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Scalable graphene sensor array for real-time
toxins monitoring in flowing water

Arnab Maity1,4, Haihui Pu1,2,3,4, Xiaoyu Sui1,2,3, Jingbo Chang1, Kai J. Bottum1,
Bing Jin1, Guihua Zhou1, Yale Wang1, Ganhua Lu1 & Junhong Chen 1,2,3

Risk management for drinking water often requires continuous monitoring of
various toxins in flowing water. While they can be readily integrated with
existing water infrastructure, two-dimensional (2D) electronic sensors often
suffer from device-to-device variations due to the lack of an effective strategy
for identifying faulty devices from preselected uniform devices based on
electronic properties alone, resulting in sensor inaccuracy and thus slowing
down their real-world applications. Here, we report the combination of wet
transfer, impedance and noise measurements, and machine learning to facil-
itate the scalable nanofabrication of graphene-based field-effect transistor
(GFET) sensor arrays and the efficient identification of faulty devices. Our
sensorswere able to perform real-time detection of heavy-metal ions (lead and
mercury) and E. coli bacteria simultaneously in flowing tap water. This study
offers a reliable quality control protocol to increase the potential of electronic
sensors for monitoring pollutants in flowing water.

Inadequate management of drinking water exposes hundreds of
millions of people worldwide to dangerous contaminants1,2 which
can threaten public health and lead to the transmission of various
diseases such as diarrhea and cancer3. The United Nations’ Sus-
tainable Development Goals call for universal and equitable access
to safe and affordable drinking water that is free from fecal (e.g.,
bacteria) and priority chemical contaminations (e.g., heavy metals)
by 20304. Therefore, there is a growing need to identify potential
health hazards in water to provide early warning and prevent cata-
strophic events, which requires intelligent, fast, adaptable, and
continuous sensing systems to forecast water contamination.
Compared to the time-consuming, expensive, and bulky experi-
mental setups of state-of-the-art mass-spectrometry-based techni-
ques which limit their capabilities for continuous online
monitoring, electronic sensors show promise in accomplishing this
task due to their superior performance (e.g., rapid response, high
sensitivity and selectivity, low cost, and easy operation) and
potential for integration with existing water infrastructure and
wireless data transmission5.

Two-dimensional (2D) layered nanomaterial-based field-effect
transistors (FETs) have been successfully demonstrated for chemical
and biological sensing (e.g., heavy-metal ions, gas/bio-molecules, and
bacteria)6–19. However, commercialization of 2D FET sensors20 for real-
time water sensing still remains challenging for scale-up fabrication,
primarily because of poor device quality control, leading to device-to-
device variations in response trends, calibration, and reliability. Cur-
rent attempts to address these issues have largely focused on the
prerequisite step of controlling the sensor’s channel materials,
including the large-scale chemical vapor deposition growth for 2D
nanomaterials21–23, printing their thin films directly24–27, spin-coating,
and self-assembly on the substrate28–30. Among these, the wet transfer
of 2D layered nanomaterials in the solution phase onto the substrate
by spin-coating can be an efficient, versatile, and rapid approach for
the large-scale nanofabrication of electronic devices30. Nevertheless,
identifying a single sheet of nanomaterial and the subsequent pat-
terning of a single pair of electrodes in a FET sensor is a tedious and
energy- and cost-intensive effort. In contrast, the parallel connection
of multiple flakes by interdigitated electrodes can scale-up fabrication

Received: 22 February 2021

Accepted: 26 June 2023

Check for updates

1Department of Mechanical Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 2Pritzker
School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 3Chemical Sciences and Engineering Division, Physical Sciences and
EngineeringDirectorate, ArgonneNational Laboratory, 9700S.CassAve., Lemont, IL 60439,USA. 4These authorscontributedequally: ArnabMaity,Haihui Pu.

e-mail: junhongchen@uchicago.edu

Nature Communications |         (2023) 14:4184 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2615-1347
http://orcid.org/0000-0002-2615-1347
http://orcid.org/0000-0002-2615-1347
http://orcid.org/0000-0002-2615-1347
http://orcid.org/0000-0002-2615-1347
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39701-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39701-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39701-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39701-0&domain=pdf
mailto:junhongchen@uchicago.edu


of 2D FETs more quickly while reducing power consumption and thus
commercialization costs. However, there is not yet a holistic approach
available that can compensate for device variations by directly corre-
lating the faulty sensor devices with non-destructive measurements to
isolate them in the large-scalemanufacturing process, nor inmodeling
the sensor responses of ideal-like devices with advanced data analysis
to attain highly accurate predictions.

Here, we report on the strategic control of the quality of 2D FET
sensor devices during scale-up fabrication using a bottom-up
approach that enables reliable and real-time monitoring of toxins in
flowing water, as demonstrated in a graphene-based field-effect tran-
sistor (GFET) sensor array. Heavymetals (lead andmercury) and E. coli
bacteria were selected as representative pollutants for testing because
they are major contaminants in drinking water supplies. Technically,
wafer-scale sensor devices were first fabricated by the wet transfer of
single-layer graphene oxide (GO) dispersion in water and the sub-
sequent patterning of interdigitated electrodes to pre-screen uniform
devices by their electronic properties.We found that amajority (~60%)
of devices after thermal annealing achieved a relatively narrow elec-
tronic distribution (variation within ±10% with respect to the mode
value) for both the resistance and the drain current on/off ratio. This
initial fabrication process with narrow distributions of electronic
properties is only a prerequisite step for obtaining a uniform response
tendency from sensor devices. Faulty devices were then successfully
identified by correlating the non-ideal response behaviours (i.e.,
bidirectional) with the measured impedance ratio of Zˊ/Z˝ > 1000 at
low frequencies, which is likely attributed to optically invisible defects
in the top dielectric layer (3-nm Al2O3). The drain current noise power
spectral density (PSD) further indicated the absence of any significant
types of defect traps in the as-deposited Al2O3 in near-ideal sensor
devices after pre-screening and validated the effect of chemical gating
from the surface adsorption. The responses of the GFET sensor array
for the simultaneous detection of selected heavy metals and bacterial
species in flowing water were finally calibrated by machine learning
(ML) modeling with high-precision classification and quantification at
the ppb (cfu/mL) level.

Results
Scalable nano-fabrication of GFET sensor array
The sensing signal from a FET sensor is typically transduced from the
surface potential (i.e., gating effect) into change in the channel con-
ductance G (or resistance R) upon the surface adsorption of target
analytes. The sensor response for multiple n-type/p-type semi-
conductor nanoflakes connected in parallel between a pair of source-
drain electrodes can be described by G (over R for the simplicity of
mathematical representation here) as

ΔG
G

=qΔQ
PN

i μiwihiPN
i σiwihi

, ð1Þ

where q, ΔQ are the elementary charge and change in the concentra-
tion of major charge carriers, μ, σ, w, and h are the major carrier
mobility, conductivity, lateral width, and height of an individual flake,
respectively, and N is the total number of flakes. Here, ΔQ is treated as
constant in a global gating and sensing environment (i.e., the analyte-
binding-induced gating effect is shared). Equation (1) can be reduced
to that of a single flake device if both the intrinsic and extrinsic
properties (i.e., μ, σ, w, and h) are the same for all individual flakes.
However, these properties are generally different and thus lead to
device-to-device variations (especially for non-crystalline channel
materials, while the extrinsic properties can still vary for crystalline
materials). An effective way to reduce such variation is to increase the
total number N of single flakes and combine them into an ensemble.

Our strategy to advance the transition of FET sensors from proof-
of-concept into real-world applications starts with large-scale device

fabrication with quantified measures to mitigate device-to-device
variations (Fig. 1a). To this end, wafer-size nanofabrication was carried
out by spin-coating the channel materials in the solution phase to a
wafer substrate and patterning interdigitated electrodes (100 pairs)
for parallel connection, where monolayer GO dispersion in water was
piloted as the precursor of the sensor channel (Fig. 1b). To eliminate
the adverse effect of ion accumulation on the electrodes (due to the
direct contact between the source-drain electrodes and water) and to
enable the gating effect for sensing, 80-nm SiO2 was electron-beam
evaporated as the protection layer for electrodes only, while a 3-nm
Al2O3 layer via atomic layer deposition (ALD) acts as the top-gate
dielectric. Au nanoparticles (Au NPs) were then sputtering coated on
the surface of Al2O3 as the anchoring sites for probes (Fig. 1c and
Supplementary Fig. 1a–c). After probe conjugation, the Au NP – probe
complexes act as the sensing gate, the surface charge of which can be
altered after binding with the specific analytes. The sensor is thus
chemically gated31 due to the electric field from the charged sensing
gate. The electric field penetrates through the insulating Al2O3 layer
and modulates the conductivity of the underlying channel as mea-
sured by the drain current at a constant drain voltage. The fabricated
devices show the p-type transfer characteristics with Ohmic contact at
the rGO-Au electrode interface (Supplementary Fig. 1d) after thermal
annealing into reduced GO (rGO) (Supplementary Fig. 2). Moreover,
most devices (~60% or ~30 of 50 in total) are closely distributed within
the range of ~11 ± 1 kΩ and ~2 ±0.2 (i.e., variation within ±10% with
respect to the mode value) for the resistance and the on/off current
ratio (Supplementary Fig. 1e, f), respectively. These pre-selected
devices will be further screened by fault diagnosis, as described in
the following section, where the selected devices will be subjected to
sensor testing with L-cysteine, thioglycolic acid (TGA), and anti-E. coli
antibody as the specific probes for detecting Pb2+, Hg2+ ions, and E. coli
bacteria (Fig. 1d), respectively.

Minimization of device variation and fault diagnosis
The sensing experiments reveal that FET sensors do not always exhibit
a one-directional exponential response, which can be considered as
ideal from the Langmuir’s theory of adsorption32. Instead, a bidirec-
tional response could often be observed33–36 which may make it diffi-
cult to accurately predict the concentration of detected analytes.
Therefore, it is crucial to identify and isolate the defective devices by
correlating with non-ideal responses before testing in real water. To
this end, developing a non-destructive testing (NDT) procedure (i.e.,
without damaging the actual sensing layer) will significantly advance
the rapid screening of devices by obtaining knowledge about their
behaviour a priori.

Optical microscopy can be used to identify visible structural
defects caused by fabrication, such as unsuccessful lift-off and dis-
continuous coating of the SiO2 protection layer (Supplementary Fig. 3a
and Supplementary Fig. 3b). Despite being straightforward, such a
method is tedious and thus inefficient when it comes to isolating the
faulty devices during large-scale fabrication. More importantly, invi-
sible defects (e.g., tiny cavities, Fig. 2a) are common, cannot be easily
identified, and may adversely affect device performance, thus limiting
the overall efficacy of optical microscopy as a pre-screening tool. For
example, the film quality of the top gate dielectric layer (3 nmAl2O3) is
key to our sensor performance. Upon adsorption of charged species, a
perfect dielectric layer acts as a capacitor because the charges only
accumulate on its surface. To characterize the quality of the dielectric
layer, we developed an alternative approach by exploiting the wide-
range and high-frequency (1Hz – 5MHz) impedance measurements.
Specifically, this dielectric layer with capacitance CDL is treated as a
constant-phase element (CPE), which is in parallel connection with the
channelmaterialwith resistanceRCH. The electrical impendenceofCPE
at 1 Hz can be calculated as ZCPE =

1
2π ∣~ZCPE ∣ expð�nπi=2Þ, where n= 1

for an ideal capacitor and n=0 for a pure resistor. For a defective
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dielectric layer (0<n<1), its Nyquist plot will be squeezed from the
semicircle (Fig. 2a).

Our pre-screening starts from the impedance measurements in
deionized (DI) water. By considering the contact resistance RCR and
capacitance CC at the interface between the channel material and
source/drain electrodes, the equivalent circuit of our sensor structure
is a serial connection of RCH CDL and RCR CC. Since CDL and CC will have
different values (typically CDL >CC), there will be a supressed semi-
circle in the Nyquist plot which can be decomposed into two (quasi-)
semicircles with CDL (RCH) and CC (RCR) lying in the low- and high-
frequency regions, respectively. Figure 2b, c show theNyquist plots for
the ideal and non-ideal devices (i.e., without and with significant
defects), where the ideal response is represented by a one-directional
exponential (Fig. 2d) and the non-ideal response by a bi-directional
exponential (Fig. 2e, f) when exposed to the Pb2+ solution. Impedance
analyses clearly showed that the CPE parameter of the ideal-like devi-
ces (n =0:91) is larger than that of the defective devices (n =0:79). To
identify the critical value that can separate the ideal responses from
the non-ideal responses, the response transients are fitted with the
superposition of two exponential functions that represent two com-
petitive behaviors during sensing: the gating-induced current from the

surface adsorptionof Pb2+ ions and thedefect-induced charge trapping
from channel to the dielectric layer. The normalized response tran-
sient RðtÞ could be introduced as

R tð Þ= ½1� exp � t
τG

� �
� � RTr

RG
½1� exp � t

τTr

� �
�, ð2Þ

where RG and RTr are the amplitudes of the gating and the charge-
trapping-induced response with respective time constants τG and τTr .
Using this equation, the normalized response transients were well
fitted for both the ideal (Fig. 2d) and non-ideal (Fig. 2e, f) responses. To
correlate RTr=RG with the quality of CPE, Fig. 2g shows the plot of CPE
parameters (measured before sensing measurements) against RTr=RG,
which decays exponentially and should be negligible for ideal-like
devices but is much larger for defective devices. For the given
concentration of Pb2+ ions, the maximum normalized response is ~ 5%,
as shown in Fig. 2d (ii). If one order of magnitude difference between
the charge trapping and gating effects (i.e., RTr=RG =0:005) is defined
as the quantitative criterion to isolate the faulty devices, n is
extrapolated to be ~0.91 from the exponential fitting. This shows
promising potential for predicting the behavior of devices prior to
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Fig. 1 | Wafer-scale nanofabrication and functionalization of the graphene-
based field-effect transistor (GFET) sensor array. a Schematic nanofabrication
strategy with device preselection (fault diagnosis) using impedancemeasurements
tominimize device variation in order to achieve a near-ideal response pattern. Each
step of the testing/analysis procedures is schematically shown (i-v) with the cor-
responding descriptions in the inset. b Spin-coating graphene oxide (GO) disper-
sion onto an entire wafer substrate for the deposition of patterned electrodes. The
photographs show the wafer-size sensor devices after dicing and a single device

with a droplet of test solution on the surface. c The nanofabrication steps of the
rGO-based FET sensor device include electrode deposition by e-beam lithography,
deposition of the SiO2 protection layer on the electrode using e-beam lithography,
3-nm atomic layer deposition (ALD)-derived Al2O3 acting as the top gate oxide,
sputtering Au nano-particles (NPs) as anchoring sites for probes, and probe func-
tionalization. d Schematic steps of the probe functionalization for Sensors 1-3 with
specific biochemical and antibody probes.
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sensing (i.e., diagnosing the faulty devices) and can thus significantly
minimize device variations. Note that the measurement of the leakage
current between the source and the gate electrodes can alsobeused to
characterize the quality of the top dielectric layer; however, this fails
when either charge carriers in the channel or ions in the solution are
only trapped without a diffusion path in the dielectric layer (see
Supplementary Note 1). To expedite the procedure, we further
calculated the Zˊ/Z˝ vs. frequency for various devices in the low-
frequency region (1, 10, 100Hz) and plotted for both types of devices
(Fig. 2h). A clear transitionwas observed from the good to bad devices,
suggesting that Zˊ/Z˝ < 1000 can be used as a criterion for ideal-like
devices, thus eliminating the need for impedance spectra fitting. This
electronic isolation of faulty devices is faster and accurate, and
thus could be useful for large-scale device scanning and isolation.

A comparison of the response distribution from the same concentra-
tion of toxins (5 ppb Pb2+) with and without device preselection is
shown in Supplementary Fig. 4, and the range of the sensing response
is much narrower after preselection.

Noise spectral analysis on GFET under sensing environments
Due to its potential for integration with existing technologies and
infrastructures for widespread diagnostic applications, the time-
domain measurement of the total electronic response (e.g., drain
current) in a FET sensor is commonly employed as the sensor signal for
real-time monitoring of target analytes. However, its sensitivity and
selectivity can be limited by the electronic noises, especially when the
measured sensing signal is small (i.e., low signal-to-noise ratio at a low
concentration of target analytes). Defects and surface states are
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intrinsic sources of noises which can cause fluctuations in charge
carrier mobility and number. As a result, noise analysis in the sensor
device can both provide a wealth of information about its fabrication
quality and serve as a highly sensitive and non-destructive method for
pre-screening. Complementary to the impedance studies above, the
low-frequency drain current noise PSD is further adopted to char-
acterize the quality of the top gate’s dielectric layer and its interface
with sensor channel. As a generic phenomenon in FET-type electronic
devices, generation-recombination (G-R) of the electronic charge
carrier (i.e., trapping-detrapping) caused by defects in the gate oxide
near the channel surface (the interface between Al2O3 and rGO in our
sensor shown in Fig. 3a) will lead to fluctuations in the current.
Determined by its distance from the channel (d1, d2, etc.), each defect
has its own characteristic time constant τ and gives rise to a bulge in
the shape of the Lorentz function, the envelope of which in a certain
range can result in the 1/f noise (or flicker noise). When exposed to the
sensing environment, the envelope evolution of the drain current
noise PSD could generate either a Lorentzian hump over the 1/f
backgroundnoiseby a significant type of traps or simply a vertical shift
by chemical gating (faulty vs. ideal-like devices, also see Supplemen-
tary Note 2)37–40.

To benchmark the quality of the top dielectric layer, the noise
amplitude vs. the frequency of our GFET device was first measured at

negative (0 to −40V) and positive (0 to 40 V) bottomgate bias (Fig. 3b,
c), respectively. Since noise in graphene is dominated by mobility
fluctuation, Hooge’s empirical law41,42 is used to describe the drain
current 1=f noise PSD (SI)

SI =NA
I2

f β
, ð3Þ

whereNA and I are thenoise amplitude andmeancurrent, respectively.
β is the fitting parameter, and deviation from its ideal value of 1 indi-
cates the superposition of random telegraph signal (RTS) on the pure
mobility fluctuation 1/f noise. The obtained value of β is ~1 for the
bottom dielectric layer (300 nm-thick SiO2). We then conducted the
noise measurements in water for various concentrations of Pb2+ ions
(0-20 ppb). Due to the positive electric field, the increase in gate
voltage at increasing lead-ion concentrations sequentially decreases
the drain current level (Supplementary Fig. 5). The noise PSD of 1/f
dependence with vertical shifts against concentration (Fig. 3d)
indicates the chemical gating from the adsorption of Pb2+ ions, thus
surface modification by various bio-chemical probes and antibodies
will not essentially change any intrinsic behaviors of the devices in the
sensor array structure. In addition, fitting the 1/f power spectrum in
water yields a value of β ~ 2, suggesting the presence of RTS. Thus,
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defects in 3-nmAl2O3 across the rGO channel is inevitable and intrinsic
from the ALD technique. However, the absence of G-R bulges implies
that the as-deposited Al2O3 in the preselected devices from the
impedance measurements functions as a decent dielectric layer.

To further validate this, the noise pattern against the gate bias is
measured under both ambient and sensing environments. The mea-
sured noise in air shows a V-shaped pattern against the bottom gate
biaswithminimumaround the chargeneutrality point (Supplementary
Fig. 6a). However, it changed into an M-shaped behavior when
exposed to Pb2+ and E. coli (Supplementary Fig. 6b). Such transition
into the M-shaped noise pattern might be due to the long-range
scattering43 and spatial charge inhomogeneity44 from Pb2+ and E. coli
adsorption on the sensor channel (discrete distribution of Au NPs as
the top gate electrode vs. uniformSiO2/Si substrate as the bottomgate
electrode). To quantify the gate bias exerted from the surface
adsorption,Grahame’s Eq. (4) is adopted to approximate itsmagnitude
around 298K, as shown below:

φ=
2kBT
e

sinh�1 eσλD
2εε0kBT

� �
, ð4Þ

λD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0kBT

e2
P

iZ
2
i Ci Mð Þ

s
, ð5Þ

where the surface potential φ is governed by the charge density σ and
Debye length λD, which depends on the ionic concentration Ci (in
Molar) and its valence charge Zi in tap water. εðε0Þ is the relative
dielectric constant in water (vacuum permittivity), while kB and T are
the Boltzmann constant and temperature in K, respectively. λD in Eq.
(5) for our tap water sample is ~ 4.5 nm when only the major minerals
are considered (see Methods). The estimated maximum molecular
probe density45 of the closely self-assembled, monolyer L-cysteine
(negatively charged) is ~−6e nm−2;φ in Eq. (4) can then be calculated as
~−285mV, which is equivalent to a bottom gate bias of −26.3 V
(dielectric constant of thin ALDAl2O3film (~3.6)46 is comparable to that
of 300-nm thick SiO2 (3.9)). This sets the upper limit of change in the
top gate bias from the surface adsorption of lead as its concentration
increases. The estimated top gate bias and measured noise pattern
suggest that the pre-screened sensor devices are reliable for the
subsequent measurements in flowing tap water.

Sensing measurements of toxins in flowing tap water
To enable continuous sensing in flowing water, the GFET sensor array
with three individual sensor chips is housed in a 3D-printed closed-
loop chamber, which is powered by a piezoelectric pump to allow the
water flow between it and the external container through the inlet and
outlet vessels (Fig. 4a–c). Prior to the sensor tests, it should be noted
that the performance of a FET water sensor can be affected by other
factors as well, especially the pH (Supplementary Fig. 7) and the ionic
strength of the sample solution. At the detection level (ppb) for the
heavy-metal ions of interest here, both pH and ionic strength can be
considered as constants for the tested tap water (pH~ 7.7 and Debye
length of ~4.5 nm) since they are dominated by the stray ions at much
higher concentrations (e.g., Na, Mg, Ca at ppm level). Moreover, the
sizes of the selected molecular probes (~ sub-nm) are smaller than the
Debye length and electric fields from the surface-adsorbed heavy-
metal ions will eventually cause the resistance change in the sensor
channel.

During the sensing test at room temperature, water droplets
containing heavymetals and E. colibacteria at different concentrations
were continuously injected into the external container with clean tap
water as the background. By recording the resistance change of the
sensor channel with time, the presence of heavy metals and E. coli
bacteria can be both identified and quantified. Figure 4d–f shows the

typical response transients from Sensors 1-3 in the sensor array for
Pb2+, Hg2+ ions, and E. coli bacteria, fromwhichwe can see the stepwise
increase and decrease of the sensor response (i.e., resistance) for
heavy-metal ions and E. coli bacteria. This can be expected for the
p-type semiconducting channel of rGO, since heavy-metal ions are
positively charged and E. coli bacteria are negatively charged (zeta
potential from −4.9 to −33.9 mV47) at the pH of tap water (~7.4). The
sensor response is up to ~10% for Pb2+ and ~16% for Hg2+ ions at 100
ppb, while down to ~−45% at 104 cfu/mL. In addition, the sensor
response can be distinguished clearly from the background at the
concentration of 2.5-5 ppb and cfu/mL for heavy-metal ions and E. coli
bacteria, respectively. Considering the dilution effect of the back-
ground water, the effective limit of detection can be lower. To further
confirm that the sensor response is due to the presence of detected
toxins, the cyclic response and sensor recovery were tested by alter-
natively injecting the toxin solution and the clean tap water. Indeed,
opposite sensor responses were observed, though desorption of tox-
ins from the sensor surface (i.e., sensor recovery) is a relatively slower
process than their adsorption on the sensor surface (Supplemen-
tary Fig. 8).

The selectivity study for Sensors 1-3 (Fig. 4g–i) revealed minimal
cross-sensitivity among the sensors. The unidirectional exponential
response transients for each specific device ensured there was no
charge carrier leakage from the channel into the top gate oxide or the
secondary contribution of current during measurement as the con-
centration increased. The specific affinity towards heavy metals with
cysteine, glutathione, and TGA can also be found elsewhere15,48,49.
Other bacteria (with the non-pathogenic E. coli strain DH5a and the
plant-pathogenic bacterium Dickeya dadantii 3937) present in flowing
water with Sensors 1-3 (Supplementary Fig. 9) showed a negligible
interaction with all devices. It is noted that some cross-sensitivity was
observed in Sensor 1 (targeted for Pb2+) in higher concentrations of
Hg2+ ions. This can be compensated by the machine learning (ML)
model, as discussed later. Besides, the much lower sensor response
(within ~+/−2%) compared to the sensitivity tests in Fig. 4d–f (from ~
−45% to 16%) during the testing period (e.g., 500−800 s) suggest that
the drifting of the background signal can be reasonably neglected.

Machine-learning-assisted classification and quantification
The sensing performance of a single sensor is typically calibrated by
revealing the one-to-one relationship between the target concentra-
tion and the sensing response.While predictions from such calibration
could be accurate for a single type of analyte, it can fail with the pre-
sence of other types of interference analytes, especially atmuchhigher
concentrations. For example, as summarized in Fig. 5a, for the sensor
response of a single type of analyte only, Pb2+ (Hg2+) ions at low con-
centrations will not be differentiated from Hg2+ (Pb2+) ions at a much
higher concentration simply by the sensing response from a single
device. This issue also cannot be addressed by processing the sensing
data from multiple devices independently (e.g., calibrating Pb2+, Hg2+,
and E. coli individually from the sensor array). Here, we selected the
time-domain response output acquired at the same time for each
individual device in the sensor array for ML-assisted classification and
quantification in various mixture conditions. Using the concurrent
multi-sensor responses as inputs after exposing the sensor array to
various combinations of toxins (mixed ions and bacteria), principal
component analysis (PCA) successfully classified and quantified the
target components (Fig. 5b–e). Despite someoverlap among the target
species in the low-concentration region (<2.5 ppb or cfu/mL), they are
well below the corresponding thresholds for tap water standards
regulated by theWorldHealthOrganization50,51. Hence, it would still be
highly significant to obtain an early-warning signature if quantified
properly. To do so, the sensor array data was further analyzed using a
two-layer feedforward artificial neural network (ANN) as shown in
Fig. 5f, which was tested for various numbers of neurons in the hidden
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layer, with the minimum mean squared error (MSE) at 10 neurons
(Fig. 5g). Indeed, the predicted outputs from the trained ANN model
show the successful quantification of each individual toxic element in
their various mixtures (Fig. 5h, i).

Discussion
The sensing performance of a FET sensor is governed by its transfer
characteristics which are intrinsic to the channel material. The statis-
tical values of the electronic properties in the rGO channel from the
wet transfer technique can be further tailored by the fabrication and
annealing conditions. While a CPE parameter n of > 0.91 could be a
generic quantitative criterion for FET sensors with an ideal-like top
dielectric layer (i.e., independent of its thickness and type), the iden-
tified ratio of Zˊ/Z˝ < 1000 in the low-frequency range (1-100Hz) can

be specific to the channel material and sensor architectures (e.g., its
lateral size, contact resistance). The unique value of Zˊ/Z˝ for other
materials and sensor structures can be straightforwardly obtained by
repeating the procedures of impedance measurements, as described
in Fig. 2. The low-frequency noise measurement will not only signify
the presence (G-R bulge) and absence (vertical shift or chemical gat-
ing) of a significant type of defect trap over the 1/f noise background,
but also show amuch higher sensor response (Supplementary Fig. 10),
thereby providing opportunities either in ultralow detectionwhenever
necessary or sensing in harsh environments when the sensor response
can be dampened (e.g., by much higher ionic strength and the pre-
sence of interference substances in other types of water sources like
rivers, lakes, or wastewater). The detection and expansion of other
types of emerging toxins (e.g., pharmaceuticals, pesticides, per- and
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Fig. 4 | Measurements of a GFET sensor array in a flowing water system.
a Schematic experimental setup for continuous sensing.The sensor array housed in
the chamber is sealed with a polydimethylsiloxane (PDMS) mold from the source-
drain contact. Water is drawn by the piezoelectric motor into the sensor chamber
and then continuouslyflows back to the external container tomimic thewaterflow.
b Photograph of a 3D-printed sealed chamber with the sensors embedded inside.

Inset is the cell interior.cPhotographof apiezoelectricmicromotor and anexternal
water container connected to the sealed sensor chamber. d–f Response transient
patterns for Sensor 1 (Pb2+), Sensor 2 (Hg2+), and Sensor 3 (E. coli), respectively.
g–i Selectivity studies for Sensor 1 (Hg2+ and E. coli), Sensor 2 (Pb2+ and E. coli), and
Sensor 3 (Pb2+ and Hg2+), respectively. The arrows signify when the target toxin
solutions were added.
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polyfluoroalkyl substances) in water can be further realized by simply
replacing the specific probes and increasing the number of individual
devices in the sensor array, while the predication accuracy can be
recalibrated by optimizing the number of neurons in the hidden layer
and/or in the hidden layer itself when training the ML model for clas-
sification and quantification. The reversibility and reproducibility of
the sensors are central to their practical applications. Depending
on the binding kinetics between the target analyte and its specific
probe, the time scale for a sensor to return to its initial state will vary.
While fast recovery is often preferred, reversible sensing can be
achieved by either selecting and designing specific probes with mod-
erate binding strength or by applying an external bias to accelerate
surface detachment through the electrostatic repulsion. Finally, con-
sidering that the property of tapwater from different sources can vary
in a wide range (e.g., pH, hardness, etc.) due to the regional regulation,
the real field applications are promisingwhen amore sophisticatedML
model can be constructed to incorporate more relevant parameters
such as pH, ionic strength, and environmental temperature for a more
accurate prediction.

In summary, we demonstrated a scalable approach for developing
GFET sensor array devices functionalized with multiple biochemical
ligands and antibodies as specific probes for detecting heavy metals

and E. coli bacteria simultaneously in running tap water. The wafer-
scale deposition of GO dispersion by spin-coating on the silicon sub-
strate provides narrow distributions of both the resistance and current
on/off ratio, which are highly desirable in electronic sensors for com-
mercialization. To eliminate the sensors with non-ideal sensing kinet-
ics, ideal-like devices could be pre-selected by the high-frequency
impedance and low-frequency noise measurements. With the aid of
ML,multiple toxins in real tap water flow can be successfully identified
and quantified with a high accuracy. Our strategies for the scaled-up
manufacturing of FET sensors and the minimization of device varia-
tions hold promise for future dynamic prediction of various toxic
substances in tap water in real time for water risk management.

Methods
Large-scale nanofabrication of GFET sensors
Customized monolayer (99%) GO dispersion in water with a lateral
flake size of 5-10 μm (GaoxiTech, 10mg/mL) was spin-coated onto the
silicon wafer with a 300-nm SiO2 layer, which was pre-treated with
oxygen plasma to enhance its surface hydrophilicity. Then, 20mL GO
dispersion,whichwasdiluted 16 times,wasfirst placedon thewafer for
2 s and then spin-coated at 1500 revolutions per minute (rpm) for 30 s
such that individual GO flakes were uniformly distributed on the wafer
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Fig. 5 | Machine learning (ML)modeling for classifying and quantifying various
mixed ionic andbacterial species inflowingwater. aSummaryof responses from
Sensors 1-3 for Pb2+, Hg2+, and E. coli shown in Fig. 4d–i. b–e Principal component
analysis (PCA) plots for the classifications of Pb2+, Hg2+, E. coli, and their mixtures.
f, g Schematic of a two-layer artificial neural network (ANN) used for training and
mean squared error (MSE) values for various numbers of neurons in the hidden

layers. h, i Plots of the test and the predicted concentrations for Pb2+, Hg2+, and E.
coli (ppb or cfu/mL) and theirmixtures from the trained ANNmodel. Here, the dash
line (Y = T) represents the perfect match between the test and the predicted con-
centrations for unknown samples while the solid line represents the fitting of the
target concentrations predicted from the trained ANN model.
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surface. Two steps of lithography were used to fabricate the sensor
device. The gold (Au) electrodes were first deposited into the inter-
digitated pattern (a finger width of 2μm, an inter-finger spacing of
5 μm, and a thickness of 50 nm) defined using a Maskless Aligner
(MLA150). After that, an 80 nm-thick SiO2 layer was thermally evapo-
rated to conformally encapsulate the interdigitated Au electrodes by
masking the GO surface using a photoresist. Due to the atomic thick-
ness, the developer solution might have some impact on electronic
properties of the rGO (e.g., scattering the charge carrier and degrading
its mobility). The SiO2 passivation layers can exclude solution-induced
interference to the device from the contact pad (rGO-Au interface)
with only the sensing region accessible for analytes. Next, the wafer
was diced into individual sensors using a circular diamond cutter and
then washed with ethanol to remove the photoresist. The diced sen-
sors were kept in an ALD chamber (200 °C) to deposit the top gate
oxide (3-nm Al2O3) on the sensor surface. The top gate acts as the
surface passivation to prevent direct charge transfer to the channel
from the test solution. Finally, Au nanoparticles (Au NPs) were uni-
formly deposited onto the device using a sputter-coater instrument
(Quorum Q300T, 3 s pulse duration at 10mA).

Morphological and electronic characterizations
An S-4800 UHR Hitachi field-emission scanning electron microscope
(SEM) was used to characterize the surface morphology of the sensor
device at an acceleration voltage of 10 kV. The atomic force micro-
scopy (AFM) characterization was conducted with a 5420 AFM from
Agilent Technology (Cantilever PPP-NCH) in ACAFM mode. Raman
spectroscopy was performed with a Renishaw Raman spectrometer
(1000B). X-Ray photoelectron spectroscopy (XPS, HP 5950A with Mg
Kα) was used to characterize the surface chemistry of GO before and
after thermal annealing. The output and transfer characteristics of the
FET sensors were measured by the Keithley 4200 semiconductor
characterization system at ambient temperature. The impedance
analyses were performed using the Ametek Scientific Instruments
(PARSTAT 4000A) with a frequency ranging from 1Hz to 5MHz by
connecting to the source-drain terminals of GFET devices.

Sensor surface functionalization with various ligands
After sputter-coating, the individual GO/Al2O3/Au NPs sensors were
thermally reduced to rGO/Al2O3/Au NPs at 400 °C for 1 h in an Argon
environment. The GFET sensor array was then modified with specific
probes. For Sensor 1, the saturated L-cysteine solution (∼5 µl) was
dropped onto its active surface inside a closed chamber for 1 h. Sensor
2 was functionalized by immersing it into 10mM TGA solution. Both
L-cysteine and TGA have the thiol group (-SH) that creates a link to the
Au NPs via the Au-S bonding. Sensors 1 and 2 were washed with deio-
nized (DI)water anddriedwithdryN2 gas. Sensor 3was immersed in an
aminoethanethiol (AET) solutionwith a concentrationof 10mMfor 1 h.
After thoroughly rinsing with DI water and drying under a stream of
nitrogen gas, the modified device was treated with a 25% glutar-
aldehyde (GA) solution at 25 °C for 1 h. The device was then incubated
in the phosphate-buffered saline (PBS) with anti-E. coli O157:H7
(10mgmL−1) antibodies at 4 °C for 12 h. Finally, the device was incu-
bated with a blocking buffer (0.1% Tween 20) for 2 h at 25 °C and then
washed with PBS.

Water sample preparation and characterizations
Mercury (II) chloride and lead (II) nitrate were used to prepare the Hg2+

and Pb2+ ion solutions in tapwater collected in the lab, pH ofwhichwas
measured by the OHAUS’ Aquasearcher™ AB33PH-B bench meter. The
pHof collected tapwater increased from7.46 to a steady-state value of
7.67 after exposure to CO2 from air. The concentrations of prepared
metal ion solutions were quantified by the inductively coupled plasma
- mass spectrometry (ICP-MS) with an error <±5%. To characterize the
ionic strength of the background tap water, the major mineral species

were also quantified by the ICP-MS that include Na+ (0.4mM), Mg2+

(0.5mM), Ca2+ (0.8mM), Cl- (0.4mM), and SO4
2- (0.2mM). When cal-

culating the Debye length in Eqs. (5), 2.2mM bicarbonate (HCO3
-) was

used tomeet the charge neutrality as it is the dominant form (~99%) of
carbon species over carbonate (CO3

2-) in water at pH <8. The bacteria
samples were obtained from the E. coli cell culture (O157:H7 cells), and
the non-pathogenic E. coli strain DH5a and the plant-pathogenic bac-
terium Dickeya dadantii 3937 were used to check the cross-sensitivity.
E. coliof 106 cfu/mL in 1x PBSwasused as the source concentration and
then diluted in tap water to specific low concentrations.

Testing the GFET sensor array in a 3D-printed chamber
The sensing tests were conducted in a 3D-printed test chamber with a
diced PDMS micro-reservoir integrated on the sensor’s active area. All
sensor devices were kept in a predefined case, with the bottom of the
case matching the dimensions of the sensor. The top part of the case
integrated with the PDMS mold matched on the bottom part. An inlet
and an outlet system were incorporated using a USB-powered piezo-
electricmotor. The top andbottomof the casewere clipped toprevent
water leakage. All the sensors were in contact with the flowingwater as
it moved through the chamber. The motor ran continuously to main-
tain an even flow of water over the sensors. During the sensing tests,
we started with 2mL background tap water in the external container
that was connected to the sensor chamber by the inlet and outlet
vessels and then added each concentration sequentially at a volumeof
2mL. An Arduino microprocessor controller with an external analog-
to-digital converter (16-bit, ADS1115) was used to connect the sensor
array to theHyperTerminal software formulti-channel data acquisition
and data storage. The controller was programmed to quickly scan
three devices consecutively in multiplexing mode. The noise analysis
was done separately with a Keithley semiconductor analyzer in a high-
speed data acquisition mode (sampling frequency of ~200Hz). After
the sensor reached equilibrium, a current of 1–5 swas collected for fast
Fourier transform analysis. The sensor response (SR =

ΔR
R0

*100%) was
defined as the relative changeof channel resistance (ΔR=R� R0) upon
exposure to the target analytes normalized to its initial value (R0). ML
analyses were performed in MATLAB with ANN trained through the
Levenberg-Marquardt algorithm. About 30 sensors were preselected
from a batch (50 devices) by resistance and drain-current on/off ratio
and further down to ~20 by NDT-based measurements. Six GFET sen-
sor arrays were finally tested against heavy-metal ions, E. coli bacteria,
and their combinations in tap water.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the corre-
sponding authors upon request.

References
1. UNICEF. Progress on Household Drinking Water, Sanitation and

Hygiene 2000–2020: Five Years into the SDGs (WHO and UNI-
CEF, 2021).

2. Turner, S.W. D. et al. Comparison of potential drinkingwater source
contamination across one hundred U.S. Cities. Nat. Commun. 12,
7254 (2021).

3. Lin L, Yang H, Xu X. Effects of water pollution on human health and
disease heterogeneity: A review. Front. Environ. Sci. https://doi.org/
10.3389/fenvs.2022.880246 (2022).

4. United Nations. The Sustainable Development Goals Report (2022).
https://unstats.Un.Org/sdgs/report/2022/ (2023).

Article https://doi.org/10.1038/s41467-023-39701-0

Nature Communications |         (2023) 14:4184 9

https://doi.org/10.3389/fenvs.2022.880246
https://doi.org/10.3389/fenvs.2022.880246
https://unstats.Un.Org/sdgs/report/2022/


5. Chen, J., Pu, H., Hersam, M. C. & Westerhoff, P. Molecular engi-
neering of 2d nanomaterial field-effect transistor sensors: Funda-
mentals and translation across the innovation spectrum. Adv.
Mater. 34, 2106975 (2022).

6. Traversi, F. et al. Detecting the translocation of DNA through a
nanopore using graphene nanoribbons. Nat. Nanotechnol. 8,
939–945 (2013).

7. Wang, Z. et al. Free radical sensors based on inner-cutting gra-
phene field-effect transistors. Nat. Commun. 10, 1544 (2019).

8. Cui, S. et al. Ultrahigh sensitivity and layer-dependent sensing
performance of phosphorene-based gas sensors. Nat. Commun. 6,
8632 (2015).

9. Vikesland, P. J. Nanosensors for water quality monitoring. Nat.
Nanotechnol. 13, 651–660 (2018).

10. Chen, X. et al. Cvd-grown monolayer mos2 in bioabsorbable elec-
tronics and biosensors. Nat. Commun. 9, 1690 (2018).

11. Mannoor, M. S. et al. Graphene-based wireless bacteria detection
on tooth enamel. Nat. Commun. 3, 763 (2012).

12. Xu, G. et al. Electrophoretic and field-effect graphene for all-
electrical DNA array technology. Nat. Commun. 5, 4866 (2014).

13. Fu, W. et al. Biosensing near the neutrality point of graphene. Sci.
Adv. 3, e1701247 (2017).

14. Maity, A. et al. Resonance-frequencymodulation for rapid, point-of-
care ebola-glycoprotein diagnosis with a graphene-based field-
effect biotransistor. Anal. Chem. 90, 14230–14238 (2018).

15. Maity, A. et al. Sensitivefield-effect transistor sensorswith atomically
thin black phosphorus nanosheets. Nanoscale 12, 1500–1512 (2020).

16. Dontschuk, N. et al. A graphene field-effect transistor as a
molecule-specific probe of DNA nucleobases. Nat. Commun. 6,
6563 (2015).

17. Schneider, G. F. et al. Tailoring the hydrophobicity of graphene for
its use as nanopores for DNA translocation. Nat. Commun. 4,
2619 (2013).

18. Mao, S. et al. Two-dimensional nanomaterial-based field-effect
transistors for chemical andbiological sensing.Chem.Soc. Rev.46,
6872–6904 (2017).

19. Kajale, S. N., Yadav, S., Cai, Y., Joy, B. & Sarkar, D. 2dmaterial based
field effect transistors and nanoelectromechanical systems for
sensing applications. iScience 24, 103513 (2021).

20. Dai, C., Liu, Y. & Wei, D. Two-dimensional field-effect transistor
sensors: The road toward commercialization. Chem. Rev. 122,
10319–10392 (2022).

21. Li, N. et al. Large-scale flexible and transparent electronics based
on monolayer molybdenum disulfide field-effect transistors. Nat.
Electron 3, 711–717 (2020).

22. Ping J & Johnson ATC. Scalable arrays of chemical vapor sensors
based on DNA-decorated graphene. in Biomimetic Sensing: Meth-
ods and Protocols (eds Fitzgerald JE, Fenniri H) 163–170 (Springer
New York, 2019).

23. Lerner, M. B. et al. Scalable production of highly sensitive nano-
sensors based on graphene functionalized with a designed g
protein-coupled receptor. Nano Lett. 14, 2709–2714 (2014).

24. McManus, D. et al. Water-based and biocompatible 2d crystal inks
for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12,
343–350 (2017).

25. Pan, K. et al. Sustainable production of highly conductivemultilayer
graphene ink for wireless connectivity and iot applications. Nat.
Commun. 9, 5197 (2018).

26. Chen, J. H. et al. Printed graphene circuits. Adv. Mater. 19,
3623–3627 (2007).

27. Torrisi, F. & Coleman, J. N. Electrifying inks with 2d materials. Nat.
Nanotechnol. 9, 738–739 (2014).

28. Becerril, H. A. et al. Evaluation of solution-processed reduced gra-
phene oxide films as transparent conductors. ACS Nano 2,
463–470 (2008).

29. Holm, A. et al. General self-assembly method for deposition of
graphene oxide into uniform close-packed monolayer films. Lang-
muir 35, 4460–4470 (2019).

30. Li, H. et al. A universal, rapid method for clean transfer of nanos-
tructures onto various substrates. ACS Nano 8, 6563–6570 (2014).

31. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for
highly sensitive and selective detection of biological and chemical
species. Science 293, 1289–1292 (2001).

32. Swenson, H. & Stadie, N. P. Langmuir’s theory of adsorption: a
centennial review. Langmuir 35, 5409–5426 (2019).

33. Park, S. J. et al. Ultrasensitive flexible graphene based field-effect
transistor (fet)-type bioelectronic nose. Nano Lett. 12,
5082–5090 (2012).

34. Lee, S. H. et al. Cytochrome c-decorated graphene field-effect
transistor for highly sensitive hydrogen peroxide detection. J. Ind.
Eng. Chem. 83, 29–34 (2020).

35. Chang, J. et al. Ultrasonic-assisted self-assembly of monolayer
graphene oxide for rapid detection of escherichia coli bacteria.
Nanoscale 5, 3620–3626 (2013).

36. Zhou, G. et al. Ultrasensitive mercury ion detection using DNA-
functionalizedmolybdenumdisulfide nanosheet/gold nanoparticle
hybrid field-effect transistor device. ACS Sens. 1, 295–302 (2016).

37. Rumyantsev, S., Liu, G., Shur, M. S., Potyrailo, R. A. & Balandin, A. A.
Selective gas sensing with a single pristine graphene transistor.
Nano Lett. 12, 2294–2298 (2012).

38. Guo,Q., Kong, T., Su, R., Zhang, Q. &Cheng, G. Noise spectroscopy
as an equilibrium analysis tool for highly sensitive electrical bio-
sensing. Appl Phys. Lett. 101, 093704 (2012).

39. Zheng, G., Gao, X. P. A. & Lieber, C.M. Frequency domain detection
of biomolecules using silicon nanowire biosensors. Nano Lett. 10,
3179–3183 (2010).

40. Li, J., Pud, S., Petrychuk, M., Offenhäusser, A. & Vitusevich, S. Sen-
sitivity enhancement of si nanowirefield effect transistorbiosensors
using single trap phenomena. Nano Lett. 14, 3504–3509 (2014).

41. Hooge, F. N. 1/ƒ noise is no surface effect. Phys. Lett. A 29,
139–140 (1969).

42. Balandin, A. A. Low-frequency 1/f noise in graphene devices. Nat.
Nanotechnol. 8, 549–555 (2013).

43. Kaverzin, A. A., Mayorov, A. S., Shytov, A. & Horsell, D. W. Impurities
as a source of $1/f$ noise in graphene. Phys. Rev. B 85,
075435 (2012).

44. Xu, G. et al. Effect of spatial charge inhomogeneity on 1/f noise
behavior in graphene. Nano Lett. 10, 3312–3317 (2010).

45. Hinterwirth, H. et al. Quantifying thiol ligand density of self-
assembled monolayers on gold nanoparticles by inductively cou-
pled plasma–mass spectrometry. ACS Nano 7, 1129–1136 (2013).

46. Groner, M. D., Elam, J. W., Fabreguette, F. H. & George, S. M.
Electrical characterization of thin al2o3 films grown by atomic layer
deposition on silicon and various metal substrates. Thin Solid Films
413, 186–197 (2002).

47. Li, J. &McLandsborough, L. A. The effects of the surface charge and
hydrophobicity of escherichia coli on its adhesion to beef muscle.
Int J. Food Microbiol 53, 185–193 (1999).

48. Chen, K. et al. Hg(ii) ion detection using thermally reduced gra-
phene oxide decorated with functionalized gold nanoparticles.
Anal. Chem. 84, 4057–4062 (2012).

49. Zhou, G. et al. Real-time, selective detection of pb2+ in water using
a reduced graphene oxide/gold nanoparticle field-effect transistor
device. ACS Appl. Mater. Interfaces 6, 19235–19241 (2014).

50. World Health Organization. A Global Overview of National Regula-
tions and Standards for Drinkingwater Quality, 2nd edn (World
Health Organization, 2021).

51. World Health Organization. Developing Drinking-water Quality Reg-
ulations and Standards: General Guidance with a Special Focus on
Countrieswith Limited Resources (WorldHealthOrganization, 2018).

Article https://doi.org/10.1038/s41467-023-39701-0

Nature Communications |         (2023) 14:4184 10



Acknowledgements
This work was supported by the U.S. National Science Foundation
under grant number CBET-1606057 (J.C.). The authors acknowledge
the technical support and instrumentation facilities at the Advanced
Analysis Facility and the Global Water Center of the University of
Wisconsin-Milwaukee. This work is also supported by the Laboratory
Directed Research and Development (LDRD) program from Argonne
National Laboratory, provided by the Director, Office of Science, of the
U.S. Department of Energy under Contract No. DE-AC02-
06CH11357 (J.C.).

Author contributions
A.M., H.P., and J.C. conceived and designed the project. H.P., J.C., and
G.L. optimized the quality control for the large-scale graphene deposi-
tion and gold electroding. X.S. and Y.W. assisted with the SEM, AFM,
XPS, and Raman characterizations of the sensor devices. B.J. and X.S.
performed the ALD deposition and gold sputtering. A.M. and K.J.B.
designed the 3D-printed microchannel cavity for the flow water testing
and themicroprocessor-based circuit and data acquisition. G.Z. assisted
with the ICP-MSmeasurements. A.M., H.P., X.S., and Y.W. performed the
impedance testing and noise measurements. A.M. carried out the bio-
chemical functionalization on the GFET sensor arrays, sensing mea-
surement in dynamic water flow, andmachine learning. H.P. carried out
the theoreticalmodeling. A.M. andH.P. performed thedata analyses and
co-wrote the manuscript. J.C. supervised the research. All authors
contributed to the scientific discussion and commented on the
manuscript.

Competing interests
J.C. and Y.W. have financial interests in NanoAffix Science LLC. The
company did not fund this work. All other authors declare no competing
interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39701-0.

Correspondence and requests for materials should be addressed to
Junhong Chen.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39701-0

Nature Communications |         (2023) 14:4184 11

https://doi.org/10.1038/s41467-023-39701-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Scalable graphene sensor array for real-time toxins monitoring in flowing water
	Results
	Scalable nano-fabrication of GFET sensor array
	Minimization of device variation and fault diagnosis
	Noise spectral analysis on GFET under sensing environments
	Sensing measurements of toxins in flowing tap water
	Machine-learning-assisted classification and quantification

	Discussion
	Methods
	Large-scale nanofabrication of GFET sensors
	Morphological and electronic characterizations
	Sensor surface functionalization with various ligands
	Water sample preparation and characterizations
	Testing the GFET sensor array in a 3D-printed chamber
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




