Article

https://doi.org/10.1038/s41467-023-39705-w

Contact-engineered reconfigurable twodimensional Schottky junction field-effect transistor with low leakage currents

Received: 16 January 2023

Accepted: 26 June 2023

Published online: 17 July 2023

Check for updates

Yaoqiang Zhou¹, Lei Tong¹, Zefeng Chen \mathbb{O}^2 , Li Tao³, Yue Pang¹ & Jian-Bin Xu \mathbb{O}^1

Two-dimensional (2D) materials have been considered promising candidates for future low power-dissipation and reconfigurable integrated circuit applications. However, 2D transistors with intrinsic ambipolar transport polarity are usually affected by large off-state leakage currents and small on/off ratios. Here, we report the realization of a reconfigurable Schottky junction fieldeffect transistor (SJFET) in an asymmetric van der Waals contact geometry, showing a balanced and switchable n- and p-unipolarity with the I_{ds} on/off ratio kept >10⁶. Meanwhile, the static leakage power consumption was suppressed to 10⁻⁵ nW. The SJFET worked as a reversible Schottky rectifier with an ideality factor of ~1.0 and a tuned rectifying ratio from 3 × 10⁶ to 2.5 × 10⁻⁶. This empowered the SJFET with a reconfigurable photovoltaic performance in which the sign of the open-circuit voltage and photo-responsivity were substantially switched. This polarity-reversible SJFET paves an alternative way to develop reconfigurable 2D devices for low-power-consumption photovoltaic logic circuits.

Emerging reconfigurable technologies based on two-dimensional (2D) materials are expected to empower next-generation electronic devices with lower power consumption and higher expressive capability¹⁻⁵. Different from conventional complementary metaloxide semiconductor (CMOS) technologies, 2D-materials-based transistors show the dopant-free polarity control that the conduction mechanism reversibly switches between n-type and p-type operation modes under gate-voltage sweeps⁶⁻⁸. These transistors are regarded as Schottky junction field-effect transistors (SIFETs), in which the carrier injection is determined by the Schottky barrier (SB) formed at the metal/semiconductor interfaces (MSIs)^{9,10}. However, this ambipolar behavior renders the SJFET hard to be switched off properly¹¹. Especially in downscaling of 2D SJFET, the strong electrostatic control can shrink the off-state SB, resulting in a larger leakage current and a smaller current on/off ratio, which hampers its application towards the large-scale integration and low static power consumption^{12,13}.

Contact engineering as an effective modulation method has been proposed to suppress ambipolarity under gate-voltage sweeps and achieve an ultra-low off-state current in the SJFET¹⁴⁻¹⁷. The ambipolarto-unipolar conversion of transport polarity control in 2D SJFET has been realized by introducing dual gates under the source and drain, respectively, where the injection and conduction of carriers can be individually modulated^{4,18}. But the multi-gate layout in integrated circuits impeded device scaling due to gate-length limitations. The insertion of an atomically thin insulator layer such as hexagonal boron nitride or the air gap in MSI was also effective in improving the interface quality and suppressing the drain leakage^{19,20}. The tunneling conduction mechanism, however, inevitably decreases the on-state current density. An easier method to build unipolar SIFET with an uncompromised on-/off-state current ratio is to use asymmetric source/drain electrodes with different work functions^{21,22}. However, the strong Fermi-level pinning induced by the metal-induced gap states (MIGs) and trap-induced gap states between deposited metal/

¹Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China. ²School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215006 Suzhou, China. ³Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, 100081 Beijing, China. 🖂 e-mail: jbxu@ee.cuhk.edu.hk

2D semiconductor interfaces usually generates an unpredictable SB height and brings the uncertainty to control the unipolarity of SJFETs²¹.

Emerging layered semimetals/metals provide a state-of-the-art approach for building the MSI to achieve ambipolar-to-unipolar conversion in van der Waals (vdWs) layered SJFETs. The bond-free integration is unaffected by lattice mismatch, or defects induced in metal deposition process to avoid trap states in the MSI⁷, making the SB height more controllable. Furthermore, semimetals with a near-zero density of states at the Fermi level have been verified to avoid MIGs and achieve the ideal MSIs²³. Graphene as a typical Dirac semimetal, whose Fermi energy can be effectively tuned by electrostatic gating has the potential to build the reconfigurable barrier transistor²⁴. Beyond graphene, the family of transition metal dichalcogenide (TMD) also furnishes a rich variety of semimetals, e.g., 1T'-MoTe₂^{25,26}, 1T'-WTe₂^{27,28}, 1T '-PtSe₂²⁹, and 2H-NbSe₂³⁰. These semimetals possess a broad range of work functions and are expected to create predictable and high-quality all vdWs Schottky junctions^{31,32}.

Here, we reported on a runtime reconfigurable WSe₂ SJFET with epitaxially-grown WTe₂ and mechanically exfoliated multi-layer graphene (MGr) contacts, in which the WTe₂ contact effectively suppressed the carrier injection to realize the ambipolar-to-unipolar polarity conversion controlled by the single bottom gate. Because carrier injection only allowed tunneling from the MGr contact, the WSe₂ SJFET shows an alternative carrier polarity between n-type and p-type, by applying positive and negative source-drain voltage V_{ds} , respectively. The SJFET under both p-type and n-type unipolarity conditions suppressed the leakage currents to $2 \times 10^{-10} \,\mu\text{A}/\mu\text{m}$, while the controllable I_{ds} on/off ratios with a maximum of 10⁶ retained. The static power consumption induced by the leakage off-state I_{ds} current was suppressed to 10^{-5} nW. The SJFET also worked as an electrically gate-tunable Schottky rectifier with a near-unity ideality factor of -1.0 and a high rectifying ratio of 3×10^6 . The asymmetrically contacted

SJFET showed a reconfigurable photovoltaic performance with the open-circuit voltage $V_{\rm oc}$ substantially tuned from 0.29 V to -0.47 V and the self-powered photoresponsivity markedly tuned from 61.7 to -12.7 mA/W. Both the negatively and positively gate-biased asymmetric photodiodes showed high filling factors with a maximum of 0.68, indicating larger shunt resistance and smaller leakage. As a facile design method, the WTe₂/MGr contact strategy is also applicable to other 2D materials such as WTe₂/MOS₂ gate-tunable n-type Schottky diode, to boost 2D reconfigurable SJFETs in applications towards low-static-power-consumption and run-time reversible photovoltaic electronics.

Results and discusssion

The conversion from ambipolarity to reconfigurable unipolarity The ambipolarity of the SJFET is attributed to the energy level alignments and evolution at both the source and drain Schottky contacts. Figure 1a shows the schematic of the SJFET with intrinsic ambipolar transport polarity, with its band alignment evolution and the corresponding ambipolar transfer curves schematically shown in Fig. 1b. According to the general theory of the Schottky barrier based on 2D semiconductors⁹, there are two main types of carrier injection mechanisms: (1) thermionic emission (TE) when the gate voltage V_g is smaller than flat band voltage V_{FB} , which is given by Eqs. (1) and (2):

$$I_{\text{thermal}} \approx AT^2 \exp\left(\frac{q\phi_{\text{B}}}{k_{\text{B}}T}\right) = AT^2 \exp\left(\frac{q(\phi_{\text{SB}-n} + \psi_{\text{S}})}{k_{\text{B}}T}\right)$$
 (1)

$$q\psi_{\rm S} \approx \left| \frac{V_{\rm g} - V_{\rm FB}}{\gamma} \right|, \gamma \approx 1 + \frac{C_{\rm s} + C_{\rm it}}{C_{\rm ox}}$$
 (2)

where is the φ_B barrier height, ψ_s is the surface potential, γ is the inverse band movement factor and calculated by the semiconductor capacitance C_s , the interface trap capacitance C_{ir} , and the oxide

Fig. 1 | **The transition from ambipolarity to unipolarity behavior of the Schottky junction field-effect transistor (SJFET). a** Schematic of global gated SJFET with symmetric drain (D) and source (S) contacts. **b** Schematic of ambipolar transport behavior and corresponding band structure diagram. Both n- and p-branch on-state currents are attributed to the tunneling current due to the barrier reduction and thinning. TE represents thermionic emission. DT represents

directing tunneling. **c** Offset contact geometry enabling p-type and n-type transport behavior and the corresponding band structure diagram. **d** Suppression of leakage currents by utilizing WTe₂ bottom contacts. The red and blue circles represent the hole and electron, respectively. The arrows represent the carrier injection. $V_{\rm g}$ and $V_{\rm ds}$ are the gate voltage and drain–source voltage, respectively. $I_{\rm ds}$ is the drain–source current. $V_{\rm t}$ is the threshold voltage.

https://doi.org/10.1038/s41467-023-39705-w

capacitance C_{ox} . (2) thermally assisted Fowler–Nordheim tunneling (FNT) and direct tunneling (DT) when the V_{g} exceeds the V_{FB} , which is given by Eqs. (3) and (4):

$$I_{\text{tunnel}} = \frac{2h}{q} \int_{q\varphi_s}^{\varphi_{\text{SB-n}}} f(E) M_{2D}(E) T_{\text{WBK}}(E) dE$$
(3)

$$T_{\rm WBK}(E) = \exp\left(-\frac{8\pi}{3h}\sqrt{2m^*(\varphi_{\rm SB-n}-E)^3}\frac{\lambda_{\rm SB}}{q\psi_{\rm S}}\right)$$
(4)

where is the *f*(*E*) is the Fermi–Dirac distribution of the contact metal, $M_{2D}(E)$ is the number of 2D conduction modes in the semiconducting channel, and the $T_{WKB}(E)$ is the SB transmission probability, and the λ_{SB} is the characteristic length. As shown in Fig. 1b, when a positive $V_g > V_{FB}$ is applied, the ψ_s increases and the energy-band diagram is bent upwards to enable an electron tunneling current I_{tunnel} from source to drain, which significantly contributes to the on-state current I_{on} on the n-branch. Reversely, when a negative $V_g < V_{FB}$ is applied, the ψ_s decreases, and the downward-bent band induced hole injection from the drain through direct tunneling, which contributes to the I_{on} on the p-branch. By setting V_g at zero, the DT current is suppressed, and only the lower TE current contributes to the off-state current due to the larger width of the contact barrier. Hence, when V_g exceeds the V_{FB} , both n- and p- I_{on} are dominated by the I_{tunnel} through the narrowed barrier width.

To achieve the ambipolar-to-unipolar transition, we proposed an offset contact strategy to suppress the carrier injection from the source by utilizing the shielding effect of the bottom electrode to avoid electrostatically ψ_s shifting (Fig. 1c). Firstly, we designed an SJFET with the MGr offset contacts, as shown in Supplementary Fig. 1a, in which the source and drain were contacted at the bottom and the top surfaces of the WSe₂ channel, respectively. Supplementary Fig. 1b-c show the transfer curves of the WSe₂ FET at various V_{ds} with the offset contacts. When $V_{ds} < 0$, the WSe₂ transistor showed a p-type transport polarity with an on-state I_{ds} of 0.18 μ A/ μ m. Reversely, the WSe₂ transistor showed an n-type polarity when $V_{ds} > 0$. The output curves at negative and positive Vg also indicated that the back-to-back junctions were asymmetrically modulated, as shown in Supplementary Fig. 1d. However, the carrier injection from the source side was only suppressed slightly, as shown in Supplementary Fig. 1e-g, which induced a higher off-state I_{ds} of $0.4 \times 10^{-2} \,\mu\text{A}/\mu\text{m}$ and a lower on/off ratio (~10) for the MGr-contacted WSe₂ SJFET. This weak ambipolar-to-unipolar transition was hard to be simply explained by the air-gap-induced barrier widening²⁰. The contact interaction between the WSe₂ and the bottom contact also played an important role to repress the leakage current, which will be discussed in Part III. According to our previous report based on the MGr/MoS₂/WTe₂ vertical junction³³, WTe₂ possessing an appropriate work function and weak interlayer interaction with WSe₂ is expected to enlarge the tunneling width of SB at WTe₂/WSe₂ interface. Therefore, we can optimize the bottom contact material by utilizing WTe₂ to suppress the leakage currents and fulfill the ambipolar-to-unipolar transition by only allowing carrier injection from the top contact side, as shown in Fig. 1d.

Preparation and electrical characterization of WTe₂ contacts

To obtain a high-quality WTe₂ bottom electrode, we proposed a onestep epitaxial growth method to prepare large-size WTe₂. Figure 2a shows the photograph of epitaxially-grown WTe₂ in which thicker MoTe₂ flakes were synthesized first and worked as growth seeds to provide nucleation sites and reduce the nucleation energy barrier of WTe₂. Compared to direct WTe₂ growth, the epitaxial growth of WTe₂ showed a large-size and high-quality surface and clear W(Mo)Te₂ interface, advantageously reducing the unexpected Fermi level pinning and controlling the contact barrier precisely. More information about the sample growth and characterization is in the Methods section and Supplementary Note 1. Figure 2b–d show the Raman intensity mapping indicating the heterostructure properties and excellent uniformity of $MoTe_2$ and epitaxial WTe_2 . The surface quality of the WTe_2 was probed by atomic force microscope (AFM), as shown in Fig. 2e. Both the thin WTe_2 at the edge and the thick $MoTe_2$ possessed smooth surfaces, which were expected to work as the vdWs Schottky contact with a clean and desired interface.

As a promising candidate to build the semimetal-semiconductor junction, the potential and resistance of epitaxially-grown WTe₂ were further investigated. Figure 2f shows the surface-potential image of WTe₂ measured by Kelvin probe force microscopy (KPFM). The edge WTe₂ possessed a higher surface potential compared to the thick MoTe₂ region and the difference in potential between MoTe₂ and WTe₂ was 79 meV. The work function (WF) of WTe₂ was ~5.17 eV by using Au film (WF_{Au} = 5.1 eV) as the reference (Fig. 2g). Figure 2h and i show the I_d - V_d curves of W(Mo)Te₂ with various thicknesses characterized by 2-terminal and 4-terminal methods, respectively. The measurements are detailed in Supplementary Fig. 5. Since the 4-terminal resistance (R_{4T}) eliminated the contact resistance, it was used to assess the intrinsic electrical resistance of the WTe2 (The details were discussed in Supplementary Note 2). The WTe₂ with a thickness t of ~5 nm showed the highest resistance of about $R_{4T} = 9.41$ kΩ. For the sample with thickness between t = 5-20 nm, the resistance decreased to 1.95 k Ω and the bulk sample (t > 20 nm) possessed the lowest conductivity of 0.58 k Ω (Fig. 2i). Compared to the R_{4T} , the 2-terminal resistance (R_{2T}) showed a more pronounced change with thickness, indicating the contact resistance $2R_{contact} = R_{2T} - R_{4T}$ between the transferred Au film and W(Mo)Te2 increased with the decreased thickness, as shown in the inset of Fig. 2j.

Further, the current density ($V_{ds} = 0.1$ V) of WTe₂ devices at different temperatures was measured by the 2-terminal method (Supplementary Figs. 6-7). The current density of WTe₂ with a small thickness of ~5 nm was positively correlated with the temperature. As the thickness increased, the WTe₂ exhibited a weak temperature dependence. However, the WTe₂ with a thickness larger than 20 nm showed a negative temperature coefficient of current density, as shown in Supplementary Fig. 7b-d. This metal-semiconductor transition was consistent with exfoliated W(Mo)Te2 flakes in previous reports³⁴, which may be attributed to contact resistance and the surface absorption of the hydroxyl group in ambient conditions. The transfer curves of WTe2 with varied thicknesses also support this transition (Supplementary Fig. 7e-g). The bulk sample exhibited a constant source-drain current I_{ds} when the gate-voltage V_g swept, but the I_{ds} measured in the thin WTe₂ were modulated by gate-voltage steadily, showing a weak p-type characteristic, especially in the lowtemperature range.

Carrier injection capability comparison between MGr and WTe₂

To compare the carrier injection capability of different contact materials and geometries, we built the WSe₂-SJFET using symmetric top and bottom contacts with the exfoliated MGr and epitaxially grown WTe₂. All devices were fabricated by the dry-transfer method to avoid the formation of defect-induced states. Figure 3a, b show the schematics and transfer curves of the top-contacted device at various V_{ds} . Compared to the FET with top WTe₂ contacts, the FET with MGr top electrodes showed symmetric transfer characteristics with higher currents, indicating the MGr possessed higher carrier injection efficiency for both electrons and holes, which was the reason why the MGr used as the top contact. We also measured the transfer curves of the FET with other bulk or layered metal contacts, but most of these contacts showed an asymmetric carrier injection efficiency and resulted in a stronger p-branch in the I_{ds} - V_g curves, as shown in Supplementary Fig. 8. Figure 3c, d show the transfer curves of the bottomcontacted FET at varied V_{ds} . The FET with MGr bottom contacts still showed a high and symmetric on-state I_{ds}. Reversely, I_{on} of the WTe₂-

Fig. 2 | **Growth and characterization of WTe₂ bottom electrode.** a Optical image of the epitaxially grown WTe₂. Scale bar: 20 μ m. **b**-**d** Raman intensity mapping images with the characteristic peaks corresponding to A_1^7 , A_1^9 modes of WTe₂, and B_{g} , A_{g} mode of MoTe₂. Scale bar: 20 μ m. **e** Morphology of epitaxially-grown WTe₂ measured by AFM. Scale bar: 4 μ m. **f** Potential image of epitaxially-grown WTe₂ measured by Kelvin probe force microscopy. Scale bar: 4 μ m. **g** Potential image of

Au and CVD-grown WTe₂. Scale bar: 2 µm. **h** *I*–*V* curves of W(Mo)Te₂ with various thicknesses measured by the 2-terminal method. **i** *I*–*V* curves of W(Mo)Te₂ with various thicknesses measured by the 4-terminal method. **j** 2-terminal resistance (R_{2T}) and 4-terminal resistance (R_{4T}) of W(Mo)Te₂ with different thicknesses. The standard deviations were used as error bars. The inset shows the contact resistance $2R_{contact} = R_{2T}-R_{4T}$ versus the thicknesses of W(Mo)Te₂.

contacted WSe₂ device was only $-10^{-9} \mu A/\mu m$ at $V_{ds} = 1 V$, which was six orders of magnitude lower than that of the MGr-contacted FET, the same behavior as shown in the output characteristics (Supplementary Fig. 9b, c). The results suggested that the WTe₂ bottom contacts exhibited a lower carrier injection efficiency due to the self-shielding effect of bottom contact¹⁴, weak interfacial interaction, and vdWs-gapinduced tunneling barrier at the WTe₂/WSe₂ interface.

To explain the contact-geometry-induced suppression of carrier injection, we show the schematic of the current flow pathways in a typical MS surface contact geometry in Fig. 3e–i, where the current flow from metal (A) to channel (D) passes through two regions including the vdWs gap at MS interface (B) and the WSe₂ overlapped with metal (C). We further reduce the surface contact region of WSe₂ FETs into a resistor network under the diffusive approximation, and the contact R_C is expressed in the transmission line model³⁵:

$$R_{\rm c} = \sqrt{\rho_{\rm sc} r_{\rm c}} \coth(L_{\rm c}/\sqrt{\rho_{\rm sc} r_{\rm c}}) \tag{5}$$

where ρ_{SC} is the sheet resistance of the 2D semiconductor beneath the contact, r_c is the specific resistivity of the MS interface, L_c is the contact length, respectively. For the top contact geometry, modulated by the global bottom-gate, ρ_{SC} was decreased as the amplitude of V_g increased, which reduced the R_C and improved the on-state currents. However, for the bottom contact geometry, ρ_{SC} was hardly tuned by

the bottom gate due to the shielding effect of the electrode, resulting in a large contact resistance and a poor on-state current density. The shielding effect of the bottom electrode was also verified by simulation using the COMSOL Multiphysics package, as shown in Supplementary Fig. 10, in which both the electric field and carrier density of the WSe₂ atop the bottom contact were hardly to be modulated by V_g . Besides, the vdWs gap between the channel and the vertical side wall of the bottom contact (Supplementary Fig. 10b–o also led to the large and nonadjustable contact resistance due to the large interface resistance r_c^{36} , which was discussed in the previous report²⁰. The same tendency could be derived from the schematic energy-band diagrams of the MS structures. As shown in Fig. 3h, the width of the n-type (p-type) Schottky barrier was narrowed as the V_g increased (decreased) in the WTe₂ top contact geometry. In contrast, it is difficult to be modulated in the WTe₂ bottom contact geometry (Fig. 3f).

Apart from the contact geometry, the contact materials were also important. Supplementary Fig. 11 shows the potential difference at the WSe₂/WTe₂, and WSe₂/MGr interfaces measured by KPFM. Compared to the potential difference between WSe₂ and MGr, there existed a smaller potential difference of 37 meV between WTe₂ and WSe₂, indicating that their WFs were horizontally aligned; therefore, WTe₂ had a small charge transfer doping to the WSe₂ and avoided the ψ_s shift of the contacted WSe₂. Meanwhile, for the MGr bottom contact, the electrical contact was dominated by the edge interface of the MGr

Fig. 3 | **Carrier injection capability of the bottom MGr and WTe₂ contacts. a** Schematic and the transfer curves of MGr top-contacted FET. **b** Schematic and the transfer curves of WTe₂ top-contacted FET. **c** Schematic of and the transfer curves MGr bottom-contacted FET. **d** Schematic and the transfer curves of WTe₂ bottom-contacted FET. **e**, **f** Schematic of bottom-contacted WTe₂-WSe₂ and the network of contact resistances, and the corresponding schematic of the energy-band diagram. E_c , E_v , and E_s represent the energies of the conduction band, valence band and Fermi level in 2D semiconductor, respectively. E_m is the work function of the contact metal. SB represents the Schottky barrier. **g**, **h** Schematic of top-contacted WTe₂-WSe₂ and network of contact resistances, and the corresponding schematic for product metal.

of the energy-band diagram. **i**, **j** Schematic of MGr-WSe₂ and network of contact resistances, and the corresponding schematic of energy-band diagram. The dashed line in the energy-band diagram indicates the band evolution induced by $V_{\rm g}$. Brown spheres: selenium atoms. Rose red spheres: tellurium atoms. Green and purple spheres: tungsten atoms. Gray spheres: carbon atoms. Regions A-D represent the metal contact, the interface gap, the contacted semiconductor, and the channel semiconductor region, respectively. ρ sc is the sheet resistance of the semiconductor overlapped with the contact, r_c and r_e are the specific resistivities of the contact gap and edge, respectively, $L_{\rm C}$ is the contact length.

electrode (Fig. 3j), which was thinner than that of WTe₂ contacts and difficult to suppress the tunneling injecting current. To verify that, the flat-band barrier heights (SHB) of the MGr bottom contact are calculated by 2D thermionic emission mode, as shown in Eq. $(6)^9$:

$$I_{\rm ds} = \left[AA^*T^{1.5}\exp\left(-\frac{q\Phi_{\rm B}}{k_{\rm B}T}\right)\right] \left[\exp\left(\frac{qV_{\rm ds}}{k_{\rm B}T} - 1\right)\right] \tag{6}$$

where *A* is the junction area and A^* is the effective Richardson–Boltzmann constant. The obtained Φ_B as a function of V_g is shown in Supplementary Fig. 9, which indicated that the I_{on} of both p- and n-branch was based on the tunneling mechanism due to the gate-thinned barrier.

The few-layered WTe₂ also showed a weak interfacial interaction with the orbital overlapping to WSe₂, compared to the Au film which possessed a similar WF to WTe₂. We measured the potential difference of WSe₂ on Au and WTe₂ substrate using the WSe₂ on SiO₂ wafer as the reference (Supplementary Fig. 12). The results showed a positive potential difference (-300 meV) between WSe₂ on Au film and the WSe₂ on WTe₂ flake, indicating an unexpectedly strong doping effect of Au film due to the interfacial state, such as metal-induced gap states (MIGS), defect states, and the interface dipoles³⁷. Meanwhile, we also compared the intensity and shape-variation of the Raman characteristic peaks of WSe₂ on Au and WTe₂ flake (Supplementary Fig. 13). For out-of-plane vibrational A_{1g} mode affected by the electrostatic environment change, its full width at half maximum (FWHM) was enlarged as WSe₂ overlapped on Au film compared that of WSe₂ overlapped on WTe₂ (Supplementary Fig. 13c-f), indicating the strong charger transfer doping effect on Au film^{38,39}. The detailed comparison is discussed in Supplementary Note 3.

Reconfigurable unipolar WSe₂ SJFET with asymmetric contact

To suppress the ambipolar behavior while the high on-state performance retained, we fabricated a WSe₂ SJFET with bottom-contacted WTe₂ and top-contacted MGr electrode, as the drain and source contacts, respectively, as shown in Fig. 4a. The optical images of the devices are shown in Supplementary Fig. 9a and the thicknesses of the MGr, WSe₂, and WTe₂ were 13.2 nm, 6.2 nm, and 11 nm, respectively. The transistor characteristics were dominated by both source-drain polarity and control. When V_{ds} was positively biased, as shown in Fig. 4b, the WSe₂ SJFET showed an n-type characteristic, and the onstate current (I_{on}) increased to $6 \times 10^{-3} \,\mu$ A/µm as V_{ds} increased to $1 \,\text{V}$. Meanwhile, the off-state current was suppressed to $-10^{-10} \,\mu$ A/µm at $V_{ds} = 1 \,\text{V}$ and $V_g = -60 \,\text{V}$, hence, a maximum on/off ratio higher than 10^6 was achieved.

When V_{ds} was negatively biased shown in Fig. 4c, the WSe₂ FET displayed a p-type characteristic with I_{on} of $1.1 \times 10^{-2} \mu A/\mu m$ at $V_{ds} = -1V$. Similar to the n-type one, V_t increased as the amplitude of V_{ds} decreased, but the leakage current still remained to

Fig. 4 | **Reconfigurable WSe₂ SJFET with asymmetric MGr/WTe₂ contacts. a** Schematic of asymmetrically contacted WSe₂ SJFET. **b** Pseudo-color transfer plots of the device at $V_{ds} > 0$ showed the n-type polarity. **c** Pseudo-color transfer plots of the device at $V_{ds} < 0$ showed the p-type polarity. The red dash lines indicated the threshold voltage V_t . **d** V_{ds} -dependent effective field-effect mobility and the I_{ds} on/ off ratios. All field-effect mobilities were extracted from the linear regimes. **e**, **f** Barrier heights of the device at $V_{ds} = 1$ V and $V_{ds} = -1$ V. The Schottky barrier

be below $1.9 \times 10^{-9} \mu A/\mu m$ at $V_{ds} = 1 V$ and $V_g = -50 V$. Note that the threshold voltage (V_t) shifted with increasing amplitude of V_{ds} , because the strong drain electric field penetrated into the channel region and thinned the barrier, resulting in compromised gate-control capability, which was named by the drain-induced barrier lowing (DIBL) effect⁴⁰. The source-drain current I_{ds} on/off ratio at different V_{ds} was summarized in Fig. 4d, showing that the on/off ratio of p-type SJFET was tuned continuously more than 10⁶ and all off-state currents were suppressed at $2.6 \times 10^{-8} \mu A/\mu m$. Meanwhile the on-state I_{ds} of SJFET in the offset geometry were not decreased in comparison with that of WSe₂ FET with the symmetric top contact geometry, as shown in Supplementary Fig. 14.

The off-state leakage power consumption was calculated by $P_{\text{static}} = V_{\text{ds}} \times I_{\text{ds}}$. When $V_{\text{ds}} = 1$ V, the P_{static} of the n-type FET was 1.8 $\times 10^{-5}$ nW at $V_{\text{g}} = -50$ V with a high on/off ratio, although the p-type FET shows a higher P_{static} of 2.7×10^{-4} nW at $V_{\text{g}} = 50$ V. To verify the necessity of the offset contact geometry, we also measured the asymmetric FET in the top contact and bottom geometries, both of which could not simultaneously achieve the ambipolarity to unipolarity conversion (low leakage current) and a high I_{ds} on/off ratio (Supplementary Fig. 15). Meanwhile, we also replaced the bottom electrode with the Au film, as shown in

height is extracted under a flat-band gate voltage ($V_{\rm FB}$) condition, which was responsible for the start of deviations from the linear behavior. **g** Output characteristics of the device at varied gate voltages. **h** Gate-dependent rectifying ratios of the device. The gray-green dashed line represents the mean value of the ideality factors. **i** Comparison of ideality factor *n* and off-state current of MoS₂^{7,21,41-45} and WSe₂^{14,46-50} SJFET in previous reports.

Supplementary Fig. 16. The bottom-Au-contacted FET showed poor reconfigurability, verifying the WTe₂ indeed played an important role in the polarity control. In addition, the effective two-terminal field-effect mobility (μ_{eff}) for electron and hole on varied V_{ds} were also calculated by Eq. (7):

$$\mu_{\rm eff} = \left(\frac{dI_{\rm ds}}{dV_{\rm g}}\right) \left(\frac{L}{WC_{\rm i}V_{\rm ds}}\right) \tag{7}$$

where $V_{\rm g}$ is the applied back gate voltage and $C_{\rm i}$ is the capacitance of the SiO₂ dielectric layer (-11.5 nF/cm²). Figure 4d shows that the $\mu_{\rm eff}$ of electron for the WSe₂ FET was almost twice the $\mu_{\rm eff}$ of hole for the device with the MGr contacts. Both $\mu_{\rm eff}$ of electron and hole were strongly influenced by $V_{\rm ds}$ since the calculated effective $\mu_{\rm FET}$ were limited by the contact barrier. To qualify the $V_{\rm ds}$ -induced switching of transport polarity, we measured the barrier heights of the asymmetric SJFET at variable temperatures (Supplementary Fig. 17). The $\Phi_{\rm B-n}$ and $\Phi_{\rm B-p}$ of top-MGr contact were obtained from the slope of a linear fit to ln ($I_{\rm ds}/T^{1.5}$) as a function of $1/k_{\rm B}T$, by employing the 2D thermionic emission Eq. (6). Figure 4e, f show that the $\Phi_{\rm B-n}$ at $V_{\rm ds}$ = 1V was extracted at $V_{\rm FB}$ = 17V to be 79 meV and the $\Phi_{\rm B-p}$ at $V_{\rm ds}$ = -1V was extracted at $V_{\rm FB}$ = -3V to be 142 meV, although the p-branch $I_{\rm on}$ indicated that both p- and n- I_{on} were mainly attributed to the tunneling currents, hence the barrier width instead of height determined the onstate current density.

Figure 4g shows the reconfigurable rectifying behavior of the SJFET with different V_g in which the rectifying direction was switched by V_g . The maximum rectifying ratio reached 3×10^6 in the positive rectifying direction and 2.5×10^5 in the negative rectifying direction, whereas the rectifying ratio of the all-MGr-contacted WSe₂ Schottky diode was only about 10 at $V_{ds} = \pm 1$ V. To further evaluate the rectifying performance of the gate-tunable WSe₂ Schottky junction diode, an ideality factor (*n*) was estimated at a small forward bias (here is 0.02–0.35 V) by fitting to Schottky diode Eq. (8).

$$I_{\rm ds} = I_{\rm s} \left[\exp\left(\frac{V_{\rm ds}}{nV_{\rm T}} - 1\right) \right] \tag{8}$$

where I_{ds} , I_s , V_{ds} , and V_T denote the drain current, reverse leakage current, drain voltage, and thermal voltage, respectively. As the gate voltage swept from positive to negative in Fig. 4h, the ideality factor *n* derived from the parameters of the fitting equation was nearly fixed on 1 with negligible variation, indicating a near-ideal diode attribute in the reconfiguration process. Figure 4i summarizes the reported ideality factors and off-state current of the 2D SJFET, indicating the high quality of the asymmetric contacted SJFET and the application potential towards lower static power dissipation.

The reconfigurable rectifying operation was based on unpinned energy level at the MGr/WSe₂ interface and the strong carrier-injection suppression capability of WTe2. As shown in Supplementary Fig. 18, when $V_{g} > 0$ at $V_{ds} > 0$, the gate-electric field induced strong electron accumulation and reduced the ψ_s of the MGr-contacted WSe₂. Hence the SB width was thinned to promote the electron injection from MGr through the DT (Supplementary Fig. 18b). In contrast, when $V_g < 0$, the width of barrier at WTe₂/WSe₂ interface remained constant due to the shielding effect, which reduced the off-state hole current leakage (Supplementary Fig. 18c). Reversed carrier injection process happened at $V_{ds} < 0$ (Supplementary Fig. 18d–f), only holes were allowed to be injected from the MGr side when $V_{g} < 0$. The WTe₂ contacting strategy can also be applied to fabricate the reconfigurable MoS₂ SJFET (Supplementary Fig. 19). The SJFET with Au/WTe₂ contacts showed a gatetunable rectifying characteristic with rectification ratios ranging from 1 to 10⁵. Compared to similar transport curves of Au/MGr contacted SJFET at $V_{ds} = \pm 1 V$ (Supplementary Fig. 19d and e), the transport behavior of Au/WTe2 contacted device was determined by the sign of $V_{\rm ds}$, because the electron injection from WTe₂ was inhibited, as shown in Supplementary Fig. 19c.

Gate-tunable photo-response of the SJFET

Because the SJFET is regarded as equivalent to two back-to-back Schottky junctions at the asymmetric contact interfaces, the photoresponse was tuned by both the V_{ds} and the V_{g} . We used two devices to investigate the photo-response and the optical image are shown in Supplementary Fig. 10a, b. The data in Fig. 5a-c were derived from sample 2#. We first investigated the photocurrent Ip and photoresponsivity at positive and negative I_{ds} when $V_g = 0$ (Supplementary Fig. 20), which showed a nearly linear increase with the laser power intensity. More details of power-dependent photo-response are shown in Supplementary Note 4. More importantly, the SJFET also showed a potential as a self-powered photodetector due to its tunable photovoltaic performance. Supplementary Fig. 20c shows the powerdependent temporal short-circuit current I_{sc} at $V_g = 0$. The I_{sc} was slightly lower than the photocurrents at the same power density, but the photovoltaic response had a smaller dark current and a lower power consumption since V_{ds} was not required.

The photovoltaic responses of the WSe₂ FET were further tuned by V_{g} . Figure 5a, b shows the output curves on varying positive and negative V_g under the same laser power series ($P_{in} = 3.5 \text{ mW/cm}^2$, and a wavelength of 635 nm). With $V_{\rm g}$ positively increasing, $I_{\rm sc}$ and opencircuit $V_{\rm oc}$ gradually entered the saturated region. The negative $V_{\rm g}$ modulated behavior was similar. The gate-tunable $V_{\rm oc}$ and $I_{\rm sc}$ were summarized in Fig. 5c, showing that the $V_{\rm oc}$ was tuned from 0.29 V to -0.47 V and the self-powered responsivity $R_{\rm sc}$ was tuned from -12.7 mA/W to 61.7 mA/W. Figure 5d, e shows that regardless of the positive and negative gate bias, Isc and output electrical power density showed an exponential increase with light power intensity, and $V_{\rm oc}$ also monotonically increased (Fig. 5f). Hence the power conversion efficiency η_{PV} calculated by $\eta_{PV} = P_{out}/P_{photo}$ was almost fixed at 0.37% at $V_g = 60$ V and 0.15% at $V_g = -60$ V, respectively, although the incident power increased by two orders of magnitude. Although the output electrical power density and V_{oc} were effectively modulated through the gate control under varying laser power density, I_{sc} showed a weak gate-tunable capability, in which the corresponding self-powered responsivity reached 30 mA/W at $V_g > 10$ V and 1 mA/W at $V_{\rm g}$ < -10 V, respectively. The filling factor (FF) qualifies how closely a photovoltaic device acts as an ideal source. Figure 5g, h show the gate-modulated FF of the SJFET at varying incident power density due to the change of V_{oc} . As the amplitude of V_g increased, the SJFET yielded an increased FF, reaching 0.60 at $V_g = -60$ V and 0.68 at $V_{\rm g}$ = 60 V. Supplementary Table 1 shows a photovoltaic performance comparison among the asymmetric contacted WSe₂ SJFET and the previously reported photovoltaic devices, which implies the high photovoltaic performance of WSe₂ SJFET at both positive and negative $V_{\rm g}$. The reversible photovoltaic performance rendered the asymmetric SJFET to work as the self-powered logic inverter at an ambient light level, as shown in Fig. 5i and Supplementary Fig. 20d, with $V_{\rm g}$ as the input signal and $V_{\rm oc}$ as the output signal. Even at low illuminance level ($P_{in} = 0.1 \text{ mW/cm}^2$), the logic inverter still showed the obvious $V_{\rm oc}$ switch from -0.2 V to 0.28 V, which further decreased the static power dissipation in integrated circuits due to null V_{ds} applied on the SJFET.

Conclusions

In conclusion, we proposed a contact-engineered SIFET with the reconfigurable polarity and low leakage current, achieved by employing the asymmetrically vdWs semimetal contacts in which the carriers were only injected from the MGr contact and the injection was suppressed at the epitaxially-grown WTe₂ bottom contact. The asymmetrically contacted WSe₂ SJFET in the offset geometry showed the conversion between ambipolarity and unipolarity and the alternative carrier polarity was determined by the drain bias. Meanwhile, the leakage currents were effectively suppressed to $2 \times 10^{-9} \,\mu\text{A}/\mu\text{m}$ and the device showed a controllable I_{ds} on/off ratio with a maximum of 10⁶. The off-state leakage power consumption was reduced to 10⁻⁵ nW (ntype) and 10^{-4} nW (p-type) at $V_{ds} = \pm 1$ V. Also, the WSe₂ SJFET also exhibited a reversible rectifying behavior with a maximum rectifying ratio of 3×10^6 and an ideality factor of 1. Advantageously from the electrically gate-tuned contact barrier, the drain-engineered SIFET exhibited a runtime reversible photovoltaic performance in which the sign of the photo-responsivity was substantially tuned and the $V_{\rm oc}$ was switched markedly between the -0.47 V and 0.29 V. Furthermore, based on the photovoltage-reversible properties of the photodiode, a logic optoelectronic device was designed to realize the switch between positive situation to negative situation by manipulating the gate voltage. This contact engineering strategy is generally applicable to other 2D materials such as the electrically gate-tunable n-type MoS₂ Schottky diode. The modulation of carrier injection in 2D materials also provides an alternative route to reduce the logic-circuit complexity and promises innovation for the future applications of computational sensors and optical communications.

Note: during revision of this manuscript, we became aware of a related work²⁰.

Fig. 5 | **The photovoltaic performance of asymmetric contacted SJFET. a**, **b** Gatedependent output curves of the device under illumination (635 nm). Dashed lines were measured in the dark. **c** Gate modulation of the responsivity (R_{sc}) at $V_{ds} = 0$ V and open-circuit voltage V_{oc} , respectively. **d**, **e** Output electrical powers at $V_g > 0$ and $V_g < 0$ as a function of drain-source voltage, respectively. P_{in} is the incidentlight intensity. The dashed line indicates the increasing trend of V_{oc} with P_{in} . **f** Output electrical power at $V_g > 0$ and $V_g < 0$ as a function of incident-light density.

The inset shows V_{oc} vs incident power density. the incident power density. η_{PV} is the power conversion efficiency. The standard deviations were used as error bars. **g**, **h** Fill factor (FF) at $V_g > 0$ and $V_g < 0$ as a function of the incident power density. The FF increased with the increasing amplitude of V_g . **i** Logic inverter based on the gate switchable photovoltaic performance. The white light power intensity was ranged from 0.1 mW/cm² to 30 mW/cm².

Methods

One-step epitaxial growth of WTe2. The molten-salt-assisted thermal chemical vapor deposition (CVD) method was used to synthesize WTe₂. A mixture of 20 mg hydrate (NH₄)₆Mo₇O₂₄·4H₂O, (NH₄)₁₀W₁₂O₄₁·xH₂O (Sigma-Aldrich) and sodium cholate (Sigma-Aldrich) in a mass ratio of 5:5:1 and the SiO₂ substrate was placed in the middle of the heating zone, with a Te lump placed 1 cm away from the substrate. Throughout the growth process, a carrier gas mixture of H₂/ Ar at a flow rate of 10/100 sccm was utilized. The temperature of the heating zone gradually increased to 760-860 °C and held for 3-5 min. By using these two mixed hydrates as the precursor, the MoTe₂/WTe₂ semimetal heterostructures were epitaxially synthesized in a one-step method in which the thicker MoTe₂ flakes were synthesized firstly, then the WTe₂ epitaxially were grown along the edges of MoTe₂. As the reaction time increased, the interspaces of MoTe₂ frameworks were covered with the polycrystalline WTe₂ to form a continuous MoTe₂/WTe₂ film, as shown in Supplementary Fig. 2e. More information about the sample growth is detailed in Supplementary Note 1.

Material characterization. AFM (Bruker, Dimension Icon) in the tapping mode TUNA mode were employed to measure the thickness of device, while the contact potentials of the different areas were measured via the Kelvin probe force microscopy. Micro-Raman investigation was performed using HORIBA LabRAM HR Evolution system with 532 nm laser excitation (the laser spot was ~1 µm). The morphology and chemical composition distribution of WTe₂/MoTe₂ were analyzed by SEM, and XPS (Thermo Fisher Scientific, K-Alpha+). The crystal structure of 2D flakes was characterized by the TEM (FEI Tecnai F200 systems) operated at 80 kV. The TEM sample was prepared using PMMA-supported wet-transfer method.

Electrical characterization. The SJFET devices were tested in a Cascade probe station under high vacuum conditions. The electrical measurement was performed through the Keithley 4200 semiconductor characterization system. Electrical conductivity measurements were taken from 340 K to 80 K with a cooling rate of 2 K/min. The dwell time at each test temperature was 10 min. The 635 nm lasers were used for light illumination and controlled by the Thorlabs ITC 4001. The power density was 30 mW/cm². During the measurements, the devices were positioned at the center of the light spot.

Data availability

Relevant data supporting the key findings of this study are available within the article and the Supplementary Information file. All raw data generated during the current study are available from the corresponding authors upon request.

Code availability

The code that supports the findings of this study is available from the corresponding author upon request.

References

- 1. Myeong, G. et al. Dirac-source diode with sub-unity ideality factor. *Nat. Commun.* **13**, 4328 (2022).
- 2. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. *Nat. Nanotechnol.* **15**, 545–557 (2020).
- Sun, X. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. *Nat. Electron.* 5, 752–760 (2022).
- 4. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. *Nat. Electron.* **3**, 383–390 (2020).
- Wu, F. et al. Vertical MoS₂ transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).
- 6. Lee, S.-J. et al. Programmable devices based on reversible solidstate doping of two-dimensional semiconductors with superionic silver iodide. *Nat. Electron.* **3**, 630–637 (2020).
- 7. Zhang, X. et al. Near-ideal van der Waals rectifiers based on all-twodimensional Schottky junctions. *Nat. Commun.* **12**, 1522 (2021).
- Fei, W., Trommer, J., Lemme, M. C., Mikolajick, T. & Heinzig, A. Emerging reconfigurable electronic devices based on twodimensional materials: a review. *InfoMat* 4, e12355 (2022).
- Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. *Chem. Soc. Rev.* 47, 3037–3058 (2018).
- Liu, X., Choi, M. S., Hwang, E., Yoo, W. J. & Sun, J. Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. *Adv. Mater.* 34, 2108425 (2022).
- 11. Hu, W. et al. Ambipolar 2D semiconductors and emerging device applications. *Small Methods* **5**, 2000837 (2021).
- Xu, L., Qiu, C., Peng, L. & Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. *Nano Res.* 14, 976–981 (2021).
- Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. *Nature* 605, 262–267 (2022).
- Du, J. et al. Gate-controlled polarity-reversible photodiodes with ambipolar 2D semiconductors. *Adv. Funct. Mater.* **31**, 2007559 (2021).
- Li, X.-X. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. *Nat. Commun.* 8, 970 (2017).
- Liu, L., Zhao, C., Ding, L., Peng, L. & Zhang, Z. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. *Nano Res.* 13, 1875–1881 (2020).
- Qiu, C. et al. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano 9, 969–977 (2015).
- Wu, H. et al. Multifunctional half-floating-gate field-effect transistor based on MoS₂-BN-Graphene van der Waals Heterostructures. Nano Lett. **22**, 2328–2333 (2022).
- Wang, F. et al. Uncovering the conduction behavior of van der Waals ambipolar semiconductors. *Adv. Mater.* **31**, 1805317 (2019).

- 20. Zhang, G. et al. Reconfigurable two-dimensional air-gap barristors. ACS Nano **17**, 4564–4573 (2023).
- 21. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. *Nature* **557**, 696–700 (2018).
- Kong, L. et al. Doping-free complementary WSe₂ circuit via van der Waals metal integration. *Nat. Commun* **11**, 1866 (2020).
- 23. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. *Nature* **593**, 211–217 (2021).
- Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. *Science* 361, 387–392 (2018).
- Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe₂. Science **372**, 195–200 (2021).
- Xu, X. et al. Scaling-up atomically thin coplanar semiconductormetal circuitry via phase engineered chemical assembly. *Nano Lett.* 19, 6845–6852 (2019).
- 27. Song, S. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky–Mott limit. *Nat. Electron.* **3**, 207–215 (2020).
- Lee, C.-S. et al. Epitaxial van der Waals contacts between transitionmetal dichalcogenide monolayer polymorphs. *Nano Lett.* 19, 1814–1820 (2019).
- 29. Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe₂ FETs. *Adv. Mater.* **29**, 1604230 (2017).
- Vu, V. T. et al. One-step synthesis of NbSe₂/Nb-Doped-WSe₂ metal/ doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact. ACS Nano 15, 13031–13040 (2021).
- Lyu, J., Pei, J., Guo, Y., Gong, J. & Li, H. A new opportunity for 2D van der Waals heterostructures: making steep-slope transistors. *Adv. Mater.* 32, 1906000 (2020).
- Tao, L., Zhou, Y. & Xu, J.-B. Phase-controlled epitaxial growth of MoTe₂: Approaching high-quality 2D materials for electronic devices with low contact resistance. J. Appl. Phys. **131**, 110902 (2022).
- Zhou, Y. et al. Vertical nonvolatile schottky-barrier-field-effect transistor with self-gating semimetal contact. *Adv. Funct. Mater.* n/a, 2213254 (2023).
- Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe₂. *Nat. Phys.* **11**, 482–486 (2015).
- Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to twodimensional semiconductors. *Nat. Mater.* 14, 1195–1205 (2015).
- Chen, R.-S., Ding, G., Zhou, Y. & Han, S.-T. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C https://doi.org/10.1039/d1tc01463c (2021).
- Zheng, Y., Gao, J., Han, C. & Chen, W. Ohmic contact engineering for two-dimensional materials. *Cell Rep. Phys. Sci.* 2, 100298 (2021).
- Zhao, W. et al. Lattice dynamics in mono- and few-layer sheets of WS₂ and WSe₂. Nanoscale 5, 9677–9683 (2013).
- Buscema, M., Steele, G. A., van derZant, H. S. J. & Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS₂. *Nano Res.* 7, 561–571 (2014).
- 40. Liu, Y., Wang, P., Wang, Y., Huang, Y. & Duan, X. Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors. *Nano Res.* **13**, 1943–1947 (2020).
- Pezeshki, A., Shokouh, S. H. H., Nazari, T., Oh, K. & Im, S. Electric and photovoltaic behavior of a few-layer α-MoTe₂/MoS₂ dichalcogenide heterojunction. *Adv. Mater.* **28**, 3216–3222 (2016).
- Li, H.-M. et al. Ultimate thin vertical p–n junction composed of twodimensional layered molybdenum disulfide. *Nat. Commun.* 6, 6564 (2015).
- 43. Zhang, X. et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano **13**, 3280–3291 (2019).

- Lv, L. et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. *Nat. Commun.* **10**, 3331 (2019).
- Deng, Y. et al. Black phosphorus-monolayer MoS₂ van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014).
- Kim, K.-H. et al. High-efficiency WSe₂ photovoltaic devices with electron-selective contacts. ACS Nano 16, 8827–8836 (2022).
- Jin, T. et al. Two-dimensional reconfigurable electronics enabled by asymmetric floating gate. *Nano Res.* 15, 4439–4447 (2022).
- Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. *Nat. Nanotechnol.* 9, 257–261 (2014).
- Yang, Y., Huo, N. & Li, J. Gate-tunable and high optoelectronic performance in multilayer WSe₂ P–N diode. J. Mater. Chem. C 6, 11673–11678 (2018).
- 50. Yang, Z. et al. WSe₂/GeSe heterojunction photodiode with giant gate tunability. *Nano Energy* **49**, 103–108 (2018).

Acknowledgements

The work is in part supported by the Research Grants Council of Hong Kong, particularly, via Grant AoE/P-701/20, 14206721, National Natural Science Foundation of China, Grant Nos. 62005051, 62104165 and 62274114. The Natural Science Foundation of Jiangsu Province, Grant No. BK20210713. Gusu Youth Leading Talent, Grant No. ZXL2021452, RGC Postdoctoral Fellowship, CUHK Group Research Scheme, CUHK Postgraduate Studentship, CUHK Postdoctoral Fellowship, CUHK Fund for Joint Research Labs.

Author contributions

Y.Z. and J.-B.X. conceived the idea and designed the experiments. J.-B.X. supervised the whole project. Y.Z. carried out device fabrication, measurements, and analysis. Z.C. conducted the numerical simulation. L.Tao and Y.P. contributed to the discussions. Y.Z., L.Tong, Z.C., and J.-B.X. contributed to the discussions and co-wrote the manuscript with input from all the co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-39705-w.

Correspondence and requests for materials should be addressed to Jian-Bin Xu.

Peer review information *Nature Communications* thanks Dong Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023