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Computational analysis of peripheral blood
smears detects disease-associated
cytomorphologies

José Guilherme de Almeida 1,8, Emma Gudgin2, Martin Besser2,
William G. Dunn 2, Jonathan Cooper3, Torsten Haferlach 4,
George S. Vassiliou 3,5,6 & Moritz Gerstung 1,7

Many hematological diseases are characterized by altered abundance and
morphology of blood cells and their progenitors. Myelodysplastic syndromes
(MDS), for example, are a group of blood cancers characterised by cytopenias,
dysplasia of hematopoietic cells and blast expansion. Examination of peripheral
blood slides (PBS) in MDS often reveals changes such as abnormal granulocyte
lobulationor granularity and altered redbloodcell (RBC)morphology; however,
someof these features are sharedwith conditions such as haematinic deficiency
anemias. Definitive diagnosis of MDS requires expert cytomorphology analysis
of bonemarrow smears and complementary information such as blood counts,
karyotype and molecular genetics testing. Here, we present Haemorasis, a
computational method that detects and characterizes white blood cells
(WBC) andRBC in PBS. Applied to over 300 individualswith different conditions
(SF3B1-mutant and SF3B1-wildtype MDS, megaloblastic anemia, and iron defi-
ciency anemia), Haemorasis detected over half a million WBC and millions of
RBC and characterized their morphology. These large sets of cell morphologies
can be used in diagnosis and disease subtyping, while identifying novel asso-
ciations between computational morphotypes and disease. We find that hypo-
lobulated neutrophils and large RBC are characteristic of SF3B1-mutant MDS.
Additionally, while prevalent in both iron deficiency and megaloblastic anemia,
hyperlobulated neutrophils are larger in the latter. By integrating cytomor-
phological features using machine learning, Haemorasis was able to distin-
guish SF3B1-mutant MDS from other MDS using cytomorphology and blood
counts alone, with high predictive performance. We validate our findings
externally, showing that they generalize to other centers and scanners. Collec-
tively, our work reveals the potential for the large-scale incorporation of auto-
mated cytomorphology into routine diagnostic workflows.

The diagnosis of hematological malignancies relies on expert
cytomorphological examination of blood, bone marrow and/or other
tissue biopsies, together with molecular analyses that aid sub-
classification and prognosis1. For example, anemias, characterized by

reduced hemoglobin concentration (Hb) and altered red blood cell
(RBC) numbers, can beboth a disease and a featureof other conditions
such as myelodysplastic syndromes (MDS), a heterogeneous group of
myeloid neoplasms that can progress to acute myeloid leukemia
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(AML)2–4. For this reason, the diagnosis and further subtyping of MDS
requires the detection of cytopenias, changes to white blood cell
(WBC) and RBC maturation blood cell through cytomorphologic ana-
lysis of bonemarrow (BM) and peripheral blood slides (PBS), cyto- and
histochemistry, karyotyping and immunophenotyping4–8.

An accurate diagnosis of MDS and other hematological malig-
nancies is essential to guide treatment: while megaloblastic anemia
(MA), which can be confused with MDS9–11, is generally treated with
dietary changes or supplements12, the treatment of MDS generally
involves chemotherapeutic agents, blood/platelet transfusions and
hypomethylating agents13,14 and depends on risk stratification which
considers blood counts, BM cytomorphology and cytogenetics15. Fur-
thermore, MDS prognosis can also benefit from molecular genetics,
used to define clinically-relevant MDS subtypes such as SF3B1-mutant
MDS that is associated with improved survival times16,17. It should be
noted that MDS cases with splicing factor mutations such as SF3B1-
mutant MDS account for over 50% of all cases18,19, constituting an
important MDS subtype.

While abnormalities such as an increased prevalence of hypolo-
bulatedgranulocytes, abnormalgranularity inneutrophilsor abnormal
RBC are common in MDS8,20–22, peripheral blood cell morphology is
generally insufficient for MDS diagnosis. This is compounded by chal-
lenges in the assessment of subtle cytomorphological alterations and
heterogeneity across any given PBS leading to inter-observer variation.
While diagnoses stemming from the analysis of a PBS (requiring the
analysis of hundreds of cells) typically show high concordance, the
classification and characterization of individual WBC is more
challenging23,24. Additionally, the evidence on whether trained experts
can distinguish specific cell types is conflicting25,26, and a study looking
specifically at cell type classification concordance among 28 mor-
phologists showed that experts agreed on only 60% of all classified
cells27. This creates challenges in identifying relevant cytomorphology-
disease associations. Computational methods, which have shown

promise in the characterization and prognostication of MDS and AML
using bone marrow slides28–30 and identification of abnormal
leukocytes31, can help address some of these problems.

Here we present Haemorasis, a machine-learning protocol that
automatically detects and characterizes blood cells in PBS, and apply it
to a cohort of individuals withMDS or anemia demonstrating its use in
predicting diseases and deriving novel “morphotypes”, associations
between cellularmorphology anddifferent blood conditions.We show
that SF3B1-mutant MDS can be distinguished from other MDS using
cytomorphology and blood counts alone with high predictive perfor-
mance, with hypolobulated neutrophils and large RBC being more
prevalent in this MDS subtype. Using expert-annotatedWBC and RBC,
we show that virtual cell types are enriched in commonly recognized
WBC and RBC types/abnormalities. Finally, we externally validate our
approach, showing that it largely generalizes to different centers and
WBS scanners.

Results
The MLL cohort captures previously described clinical features
of MDS and anemia
TheMLL cohortwas composedof 203male and 159 female individuals,
with mean age 66.1 (362 individuals in total). Individuals with MDS
were older than the remaining MLL cohort, with a bias towards males
as previously reported32—the chance of having MDS in our cohort
increased by 12% every year, withmales beingmore than twice as likely
to have MDS (p = 8 × 10−16 and p =0.00017, respectively, for the bino-
mial regression of MDS diagnosis based on age and sex; Fig. 1a, b;
Table 1).

Additionally, for the linear regression of WBCC against binary
MDS and anemia (vs. Normal), MDS and deficiency anemias were
associated with leukopenia (1,200 (p =0.04) and 1,800 (p =0.009)
fewer WBC/µL respectively (Fig. 1c). However, this leukopenic ten-
dency in anemias was driven by MA—whereas IDA was indistinguish-
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Fig. 1 | General features of anemias and myelodysplastic syndromes (MDS) in
the MLL cohort. a, b—Age and sex distributions of individuals according to dif-
ferent conditions, respectively. c–e White blood cell (WBC) counts, hemoglobin
concentration and platelet counts, respectively, according to different conditions.

For a, c, d, e the boxplots represent the minima and maxima (whiskers), 25% and
75%quantile (upper and lower edges of the box) and themedian (the central line of
the box), with outliers (definedaspoints not containedwithin 1.5 IQR (interquantile
range) of the 25% and 75% quantiles) signaled with black dots.
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able from controls, MA had approximately 3200 fewer WBC/μL than
controls (p=6× 10�14 for a two-sample t-test) as in previous
studies10,33,34. Hb was also much lower in MDS and anemias (Fig. 1d)—
indeed, the Hb of these individuals was lower than that of normal
individuals by 4.34 and 6.38 g/dL, respectively (p< 2× 10�16 and
p< 2× 10�16, respectively, for the linear regression ofHb against binary
MDSandanemiadiagnosis indicators).Nodifferencebetween controls
and MDS or anemia cases was observable with regards to platelet
counts (Plt), but MA had approximately 146,000 fewer platelets/µL
than controls (p= 3× 10�12 for two sample t-test; Fig. 1e) in keeping
with previous reports33.

Finally, SF3B1-mutant MDS displayed distinct features compared
to SF3B1-wt MDS—particularly, WBC and Plt were comparable to those
of controls and higher than those found in SF3B1-wt MDS (p=0:3 and
p=0:15 for two sample t-tests comparingWBC and Plt between SF3B1-
mutant MDS and controls; p=0:002 and p< 2× 10�16 for two sample

t-tests comparing WBC and platelet counts, respectively, between
SF3B1-mutant and SF3B1-wtMDS), in keeping with previous reports16,17.

To validate the disease prediction findings we will report ahead,
we also digitized slides for the CUH2 cohort (Methods) and compared
it with the MLL cohort in terms of age and blood counts. We found
statistically significant differences in Hb and Plt in controls (p =0.009
and p =0.002, respectively, for two-sided t-tests comparing between
cohorts; Table 2), all of which are a likely consequence of the differ-
ence in ages (p = 4 × 10−7). Finally, we also found relatively small but
statistically-significant differences between Hb in IDA (p = 0.001) and
age in MA (p =0.0001) and other MDS subtypes (p =0.001).

Computational cytomorphology of peripheral blood slides
We detected cells in PBS using Haemorasis (Fig. 2a). For the first stage
of this method, quality control of PBS tiles, we trained a DL model to
predict whether specific tiles are of “good” or “poor” quality

Table 1 | Statistical comparisons of different features of the MLL cohort

Variable Coefficient Standard error/difference estimate p-value Model Formula

Age 0.11 0.01 8 × 10−16 Binomial regression Has MDS ~ age + sex

Sex (is male) 1.20 0.32 2 × 10−4

Normal (vs. baseline) 6750 556 <2 × 10−16 Linear regression WBCC (/uL) ~ Condition

MDS (vs. normal) −1272 610 0.04

Anemia (vs. normal) −1880 713 9 × 10−3

Normal (vs. baseline) 14.29 0.30 <2 × 10−16 Linear regression Hb (g/dL) ~ Condition

MDS (vs. normal) −4.35 0.32 <2 × 10−16

Anemia (vs. normal) −6.39 0.38 <2 × 10−16

Normal (vs. baseline) 256 × 103 23 × 103 <2 × 10−16 Linear regression Plt (/uL) ~ Condition

MDS (vs. normal) −48 × 103 26 × 103 0.06

Anemia (vs. normal) −40× 103 30 × 103 0.2

Normal 256 × 103 [111 × 103,182 × 103] 3 × 10−12 Two-sided t-test Plt (/uL) ~ Megaloblastic anemia vs. normal

Megaloblastic anemia 110 × 103

SF3B1-mutant MDS 282 × 103 [131 × 103,200 × 103] <2 × 10−16 Two-sided t-test Plt (/uL) ~SF3B1-mutantMDSvs. otherMDS

Other MDS 117 × 103

SF3B1-mutant MDS 282 × 103 [−62 × 103,10 × 103] 0.15 Two-sided t-test Plt (/uL) ~SF3B1-mutant MDS vs. normal

Normal 256 × 103

SF3B1-mutant MDS 9.80 [−0.83,0.22] 0.25 Two-sided t-test Hb (g/dL) ~SF3B1-mutant MDS vs.
other MDSOther MDS 10.10

SF3B1-mutant MDS 6253 [655,2801] 2 × 10−3 Two-sided t-test WBCC (/µL) ~SF3B1-mutant MDS vs.
other MDSOther MDS 4525

SF3B1-mutant MDS 6253 [−1515,522] 0.3 Two-sided t-test WBCC (/µL) ~SF3B1-mutant MDS vs.
normalNormal 6750

WhenModel is “Binomial regression” or “Linear regression”, the Coefficient column refers to the coefficient in the linear regression; when theModel is “Two-sided t-test”, the Coefficient column
refers to the mean value for each Variable.

Table 2 | Differences between cohorts (MLL vs. CUH2) regarding age and blood counts (Hb hemoglobin concentration, Plt
platelet count, WBCC WBC counts) stratified by condition (Control; IDA iron deficiency anemia, MA megaloblastic anemia,
SF3B1-mutant - SF3B1-mutant MDS; Other - Other MDS subtypes)

Condition Age (years) Hb (g/dL) Plt (1000/uL) WBCC (1000/uL)

MLL CUH2 MLL CUH2 MLL CUH2 MLL CUH2

Control 33.1* [21,44] 50.6* [18.8,86.0] 13.0* [11.5,15.4] 14.3* [10.5,19.8] 208* [172,244] 256* [92,496] 7.2 [5.4,9.2] 6.8 [4.1,10.2]

Anemia IDA 47.3 [4,95] 48.8 [15.8,81.6] 7.1* [4.6,9.5] 9.2* [6.9,11.2] 382 [191,824] 376 [54,805] 7.0 [3.7,11.2] 6.9 [3.0,13.2]

MA 69.7* [68,72] 56.3* [16.2,86.5] 5.3 [2.7,6.9] 7.2 [2.2,14.6] 54 [29,97] 113 [6,318] 3.3 [2.5,4.9] 3.9 [1.2,17.5]

MDS SF3B1
mutant

66.2 [52,78] 73.7 [53.3,89.1] 10.7 [6.7,14.1] 10.1 [4.9,14.6] 135 [35,293] 115 [6,694] 4.3 [1.6,18.8] 4.5 [1.4,19.4]

Other 71.9* [52,85] 74.0* [42.3,89.3] 9.27 [5.0,13.1] 9.80 [4.7,19.6] 353 [55,861] 283 [14,780] 5.6 [2.5,10.4] 6.2 [1.2,47]

Signaledwith “*” are the values forwhich statistically different differenceswere found according to a two-sided t-test comparing both cohorts (MLL andCUH2). The presented values are themedian
and, in brackets, the range.
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(Supplementary Fig. S1a). This (i) reduces the inclusion of non-cellular
objects in downstream analyses, thus reducing artifact-associated
variation and (ii) limits processing to the clinically-relevant part of the
PBS (usually hematologists will consider <20% of the total area; Sup-
plementary Results). Next, we detect both WBC and RBC on “good”
quality tiles. To detect WBC, we trained a U-Net-based35 DL model on
a dataset of >2800 manually annotated WBC in PBS from CUH1.
Extensive data augmentation (random image alterations; Supple-
mentary Table S3) were used to make the model more robust. We
validated thismodel on test sets fromCUH1, CUH2 andMLL,with test
time augmentation (TTA) improving predictions and prediction
post-processing greatly reducing the number of false positive WBC
predictions (Fig. 2b, Supplementary Fig. S2a-c). We confirmed the

good performance of themodel through visual inspection (Fig. 2b, c,
Supplementary Fig. S2d, e) and, while some errors were detected
(Fig. 2c), these were small and rare with the model performing well
across different cohorts (Supplementary Results; Fig. 2b). RBC were
detected using a simple computer vision protocol and predictions
were filtered using XGBoost, a fast and scalable machine-learning
algorithm36 (Supplementary Methods; Supplementary Results;
Fig. 2d), ensuring that non-RBC objects in PBSs were removed and
reducing the rate of false positives from 17.3% (the false positive rate
(FPR) in the training dataset) to 1.9% (the product of the validation
FPR—11%—of our RBC filtering model FPR and the original FPR in the
dataset; in other words, only 1 out of 50 RBC candidates predicted as
RBC are false positives).

Fig. 2 | Haemorasis – automated detection and analysis of blood cells in per-
ipheral blood slides (PBS). aHaemorasis: detection and characterization of blood
cells in PBS using computer vision and machine-learning. First, the digitized PBS
goes through a deep-learning-based quality control (QC) algorithm that filters out
parts of the PBS which are too high or low in cellular density or too blurred. Then,
white blood cells (WBC) and red blood cells (RBC) are detected separately—WBC
are detected using a U-Net model, a deep-learning algorithm for segmentation,
while RBC are detected using simple computer vision methods and filtered using
machine-learning. Following this, each individual cell is characterized in terms of
shape, texture and color distribution, and annotated for visualization in QuPath77.

b U-Net performance on WBC segmentation. Segmentation post-processing was
tested on test-time augmented images. c Randomly extracted and representative
WBC detection examples and possible errors (underseg. = image under-
segmentation error). d RBC detection examples and examples of wrongly detected
and filtered RBC. Here, all RBC were detected using a simple computer vision
protocol, but wrong detections were filtered out using machine-learning (red
background). e Number of detected blood cells stratified by clinical classification.
f Association between number of detected WBC using our protocol and WBC
counts (two-sided robust R2 =0:39, CI95% = 0:30,0:49½ �0).
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Across all cohorts, for each PBSwe detected an average of 26,000
(range 70 to 133,916) RBC per PBS (a total of 12,042,425 RBC) and
around 1,400 (range 12 to 39,862) WBC/PBS (a total of 646,952;
Fig. 2e)). The cellular density for the MLL cohort was on average
smaller by 44% for RBC/mm2 and 10.5% for WBC/mm2 compared to
CUH (Supplementary Table S4; Supplementary Fig. S3a). Further het-
erogeneity was observed across conditions, with controls having the
highest WBC density and the lowest RBC density (28.9 WBC/mm2, 189
RBC/mm2), anemia having the highest RBCdensity (383RBC/mm2) and
MDS having the lowest WBC density (13.8 WBC/mm2; Supplementary
Fig. S3b). Lastly, we also noted that automated blood films produced a
higher fraction of good tiles compared to manually prepared slides
while controlling for cohort and condition—an additional 5%, high-
lighting the utility of standardization (Supplementary Fig. S3c).

In line with the findings in Fig. 1c, we extracted on average more
cells in controls than in individuals with either MDS or anemia (Sup-
plementary Table S4), although heterogeneity across slides rendered
this trend statistically insignificant. Generally, the cellular density of
detected WBC in the PBS correlated with WBCCs from automated
analysers, validating our detection protocol through an orthogonal
approach (robust R2 =0:39, CI95% = 0:30,0:49½ �; Fig. 2f), and demon-
starting thatwedetect a representative number ofWBC in PBS. Finally,
we characterized all individual cells usingmorphological features used
in other morphometric software programs37–39 (Supplementary
Table S5; Supplementary Fig. S3). For each cell, we quantified its size,
shape, color distribution and texture and for WBCs we also char-
acterized their nuclear size and shape (Supplementary Fig. S4). We
note here that our method for WBC nuclei segmentation underper-
forms in conditions of low contrast (where nucleus and cytoplasm are
hard to distinguish) or high granularity (particularly for eosinophils
and basophils; Supplementary Fig. S5), leading us to focus on cases of
high contrast and avoiding conclusions pertaining to eosinophils or
basophils.

Morphological heterogeneity informs disease prediction
We test four distinct tasks to determine whether Haemorasis can be
used to meaningfully predict conditions from PBS: (i) disease detec-
tion, (ii) disease classification, (iii) MDS genetic subtyping and (iv)
anemia classification. Morphometric moments (feature mean and
variance across all cells in a PBS) differed across different conditions
(Supplementary Results; Supplementary Fig. S6). This qualitative

assessment was corroborated by fitting a binomial elastic-net regres-
sion model (glmnet)40 for each task using morphometric moments in
addition toWBCC, Hb and Plt. Performance was evaluated using 5-fold
cross-validation (the data were split into 5 non-overlapping validation
sets while the rest was used for training, leading to less biased
models41).

Morphometric regression showed high cross-validated predictive
performance across all tasks (Fig. 3a, Supplementary Fig. S7a),
including an AUC of 89.7% forMDS genetic subtyping (Supplementary
Fig. S7a). Additionally, blood counts are highly predictive of SF3B1-
mutant MDS as indicated in Fig. 1c, e and previous publications16,17

(Fig. 3, Supplementary Fig. S7a). Notably, morphological feature var-
iance had a significant impact on prediction, revealing that cytomor-
phological heterogeneity is important for diagnosis (Fig. 3b), as
previously suggested for red cell distribution width (RDW)42. Finally,
the relative importance of different features revealed important
trends: for instance, SF3B1-mutant MDS was characterized by higher
Plt, larger RBCand smallerWBCnuclear area (SupplementaryFig. S7b).
However useful, this protocolmakes retrieving illustrative examples of
blood cells more challenging: larger RBC or more irregular WBC are
easily understandable morphometric changes, but changes in mor-
phometric variance do not permit satisfactory explanations, making
the pictorial demonstration of their importance more elusive.

Discovering diagnostically relevant morphotypes
At first inspection, the two-dimensional representation of the dis-
tribution of cytomorphological characteristics of different conditions
revealed an interwoven landscape without immediately recognizable
cell clusters (Fig. 4a). However, it becomes apparent that different
parts of the cytomorphology space are differentially populated by
different conditions. To partition this space and define morphotypes
(disease-associated cytomorphological phenotypes), we use a MIL
approach that clusters cells based on their cytomorphological char-
acteristics such that the resulting computational morphotypes (CMs)
become relevant to the aforementioned diagnostic tasks (Fig. 4b;
Supplementary Methods).

We performed Morphotype analysis simultaneously considering
the four objectives described earlier and established stable morpho-
types consistently found through 5-fold cross-validation (Supplemen-
tary Methods). Morphotype analysis performed similarly to
morphometric moment prediction when predicting conditions (Fig. 4;

a ROC curves for different prediction tasks b Variance explained by different feature groups
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datasets for each task. In b, circles are scaled according to the total explained
variance and coloured according to the feature group.
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b Morphotype analysis

a Two-dimensional representation of the relative density of white and red blood cells according to different conditions
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Supplementary Fig. S8, Supplementary Fig. S9), with the added benefit
of producing human-interpretable, disease-associated cytomorphol-
ogies. To further demonstrate this, we provide an online visualization
tool that allows readers to observe the visual cohesion of different
morphotypes (https://josegcpa.github.io/haemorasis-umap; Supple-
mentaryMethods). This approach revealed8 stableWBCmorphotypes
(denoted WCM 1–8), accounting for 60% of WBCs in normal samples,
as well as 12 stable RBC morphotypes (RCM 1–12) comprising 90% of

RBCs (Supplementary Fig. S10). These stable WBC and RBC morpho-
types displayed distinct cytomorphological characteristics, while the
remaining morphotypes were found to be of variable nature. Among
the stable morphotypes, 7 WCMs and 7 RCMs exhibited robust asso-
ciations with specific clinical conditions (Fig. 5a-c, Supplementary
Fig. S11).

Among the stable WBC morphotypes, four mostly consisted of
different neutrophil morphologies (WCM-1,2,3 and 4 in Fig. 5a, b),

0

Fig. 5 | Computational morphotypes across conditions. a The relevant pre-
valence of disease-associated computationalmorphotypes. For this heatmap, the 5
morphotypes with the highest absolute difference in median effect size between
conditions are selected for each task, and proportion ratios were calculated as the
ratio of themedian proportion for each condition.bWhite blood cellmorphotypes

(WCMs) for different conditions from Morphotype analysis. c Red blood cell
morphotypes (RCMs) for different conditions from Morphotype analysis. The
labeling forWCMs inb and theWBCheatmap in a is the same, aswell as the labeling
for RCMs in c and the RBC heatmap in a.
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highlighting their cytomorphological diversity and diagnostic rele-
vance. WCM-5 contained small lymphocytes, WCM-6 larger lympho-
cytes and myeloid progenitors, whereas WCM-7 consisted of diverse
myeloid cells. We confirmed clinically-relevant cellular phenotypes
such as the increased prevalence of abnormal neutrophils in cases of
MDS and deficiency anemia (WCM-1 and 2); in MDS, lymphocytes
(WCM-5) were less prevalent while immature myeloid cells (WCM-6)
are more prevalent as previously suggested43,44. Morphotype analysis
also identified novel morphotypes—particularly, WCM-3 (normal
hypolobulated neutrophils) appeared to be more prevalent in SF3B1-
mutantMDS, and larger and/or hyperlobulated neutrophils weremore
prevalent in MA than in IDA (WCM-2 and 4). We confirm these using
single-objective Morphotype analysis, where Morphotype analysis
models are trained on a single task (Supplementary Fig. S12). Finally,
we found that WCM-5 (small lymphocytes) were more prevalent in
anemia when compared with MDS.

Stable RBC morphotypes showed more subtle differences. Some
morphotypes were relatively more normal—RCM-1 and 2 contained
mostly normal or spherocyticRBCs (Fig. 5a, c)—whereasothers (RCM-3
and 4) captured larger RBC and elliptocytes. RCM-5 captured relatively
small RBC and some poikilocytes, and RCM-6 and 7 captured hypo-
chromic RBCs. We show that RCM-6 and 7 (hypochromic RBCs) were
more typical of anemia than MDS as previously reported in IDA1, with
RCM-7 being more prevalent in IDA compared to MA. RCM-3 and 4
(largeRBCandelliptocytes)weremoreprevalent inSF3B1-mutantMDS
compared with SF3B1-wt MDS, while RCM-5 (poikilocytic RBC) were
more common in IDA compared to MA.

Notably, morphotype frequency offers more tangible explana-
tions for the associations of morphometric moments with certain
diagnoses. If, on average, certainmorphotypes aremore prevalent in a
specific condition, this will manifest as a relation with shifts in the
means and/or heterogeneity (variances) of different features (Fig. 6,
Supplementary Fig. S13). For example, the variance of theWBCnuclear
perimeter, shown to be important for disease detection (Supplemen-
tary Fig. S13a), can be explained by the differential frequencies of
different WCMs (Fig. 6a): the higher prevalence of WCM-7 drives the
increased heterogeneity of this feature in normal individuals. In dis-
ease classification, we can further observe how the increased variance
of RBC shape irregularity (standard deviation of the centroid distance
function) in anemia compared to MDS is partly explained by the ele-
vated prevalence of RCM-5, 6, and 7 (relatively circular, some poiki-
locytes) and lower prevalenceof RCM-3 and4 (larger andmore elliptic;
Fig. 6b). Finally, WBC nuclear convexity exhibits a stronger bimodality
and therefore greater variance in SF3B1 mutant MDS cases, driven in
part byWCM-1 and 3 (Fig. 6c). Finally, the clear increase in themean of
RBC area in SF3B1-mutant MDS, is due to the higher prevalence of
RCM-3 and 4 and lower prevalence of RCM-1 and 7 in SF3B1-mutant
MDS (Fig. 6d).

Computational cytomorphology validation
To confirm the nature of the computational morphotypes and their
diagnostic associations, we performed: (i) a blinded annotation of cell
types by expert clinical hematologists and (ii) a validation of their
predictive value in the CUH2 cohort. First, we assessed whether the

Fig. 6 | Computational morphotype proportions explain morphometric fea-
ture distributions. a–c Examples of the relationship between condition-specific
WCM (left column, a, c) and RCM (right column, b, d) proportions and differences
in morphometric feature variances for disease detection (WBC nuclear perimeter),
disease classification (RBC standard deviation of the centroid distance function
(CDF)) and MDS genetic subtyping (WBC nuclear convexity), respectively.
d Example of the relationship between condition-specificmorphotype proportions

and differences in RBC area mean for MDS genetic subtyping. Morphometric fea-
ture distributions and stable morphotype classifications were derived using a
subset of 31,119 RBC and 31,884 WBC from the MLL cohort. The positions of the
bars corresponding to different morphotypes are calculated as the mean feature
value for eachmorphotype. Each label corresponds to the nearest bar top, and only
morphotypes presented in Fig. 6 are annotated.
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morphotypes determined by Morphotype analysis were enriched in
known cell types. Three hematologists labeled up to 1746 RBC and
1600 WBC. This demonstrates that morphotypes are enriched in
known RBC and WBC types (Fig. 7a, b), but inter-expert concordance
was limited for some rare cell types (particularly hypolobulated neu-
trophils and blasts; Supplementary Fig. S14). These results are also
observed in single objective morphotype analysis, particularly for
disease detection and classification models (Supplementary Fig. S15).
Furthermore, the CMs enriched in artifacts were rarely enriched with
known cell types.

To validate the accuracy and robustness of our models, we used a
second cohort of 63 slides from the CUH2 cohort representing a
similar spectrum of diagnoses to the MLL cohort but digitized using a

different slide scanner (Aperio AT2). In all cases, we evaluated the best
performing fold from the previous cross-validations—wedid this to get
a clear measure of the real-world performance of such methods in a
clinical context using the prediction of a single model with inter-
pretable morphotypes, rather than a set of models which may not be
available or yield slightly different results. Both our models—glmnet
and multi-objective Morphotype analysis—displayed good general-
ization, with most external validation AUC intervals overlapping with
cross-validated AUC estimates (Fig. 7c, d). We note that including
morphotypes found to be statistically unstable in the original dis-
covery step led to a deterioration of validation accuracy in the disease
detection task. Finally, the single objective Morphotype analysis yiel-
ded worse generalization even when limiting to stable morphotypes

Fig. 7 | Expert and external validation of computational cytomorphology.
a Correspondence between WCMs and expert annotated WBC types (left) and
number of annotated WBC types. b Correspondence between RCMs and expert-
annotated RBC types (left) and number of annotated RBC types. c External vali-
dation for glmnet. d External validation performance for the Morphotype analysis
with all morphotypes (small white diamonds) and using only stable morphotypes
(green diamonds). Enrichment values in a and b marked with an asterisk “*” are

significant for a chi-squared test. Consensus morphotypes are highlighted in bold
and labeled according to Fig. 6 and preceded by “CM”, whereas uncertain CM are
labeled arbitrarilywith letters. Thewhiskers in c,d represent the rangedescribedby
maximum AUC � se,0ð Þ,minimum AUC + se,1ð Þ½ �, where se is the standard error
calculated as 1

ffiffi

n
p , wheren is the number of samples used for this estimate (n = 63, 52,

30 and 22 independent PBS for the disease detection disease classification, MDS
genetic subtyping and anemia classification tasks, respectively).
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(Supplementary Fig. S16), indicating that simultaneously learning
multiple tasks unravels more robust morphotypes.

Discussion
We present an automated protocol for the detection and character-
ization of thousands of blood cells in PBS linkedwithmachine-learning
methods that can use these cellular descriptions to distinguish
between clinical conditions and identify novel associations between
cytomorphological phenotypes and clinical diagnoses. Impor-
tantly, we show that our approach generalizes to other centers and
scanners.

Haemorasis, our open-source method to extract and characterize
large numbers ofWBC and RBC fromdigitized PBS, demonstrates how
this can be automated with no recourse to proprietary software. We
make it publicly available as a Docker container, enabling its straight-
forward application. Using Haemorasis, we detect and characterize
over half a million WBC and millions of RBC. With morphometric
moments (the mean and variance of morphometric features for each
PBS) we show the diagnostic importance of cytomorphological het-
erogeneity for various conditions. This observation bears similarity to
previous reports that associated RDW with increased AML transfor-
mation risk42,45. It is also worth considering that quantifying morpho-
logical variation, especially of subtle features, is likely tobechallenging
to achieve by visual assessment, as it requires the absolute quantifi-
cation and evaluation of large numbers of cells.

To establish disease-associated cytomorphological changes of
RBC and WBC, we developed morphotype analysis and applied it to
over half a million WBC and millions of RBC. This showed that MDS
cases with a larger prevalence of hypolobulated neutrophils and larger
RBCs are more likely to harbor SF3B1 mutations. The latter finding
corroborates previous findings, where higher MCV was observed in
SF3B1-mutant MDS when compared with other MDS subtypes46,47,
highlighting the role of SF3B1 mutations in erythropoiesis48 and the
potential role of PBS RBC morphology in diagnosis. Additionally,
neutrophil hyperlobulationwas robustly detectable not only inMAbut
also in IDA49,50, demonstrating that the ability to computationally
analyze large numbers of cells can detect this feature even when it is
subtle and would otherwise require enumeration of large numbers of
neutrophils and their lobe count by experts50. We also observed larger
neutrophils in MA, highlighting a common mechanism behind the
enlargement of both RBCs and neutrophils in this condition. Reas-
suringly,morphotypes are enrichedwith known cell types and that our
approach validates externally, generalizing to PBS from other centers
digitized using different slide scanners. Nonetheless, further studies
are required to validate the clinical relevance of the described mor-
photypes using more diverse training and validation data, to accom-
modate possible preparation- and scanner-specific artifacts51,52.
Furthermore, while we determine new and previously known mor-
phological trends, others pertaining to rarer cell types may require
other approaches more sensitive to rarer cells. Here, we tried to
maximize the explainability of our models by retrieving morphotypes
and enhancing their generalization by using stable morphotypes,
which eliminate unlikely solutions specific to subsets (folds) of the
training data. However, the truth is that artificial intelligence models,
more often than not, fail in clinical settings53,54, such that the path
forward should include the clinical application of these models as a
point-of-care solution with larger sample sizes. Additionally, ongoing
efforts to establish multicentre cohorts and tissue-bank for MDS, such
as the National MDS Natural History Study55, could be used as a better
assessment of how well computational cytomorphology performs
in routine MDS diagnosis.

It is also important to point out some additional limitations of our
method. Firstly, the blood cell detection techniques, ranging from
WBC and RBC detection to nuclear segmentation in WBC and mor-
phometric characterization, could be improved. For example,

methods using transformers for hierarchical multi-resolution deep-
learning architectures can replace the task of using predefined fea-
tures, which can also bias results, as has been recently shown in
histopathology56. Our protocol was designed to mimic the typical
steps of hematological assessment—detecting relevant regions of the
slide/image, identification of individual cells and analyzing their mor-
phology. Other steps were pragmatic: owing to their great numbers,
annotating RBCs in order to train a dedicated detection algorithm
would be time consuming; for this reason, we opted for a fast and
simple, but perhaps less accurate detection protocol. With appro-
priately annotated data, supervised RBC detection could be further
improved with deep-learning models. Lastly, the characterization of
blood cells and nuclei using self-supervised or unsupervised deep-
learning methods might also help avoid some biases introduced by
more predefined sets of features.

Notwithstanding the limitations discussed above, our work pro-
vides proof-of-principle that computational cytomorphology can
augment the ability of automated blood cell analyses to identify
abnormalities suggestive of hematological disease, with minimal
additional cost. This can help identify patients needing further and
usually more invasive and expensive testing, such as bone marrow
aspirates or genomic sequencing. Recent applications of computa-
tional cytomorphology on bone marrow smears have demonstrated
how it can identify leukocytes31,57 and assist diagnostic predictions28–30

in specialized haemato-oncology. By demonstrating that this can now
be extended to blood smears/slides, our work reveals the potential for
the large-scale incorporation of automated cytomorphology into
routine diagnostic workflows.

Methods
Collection and digitalization of peripheral blood slides
Three retrospective sets of PBS with coverslips from two different
centers were digitized at 40× magnification using two different slide
scanners:

• Training/discovery
∘CUH1: used for training of cell detection. 54 PBS from randomly
selected cases. PBS were automatically prepared at Cambridge
University Hospitals (CUH) and scanned using a Hamamatsu
NanoZoomer 2.0 (ndpi format).

∘ MLL: used for training the disease prediction models and dis-
covery of disease-associated morphologies (or computational
morphotypes, as detailed below in theMethods). 362 PBS from
individuals with MDS with mutations in either SF3B1, SRSF2,
U2AF1 or RUNX1, iron deficiency anemia (IDA), megaloblastic
anemia (MA) and hematological controls.Manually prepared at
Munich Leukemia Laboratory and scanned using a Hamamatsu
NanoZoomer 2.0 (ndpi format).

• Validation –CUH2: used for validation of disease predictions. 68
PBS from individuals withMDSwithmutations in either SF3B1 or
SRSF2, IDA, MA, and hematologically normal controls. The PBS
were prepared manually (MDS) or automatically (controls, ane-
mias) at CUH and digitized using an Aperio AT2 (svs format).

MLL data were collected and digitized with individual informed
consent for research purposes and the study was reviewed and
approved by the Munich Leukemia Laboratory’s internal institutional
reviewboard and follow the EuropeanUnion’s General Data Protection
Regulation (GDPR). Regarding Addenbrooke’s data, the study was
approved by the National Health Service Health Research Authority
and the Health and Care Research Wales (Research Ethics Committee
reference: 23/PR/0578).

Weeitherdigitized theentire PBSor selected the regionof the PBS
containingblood cells. Each slidewas inspected and removed if lacking
in quality (Supplementary Methods) and the final cohort composition
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is presented in Table 3. Details for MLL samples regarding age, sex,
blood counts, and clinical diagnostic, and CUH2 regarding blood
counts and clinical diagnostic are listed in Supplementary Table S1,
Supplementary Table S2, respectively. To the best of our knowledge,
no treatment had been administered at the time of sample collection
and slide preparation.

Haemorasis—computational detection and characterization of
blood cells
Our blood cell detection and analysis pipeline—Haemorasis—assesses
small, computationally tractable parts of the large PBS scans and
consists of the following four steps (Supplementary Methods):
(1) Quality control to detect informative 512 × 512 pixel areas on each

slide based on DenseNet12158. This removes tiles where the con-
centration of cells was too small (very few/no cells) or too large
(high frequency of overlapping cells) or images were blurred
(Supplementary Fig. S1). This ensures that the analyzed area cor-
responds approximately to the monolayer, the recommended
area of analysis for hematologists59.

(2) Red blood cell detection on tiles using a combination of Canny
edge detection60 and other simple computer vision operations
and filtering of other objects (platelet clumps, groups of RBCs or
individual WBCs) with an XGBoost model36, using as features the
morphometric characteristics described below in point 4. and
more extensively in the Supplementary Methods. In essence, we
generated a set of candidate RBCs which were then categorized
according to their morphometry as illustrated by other
methods61–66.

(3) Whitebloodcell detection and segmentation from tileswasbased
on U-Net35, a popular and robust algorithm for cell
segmentation67. WBC nuclei were segmented by clustering WBC
pixels using k-means clustering (k = 2)68, assuming that the darker
region of the WBC corresponds to the nucleus as shown by
others68.

(4) Morphometric characterization of RBCandWBCwas performed
using well-established morphometric features, available in pop-
ular bioimage analysis packages37–39. 53 features were calculated
for each WBC (42 for cellular characterization and 11 for nuclear
characterization) and 42 features for each RBC (Supplementary
Methods).

Cytomorphological prediction of clinical conditions
We assess the predictive performance of Haemorasis with four binary
prediction tasks:
1. Disease detection—identifying the presence of either deficiency

anemia or MDS vs. normal blood;

2. Disease classification—distinguishing between deficiency anemia
and MDS;

3. MDS genetic subtyping: distinguishing between SF3B1-mutant
and SF3B1-wildtype (SF3B1-wt) MDS;

4. Anemia classification—distinguishing between IDA and MA.

Machine-learning using morphometric moments. We assess the
predictive performance of morphometric moments using elastic-net
regression (glmnet)40 with 5-fold cross-validation onMLL, calculating
the cross-validated area under the receiver operating characteristic
curve (AUC).Morphometricmoments, themean and variance of each
feature for each cell type (RBC, WBC), were calculated for each PBS
individually and used as a proxy for the distribution of each feature
on each PBS. We test how blood counts (WBC counts (WBCC; cells/
µL), hemoglobin concentration (Hb; g/dL) and platelet counts (Plt;
platelets/µL)) affect classification performance, and preprocess fea-
tures by standardizing them. Finally, we assess the contribution of
features/groups of features on prediction (SupplementaryMethods).

Morphotype analysis. The task of diagnosing hematological condi-
tions from a PBS can be abstracted—given a set of objects (cells), each
is classified into a given class (cell type) and the presence/relative
prevalence of different cell types is indicative of specific hematological
conditions. This can be viewed as a problem of multiple instance
learning (MIL), amachine-learningfield that focuses on classifying a set
of objects based on its composition69.

Considering this, we devised Morphotype analysis, an approach
that (i) identifies relevant morphological classes of cells (computa-
tional morphotypes—CMs) without recourse to human-based cell
annotation and (ii) distinguishes between conditions using CM pro-
portions. Morphotype analysis can also incorporate other data types
(i.e., blood counts; Supplementary Methods). We consider WBC and
RBC separately, deriving separate WBC and RBC CMs. Being con-
tinuous, we optimized Morphotype analysis using gradient-descent
(particularly Adam70).We testMorphotype analysis using a single set of
CM for the four tasks specified above (multiple objectives—MO) and
with a different model for each task (single objective—SO), and the
impact of different assumptions regarding the number of CM (25 and
50 for MO and 10, 25, and 50 for SO) on prediction. For validation, we
considered only stable CMs—less biased CMs which are consistently
detected across different cross-validation folds (Supplementary
Methods). Similarly to our models using morphometric moments, we
tested the effect of blood counts on classification predictions.

Validation
Expert annotation of blood cells. Three expert clinical hematologists
annotated 1746 RBC and 1600WBC automatically detected inMLL PBS
to assess whether CMs were enriched in any expert-annotated blood
cell type. RBC andWBCwere annotated as belonging to a set of classes
includingnormal andabnormal cell types andartefacts (Supplementary
Methods). Enrichment for each CMwas calculated as the ratio between
the proportion of cells of a given expert-annotated cell type belonging
to that CM (type/CM), divided by the proportion of cells of the given
cell type in the entire set of expert-annotated cells (type/total).

External validation. To externally validate the performance of our
predictive methodologies—glmnet with morphometric moments and
Morphotype analysis—we tested the bestperformingmodelsonCUH2,
reporting their AUC estimates with standard errors (calculated as 1

n,
where n is the size of the validation sample).

Statistical analysis
All statistical analyses in this work were conducted using the R statis-
tical software (v3.6.3)71. The MASS package72 was used to calculate
robust R and dunn.test73 was used to calculate Dunn-Bonferroni tests.

Table 3 | Condition-specific composition of each cohort.
Numbers in brackets represent the total after excluding poor
quality digitized PBS

Condition Cohorts (scanner)

MLL (NZ2) CUH1 (NZ2) CUH2 (AT2)

Control 58 54 11

SF3B1-mutant MDS 131 (130) 19 (16)

SRSF2-mutant MDS 40 (38) 15 (14)

RUNX1-mutant MDS 34 (33)

U2AF1-mutant MDS 28 (26)

Megaloblastic anemia 44 (40) 8 (7)

Iron deficiency 27 15

Total 362 (352) 54 68 (63)

Cohorts were retrieved from the Munich Leukaemia Laboratory (MLL) or from Cambridge Uni-
versity Hospitals (CUH1/2) using either a Hamamatsu Nanozoomer 2.0 (NZ2) or an Aperio
AT2 (AT2).
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Machine-learning models were implemented in either R (glmnet
package40) or Python74 for morphotype analyses (using PyTorch75).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The digitized PBS image data generated in this study and used for
training (MLL) have been deposited in the BioImage Archive database
under accession code S-BIAD440. The annotated datasets for tile
quality classification, white blood cell segmentation and red blood cell
filtering are available inhttps://doi.org/10.6084/m9.figshare.19153760.
The machine-learning model parameters are available at https://doi.
org/10.6084/m9.figshare.19164209. The necessary data to run Mor-
photype analysis is available at https://doi.org/10.6084/m9.figshare.
19372292. The output of theMorphotype analysis, aswell as the expert
annotated cells, and the data necessary for downstream analysis are
available at https://doi.org/10.6084/m9.figshare.19369391 and https://
doi.org/10.6084/m9.figshare.19371008, respectively. An online plat-
form for morphotype visualization is available in https://josegcpa.
github.io/haemorasis-umap and the data supporting it is available in
https://github.com/josegcpa/json-haemorasis.

Code availability
We have made the Haemorasis pipeline available in https://github.
com/josegcpa/haemorasis and as a Docker container in https://hub.
docker.com/repository/docker/josegcpa/blood-cell-detection (Sup-
plementary Methods). Morphotype analysis (mil-comori) and the sta-
tistical analysis and plot generation code (analysis-plotting) are
available at76. The code for the quality control network is available at
https://github.com/josegcpa/quality-net. The code for the U-Net is
available at https://github.com/josegcpa/u-net-tf2.
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