumors at postnatal day 7 (P7), 25 (P25), 67 (P67).

Sample number for each image n = 1. Scale bar = 25μm. f Hematoxylin and Eosin
(H&E) shows mixed histology of human and ABC-Myc tumors. Sample number for
each image n = 1. Scale bar = 25μm. g Hematoxylin and Eosin (H&E) shows pleo-
morphism of human and ABC-Myc tumors. Sample number for each image n = 1.
Scale bar = 25μm. h Immunostaining of alpha fetoprotein (AFP), glutamine syn-
thetase (GLUL), Spalt Like Transcription Factor 4 (SALL4), Glypican 3 (GPC3),
arginase (ARG1), β-catenin (BCAT), cytokeratin 19 (KRT19) and integrase interactor
1 (INI1). Sample number for each image n = 1. Scale bar = 25μm. Source data are
provided as a Source Data file.
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(hematocrit, HCT%), amount of hemoglobin (HB), mean corpuscular
volume (MCV) and mean corpuscular hemoglobin (MCH), increase in
size variation (percentage of red cell distribution width, RDW%), but
normal range of total number of red blood cells andmean corpuscular
hemoglobin concentration (MCHC) (Fig. 2c). Thrombocytosis also
occurred in ABC-Mycmice, as indicated by an increase in total platelet
counts, plateletcrit (PCT), and mean platelet volume (MPV) (Fig. 2d).
One study reported that among hepatoblastoma patients, 75% had
thrombocytosis and 37.5% had microcytic anemia, whereas only 23.1%
of pediatric patients with hepatocellular carcinoma had thrombocy-
tosis and none had microcytic anemia50. These chemistry and CBC
parameters are consistent with the presence of hepatoblastoma-like
disease in ABC-Myc mice.

Signaling pathways in ABC-Myc tumor cells resemble those in
human hepatoblastoma with a poor outcome
To understand the molecular mechanisms of ABC-Myc hepato-
blastoma-like tumors, we identified the differentially expressed genes
in tumors versus age-matched normal murine livers using bulk RNA-
seq (Fig. 3a and Supplementary Data 1), followed by signaling pathway
analysis. Interestingly, the Igf2 oncogene ranked first (log2 fold
change = 11.6) among the upregulated genes in tumors (Supplemen-
tary Data 1). In humans, IGF2 is located in the 11p15.5 imprinted locus,
which is the secondmost frequently altered locus in hepatoblastomas
and hepatocellular carcinomas, mostly through copy-neutral loss of
heterozygosity17. IGF2 induction by 11p15.5 alterations is likely the first
genetic event in hepatoblastoma17. The most significantly down-
regulated genes in tumors were cytochrome P450 (CYP) family genes
related to metabolic functions of mature hepatocytes (Fig. 3a). Gene
set enrichment analysis (GSEA)51 showed that the genes upregulated
and downregulated in ABC-Myc tumors were significantly associated
with the corresponding human hepatoblastoma gene signatures
reported by Cario11 (Fig. 3b). Since Cario gene sets consisted of hepa-
toblastoma tissue RNA samples including those resected after pre-
operative chemotherapy, we compared ABC-Myc gene expression
with the gene datasets generated from biopsy or surgery prior to any
chemotherapy (Ikeda dataset, GSE131329)52, which included 14 non-
cancerous liver tissues and 53 tumor tissues. We used the top 200
differentially expressed genes from Ikeda genset for GSEA analysis,
and again, we obtained very similar results (Fig. S3a), which further
strengthened our conclusion. In agreement with the immunostaining
findings, GSEA demonstrated that the β-catenin pathway was also
significantly upregulated in ABC-Myc tumors as indicated by its asso-
ciation with gene signatures derived from β-catenin transgenic liver
tumors29 and β-catenin knockdown in HepG2 cells53 (Fig. 3c). To fur-
ther determine if ABC-Myc induces transcriptomes similar to those in
human hepatoblastoma, we performed a comparative analysis using
the VENN diagram showing the number of deregulated genes (and
their %) in the comparison between tumor vs. non-tumor liver samples
from hepatoblastoma patients and from the ABC-Myc model at
FDR <0.05 (Fig. 3d). Briefly, we integrated the RNA-seq fromABC-Myc
tumors and control livers with the RNA-seq from Carrillo-Reixach’s
study that included tumor and non-tumor samples from 32 patients
with hepatoblastoma15. As a result, we obtained a matrix of 11,393
ortholog genes. Then, we performed a supervised analysis by com-
paring tumor vs. non-tumor samples using human andmouse samples.
The results showed that 50.1% and 42.5% of the up- and down-
regulated genes in the ABC-Myc tumors vs. control liver samples were
also deregulated in human hepatoblastoma in comparison with non-
tumor samples, respectively (Fig. 3d). The statistical analysis clearly
showed a significant overlapping in upregulated (p = 1.6 × 10−96) and
downregulated (p = 2.1 × 10−153) genes and clearly supports the high
similarity of our ABC-Myc tumor model with human hepatoblastoma
on the transcriptomic level. To further confirm the high similarity of
molecular features between human and mouse tumor samples, weTa
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used the integrative human and mouse ortholog genes to perform a
Principal Component Analysis of RNA-seq. The results showed that
tumor and non-tumor samples were clearly grouped into two cate-
gories independent of the species from which samples were obtained
(Fig. 3e). Specifically,mouse tumor sampleswere groupedwith human
tumor samples and control mouse liver samples were grouped with
adjacent non-tumor samples from patients with hepatoblastoma.
Additionally, we cross-referenced our RNA-seq results for the top 500
genes upregulated and downregulated in ABC-Myc tumors with
human hepatoblastoma RNA-seq analysis reported by Hooks et al.54

(Fig. S3b). The results again revealed that the top differentially
expressed genes in ABC-Myc tumors were similarly altered in human
hepatoblastomas (Fig. S3b), further supporting that the murine
hepatoblastoma-like model resembles human disease at the tran-
scriptomic level. Further comparison of the gene pathways between
ABC-Myc tumors and human hepatoblastomas revealed that both
shared alteredmetabolic pathways and those regulating the cell cycle,
DNA replication and repair, and RNA splicing (Table S2). Altogether,
our data clearly indicate the high similarity of our ABC-Mycmodel and
human hepatoblastoma and support its use as an experimental model
for this extremely rare disease.

The outcomes of hepatoblastoma can be distinguished by two
molecular signatures, C1 and C2, which represent better and worse
outcomes, respectively11. We cross-referenced C1 and C2 signatures to
our RNA-seq data and found that ABC-Myc tumors expressed higher
levels of C2 and lower levels of C1 signatures (Fig. S3c). To further
validate that ABC-Myc tumors resemble the C2 class, we applied seven
different prediction algorithms11, and all of which showed that ABC-
Myc hepatoblastomas were classified as C2 (Table S3). Hirsch et al.
reported that hepatoblastoma can be further classified into 4 mole-
cular subtypes, ‘Hepatic differentiation’, ‘Liver progenitor’, ‘Mesench-
ymal’ and ‘Proliferation’17. ABC-Myc tumors exhibited low expression
of ‘Hepatic differentiation’ signature, but high expression of the ‘Liver
progenitor’ and ‘Proliferation’ signatures (Fig. S3d). We also found
three out of six ‘Mesenchymal’ markers were expressed in ABC-Myc
tumors (Fig. S3d), albeit to a lesser degree (Supplementary Data 1).
While the ‘Hepatic differentiation’ group overlaps with C1, the ‘Liver
progenitor’ signature is associated with a subclass of hepatoblastoma
that has the worst outcome15,17. Consistent with the primarily embry-
onal histological features, GSEA results showed that ABC-Myc tumors
had significant upregulation of cancer stem cell signatures including
“liver cancer with upregulated EpCAM” and “undifferentiated cancer”

Fig. 2 | Clinical chemistry analysis of serum fromABC-Mycmice. aQuantification
of serum AFP levels in normal (n = 4 biologically independent animals) and ABC-
Myc (n = 6 biologically independent animals) mice by ELISA. Data are presented as
mean ± SD. Unpaired two-sided t-test,**p =0.0046. b Chemistry panel markers in
determination of liver function, kidney function and electrolytes in serum from
normal (n = 3 biologically independent animals) and ABC-Myc (n = 4 biologically
independent animals) mice. Data are presented as mean ± SD. Unpaired two-sided
t-test,****p <0.0001, **p =0.0056, *p =0.0171, ns not significant. ALP Alkaline
phosphatase, ALT Alanine transaminase, BUN Blood urea nitrogen. c Complete
blood count to determine the changes in red blood cells in blood from normal
(n = 3 biologically independent animals) and ABC-Myc (n = 4 biologically

independent animals) mice. Data are presented as mean ± SD. Unpaired two-sided
t-test,****p <0.0001, ***p <0.001, ns not significant. HCThematocrit, RBC redblood
cell, HB hemoglobin, MCV mean corpuscular volume, MCH mean corpuscular
hemoglobin, MCHC mean corpuscular hemoglobin concentration, RDW red cell
distribution width, RSD red cell standard deviation. d Complete blood count to
determine the changes in platelets in blood from normal (n = 3 biologically inde-
pendent animals) and ABC-Myc (n = 4 biologically independent animals)mice. Data
are presented as mean ± SD. Unpaired two-sided t-test,****p <0.0001, ***p <0.001,
**p =0.0017. PLT platelet, MPV mean platelet volume, PDW platelet distribution
width, PCT Plateletcrit. Source data are provided as a Source Data file.
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(Fig. 3f). Compared with age-matched normal livers, the hepato-
blastoma embryonic gene markers (i.e., Lin28b, Sall4, EpCAM, Hmga,
Afp) in ABC-Myc tumors, which are usually associated with a poor
outcome9, were increased over 4–250 fold (Fig. 3a, Supplementary
Data 1). Notably, Lin28b is an oncogene that can drive hepatoblastoma
in a transgenic mouse model55, and is highly expressed in high-risk
hepatoblastoma31. Clustering analysis of the correlation between the

gene expression of human hepatoblastoma in Carrillo-Reixach’s study
and the mouse samples showed four main groups of tumor samples
(Fig. 3g). In linewith the results in Fig. 3e, the gene expressionprofile of
ABC-Myc tumor samples was highly correlated with that of the human
primary hepatoblastoma and specifically, with tumors in the pro-
liferative “C2- Pure subclass” (p =0.019) and with a strong “14q32-gene
signature” overexpression (p = 0.027). These molecular features have
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been already reported to be associated with clinical features of poor
prognosis11,15. In line with these findings, Dlk1 was highly expressed in
ABC-Myc tumors (log2 fold change = 8.85) (Supplementary Data 1).
DLK1 is a well-known hepatoblast marker and is highly expressed in
hepatoblastoma56. Carrillo-Reixach et al. recently identified the DLK1-
DIO3 locus genes on 14q32 as a new hallmark of human hepato-
blastoma that is associated with Wnt/β-catenin signaling, and high
expression of 14q32 gene signature being associated with a poor
outcome15, supporting that hepatoblasts could be the cells of origin of
ABC-Myc hepatoblastoma. Finally, integrative analysis of the expres-
sion profile of the 11 ortholog genes of the 16-gene signature further
confirmed that themouse ABC-Myc tumors had a similar profile to the
human C2 hepatoblastomas in the Carrillo-Reixach cohort11 (Fig. 3h).
Taken together, these data demonstrate that ABC-Myc tumors
resemble human hepatoblastoma with molecular signatures of
aggressive disease.

scRNA-seq analysis of ABC-Myc tumors reveals the hetero-
geneity of hepatoblastoma-like cells
Single cell RNA sequencing (scRNA-seq) studies have shown that the
mammalian liver is composed of multiple cell lineages in addition to
hepatocytes and cholangiocytes57–59. The heterogeneity of liver cells is
further complicated by the anatomical structure of liver zonation60,61,
which shows a distinct expression pattern of metabolic genes dis-
tributed from the central vein to the portal vein along the lobule axis62.
While scRNA-seq analysis has provided insight into adult hepatocel-
lular carcinoma and its tumor microenvironment63,64, tumor hetero-
geneity in hepatoblastoma at the single cell level has just been recently
appreciated65,66. To investigate if the transcriptomic ecosystemofABC-
Myc-driven tumors recapitulates human hepatoblastomas, we per-
formed scRNA-seq to define the distinct cellular populations of cells
dissected from 4 tumors and 3 healthy livers. Cell Ranger Single-Cell
Software Suite (version 6, 10X Genomics) was used to quality control
and quantify the single-cell expression data to generate filtered gene-
barcode matrices for 90,715 cells with an average of 3037 mRNA
molecules (UMIs, median = 1963, range: 302–32,765). First, we char-
acterized the transcriptional differences between tumor samples and
the control group by applying the NBID algorithm67 that we developed
for differential analysis of scRNA-seq. The top 10 genes upregulated in
tumor samples, ordered by the fold change (adjusted P < 6.428e-323,
log2FC > 5), were Camp, Ngp, Igf2, Ltf, Prtn3, Afp, Ermap, Rhd, Elane,
and Mpo (Fig. S4a). The high levels of Igf2 and Afp further verified the
hepatoblastoma-like tumors arising from ABC-Myc mice. Highly ele-
vated expression of granule genes such as Camp, Ngp, and Ltf are
correlated with neutrophil development. In addition, genes Prtn3,
Elane, and Mpo are functional activation markers of neutrophils

involved in inflammation, infection, and tumor invasion. Activated
tumor-associated neutrophils release enzymes, mainly proteinase 3
(encoded by Prtn3), neutrophil elastase (encoded by Elane), and
myeloperoxidase (coded by Mpo), destroying surrounding tissues,
whichmay lead to tumor invasion. Numerous studies have shown that
neutrophils in the tumor microenvironment can promote rapid tumor
development and growth68. We also noted that erythroid genes Ermap
and Rhd are among the top 10 genes, and erythroid-like signature is
present in human pediatric hepatoblastomas65. Pathway analysis with
Hallmark genes showed that DNA repair, cell cycle, MYC targets, E2F
targets, and heme metabolism were enriched in tumor samples
(adjusted P < 4.5e-08, Fig. S4b).

After correction for batch effect, 16 clusters of cells in normal and
tumor tissues were generated by unsupervised clustering of the global
single-cell transcriptomic datasets with Latent Cellular State Analysis
(Fig. 4a, b). The frequencies of low-quality cells (cells with low UMI
counts ( ≤ 500) or more than 20% UMI of mitochondrial genes) in
clusters 5 were greater than 50%, which was therefore removed, and
the rest of the 15 clusters were kept for further analysis. Among the 15
clusters that remained, six (clusters 2, 3, 7, 9, 12, and 16) were domi-
nated by cells from tumor tissues,withmore than 97.5%of cells in each
cluster from a tumor sample (Fig. 4a, b). However, the cells in four
clusters (clusters 4, 13, 14 and 15)were predominantly from the control
group,withmore than 93.6% of cells in each cluster fromanormal liver
sample. The remaining five clusters (clusters 1, 6, 8, 10, and 11) were
largely shared by both tumor and control groups (with 23.5–60.6% of
cells in each cluster from the tumor group). To define the biological
functions of each cluster, we used Seurat (version 4.3.0) to compare
the average single-cell expression profiles from each cluster with
previously annotated reference datasets69. After determining the
similarity of each cluster to previously defined cell types70, we gener-
ated top 10 markers for each cell cluster (Supplementary Data 2), and
then performed gene set enrichment analysis to associate the marker
genes of each group to known functional pathways in KEGG (Supple-
mentary Data 2). The clusters shared between the tumor and control
groups (clusters 1, 6, 8, 10, and 11) were all enriched with immunity
related genes. Genes involved in DNA damage, heme biosynthetic
process, and oxidative phosphorylation were enriched in tumor-
specific clusters (clusters 2, 3, 7, 9, 12, and 16) (Supplementary Data 2).
Clusters specific to the control group (clusters 13 and 15) were enri-
ched for genes involved in the endoplasmic reticulum, essential for
hepatocytes’ protein synthesis function.

scRNA-seq analysis of human hepatoblastoma by Song et al.
reported 6 tumor clusters (Tumor clusters 1–3, Tumor cluster 4 Ery-
throid, Tumor cluster 5 DCN high and Tumor cluster Neuroendocrine)
and 6 hepatoblastoma-associated clusters (HB associated Erythroid,

Fig. 3 | Signaling pathways in ABC-Myc tumor cells resemble those in human
hepatoblastoma with poor outcome. a Volcano plot showing differentially
expressed genes in ABC-Myc tumors (n = 3) vs normal mouse livers (n = 3). X-axis
represents the expression changes in log2 (fold). Y axis represents the significance
of expression change for each gene in -log10 (p value). b GSEA showing genes
highly downregulated and upregulated in ABC-Myc hepatoblastoma are sig-
nificantly associated with the signatures downregulated (left panel) and upregu-
lated (right panel) in human hepatoblastoma reported by Cario et al.11. P Value
calculated by one-sided Fisher’s exact test. The FDR is calculated by comparing the
distribution of normalized enrichment scores from many different genesets.
c GSEA showing genes highly upregulated in ABC-Myc hepatoblastoma are sig-
nificantly associated with the β-catenin signatures derived from mouse livers
overexpressing β-catenin in dataset (GSE79084)29 (left panel), and β-catenin
knockdown in HepG2 cells from dataset (GSE94858)53 (right panel). d Proportional
VENN diagrams of the up-regulated (top) and down-regulated genes (bottom) in
the human HB (n = 34) vs. adjacent non-tumor liver (NL, n = 32) samples (left) and
miceMyc-ABC tumor (n = 3) vs. control liver (CL,n = 3) samples. Thenumbers in the
Venn diagrams represent the number of significant genes at FDR<0.05. The

comparisons were performed considering the total of 11,393 ortholog genes. RNA-
seq database from patients with HB was obtained from Carrillo-Reixach et al.
(GSE133039)15. The P values (upregulated p = 1.6 × 10−96, downregulated
p = 2.1 × 10−153) of the overlaps are calculated by the hypergeometric distribution.
e Principal Component Analysis using the integrated dataset consisting in 11393
genes present inmouse and human tumor (HB, GSE133039)15, non-tumor liver (NL)
and control liver (CL) samples. f GSEA showing stem cell gene signatures highly
upregulated in ABC-Myc hepatoblastoma. P Value calculated by one-sided Fisher’s
exact test. The FDR is calculated by comparing the distribution of normalized
enrichment scores from many different genesets. g Pearson correlation heatmap
using the dendrogram of bootstrapping hierarchical clustering from tumoral
samples including the 11,393 ortholog genes present in mouse and human tumor
samples. Human hepatoblastomas were annotated with molecular features
obtained from Carrillo-Reixach et al. (GSE133039)15. h Heatmap of the 11 ortholog
genes of gene the 16-gene signature in C1 and C2 human hepatoblastomas
(GSE133039)15 and mouse ABC-Myc tumors. Source data are provided as a Source
Data file.
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Fig. 4 | scRNA-seq analysis of ABC-Myc tumors reveals the heterogeneity of
hepatoblastoma-like cells. a A t-SNE plot showing the source of cells partitioned
by normal livers (n = 3) and ABC-Myc tumor (n = 4) samples. bA t-SNE plot showing
the inferred cell clusters using Latent Cellular State Analysis for the normal livers
(n = 3) and ABC-Myc tumor (n = 4) samples. Cluster 5 mainly consisted of low-
quality cells with low (≤500) UMI counts or more than 20% UMI counts from
mitochondrial genes. Therefore cluster 5 was not pursued further in our analysis.
The cells in each cluster were colored and labeled with numbered annotations
assigned by the Bioconductor package SingleR using normal mouse cell-type
marker genes and orthologs of human hepatoblastoma tumor signature genes
(Song et al.,)65 as references. c Confusion matrices of cell clusters, shared between
normal liver and tumor samples or specific to normal liver samples, aligned against

a reference expression profile consisting of normal mouse cell types from celldex.
The color indicates the log10 transformed counts of labeled cells using SingleR.
d Confusion matrices of tumor-specific cell clusters aligned against reference
humanHB tumor data from Song et al.65. The color indicates the log10 transformed
counts of labeled cells. e Expression pattern of selected up-regulated genes
between tumor and control groups. Eachdot represents the expressionprofile for a
gene in a sample. The size of a dot indicates the percent of expressed cells in a
sample, and the darkness of the blue color indicates the strength of average
expression. Data was grouped by tumor samples, control samples, and a tumor
sample NEJ146 as the validation set. f Bubble plot of the expression pattern of
selectedup-regulated genesbetween tumor and control groups, with data grouped
by inferred cell clusters. Source data are provided as a Source Data file.
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HB associated Promyelocyte, HB associated Macrophage, HB asso-
ciated Basophils, WNT5A high HB associated Fibroblast and WNT5A
intermediate HB associated Fibroblast)65. To map gene signatures in
these 12 clusters generated from human hepatoblastoma, we used
SingleR to compare the single-cell expression profiles with previously
annotated reference cell types70. This method quantifies the similarity
to reference cells based on the highest Spearman rank correlations,
using a set of marker genes to focus on the relevant differences
between cell types.We used annotated normalmouse cell-typemarker
genes from R package celldex70 and orthologs of human hepato-
blastoma signature genes65 for normal cells and tumor cells, respec-
tively. The clusters shared between the tumor and control groups
(clusters 1, 6, 8, 10, and 11) were annotated as NK/T cells, B cells,
macrophages, neutrophils, and monocytes, respectively (Fig. 4b, c,
Supplementary Data 2). Cell clusters specific to the normal control
group (clusters 13, 14, 15) were matched with endothelial, erythrocyte
and hepatocyte, respectively (Fig. 4b, c). In comparison with the cell
type-specific signatures identified in hepatoblastoma related
clusters65, we found that cluster 2 in ABC-Myc tumors ismost likely the
‘HB associated Promyelocyte’, while clusters 3, 9 and 12 aremost likely
the ‘HB associated Erythroid’ (Fig. 4b, d), although these three clusters
have different enrichment of biological functions (Supplementary
Data 2). Cluster 16 is dominated by cells resembling the human
hepatoblastoma clusters65, and enriched with expression signatures of
‘HB associated Promyelocyte and Erythroid’ clusters (Fig. 4b, d). Like
cluster 16, cluster 7 also bears gene signatures of human ‘Tumor
clusters’ and ‘HB associated Promyelocyte and Erythroid clusters’
(Fig. 4d). The specific clusters from normal livers have low fraction of
UMIs mapping to hemoglobin genes (except for Cluster 14, a small
cluster of erythroid cells) (Supplementary Table 4). On the contrary,
tumor specific clusters have overall elevated fractions of UMIs map-
ping to hemoglobin genes, especially for the clusters of HB-associated
Erythroid that showed 33–83%of UMI fromhemoglobin genes per cell.
These results indicate that the high expression levels of erythroid
genes are unlikely due to contamination.

To further characterize the transcriptomics of tumor-like Clusters
7 and 16, we tested the transcriptional differences between each of the
clusters against the rest of the tumor-specific clusters (cluster 7 vs.
clusters 2, 3, 9, 12, and 16; and cluster 16 vs. 2, 3, 7, 9, 12). For Cluster 7,
genes S100a4, H2-Eb1, Cstdc5, Ighm, H2-Aa, Cd74, Stfa3, F13a1 and Dcn
(logFC > 2.43, adjusted P < 2.1e-238, Supplementary Data 3) are among
top upregulated genes. Upregulated genes also include interesting
genes like Dlk1, Epcam, Gpc3, and Krt19 (logFC 0.38, 1.13, 0.94, 2.00;
adjusted P < 4.04e-6). KEGG analysis showed that cluster 7 is enriched
with immunity- or inflammation-related pathways such as the che-
mokine signaling pathway, Cytokine-cytokine receptor interaction, B
cell receptor signaling pathway, Th1 and Th2 cell differentiation and
NF-kappa B signaling pathway (Fig. S4c). For Cluster 16, Hamp2 and
Hamp genes encoding liver produced hormone peptides that regulate
iron absorption and distribution across tissues, liver injury biomarker
Cps1, and bile salt export pump gene Abcb11 are among the top
upregulated genes (logFC > 3.92, adjusted P < 3.06e-322, Supplemen-
tary Data 4). Genes Afp (logFC = 2.41, adjusted P < 3.06e-322), Igf2
(logFC = 2.7, adjusted P < 3.06e-322), and Dlk1 (logFC = 0.82, adjusted
P = 6.15e-27) are also among upregulated genes. KEGG analysis
revealed that Cluster 16 is enriched with pathways involved in amino
acid and lipid metabolism, citrate cycle, and Hippo signaling pathway
gene sets (Fig. S4d).

Differential gene expression analysis of scRNA-seq validated that
Igf2 and Afp are two of the top 10 genes highly expressed in ABC-Myc
tumors in comparison with normal controls, which are highly expres-
sed in clusters 7 and 16 (Figs. 4e, f, S4e), supporting that clusters 7 and
16 represent heterogenous hepatoblastoma-like cells. Then, we spe-
cifically examined the expression of other hepatoblastoma cell mar-
kers and erythroid lineage markers (Fig. 4e, f). We found that Epcam,

Gpc3 and Dlk1 were highly expressed in a small percentage of cells
( < 25%) in tumor samples compared to normal control livers although
not as remarkably as the erythroid genes (Gata1, Alas2, Rhd, Hba-a1)
(Fig. 4e). This was validated by performing scRNA-seq on one addi-
tional tumor sample, NEJ146, which was not performed together with
the aforementioned samples. The cellular proliferation markers Pcna
and Mki67 were also highly expressed in ABC-Myc tumors (Fig. 4e).
Together with Afp and Igf2, the expression of stem cell markers Dlk1,
Gpc3 and Epcam appeared to be higher in clusters 7 and 16 (Fig. 4f),
which may represent the bona fide cancer cells. Nevertheless, we
noticed the differential expression of these markers in each individual
tumor, demonstrating both intra- and inter- tumor heterogeneity of
ABC-Myc tumors.

To demonstrate the heterogeneity of tumor cells, we have high-
lighted the tumor cell specific clusters (Cluster 2, 3, 7, 9, 12, 16) in each
tumor sample (Fig. S5a). The results showed that each tumor consisted
of these clusters with different percentages (Fig. S5b), which demon-
strated both intra-tumoral and inter-tumoral heterogeneity. For
example, NEJ723 and NEJ634 were dominated by Clusters 7 and 16,
respectively; while NEJ709 andNEJ687 showedmultiple tumor clusters
co-existed at substantial fractions. To further characterize the tumor
cell heterogeneity, we only focused on the clusters 7 and 16, which
expressed highest levels of Afp and Igf2 and thus these clusters pre-
sumably represent bona fide tumor cells. We were able to partition
these strong Afp+Igf2+ clusters 7 and 16 into several subclusters
(Fig. S5c). For each of them, we found significant variation in sub-
cluster proportion across tumor cells (P <0.0005). In addition, we
determined the composition of different types of tumor cells in each
tumor sample by mapping ABC-Myc tumor cells with the annotated
human hepatoblastoma cluster genes65. Again, the murine tumors
showed intra-tumoral heterogeneity (different tumor classes in indi-
vidual tumors) and inter-tumoral heterogeneity (different composi-
tion of various tumor cell types) (Fig, S5d). There is a significant
variation of proportion of tumor cell types among the four samples
(Chi square test: P =0.0005). We then used the 16-gene signature that
differentiates C1 and C2 types to interrogate the subtype hetero-
geneity from our scRNA-seq (Fig. S6). Basically, in tumor samples, the
expression levels of C2 signature were greatly higher than the C1 gene
signature. However, in normal liver samples, the expression of
C2 signature was negligible and the C1 signature was dominantly high
(Fig. S6a). Next, we examined the expression of C1 and C2 in each
cluster of all samples, and found that cluster 16 and cluster 7 expressed
high levels of C2 signaturewhile the hepatocytes (cluster 15) expressed
highest levels of C1 signature (Fig. S6b). We then specifically deter-
mined the C1/C2 expression in tumor-specific clusters in each tumor
sample. Again, in contrast to C1 signature expression, we found that
C2 signature was highly expressed in cluster 16 and cluster 7 in tumor
samples (NEJ634, NEJ687 and NEJ723) (Fig. S6c). However, we noticed
that tumor sample NEJ709 expressed comparable levels of C1 and
C2 signatures (Fig. S6c). Taken together, thesedata further support the
tumor heterogeneity of ABC-Myc tumors.

Overall, these data support that ABC-Myc hepatoblastoma-like
tumors (cluster 7 and 16) resemble human hepatoblastoma that bear
the cellular heterogeneity consisting of tumor cells expressing high
levels of erythroid genes65, raising one possibility that a population of
these cells could behave like the ‘Tumor cluster 4 Erythroid’ in human
hepatoblastoma that is resistant to most chemotherapeutic agents65.

Spatial transcriptomic analysis of ABC-Myc tumors validates the
heterogeneity of hepatoblastoma-like cells
To further understand the cellular heterogeneity of ABC-Myc tumors,
we performed spatial transcriptomics analysis of 4 ABC-Myc tumors
and 3 healthy mouse livers, using Visium Spatial gene expression from
10× Genomics. First, we examined the expression profiles of the 16
clusters from the scRNA-seq analysis. Consistent with the scRNA-seq
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Fig. 5 | Spatial transcriptomic analysis of ABC-Myc tumors validates the het-
erogeneity of hepatoblastoma-like cells. a, b, d Spatial feature plots of selected
marker genes Cyp2e1, Igf2, Afp, Dlk1, Epcam, Gpc3, Glul, Krt19 a, Pcna and Mki67
b, Alas2,Hba-a1,Gata1d. In eachplot, the top row is tumor samples, and thebottom
row is normal liver samples. The gene-spot matrices were analyzed with the Seurat

package (versions 3.0.0/3.1.3) in R. Spatial spots were colored by the z-transformed
expression values across samples, showing extensive gene expression hetero-
geneity. c Violin plot for Mki67 expression levels across 16 clusters in single-cell
RNA-seq data. Source data are provided as a Source Data file.
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results, genes highly expressed in clusters (2, 3, 7, 12, 16) from tumor
tissues were all highly expressed in the spatial gene expression profiles
of tumor tissues (NEJ634, NEJ687, NEJ723) and one validation sample
(NEJ146) (Fig. S7a, b). Then we specifically investigated the individual
genes that indicate hepatocyte differentiation (Cyp2e1), hepato-
blastoma markers (Igf2, Afp, Glul, Krt19) and embryonal hepato-
blastoma stem cell markers (Dlk1, Epcam and Gpc3) (Fig. 5a). We
observed overall reduction in expression of Cyp2e1 in tumor tissues in
comparison with normal livers but marked induction of Igf2, Afp, Dlk1,
Epcam and Gpc3 in tumor areas. While Glul was expressed in tumor
tissues, its expression was higher in normal livers. Krt19 was highly
expressed in some areas in tumor tissues. Interestingly, the expression
of stem cell markers Dlk1, Epcam and Gpc3 were inter-tumor hetero-
geneous, beingmore highly expressed in NEJ634 andNEJ723 tumors in
comparison with NEJ687 and NEJ146 tumors, in contrast to the
expression profiles ofCyp2e1 andGlul. These data indicate that NEJ634
and NEJ723 tumors are less differentiated. The intra-tumor hetero-
geneity was also demonstrated by spatial transcriptomics analysis. For
example, the Afp and Igf2 expression in NEJ634 was nearly uniformly
expressed across the whole tissue section; however, the expression of
stem cell markers (Dlk, Epcam andGpc3) were heterogeneous (Fig. 5a).

Our bulk RNA-seq and scRNA-seq analyses classified ABC-Myc
tumors as highly proliferative C2-Class (Figs. 3g, S3, S6). We therefore
examined the C1 and C2 gene signatures in spatial transcriptomics. In
our spatial expression analysis, we found that C1 expression was
dominantly high in normal livers. However, the C1 expression in nor-
mal liverswere not evenly distributed and heterogeneity was observed
across the whole section. While C1 expression in tumor samples were
greatly lower than in normal livers, spatial heterogeneity was present
and samples NEJ687 and NEJ146 expressed higher levels of C1 than
NEJ634 and NEJ723 (Fig. S7c). Correspondingly, C2 signature was
highly expressed in all tumors present with heterogenous expression
across the tumor sections. NEJ634 and NEJ723 expressed higher levels
of C2 in comparison with NEJ687 and NEJ146 (Fig. S7c), indicative of
intra- and inter-tumoral heterogeneity. The spatial gene expression
profile validated that tumor tissues expressed high levels of Pcna and
Mki67, two cellular proliferation markers (Fig. 5b). Nevertheless, the
expression of Mki67 tended to be more prevalent in NEJ634 and
NEJ723 tumors, which expressed high levels of stem cell markers and
C2 signature. Our scRNA-seq analysis revealed Mki67 was highly
expressed in clusters 3, 7, 12, and 16 from tumor samples, and cluster 3
(HB associated Erythroid) expressed the highest levels of Mki67
(Fig. 5c), in line with results from human hepatoblastoma that HB-
associated erythroid cells were highly proliferative65.

The erythroid lineage markers expressed in multiple tumor and
tumor-associated clusters were also reflected in spatial gene expres-
sion profiles, as indicated by the high levels of Alas2,Hba-a1 andGata1
across tumor areas (Fig. 5d). Nevertheless, the expression of these
erythroidmarkers in tumor sample NEJ634 wasmuch lower than other
three tumor samples, indicating tumorheterogeneity. Notably, NEJ634
expressed the highest levels of Krt19 among the 4 tumor samples.

Taken together, our spatial transcriptomics analysis supports the
scRNA-seq and pathology results revealing the heterogeneity of ABC-
Myc hepatoblastoma-like tumors.

Genome-wide screen of cancer dependency genes in an ABC-
Myc-derived hepatoblastoma-like tumor cell line
As a rare cancer and because of the lack of relevant disease models,
drug-actionable targets in hepatoblastoma have only rarely been
reported. To identify the dependency genes of hepatoblastoma, we
established cell lines from ABC-Myc tumors, which can be readily
passaged in vitro in standard DMEM media. We used one of these
highly aggressive cell lines, NEJF10, to conduct a genome-wide, pooled
CRISPR-Cas9 screening to uncover new therapeutic targets of hepa-
toblastoma (Fig. 6a). We identified 1583 essential genes that are

required for NEJF10 survival (p < 0.02, FDR <0.25) (Fig. 6b, Supple-
mentary Data 5), including 100 targets with inhibitors available (Sup-
plementary Data 6), and 30 tumor suppressive genes (p <0.001,
FDR <0.25) whose knockouts lead to increased proliferation (Fig. 6c,
Supplementary Data 5). Pathway enrichment analysis of the essential
genes using the ‘Genetic and Chemical Perturbation database’51

showed that they are enriched in class 2 hepatoblastoma genes
(CAIRO_HEPATOBLASTOMA_CLASSES_UP, n = 612), and are targets of
BMP2, DREAM complex, MYC and β-catenin (Fig. 6d). After compiling
the essential genes and tumor suppressive genes, we found that clas-
sical cancer signaling pathways may exert important functions in the
progression of hepatoblastoma, including the PI3K pathway (Pten), the
p53 pathway (Cdkn2a, Trp53, Myh9, Sox4, Dapk3), and the RAS-RAF-
MEK-mTOR pathway (Grb2, Ptpn11, Kras, Raf, Map2k2, Mapk1, Rheb,
mTor; Nf1, Lztr1, Rasa2, Dusp9) (Fig. 6e).

Genomic sequencing analysis of thousands of human tumors
demonstrates that Hippo signaling pathway is widely dysregulated71,
and plays a critical role in the tumorigenesis of liver cancers18–20. Our
CRISPR screen identified key components of the Hippo pathway in
hepatoblastoma (Fig. 6f), including the oncogenic transcription factor
YAP and its interaction partner TAZ, both of which are required for
cancer cell survival. The tumor suppressive genes (Taok1, Lats1, Nf2),
upstream of the Hippo pathway that inhibit YAP through
phosphorylation-induced cytoplasmic retention and degradation, are
important for hepatoblastoma proliferation. Amotl2, which encodes a
Motin family member, Angiomotin-like 2, is a tumor suppressor that
negatively regulates the YAP and TAZ function via AMOT-mediated
tight junction localization72. RhoA is a GTPase that controls YAP/TAZ
translocation through promoting actin polymerization and stress fiber
formation73–75. One study shows that the RhoA–YAP–MYC signaling
axis promotes the development of polycystic kidney disease76.

To determine if genetic context dependencies could exist, we
included two additional ABC-Myc cell lines, NEJF1 and NEJF6, for
genome-wide CRISPR screening using a similar approach. We identi-
fied 1346 and 846 essential genes (P < 0.02, FDR <0.25), 37 and 24
tumor suppressive genes (P < 0.02, FDR <0.25) in NEJF1 and NEJF6,
respectively (Fig. S8a–d, Supplementary Data 7, 8). Venn analysis
revealed that over 50% of essential genes overlapped among the three
cell lines, but that each cell line also showed unique gene dependen-
cies (Fig. 6g, Supplementary Data 9). However, there was less over-
lapping in tumor suppressive genes among the three cell lines (Fig. 6g,
Supplementary Data 9). Nevertheless, like NEJF10, the cancer signaling
pathways (PI3K, mTOR, and p53, Hippo) were also enriched in NEJF1
andNEJF6 cell lines (Fig. S9a–d), indicating that eachof thesepathways
are shared and important for ABC-Myc hepatoblastoma-like cells.

To determine if murine and human hepatoblastoma share com-
mon cancer dependency genes, we analyzed the essential genes
identified through genome-wide CRISPR-Cas9 screen in Huh6, a
human hepatoblastoma cell line included in the screening of a first-
generation pediatric cancer dependency map77. Huh6 bears TP53(As-
n239Asp, Ala159Asp) and CTNNB1(Gly34Val) mutations (depmap.org).
1411 essential genes (CRISPR score threshold −0.7) and 22 anti-
proliferative genes (CRISPR score threshold 0.4) were identified in
Huh6 cells (Fig. S10a, Supplementary Data 10). Pathway enrichment
analysis showed that the essential genes are similarly enriched with
class 2 hepatoblastoma genes, targets of BMP2, DREAMcomplex,MYC
and β-catenin (Fig. S10b), and all these pathways are commonly shared
by theABC-Myc cell lines. VENNanalysis of essential genes inHuh6 and
ABC-Myc cell lines showed that 72% (1020 out of 1411) of the essential
genes in Huh6 are shared by the three ABC-Myc lines (Fig. S10c, Sup-
plementary Data 11), including those targetable genes (i.e., CDK7,
CDK9, PRMT1, PRMT5,NEDD8, PLK1) (Fig. S10a), which are involved in a
variety of biological functions (Fig. S10d). We particularly compared
the Huh6 with NEJF10 cell line by VENN analysis. 61.7% of the essential
genes in Huh6 cells were shared by NEJF10 (Fig. S10e). Among the
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tumor suppressors, we found two (NF2, PTEN) were commonly shared
between NEJF10 and HuH6 cells (Fig. S10f). Importantly, Huh6 shared
commoncancer pathways involved in PI3K,mTORandHippo signaling
(Fig. 6h, i). We identified several p53 pathway genes in ABC-Myc cells
(Figs. 6e, S9a, c). However, Huh6 has a TP53 mutation and, therefore,
no selective pressure was conferred in the CRISPR screen. In summary,
the oncogenic pathways and the therapeutically targetable genes are

conserved both in our murine hepatoblastoma model and human
hepatoblastoma.

Interestingly, in addition to the conserved oncogenic pathways
identified in ABC-Myc cell lines as discussed above, the heme bio-
synthesis pathway appeared to perform tumor suppressive functions
in NEJF1 but not in NEJF6 and NEJF10 (Fig. 6j). Among the 8 enzymes
responsible for catalyzing heme biosynthesis from glycine and
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succinyl-CoA, 6 of them inhibited NEJF1 proliferation or survival.
Inactivating mutations in heme synthesis genes define a group of dis-
eases known as porphyria78. Recent studies revealed that acute hepatic
porphyria is associatedwith increased risk of hepatocellular carcinoma
(HCC). HMBS, although it was not enriched in our screening, has been
shown to bear bi-allelic inactivating mutations in acute intermediate
porphyria associated–HCC and sporadic HCC79,80. Our screening data
suggest that the tumorigenesis and/or progression of a subgroup of
hepatoblastomas could benefit from metabolic dysfunction due to
inactivation of heme synthesis.

Genetic mapping of chemotherapy response
Conventional chemotherapeutic agents (i.e., cisplatin, doxorubicin)
play a critical role in hepatoblastoma treatment81. These chemother-
apeutic agents have significant toxicities and, in some cases, limited
anti-cancer efficacy. Thus, a better understanding of the genetic
response of hepatoblastoma cells to chemotherapy may help to
develop more effective and safer individual and combination thera-
pies. Tomap the genetic response of chemotherapy, NEJF10 cells were
transduced with a lentiviral pooled genome-wide sgRNA library and
were divided into control and treatment groups (Fig. 7a). Cells were
treated with doxorubicin at two doses, IC20 (5 nM) and IC90 (30nM)
(Fig. S11), for 7 and 14 days, respectively. We identified hits whose
mutation caused sensitization (negative selection) and resistance
(positive selection) to doxorubicin. At the sublethal IC20 dose, we
identified 315 genes of negative selection (p <0.01, FDR <0.25) and 20
genes of positive selection (p <0.01, FDR <0.25) (Fig. 7b, Supplemen-
tary Data 12). However, at the IC90 dose, we only identified 70 positive
selection genes (p < 0.001, FDR <0.3) (Fig. 7d, SupplementaryData 13).

Functional protein association network analysis of negative
selective genes at IC20 revealed thatmost of themare physically and/or
functionally connected, and function in DNA repair through non-
homologous end-joining (NHEJ) (e.g., Prkdc, Lig4, Xrcc4) or homo-
logous recombination (e.g., Rad51, Rpa2, Xrcc2), mitochondria (e.g.,
Mtg2, Polg, Chchd3), small nuclear RNA (snRNA) biogenesis through
RNA polymerase II (e.g., Ctu2, Snrnp40, Cstf1), gene transcription (e.g.,
Ints6, Ccnc, Asun), and mitosis (e.g., Aurka, Tpx2) (Fig. 7c). These data
suggest that loss of function of NHEJ or homologous recombination-
mediated DNA repairmay further worsen the DNA damage induced by
doxorubicin, leading to enhanced cell death. Prkdc, which encodes
DNA-PK to sense double strand DNA breaks and regulates DNA repair
via NHEJ, has emerged as a new therapeutic target82. Interestingly,
disruption of a dozen of snRNA biogenesis genes also promoted the
effect of doxorubicin. Notably, loss of function of Aurka, which
encodes Aurora kinase A (AURKA) that is implicated in the regulation
of cellular mitosis, led to enhanced effect of doxorubicin, consistent
with recent studies showing that AURKA inhibitors potentiate the
cancer cell killing of doxorubicin83,84.

20 positive selection genes at IC20 were obtained, including
classical tumor suppressor genes such as Cdkn2a, Pten, Trp53 (Fig. 7b).
As discussed above, Dapk3 and Sox4 are involved in regulation of the
p53 pathway while Lztr1 inhibits Ras activity. Rock2 and Myl6 encode
proteins functioning downstream of Rho GTPase activity85. Although
the mechanism of this pathway in chemoresistance remains to be
investigated, one previous study showed that pharmacological

inhibition of ROCK signaling enhances cisplatin resistance in neuro-
blastoma cells86.Wdr77, encoding the non-catalytic component of the
methylosome complex, composed of PRMT5, WDR77 and CLNS1A87,
has germ-line mutations in patients that predispose to familial papil-
lary thyroid cancer88. Transcriptome changes in pathways were enri-
ched in the processes of cell cycle promotion and apoptosis inWDR77
mutated tumors88. These data indicate that loss of function of tumor
suppressors blocks the effect of sublethal dose of doxorubicin. How-
ever, under the IC90 lethal dose, the pathways conferring doxorubicin
resistance were distinct from those under IC20 dose selection (Fig. 7e).
In addition to the genes involved in apoptosis, DNA replication and
mitosis, the major components of these pathways are involved in
regulation of homeostasis of RNA and protein, including pre-mRNA
splicing (e.g., Sf3b5, Hnrnpa1, Smu1), protein translation and degra-
dation (Rpl7l1,Rpl3l, Psma1, Psma4,Cct5) (Fig. 7e, f).MAPK1, APAF1 and
CASP9 are engaged in cytochrome C-mediated apoptotic response.
Faf1 encodes FAS-Associated Factor 1 (FAF1) that acts as a tumor
suppressor by regulation of apoptosis and NF-κB activity, and ubiqui-
tination and proteasomal degradation89. Topors encodes topoisome-
rase I-binding RING finger protein, which is a coactivator of p53 in
growth suppression induced by DNA damage90. While it is not sur-
prising that inactivation of the apoptotic pathway leads to resistance
to chemotherapy-mediated cancer killing, the mechanisms of RNA
splicing and protein homeostasis in doxorubicin resistance are largely
unknown. Nevertheless, these data provide a rationale to develop
strategies to enhance efficacy of chemotherapy.

Drug screening using ABC-Myc-derived hepatoblastoma cells to
identify new therapies
To develop a high-throughput screen platformusing our ABC-Myc cell
lines, we optimized the NEJF10 cell line in 384-well plate and treated
cells with drugs currently being used for clinical cancer treatment,
including 125 FDA-approved cancer drugs. With the range of 0.7–2μM
of tested compounds, 51 of them inhibited >50% of cell viability
(Fig. S12a), including conventional chemotherapeutic agents such as
topoisomerase inhibitors, tubulin inhibitors, and nucleotide synthesis
inhibitors (Fig. S12b). We also found that ABC-Myc cells were sensitive
to mTOR and MEK inhibitors, tyrosine kinase inhibitors, HDAC inhi-
bitors and proteasome inhibitors, consistent with our CRISPR screen-
ing data showing that mTOR, EGFR, HDAC3, and proteasome are
essential, indicating that these inhibitorsmay have clinical potential to
treat hepatoblastomapatients.mTOR is activated downstreamof YAP/
TAZ in a YAP/β-catenin hepatoblastoma mouse model91. mTOR inhi-
bitors blocked hepatoblastoma growth in vitro and in xenograft
models91,92, and one clinical study showed that two hepatoblastoma
patients treated with the mTOR inhibitor everolimus after liver trans-
plantation did not develop anymetastases93. The following clinical trial
resulting from this study reported that 10 patients with liver malig-
nancy received everolimus after liver transplantation, and none of
these patients developed recurrence by the endpoint of the study94.
These data indicate that mTOR inhibition may be useful for treating
hepatoblastoma patients especially for those who need liver
transplantation, by benefiting from its anti-tumorigenic and immu-
nosuppressive properties. One clinical study revealed that EGFR
expression was elevated in hepatoblastoma specimens56, as a target of

Fig. 6 | Cancer dependency genes and oncogenic pathways of hepatoblastoma
cells. a Diagram showing the procedure of genome-wide CRISPR screen of cancer
dependency genes using ABC-Myc NEJF10 cell line. b, c Cancer essential genes and
tumor suppressors identified in NEJF10 cell line with FDR cutoff <0.25. X-axis
represents the total gene number. Y axis represents the p value in -log10. P value
obtained by permutation test and FDR calculated from the empirical permutation
p-values using the Benjamini-Hochberg procedure by MAGeCK. d Pathway
enrichment analysis of cancer dependency genes identified in ABC-Myc cell line by
using GSEA and CGP (chemical and genetic perturbations) dataset. e Canonical

cancer pathways enriched in genes identified by CRISPR screen in NEJF10 cell line.
fHippo signaling pathway enriched in genes identified by CRISPR screen in NEJF10
cell line. g Venn analysis of essential genes (negative selection) and tumor sup-
pressive genes (positive selection) identified from NEJF1, NEJF6, NEJF10. CRISPR
FDR cutoff <0.25.hCancer dependency genes identified in human hepatoblastoma
Huh6 cell line from DepMap data (www.depmap.org). i Hippo signaling pathway
enriched in genes identifiedbyCRISPR screen inHuh6 cell line. jHemebiosynthesis
pathway was enriched in positive selection in NEJF1 cells. Source data are provided
as a Source Data file.
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the Wnt/β-catenin pathway in liver95, which may explain why our ABC-
Myc cell line is sensitive to genetic and pharmacologic inhibition
of EGFR.

Our CRISPR screen revealed thatCdk7 andAurkawere essential to
ABC-Myc cells. Although the functions of CDK7 in hepatoblastoma
have yet to be explored, CDK7 inhibition disrupts the transcriptional
dependency of MYC-driven cancer96. Several CDK7 inhibitors have
beendeveloped and twoare in clinical trials (https://clinicaltrials.gov/).
We treated five ABC-Myc cell lines with a selective CDK7 inhibitor,
Samuraciclib97, and found that this compoundpotently killedABC-Myc
cells (IC50 < 100nM) (Fig. S12c), and validated the drug killing
(Fig. S12e). AURKA encodes aurora kinase A protein that is critical to
G2/M phase progression during cell cycle. MYC and AURKA form a

complex that is a potentially actionable target in MYC-driven
cancers98,99. Indeed, in comparison with a primary human fibroblast
cell line, the ABC-Myc cell lines were at least 100-foldmore sensitive to
the AURKA inhibitor, Alisertib (Fig. S12d). These data indicate that
ABC-Myc cell lines recapitulate the therapeutic vulnerability of human
MYC-driven cancers. Our drug screening strategy allows the validation
of the candidates obtained by the genomic screening through a dif-
ferent approach.

PRKDC inhibition enhances efficacy of chemotherapy
Loss of function of Prkdc synergized with doxorubicin effect in our
CRISPR-Cas9 screen, providing a rationale to combine PRKDC
inhibitors with chemotherapy to enhance efficacy. To validate the

Fig. 7 | Identification of geneticmodifiers of chemotherapy. a Diagram showing
the procedure of genome wide CRISPR screening for the genetic modifiers of
doxorubicin in NEJF10 cell line. b Negative selection and positive selection under
IC20 of doxorubicin. The red dot highlighted in the graph indicates Prkdc gene that
is focused on in this study. CRISPR FDR cutoff <0.25. X-axis represents the total
gene number. Y axis represents the p value in -log10. P value obtained by permu-
tation test and FDR calculated from the empirical permutation p-values using the
Benjamini-Hochberg procedure by MAGeCK. c Pathways within a protein–protein
interaction network enriched in negative selection under IC20 of doxorubicin.

d Positive selection under IC90 of doxorubicin. CRISPR FDR cutoff <0.3. X-axis
represents the total gene number. Y axis represents the p value in -log10. The genes
highlighted in pink color indicates genes involved in apoptosis pathway. P value
obtained by permutation test and FDR calculated from the empirical permutation
p-valuesusing theBenjamini-HochbergprocedurebyMAGeCK.e, fPathwayswithin
a protein-protein interaction network enriched in positive selection under IC90 of
doxorubicin€) and apoptotic pathway f. Network analysis performed using STRING
program. Source data are provided as a Source Data file.
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role of PRKDC, we used RNAi to knock down Prkdc in NEJF10 cells
(Fig. 8a), followed by doxorubicin treatment. Indeed, knockdown of
Prkdc enhanced tumor cell killing by doxorubicin (Fig. 8b). We then
tested this hypothesis by treating NEJF10 cells with doxorubicin and
a selective PRKDC inhibitor, AZD7648, which shows >90-fold cel-
lular selectivity over its structurally related members ATM, ATR,
and mTOR100, and has purity of >99% (Fig. S13). The colony forma-
tion assay demonstrated that AZD7648 synergized with doxor-
ubicin to inhibit the cell survival of NEJF10 cells (Fig. 8c). PrestoBlue
assay with BLISS index analysis further corroborated the synergistic
effect of a PRKDC inhibitor and doxorubicin (Fig. S14a). Annexin V
staining followed by flow cytometry analysis showed that the
PRKDC inhibition and doxorubicin combination induced greater
apoptosis (Fig. S14b). The synergistic effect of doxorubicin and
AZD7648 was verified in additional ABC-Myc cell lines by colony
formation assay (Fig. 8d). We further validated the synergistic effect
of doxorubicin and AZD7648 in HepG2 cells, a human hepato-
blastoma cell line101, and obtained similar results (Fig. S14c, d). We
also obtained similar results when combining doxorubicin with
another PRKDC inhibitor (Fig. S15), NU7441 that has a distinct che-
motype from AZD7648102. We then tested the combination therapy
using our ABC-Myc mouse model. While monotherapy showed no
benefit to ABC-Myc mice, the combination of AZD7648 and dox-
orubicin significantly extended mouse survival (Fig. 8e), reducing
the liver weight significantly, comparable to the normal liver weight
(Fig. 8f). In parallel, we tested the combination therapy using HepG2
xenografts. While doxorubicin showed modest anticancer effect,
the combination of both led to a significant tumor growth delay in
comparison with doxorubicin or AZD7648 alone (Fig. 8g). The
greater efficacy of combination of doxorubicin and AZD7648 was
further verified in a patient-derived xenograft hepatoblastoma
model (Fig. 8h). In summary, the results from our CRISPR screen of
the ABC-Myc model have identified therapeutic combinations that
may be used in future clinical trials.

Discussion
Hepatocellular malignancies have become a leading cause of cancer-
related deaths in people of all ages2,103,104. Notably, the worldwide
hepatoblastoma incidence has a greater rate of increase than other
pediatric cancers2. Surgical resection is critical for curing hepato-
blastoma (HB), yet two-thirds of patients have unresectable tumors at
diagnosis81, and so they need induction chemotherapy to enable sur-
gical resection. Patients with resectable tumors have an event-free
survival (EFS) of 80–90% and can be cured with surgical resection
combined with conventional chemotherapy81. However, children with
high-risk disease have poor outcomes with EFS under 50%81,105,106. New
therapeutic approaches for high-risk patients remain desperately
needed. Unfortunately, lack of cell lines and animal models that
resemble high-risk human hepatoblastoma impedes our under-
standing of the pathogenesis of hepatoblastoma and identification of
druggable targets. To meet this unmet clinical need, this study has (1)
developed and validated the ABC-Myc hepatoblastoma-likemodel that
closely resembles the histology of human hepatoblastoma and reca-
pitulates high-risk human disease at transcriptional levels, (2) gener-
ated ABC-Myc cell lines based upon the genetic model which are
suitable for genome-wide genetic screen and high-throughput drug
screens, (3) mapped the cancer dependency genes in ABC-Myc cells
and defined the key oncogenic pathways that are shared by human
hepatoblastoma cell lines, (4) identified the genetic modifiers of che-
motherapy by a genome-wide CRISPR screen, and (5) developed a
combination therapy based upon the screening results that was
translated to human hepatoblastoma models. Thus, this study has
provided resources including disease models, targetable cancer
dependency genes, and potentially more effective combination ther-
apy approaches.

Previous approaches have been applied to establish hepato-
blastomamodels, including xenograft implantation107–115, generationof
transgenic mice29,55,116 and hydrodynamic tail vein injection of
oncogenes22,24, and each of these models has its pros and cons35.
Additionally, most of thesemodels recapitulate the well-differentiated
fetal type of hepatoblastoma, which usually has a good clinical out-
come even without chemotherapy administration117. In this study, we
created a hepatocyte-specific transgenic c-Myc model, ABC-Myc,
which rapidly develops multifocal hepatic neoplasms with pathologi-
cal features of mixed fetal and embryonal hepatoblastoma, the most
common histologic subtype in human disease. Overall, the poorly
differentiated histology is consistent with the pediatric C2 phenotype.
Nevertheless, this murine model also contains histologic features of
the subclassification of pediatric hepatoblastomas with hepatocellular
carcinoma features that were previously called transitional liver cell
tumors (TLCT)9.The phenotypic plasticity that is observed in this Myc-
driven murine model of hepatoblastoma is documented in pediatric
hepatoblastomawhere some hepatoblastomas can be classed into the
transcriptomic subgroup “liver progenitor” differentiation state that
appears to correlate with the C2A molecular for human hepato-
blastomas. This differentiation state is highly proliferative, immune
cold, composed of embryonal histologies, enriched for self-renewal
and pluripotency transcription factors including MYCN and may
represent a model for relapse or hepatoblastomas with metastatic
potential118, which fits with the histology and behavior of ABC-Myc
hepatoblastoma-like tumors. The phenotype and molecular char-
acterization of our model may also match with the C2A phenotype of
which HCN-NOS can be included as well as a “liver progenitor” sub-
grouping, and which also has been correlated with high-risk MRS-3B
subgrouping15.

Currently the prognostic significance of the presence of or rela-
tive proportions of different morphologic patterns that may arise in
pediatric and adolescent hepatoblastomas remains unclear and there
is still variability in the subclassifications of pediatric liver tumors
because histology can be variable within a liver tumor and sampling
may limit the ability to observe the variations in morphologic pat-
terning that can be observed within one tumor. One exception is the
presence of foci of neoplastic cells having a small-cell-undifferentiated
morphology, which is not observed in this model. Additionally, INI-1
staining was retained in all sampled hepatoblastoma-like tumors
indicating that the diagnosis of rhabdoid-like tumor is not appropriate
for this model. In pediatric patients it is important to differentiate
hepatoblastoma from hepatocellular carcinoma because of treatment
and prognosis38. The Myc-driven murine hepatoblastoma-like tumors
demonstrate phenotypic plasticity of hepatocyte lineage committed
stem/progenitor cells, suggesting that some tumor components have
HCN-NOS features.

Neither regionally invasive nor metastatic disease is a feature of
this model, and this biological behavior is consistent with the known
role for MYC to drive bulky tumor growth within the liver
microenvironment28. Metastatic disease is not observed in this model
from several reasons including genetics or reduced survival time from
localizeddisease. Alternatively, itmaybe anextremely rare event in the
model. In any of these scenarios it is reasonable to hypothesize that
additional genetic or non-genetic drivers are probably important for
the invasive and metastatic potential in this model and from what is
known in the literature about other hepatoblastoma model systems
and pediatric hepatoblastomas with demonstrated metastatic poten-
tial. Therefore, this model is considered as a hepatoblastoma-like
model which represents multifocal aggressive tumors in liver without
metastasis.

Mutation of CTNNB1 occurs in about 48–67% of pediatric hepa-
toblastoma cases, which is different from how liver tumors arise in our
model. MYC overexpression is a significant genetic event in pediatric
liver tumors including pediatric HCCs. In humans, mutational and
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immunohistochemical analyses of β-catenin are not always correlative.
Nuclear localization/expression of β-catenin in human hepato-
blastomas is not always diffuse and can be regional or focal and is an
imperfect surrogate for molecular testing. The fact that nuclear

localization of β-catenin does not have to be diffuse in Wnt-driven
humanpediatric liver tumors is of interest andpoints to subpopulation
heterogeneity that drives aspects of tumor initiation, growth, and
biological aggressiveness in human pediatric HBs and HCCs. These

Fig. 8 | Combination of doxorubicin and PRKDC inhibitor has a better antic-
ancer efficacy. aWestern blot showing knockdown of PRKDC in NEJF10 cells after
72 h transfection of siRNA into NEJF10 cells. The blots are representative of three
independent experiments. b Colony formation showing the effect of combination
of Prkdc knockdown and doxorubicin treatment for 4 days. The images are
representatives of 3 independent experiments. c Colony formation showing the
synergistic effect of combination of different concentrations of doxorubicin and
AZD7648 to treat NEJF10 for 5 days. The images are representatives of three
independent experiments. dColony formation for NEJF1, NEJF2, NEJF4 treatedwith
doxorubicin and AZD7648 for 5 days. The images are representatives of two
independent experiments. e Survival rate for ABC-Myc treated with vehicle (n = 6),
doxorubicin (0.75mg/kg, twice weekly; n = 7) and AZD7648 (50mg/kg, twice daily;
n = 7), and combination of doxorubicin and AZD7648 (n = 8). P value calculated by
log-rank (Mantel-Cox) test method. f Liver weight after treatment in each group of

ABC-Myc mice (vehicle n = 5, AZD7648 n = 5, doxorubicin n = 5, combination of
doxorubicin andAZD7648n = 6) andnormal liver (n = 3) in agematchingmice. Data
are presented asmean ± SD. P value calculatedby two-sided student t test.gTumor
volume for each treatment group of HepG2 xenografts with vehicle (n = 5), dox-
orubicin (1.0mg/kg, twice weekly; n = 5), AZD7648 (50mg/kg, twice daily; n = 5)
and combination of doxorubicin and AZD7648 (n = 5). p value calculated by two-
sided student t test for two groups (doxorubicin vs doxorubicin/AZD7648) at each
time point. h Tumor volume for each treatment group of SJHB031109_X1 PDX
xenografts with vehicle (n = 4), doxorubicin (0.75mg/kg, twice weekly; n = 4),
AZD7648 (50mg/kg, twice daily; n = 5) and combination of doxorubicin and
AZD7648 (n = 4).Data are presented as mean ± SD. p value calculated by two-sided
student t test for two groups (doxorubicin vs doxorubicin/AZD7648) at each time
point. Source data are provided as a Source Data file.
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observations may help us understand how tumor heterogeneity cor-
relates with biological aggressiveness. Interestingly the IHC staining
pattern for β-catenin in our model is localized to the membrane and
cytoplasmof all HB-like tumors and is comparable to staining patterns
that havebeenobserved in pediatric tumors classified asHBswithHCC
features including HCN-NOS and HB-FPA. Our model may represent
locally aggressive, spontaneously arising hepatoblastoma cases where
a mutation driving constitutive WNT/β-catenin signaling is absent.
Therefore, lack of strong nuclear translocation of the wild-type β-
catenin may suggest that MYC overactivation relieves the selective
pressure on β-catenin, since MYC is a key downstream effector of the
Wnt-β-catenin pathway27,30,119.

Molecular profiling demonstrates that the ABC-Myc hepato-
blastoma resembles high-risk human disease, making this model
helpful for understanding the mechanisms of tumorigenesis and for
testing therapy response in high-risk hepatoblastoma. Based on our
ABC-Myc hepatoblastoma-like model, we generated cell lines that can
be readily passaged in vitro in either 2D or 3D format. Using three ABC-
Myc cell lines, wemapped the genome-wide cancer dependency genes
of ABC-Myc hepatoblastoma. Approximately 70% of genes essential to
Huh6, the human hepatoblastoma cell line, are overlapped with ABC-
Myc dependency genes, suggesting that our ABC-Myc model and
human hepatoblastomas share common oncogenic pathways. While
hepatoblastoma lacks targetable somatic mutations, our screen iden-
tified numerous targetable genes including those encoding AURKA,
CDK1, CDK7, CKD9, PLK1, PRMT1, PRMT5, EGFR and mTOR. The
anticancer activity of inhibitors against AURKA, CDK7, mTOR and
EGFR was validated in vitro in this study. While the clinical utility of
drugging these targets with selective inhibitors awaits future testing, a
PLK1 inhibitor, Volasertib, has shown anticancer activity in high-risk
hepatoblastomamodels120. While genetic mutations in classical cancer
pathways (e.g., CDKN2A-MDM2-p53, PTEN-PI3K-AKT-mTOR, Ras-Raf-
MEK) are rare in primary hepatoblastomas at diagnosis, our screen
results show that ABC-Myc tumor cells depend on them, suggesting
that theymaybe dysregulated in other ways in hepatoblastoma and/or
play important roles in cancer progression and relapsed disease. Par-
ticularly, we found that the Hippo signaling pathway is essential to
ABC-Myc cell survival, in line with previous studies which demonstrate
that YAP1 and TAZ promote and maintain tumorigenesis of
hepatoblastoma21,22,121, supporting that our ABC-Myc model can be
faithfully applied to identify hepatoblastoma-related oncogenic path-
ways. The roles of several tumor suppressive genes in hepatoblastoma
identified from CRISPR screen are largely unknown. Myh9, which
encodes nonmusclemyosin IIa, is a tumor suppressor in squamous cell
carcinoma by regulating p53 stabilization122. While the transcription
factor SOX4 could be oncogenic, it also has tumor suppressive func-
tions by modulating p53 function123. Loss of function of DAPK3 has
been observed in several cancers124, and DAPK3 regulates p53 activity
by phosphorylating S20 on p53 to block MDM2-p53 interaction125.
DAPK3 also has kinase independent tumor suppressive function by
driving tumor-intrinsic immunity through the STING–IFNβ pathway126.
Lzrt1 encodes leucine zipper–like transcriptional regulator 1 that is
associated with RAS, functioning as an adaptor to promote RAS ubi-
quitination, thus inhibiting RAS oncogenic functions127. Rasa2,
encoding a RasGAP to inhibit RAS activity, is a tumor-suppressor gene
with loss-of-function in ≥30% of human melanomas128. DUSP9, a dual-
specificity phosphatase, may exert its antitumor functions by sup-
pressing mTOR pathway129,130. The role of PAWR (Pro-Apoptotic WT1
Regulator) in cancer remains unknown and its antiproliferative activity
might be due to its anti-apoptosis function131. Interestingly, we iden-
tified genes responsible for heme biosynthesis pathway exert anti-
proliferative functions in some ABC-Myc cells.

Adjuvant and neoadjuvant chemotherapy are the mainstays of
hepatoblastoma treatment. Although chemotherapy intensification
has resulted in improved outcomes for high-risk disease, this comes at

the expense of significant ototoxicity and cardiotoxicity associated
with cisplatin and doxorubicin. New combination therapies are badly
needed to improve survival of patients. Using a genome-wide CRISPR
screen, we have identified pathways whose loss-of-function enhance
and antagonize the anti-tumor activity of doxorubicin. This has led to
the identification of a more effective combination therapy in which a
PRKDC inhibitor greatly enhances the efficacy of doxorubicin in ABC-
Myc mice and human hepatoblastoma xenograft models. Recent stu-
dies have shown that chromosomal instability, TERT promoter muta-
tions or telomerase activation were correlated with poor outcomes of
the HB patients65,132,133, suggesting that tumors in these patients may
haveDNA repair defects and thus, PRKDC inhibitorsmaybe effective in
these tumors. The advantage of our system is that we can test many
different combinations based on screening of ABC-Myc cell lines
in vitro, then validate the results in ABC-Mycmice in vivo, an approach
not practical to carry out in clinical trials.

Methods
Animals
All experiments that involved the use of mice were performed under
the protocol 615 issued to Jun Yang in accordance with the guidelines
outlined by the St Jude Children’s Research Hospital Institutional
Animal Care and Use Committee (IACUC). Mice were housed with
ambient temperature and humidity with 12 h light /12 h dark cycle
controlled under specific-pathogen-free conditions (SPF) at the St Jude
Children’s ResearchHospitalmouse facility. Mice were allowed to feed
anddrink ad libitum. Themaximal tumorburdenpermittedwas20%of
mouse body weight, and in our experiments, the maximal tumor
burden was not exceeded. Transgenic mice were euthanized through
CO2 inhalation with 3 liters/min in the mouse cage and followed by
cervical dislocation whenmoribund or determined by a veterinarian in
Animal Research Center at St Jude. For therapy studies in sub-
cutaneous xenograft mouse models, the mice were euthanized
through CO2 inhalation with 3 liters/min in the mouse cage and fol-
lowed by cervical dislocation when the tumor volume reached
2000mm3 or mice became moribund.

Generation of Alb-Cre;CAG-Myc (ABC-Myc) mice, and Alb-Cre;-
CAG-Myc;TdTomato (ABC-Myc; TdTomato) mice
Albumin-Cre (Alb-Cre) (Strain #003574), R26StopFLMYC (CAG-MYC)
(Strain #020458), and CAG-tdTomato (Strain #007914) mice were
obtained from the Jackson Laboratory. ABC-Myc (Alb-Cre+/wt::CAG-
MYC+/wt) mousemodel was generated by crossbreeding Alb-Cre+/+ with
CAG-MYC+/+ mouse (age between 2 months to one year old), or Alb-
Cre+/wt with CAG-MYC+/+, or Alb-Cre+/wt with CAG-MYC+/wt. The litter-
mates with genotypes of Alb-Crewt/wt::CAG-Myc+/wt, or Alb-Cre+/wt::CAG-
MYCwt/wt, or Alb-Crewt/wt::CAG-MYCwt/wt were served as normal controls.
In order to generate ABC-MYC;TdTomato mice, Alb-Cre+/+ mice were
first bred with CAG-Tdtomato+/+ mice to obtain the mice with geno-
types of Alb-cre+/wt::CAG-tdTomato+/wt, whichwere thenbredwithCAG-
Myc+/+ mice. For genotyping, the genomic DNAwas extracted from tail
biopsies, and PCR amplification assay was performed using KAPA
Mouse Genotyping Kits (Roche Corporate, Cat#KK7352) according to
The Jackson Laboratory genotyping PCR conditions for each mice
strain. The primers 5′-TGC AAA CAT CAC ATG CAC AC, GAA GCA GAA
GCT TAG GAA GAT GG-3′ and 5′-TTG GCC CCT TAC CAT AAC TG-3′
were used for Alb-Cre genotyping (AlbCre = 390 bp and WT= 351 bp).
The primers 5′-CCA AAG TCG CTC TGA GTT GTT ATC-3′, 5′-GAG CGG
GAG AAA TGG ATA TG, CCA AGA GGG TCA AGT TGG A-3′ and 5′-GCA
ATA TGG TGG AAA ATA AC-3′ are used for CAG-Myc genotyping
(MYC = 550 bp and WT=604 bp). The primers 5′-AAG GGA GCT GCA
GTGGAGTA,CCGAAAATCTGTGGGAAGTC-3′, 5′-CTGTTCCTGTAC
GGC ATG G-3′ and 5′-GGC ATT AAA GCAGCG TAT CC-3′were used for
CAG-tdTomato genotyping (tdTomato = 196 bp andWT= 297 bp). The
genotyping PCR products were resolved in 2% agarose gel (Invitrogen,
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Cat#16500-500) and imaged with Alphaimager HP (ProteinSimple,
Alphaimager HP) or Li-COR D-Digit (Li-COR, 3500).

Generation of ABC-Myc-derived hepatoblastoma cell lines
(NEJF1, NEJF2, NEJF4, NEJF5, NEJF6)
The livers fromABC-Mycmicewere excised andplaced in a sterile tube
containing phosphate-buffered saline (PBS) on wet ice during trans-
port from the animal research facility to the research laboratory.
Tumor nodules were excised using a sterile scalpel and underwent an
enzymatic digestion with collagenase IV (2mg/ml; in 25ml of DMEM
medium) for 1 h in a 37 °C rotor (Robbins ScientificCorporation,model
2000). After digestion, cells were filtered using a 70-μmsterile strainer
and cultured in ultra-nonadherent cell culture plate with DMEM
mediumwith 10% FBS and 1% penicillin and streptomycin. Liver cancer
cells form spheroids and are propagated in ultra-nonadherent cell
culture plate. In parallel, the spheroids were transferred to adherent
plates in standard DMEM media and adherent cell lines were derived.
Notably, the adherent cell lines form spheroids when culturing in non-
adherent cell culture plate.

Generation of NEJF10 from the ABC-Myc;TdTomato tumor
The liver from ABC-Myc; TdTomatomouse (#NEJF10) was excised and
placed in a sterile tube containing cold phosphate-buffered saline
(PBS). Tumor nodules were excised using a sterile scalpel and under-
went an enzymatic digestion with collagenase IV (2mg/ml; in 25ml of
DMEM medium) for 1 h in a 37 °C rotor (Robbins Scientific Corpora-
tion, model 2000). After digestion, cells were filtered using a 70-μm
sterile strainer and cultured in 15 cm culture dish (Fisher Scientific,
FB012925) with DMEM medium with 10% FBS and 1% penicillin and
streptomycin. Next day, the NEJF10 hepatoblastoma cells formed
spheroids with tdTomato red color under EVOS M7000 Imaging Sys-
tem (Invitrogen, EVOS M7000). The spheroids were transferred and
cultured in ultra-low attachment microplates for propagation (Corn-
ing, Cat#3471). The NEJF10 spheroids were transferred to adherent
plates and the adherent NEJF10 cells were consequently derived. The
adherent NEJF10 cells also form spheroids when cells were cultured
back to ultra-low attachment microplates.

Human cell lines, reagents, and validation
HepG2 (ATCC, HB-8065) cells were cultured in 1× DMEM (Fisher Sci-
entific, Cat#MT10013CM) supplemented with 10% FBS (Gibco,
Cat#10437028), 1% Penicillin-Streptomycin solution (Gibco,
Cat#15140122)) at 37 °C in 5%CO2 in a humidified incubator.All human-
derived cell lineswerevalidatedby short tandemrepeat (STR) profiling
using PowerPlex® 16HS System (Promega) once amonth. Additionally,
a polymerase chain reaction (PCR)-based method was used to screen
for mycoplasma once a month employing the LookOut® Mycoplasma
PCR Detection Kit (MP0035, Sigma-Aldrich) and JumpStart™ Taq DNA
Polymerase (D9307, Sigma-Aldrich) to ensure cells were free of
mycoplasma contamination.

Doxorubicin, NU7441, Samuraciclib (ICEC0942), and EPZ015666
(GSK3235025) were purchased from Selleckchem. All other com-
pounds used for screening were obtained from St Jude compounds
deposit. AZD7648, Lot01, was purchased from Chemietek, and the
quality was verified by Chemieteck by HPLC-MS and NMR, with purity
>99.5%. The purity of AZD7648 was further verified in house by using
Waters UPLC-MS system (Acquity PDAdetector, SQdetector andUPLC
BEH-C18 column). The mass spectrometer was acquired using Mas-
sLynx v. 4.1. The chromatographic conditions are as follows: flow rate:
1.0mL/min, sample injection volume: 2 µL, column temperature: 55 °C,
mobile phase: 0.1% formic acid in CH3CN and H2O.

Pathological assessment of ABC-Myc hepatoblastomas
Liver tumorswere fixed in 10%neutral buffered formalin, embedded in
paraffin, sectioned at 4 μm, mounted on positive charged glass slides

(Superfrost Plus; 12-550-15, Thermo Fisher Scientific, Waltham, MA)
that were dried at 60 °C for 20min, and stained with hematoxylin and
eosin (HE). The following immunohistochemistry protocols were used
for the detection of AFP, ARG1, Beta-catenin, GS, and KRT19, respec-
tively, on commercial autostainers: (1) anti-Alpha-1-fetoprotein,
A0008, Agilent, 1:300, 32-min incubation. Heat-induced epitope
retrieval, Cell conditioningmedia 2 (VentanaMedical Systems, Tucson,
AZ), 32min; Visualization with DISCOVERY OmniMap anti-Rb HRP
(760-4311; Ventana Medical Systems), DISCOVERY ChromoMap DAB
kit (760-159; Ventana Medical Systems). (2) anti-Arginase-1 (H-52), sc-
20150, Santa Cruz, 1:75, 60-min incubation. Heat-induced epitope
retrieval, Cell conditioningmedia 2 (VentanaMedical Systems, Tucson,
AZ), 48min; Visualization with DISCOVERY OmniMap anti-Rb HRP
(760-4311; Ventana Medical Systems), DISCOVERY ChromoMap DAB
kit (760-159; Ventana Medical Systems). (3) anti-Beta-catenin (Clone
E247), RM-2101, ThermoFisher, 1:300, 60-min incubation, Heat-
induced epitope retrieval, Cell conditioning media 1 (Ventana Medi-
cal Systems, Tucson, AZ), 48min. Visualization with DISCOVERY
OmniMap anti-Rb HRP (760-4311; Ventana Medical Systems), DIS-
COVERY ChromoMap DAB kit (760-159; VentanaMedical Systems). (4)
anti-Glutamine synthase, ab73593, Abcam, 1:1000, 60-min incubation,
Heat-induced epitope retrieval, Cell conditioning media 1 (Ventana
Medical Systems, Tucson, AZ), 32min. Visualization with DISCOVERY
OmniMap anti-Rb HRP (760-4311; Ventana Medical Systems), DIS-
COVERY ChromoMapDAB kit (760-159; Ventana Medical Systems). (5)
anti-Keratin19, TROMA-III, Developmental Studies Hybridoma bank,
1:1000, 15-min incubation. Heat-induced epitope retrieval, Epitope
Retrieval solution 1 (ER2), 20min. Visualization with rabbit anti-rat
(712-4126; Rockland), Bond Polymer Refine Detection (DS9800, Leica
Biosystems). All HEs and IHCs were reviewed by light microscopy and
interpreted by a board-certified veterinary pathologist (HT).

Clinical chemistry analysis
The plasma and serum samples were obtained at sacrifice time when
mice became moribund. Once whole blood samples for chemistries
are received in the Diagnostic Lab at St Jude, they are allowed to clot
for 30min, atwhichpoint the clot is removed and the serum separated
by centrifuging at 5700 rpm for 10min. Once separated, the serum is
pipetted into a Horiba bio cup for processing. Data is processed on the
Horiba Pentra 400 instrument and uploaded via the RSAS app directly
into an excel spreadsheet for further analysis. The ABX Pentra chem-
istry panel reagents including ABX Pentra Albumin CP (REF#
A11A01664), ABX Pentra ALPCP (REF# A11A01626), ABX Pentra ALTCP
(REF# A11A01627), ABX Pentra Amylase CP (REF# A11A01628), ABX
Pentra Urea CP (REF# A11A01641), ABX Pentra Calcium AS CP (REF#
A11A01954), ABX Pentra Creatinine 120 CP (REF# A11A01933), ABX
Pentra Glucose HK CP (REF# A11A01667), ABX Pentra Phosphorus CP
(REF# A11A01665), ABX Pentra Potassium-E (REF# A11A01740), ABX
Pentra Sodium-E (REF# A11A01738), ABX Pentra Bilirubin, Total CP
(REF#A11A01639), ABX Pentra Total Protein 100CP (REF#A11A01932),
according to the manufacturer’s instructions.

AFP quantification
The control and ABC-Myc mice were anesthetized with isoflurane.
Blood samples from control and ABC-Myc tumor bearing mice were
collected using the cardiac puncture method. To separate serum,
blood in collection tubes was allowed to clot at room temperature
without disturbing for 1 h and centrifuged at 1000g for 20min using a
4 °C refrigerated centrifuge. Serumwas aliquoted in 55μl or 110μl per
tube with the animal ID and date of collection. Samples were stored at
–80 °C until all controls and tumor mice samples were complete. AFP
measurement was performed by following the instructions of the AFP
Elisa kit (Mouse Alpha-Fetoprotein ELISA Kit, MyBioSource,
MBS033826). Briefly, 50μl of standards (S1, S2, S3, S4, S5, S6) were
added in standard wells and 50μL of samples were added to every
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sample well. 100 μl of HRP-Conjugate Reagent were mixed with each
standard and sample wells. The plate was covered with closure plate
membrane and incubated for 60min at 37 °C. All wells were washed 4
times and 50μl Chromogen Solution A was added to every well and
gently mixed with 50μl Chromogen Solution B and incubated for
15min at 37 °C avoid from light. After adding 50μl Stop Solution for
5mins, the optical density (O.D.) at 450nm were measured with Bio-
Tek Synergy H1 Microplate Reader. Standard curve was plotted with
GraphPadPrism9.3.1. Basedon the Standard curve to calculate theAFP
value of each sample.

Complete blood counting
Once EDTA anti-coagulated samples for CBC’s are received in the lab,
they are immediately organized by ID number and processed on the
Oxford Science hematology analyzer. The results are automatically
downloaded onto an excel spreadsheet, reviewed by lab personnel,
and sent to the investigator via email for further analysis. In brief,
blood was collected in Eppendorf tubes containing 10 µl of 10% EDTA
via retroorbital bleedusing 200 µl heparinizedcapillary tubes (Cat# 22-
362-566, Fisher brand). Blood samples were processed within 2 h to
avoid hemolysis. The number of leucocytes (WBC), erythrocytes
(RBC), lymphocytes (LY), neutrophil (NE), monocytes (MO), eosino-
phils (EO) and platelets (PLT) were counted. Proprietary lysing agent
was added to liberate hemoglobin and ultimately convert it to cyan-
methemoglobin to calculate the value.

Western blot and antibodies
For western blotting, samples from normal livers and tumors excised
from livers were homogenized with calculated volume of 2× sample
buffer (1M TRIS/HCl, 10% SDS, 0.1% bromophenol-blue, 10% β−mer-
captoethanol, 10% glycerol) and heated for 15min at 95 °C. Proteins
were resolved on protein gels (Bio-Rad, Cat#4568083) and transferred
onto PVDF membrane (Bio-Rad, Cat#170-4272) with Trans-blot Turbo
transfer system (Bio-Rad, Cat#1704150). After being incubated with
the primary antibody, horseradish peroxidase-(HRP) conjugated sec-
ondary antibody (Novex, Life technologies) at 1: 5000 was used for 1 h
incubation. The signals were detected by chemiluminescence (ECL,
Thermo scientific). Images were taken with Li-COR Odyssey FC (Li-
COR, Cat#2800). C-MYC (Cell Signaling Technology, 5605 S, RRI-
D:AB_1903938, 1:1000), PRKDC (DNA-PK))Novus, sc57-08, RRID:
AB_2809479, 1:1000), β-actin (Sigma, A5441, RRID:AB_476744, 1:5000)
and GAPDH-HRP (Cell Signaling Technology, 3683 S, RRI-
D:AB_1642205, 1:1000) were used for western blot.

Small interfering RNA Transfection and doxorubicin treatment
Small interfering RNAs (siRNA) were transfected into NEJF10 cells
using Lipofectamine RNAiMax (Invitrogen, Cat#13778150)
according to manufacturer’s instructions. Non-Targeting siRNA#2
(Thermo Fisher Scientific, AM4637) used as siRNA control. The
siRNA oligos for Prkdc was ordered from Thermo Fisher Scientific
(Thermo Fisher Scientific, AssayID151238, https://www.
thermofisher.com/order/genome-database/details/sirna/151238?
CID=&ICID=&subtype=, siRNA for mouse Prkdc:

Sense: 5-GGAAUAUACUAUAGAUCCUTT-3; Antisense: 5-AGGAU-
CUAUAGUAUAUUCCTG-3). Post 72 h of transfection, cells were har-
vested for western blot. For doxorubicin treatment experiments, 24 h
post siPrkdc transfection, cells were treated with doxorubicin with
concentrations of 0, 15 nM for 4 days and fixed with formaldehyde for
crystal violet staining.

Bulk RNA-seq and analysis
Total stranded RNA sequencing data were processed by the internal
AutoMapper pipeline. Briefly the raw reads were first trimmed (Trim-
Galore version 0.60), mapped to mouse genome assembly (GRCm38,
mm10) (STAR v2.7) and then the gene level values were quantified

(RSEM v1.31) based on GENCODE annotation (VM22). Low count genes
were removed from analysis using a CPM cutoff corresponding to a
count of 10 reads in at least one sample group and only confidently
annotated (level 1 and 2 gene annotation) and protein-coding genes
are used for differential expression analysis. Normalization factors
were generated using the TMM method, counts were then trans-
formed using voom and transformed counts were analyzed using the
lmFit and eBayes functions (R limma package version 3.42.2). The
significantly up- and down- regulated genes were defined by at least
2-fold changes and adjusted p-value < 0.05. Then Gene set enrichment
analysis (GSEA) was carried out using gene-level log2 fold changes
from differential expression results against gene sets in the Molecular
Signatures Database (MSigDB 6.2) (gsea2 version 2.2.3). GSEA para-
meters (number of permutations =1000, permutation type = gene_set,
metric for ranking genes = Signal2Noise, Enrichment statistic =
Weighted).

Cross-species transcriptomic comparison of human hepato-
blastoma and ABC-Myc tumors
A cross-species dataset of RNA-seq reads was obtained for all auto-
somal genes with a 1:1 homology between human and mouse, as
determined Ensemble BioMart version 75. Sex chromosome genes
were omitted to avoid gender effects. The resulting cross-species data
consisted of 11,393 genes (common stable gene symbol in both data-
sets). The counts from Mouse and Human datasets were transformed
using variance stabilizing transformation (VST) available from the
DESeq2 R package version 1.16.1134 for each dataset. To further account
for differences in expression levels across species, the VST subject-
regressed data were quantile-normalized using normalizeQuantiles
from limma R package version 3.46.0135. Finally, we adjust the differ-
ences between species using ComBat function from sva package ver-
sion 3.38.0.136. One thousand cycles of bootstrapping using pvclust R
version 2.2.0137 were done in tumor samples from Mouse and Human
and plotted their Pearson correlation in a heatmap using pheatmap R
version 1.0.12. We applied Principal Component Analysis on the full
ortholog data matrix using prcomp (stats R package v.3.4.1) to com-
pute PC1 and second PC2 principal components to illustrate the rela-
tive ordination of the integrated group samples and species. We
plotted the results incorporating confidence ellipses at the groups by
means of the ggbiplot R package (v-0.55). Differential expression
between tumor and non-tumor for mouse and human was assessed
using moderated t-statistics (limma R package. version 3.46.0).
Benjamini–Hochberg (BH) procedure were employed to compute
FDR. Proportional VENN diagrams were performed using the DeepVen
tool (arXiv:2210.04597).

Single-cell RNA-seq and analysis
Library preparation and sequencing. The liver tumor was harvested
from ABC-Myc mouse. Tumor mass was dissociated by using a mod-
ified two-step collagenase procedure138. Briefly, the mouse was per-
fused with PBS containing 0.5mM EDTA and followed by perfusion
with 2mg/ml of collagenase type IV (Worthington Biochemical Cor-
poration, CLS-4) in DMEM (Dulbecco’s Modified Eagle Medium)
(Corning, 10-013-CM). The tumor from liver was chopped with razor
and digested in 2mg/ml of collagenase type IV DMEM medium for
30mins at 37 °C. The cell suspension was filtered through a 70 µm
strainer and washed twice with DMEM. The dissociated cells were
suspended in theDMEMmedium.Before loaded intoChromiumchips,
cells were filtered again through a 40 µm strainer and the single cells
were counted by using a Luna cell counter, and then loaded into
Chromium Chips V3 (10× Genomics) with a target capture of 8000
cells. The cDNA library construction and quality control were per-
formed by following the manufacture’s protocol. The library was
sequenced in Novaseq-V1 reagents. The sequenced data were pro-
cessed by Cell Ranger Software (10× Genomics).
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Data generation and preprocessing. We collected cells from four
tumor samples and three healthy control mouse samples. The single-
cell RNA-seq samples were processed according to the 10× Genomics
protocol. Cell Ranger Single-Cell Software Suite (version 6.0.0, 10×
Genomics, using the option –include-introns) was used to quality
control andquantify the single-cell expressiondata to generate filtered
gene-barcode matrices for 90,715 cells with an average of 3037 mRNA
molecules (UMIs, median: 1963, range: 302–32,765). Cells with low
(≤500) UMI counts or more than 20% UMI counts frommitochondrial
genes were considered low quality as proportion of mitochondrial
genes may indicate the quality of cells139. With this quality control
criterion, 9.3% of cellswere considered low-quality (9.7% of low-quality
cells from the control group and 9.2% of low-quality cells in the
tumor group).

Clustering. The whole dataset’s subpopulation structure was inferred
using Latent Cellular State Analysis140. An optimal number of clusters
was selected from top models determined by the silhouette measure
for solutionswith different clusters (from2 to 100). Clusterswithmore
than 50% low-quality cells were excluded from further analysis. The
identities of the cell clusters were analyzed by inspecting the assign-
ment scores using reference expression datasets with curated cell
types70 from the R/Bioconductor package (version 1.8.0)69. We also
used an independent marker gene list from Song et al.65. The assign-
ment score was calculated using the R/Bioconductor package SingleR
(version 2.0.0)69 based on the reference samples with the highest
Spearman rank correlations, using only the marker genes between
pairs of labels to focus on the relevant differences between cell types.

Differential gene expression analysis. We estimated differential
expressions between tumor and control groups or among cell types
using the negative binomial with independent dispersions67, using
edgeR (version 3.40.1)141, with batch effect corrected using SVA
(3.46.0)142. Specifically, we used scran (version 1.26.1)143 to extract the
normalization factor. For edgeR, we set prior.df to zero to indepen-
dently infer each gene’s dispersion based on scRNA-seq data and used
the likelihood ratio-based test. For the application of SVA, we first
sorted cells by total UMI within each batch and then summed 20 cells
into a new aggregated pseudo-cell. Then SVA was applied with ten
iterations to extract the top 20 surrogate variables representing the
latent batch effects. The method was implemented in the function
DEAdjustForBatch in the NBID package (https://bitbucket.org/Wenan/
nbid/src/master/R/DEAdjustForBatch.R).

Pathway analysis. Gene set enrichment and pathway analysis were
performed using the R package ClusterProfiler (version 4.4.4)144. We
usedMolecular SignatureDatabase51,145 for gene annotations throughR
package msigdbr (Dolgalev I, 2022, version 7.5.1) for gene annotation.
We also used Database Annotation Visualization Integrated Discovery
(DAVID 2021) for functional annotation analysis (version 2021)146.

Data visualization. High-dimensional scRNA-seq data were visualized
on two-dimensional maps through t-distributed stochastic neighbor
embedding (t-SNE)147,148 using R package Rtsne149 with default settings.
Dot plot and heatmap for gene expression patterns for cell types and
gene/gene groups, and Sankeyplot for the composition of inferred cell
types and experimental samples were visualized using R package
SCpubr150 (version 1.0.4.9000). Cell assignment score heatmap was
plotted using R package pheatmap151 (version 1.0.12). General visuali-
zations, including feature plots were performed using packages
ggplot2152 (version 3.4.0) and ggpubr153 (version 0.5.0).

Spatiotranscriptomic analysis
Tissue harvest. The ABC-Myc mouse was anesthetized with avertin
(0.4ml/20g of mouse body weight). The mouse chest cavity was

opened to expose the heart with needles, tweezers, and dissecting
scissors. The right auricle was incised, and the needle filled with PBS
containing0.5mMEDTAwas immediately inserted into the apexof the
left ventricle for the perfusion, followed by perfusion with 2mg/ml
of collagenase type IV (Worthington Biochemical Corporation, CLS-4)
in Dulbecco’s Modified Eagle Medium (Fisher Scientific,
Cat#MT10013CM). The tumor tissue was immediately isolated in the
ice cold DMEM medium.

Pathological assessment. Fresh frozen tissues were sectioned and
mounted on the STLibrarypreparation slides,HE stained, and scanned
with a Zeiss Axioscan slide scanner to generate 20× digital whole slide
images. CZI files were imported into HALO (v3.2.1851.351, Indica Labs)
to annotate and classify bulky tissue regions as neoplasia, non-
neoplastic hepatocytes and stroma, extramedullary hematopoiesis,
glass/clear space, or tissue folds/artifacts based on morphology and
tinctorial staining characteristics.

Tissue processing and data generation for spatial transcriptomics.
Flash frozen samples were embedded in OCT (Tissue-Tek, Sakura)
and cryosectioned as per Tissue preparation guide from Visium
Spatial Gene expression Kit- 10× Genomics (Cat.1000184). Briefly,
the tumor tissue was harvested from ABC-MYC mouse liver in the
ice cold DMEMmedium (Fisher Scientific, Cat#MT10013CM), excess
liquid was removed from tissue and flash frozen immediately in the
bath of Isopentane and Liquid nitrogen. The OCT embedded tissue
block was sectioned (10 µm) and placed on the capture area of
Visium Gene Expression Slide and stored at −80 °C overnight. The
tissue sections on the Visium slide were fixed with Methanol by
incubating 30min at −20 °C. The tissue was H&E stained following
Visium Gene expression kit procedure. The H&E-stained sections
were imaged using AxioScan Z.1. Whole slide scanner with stan-
dardized imaging protocol for Visium kit. After image acquisition,
the slide sections were permeabilized for 18min at 37 °C and cDNA,
library was generated according to the Visium Spatial Gene
Expression User Guide. The libraries were loaded and sequenced
(R1-28cy, i7-10cy, i5-10cy and R2 −120 cycle) on Novaseq 6000
(Illumina) following recommendation of Visium Gene expression
kit. The raw data were converted into FastQ, and matrices of
expression generated using the Space Range software V1.0 pro-
vided by 10× Genomics.

Spatial transcriptomics analysis and integration. The gene-spot
matriceswere analyzedwith the Seurat package154 (versions 4.3.0) in R.
Normalization across spots was performed with the SCTransform
function155 with regression of replicate and number of genes per spot.
Dimensionality reduction and clustering were performed with princi-
pal component analysis (PCA) using the default setting in function
RunPCA. We integrated the spatial data with scRNA-seq data by using
the cell clusters inferredby LCA fromscRNA-seqdataset as a reference.
Spatial feature expression plots were generated using Seurat’s
SpatialFeaturePlot.

Annexin V/DAPI staining
Cells were seeded at a density of 100, 000 cells in each well in 6 well
plates. Next day, cells were pretreated with AZD7648 for 1 h, before
adding doxorubicin for further 48 h. Cells were trypsinized (0.05%
trypsin for NEJF10 and 0.25% trypsin for HepG2) for 4min and cen-
trifuged at 1000 rpm for 5min at 4 °C. Apoptosis was detected by
dual staining of Annexin V-FITC and DAPI using apoptosis assay kit
(TONBO biosciences, CA, USA) according to manufacturer’s
instructions. Annexin V-FITC/DAPI positive cells were Collected
using log amplification, and 10,000 events were recorded (BD LSR-II,
BDBiosciences, NJ, USA), and data was analyzed using BD FACSDiva™
Software.
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Crystal violet staining
ABC-Myc-derived hepatoblastoma cell lines (750 cells per well) and
HepG2 (10,000 cells per well) cells were seeded in 6-well plates. After
24 h, cells were treated with AZD7648 (0, 0.1, 0.33, 1 and 3.3 µM).
Doxorubicin (0, 7.5, 15, 30 and 60nM for NEJF10 cell line and 0, 5, 25,
125, and 625 nM for HepG2) was added post AZD7648 treatment 1 h.
NEJF10 cell was cultured with DMEM complete medium for 5 days and
HepG2 was cultured with DMEM complete medium for 8 days. The
culture medium and AZD7648 and doxorubicin were changed every
2–3 days. After removing media, cells were washed with Dulbecco’s
phosphate buffered saline without calcium or magnesium (Lonza,
Cat#17-516Q) and fixed with 4% formaldehyde in PBS for 20min. Once
formaldehyde was removed, cells were stained with 0.1% crystal violet
(Sigma-Aldrich, Cat#HT90132-1L) for 1 h. Plates were rinsed with water
and imaged.

PrestoBlue assay and Bliss score calculation
PrestoBlue assay andBliss score calculationwasdescripted asprevious
report (Alexandra et al., 2021) with minor modification. Briefly, NEJF10
(100 cells per well) and HepG2 (1000 cells per well) cells were seeded
in 96-well plates. After 24 h, cells were treated with AZD7648 (0, 0.1,
0.33, 1 and 3.3 µM)anddoxorubicin (0, 7.5, 15, 30 and60nM forNEJF10
cell line and 0, 5, 25, 125 and 625 nM for HepG2) in an 8 × 5matrix. Cells
were treated for 5 days, and cell viability was determined using the
PrestoBlue assay (Invitrogen, A-13262) according to manufacturer’s
instructions. Cell viability for each treatment was normalized against
the control group. A Bliss independence model was used to evaluate
combination effects. Percentage over the Bliss score index was calcu-
lated with the equation (A+ B)-AxB, in which A and B are the percen-
tage of growth inhibitions induced by agents A and B at a given dose,
respectively. The difference between the Bliss expectation and the
observedgrowth inhibition inducedby the combinationof agentA and
B at the same dose is the Bliss excess.

Cell viability assay for IC50 of CDK7 and AURKA inhibitors
Cell lines were plated in 384 well plates at 100 (NEJF1, NEJF10), 500
(NEJF2, NEJF4, NEJF6) or 1000 (CCLF_PEDS_0046_N) and treated with
either samuraciclib or alisertib in technical quadruplicate at doses
ranging from 2 nM to 20uM using a Tecan D300e compound printer
(Tecan Biosciences). All wells were normalized to 0.1% total DMSO
input. Cells were incubated at 37 °C until timepoint of assay develop-
ment, using the Cell-Titer Glo assay (Promega). Data was processed
using Graphpad Prism 7.0. Cell Lines: CCLF_PEDS_0046_N normal
fibroblasts were a kind gift of the Cancer Cell Line Factory (Broad
Institute, Cambridge, MA).

CRISPR screening for cancer dependency gene and genetic
modifiers to doxorubicin
TheMouse CRISPR Knockout Pooled Library (Brie, lentiCRISPRv2) was
obtained from Addgene (Addgene#73632), which includes 1000 con-
trol gRNAs and 78,637 gRNAs targeting 19,674 genes. The plasmid
library was amplified and validated in the Center for Advanced Gen-
ome Engineering at St. Jude Children’s Research Hospital as described
in the Broad GPP protocol (https://portals.broadinstitute.org/gpp/
public/resources/protocols) except EnduraTM DUOs (Lucigen) elec-
trocompetent cells were used for the transformation step. The work-
flow of this whole genome genetic screen is illustrated in Fig. 6a. We
used NEJF1, NEJF6, and NEJF-10 cells; threemouse hepatoblastoma cell
lines established in our laboratory by culturing dissociated liver mass
cells from the ABC-Mycmodels. The cells were transducedwithmouse
CRISPR Knockout pooled library (Brie) which contains 78, 637 unique
sgRNA sequences targeting 19,674 human genes (4 sgRNAs per gene,
and 1000 non-targeting controls) at a low MOI (~0.3) to ensure effec-
tive barcoding of individual cells. Cells were replenished with fresh
DMEM medium containing 2μg/mL puromycin (Millipore Sigma) for

36 h. After puromycin selection, cells were washed to eliminate dead
cell debris and maintained in complete DMEM medium, and 32 × 106

cells were collected for genomic DNA extraction to ensure over 400×
coverage of Brie library. For genetic mapping, the transduced cells
were cultured for 5 days for CRISPR editing to generate a mutant cell
pool, which was then treated with vehicle (DMSO) and doxorubicin
(IC20 ~ 5 nM, 14 days: IC90 ~ 30 nM21 days), these concentrationswere
selected from colony formation assay that mimics similar experi-
mental setup for actual experiment (IC20 ~ 11.84 nM, IC90 ~ 35.83 nM,
for 4 days), sincedoxorubicin has a very narrow therapeutic window at
the nM level. During the experiment, at least 32 × 106 cells were col-
lected for genomic DNA extraction to ensure over 400× coverage of
Brie library. The total genomic DNA was extracted using a DNeasy
Blood & Tissue Kit (Qiagen) and quantified with a Nanodrop instru-
ment. The sgRNA sequences were amplified using PCR method using
NEB Q5 polymerase (New England Biolabs). PCR products were pur-
ified by AMPure XP SPRI beads (Beckman Coulter) and quantified by a
Qubit dsDNA HS assay (Thermo Fisher Scientific). A total of 16 million
reads were sequenced using an Illumina HiSeq sequencer, and the
sequencing data were analyzed using MAGeCK-VISPR software. NGS
sequencingwasperformed in theHartwell CenterGenomeSequencing
Facility at St. Jude Children’s Research Hospital. Single-end, 100-cycle
sequencing was performed on a NovaSeq 6000 (Illumina). Validation
to check gRNA presence and representation was performed using
calc_auc_v1.1.py (https://github.com/mhegde/) and count_spacers.py.
Network analysis performed using STRING program (https://string-db.
org/).

Drug response screen
For the screen, assay-ready plates were prepared by dispensing 50 nl
small molecules in empty white 384-well plates (Corning) using Echo
555 Liquid Handler (Labcyte). A total of 50 μl ABC-Myc cells per well
were seeded in the assay-ready plates. The cells were incubated at
37 °C, 5% CO2 in a humidified cell culture incubator (LiCONiC) for five
days. Prior to the cytotoxicity assay, 25 μl medium per well was
removed by Apricot S2 (SPT Labtech). To quantify the cytotoxicity,
the amount of intracellular ATP was measured by CellTiter Glo
(Promega). Widget, an automated robot system in St. Jude Children’s
Research Hospital was utilized for the cytotoxicity assay. A total of
25 μl CellTiter Glo reagent (Promega) was added to each well by
Multidrop Combi (ThermoFisher). After shaking plates, plates were
incubated for 20min at room temperature. Then, the luminescent
signal was measured by EnVision (PerkinElmer). Luminescent signal
results were analyzed by Genedata Screener (Genedata). All the
results were normalized by the negative control (DMSO) and the
positive control (5 μM 17-DMAG).

In vivo therapy
(1) Transgenic ABC-Mycmicemousemodel: All the animals areprocured
at Animal Resource Center (ARC) at St. Jude Children’s Research
Hospital and study was approved by Institutional Animal Care and Use
Committee. Following genotyping, ABC-Myc mice were randomized
and assigned to treatment groups. Inclusion criteria were the presence
of the ABC-Myc allele, either in heterozygosity or both ABC-Myc
alleles, age ranging 16–18 days after birth, both genders. Mice were
treated with vehicle, doxorubicin (0.75mg/kg, intraperitoneal, twice
weekly) and AZD7648 (50mg/kg/day, twice, oral gavage, everyday);
either agent alone or in combination with doxorubicin and AZD7648
for 3 weeks. The mice weight and activity weremonitored throughout
the experiment. The humane end point was decided (notified by staff
not directly involved in this study) to euthanize the mice. The livers
from treatment groups of ABC-Myc mice and age matching normal
mice were excised, weighed, and imaged. (2 HepG2 xenograft study:
4–6-week-old female NSG mice (NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ)
were housed in pathogen-free conditions with food and water
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provided ad libitum. HepG2 cells (5 × 106/mouse) in 100μl PBS were
injected subcutaneously on the right flank of mice. When the tumor
size reached up to ~100mm3, the animals were randomized into four
groups (n = 5 mice per group). Mice were treated with vehicle, dox-
orubicin (1mg/kg, intraperitoneal, twice weekly) and AZD7648
(50mg/kg/day, oral gavage everyday); either agent alone or in com-
bination with doxorubicin and AZD7648 for three weeks. The tumor
volume and mice weight weremeasured twice in a week. The volumes
calculatedwith formula π/6 × d3, where d is themean of twodiameters
taken at right angles. All the mice were euthanized, and subcutaneous
tumors were collected, imaged, and weighed. The tumor volume and
weight were presented as the means ± S.D (n = 5). (3) AZD7648 and
doxorubicin effects in SJHB031109_X1 PDX model: To establish
SJHB031109_X1-PDX model, around 5 weeks old female NSG mice
(NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ) were purchased from St Jude
Children’s Research Hospital Animal Research Resource and housed in
pathogen-free conditions with food and water provided ad libitum.
PDX SJHB031109_X1 tumor was finely minced with sterile scissors and
blade in a sterile petri dish. Tumor tissue ~50μl was subcutaneously
engrafted on the right flank of NSGmice.When the tumor size reached
up to ~100–200mm3, the animals were randomized into four groups
(n = 4–5 mice per group). Mice were treated with vehicle (HPMC/T),
doxorubicin (0.75mg/kg, intraperitoneal, twice weekly) and PRKDCi
(AZD7648) (50mg/kg, twice/day, oral gavage every day and the time
between themorning and eveningdoseswas8 h); either agent alone or
in combination with doxorubicin and AZD7648 for two weeks. In the
day of doxorubicin, doxorubicin was dosed 1 h after the morning
AZD7648 treatment. All the mice were euthanized, and subcutaneous
tumors were collected.

In vivo studies were approved and conducted in accordance with
Institutional Animal Care and Use Committee at St. Jude Children’s
Research Hospital.

Statistical analysis and reproducibility
All measurements were biological replicate samples except tumor
heterogeneity studies in that individual tumor was applied. Data are
presented asmean± SD from at least three biological replicates unless
otherwise stated. In general, for two experimental comparisons,
unpaired two-tailed Student’s t-test was used. Kaplan-Meier survival
curves were statistically compared by the log-rank test. Statistical
significance is representedby asterisks corresponding to **p <0.05 but
actual P values provided, ***p <0.0001, and ****p < 0.0001. GraphPad
Prism software (version 9.0) was used to generate graphs and perform
statistical analyses. Enrichr program (https://maayanlab.cloud/
Enrichr/) was used for gene ontology analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The bulk RNA-seq data generated in this study have been deposited
to GEO database with accession number: GSE193124. The scRNA-seq
and spatiotranscriptomics data generated in this study have been
deposited to SRA database with accession numbers: GSE223689,
GSE194051, GSE195575. The publicly available datasets re-used in
this study included GSE7908429, GSE9485853, GSE13303915.
GSE13132952, https://www.sciencerepository.org/gene-expression-
profiling-in-hepatoblastoma-cases-of-the-japanese-study-group-
for-pediatric-liver-tumors-2-jplt-2-trial_EJMC-2018-1-103]. All other
data, including original western blot and statistical data generated
in this study, are released in the Source Data file. Source data are
provided with this paper. Academic researchers can request ABC-
MYC cell lines without limitations once MTA is signed. Source data
are provided with this paper.
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