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Accelerating the prediction and discovery of
peptide hydrogels with human-in-the-loop

Tengyan Xu1,2,6, Jiaqi Wang3,4,5,6, Shuang Zhao5,6, Dinghao Chen1,6,
Hongyue Zhang1, Yu Fang 1, Nan Kong1, Ziao Zhou1, Wenbin Li 3,4,5 &
Huaimin Wang 1,2,3

The amino acid sequences of peptides determine their self-assembling prop-
erties. Accurate predictionof peptidic hydrogel formation, however, remains a
challenging task. This work describes an interactive approach involving the
mutual information exchange between experiment and machine learning for
robust prediction and design of (tetra)peptide hydrogels. We chemically
synthesize more than 160 natural tetrapeptides and evaluate their hydrogel-
forming ability, and then employ machine learning-experiment iterative loops
to improve the accuracy of the gelation prediction. We construct a score
function coupling the aggregation propensity, hydrophobicity, and gelation
corrector Cg, and generate an 8,000-sequence library, within which the suc-
cess rate of predicting hydrogel formation reaches 87.1%. Notably, the de
novo-designed peptide hydrogel selected from this work boosts the immune
response of the receptor binding domain of SARS-CoV-2 in the mice model.
Our approach taps into the potential of machine learning for predicting pep-
tide hydrogelator and significantly expands the scope of natural peptide
hydrogels.

Hydrogel, an important class of soft materials, is formed from a
self-assembled matrix that immobilizes water. Hydrogels have attrac-
ted increasing attention in various research fields because they
mimic properties in natural systems such as the bodies of jellyfish,
the cornea in the eye, and even the condensed chromatins in the
cell nucleus1,2. Inspired by natural self-assembled functional materials
(high-order assemblies of proteins), considerable attention has
been focused on hydrogels formed by peptides because of their
high biocompatibility3–7, low immunogenicity8–10, and similarity to
the extracellular matrix11–14. To date, peptidic hydrogels have been
widely used in materials science15–18, biomedicine19–22, and
semiconductors23–25. However, the current design capability fails to
meet the growing demand for neoteric peptidic hydrogels since the

existing inefficient methods still rely on amino acid sequences that
derive from natural proteins, professional experience in the peptide
field, or laboratory discoveries by serendipity26–28. Therefore, accurate
prediction of hydrogel formation and de novo design of peptidic
hydrogels emerge as of great significance to broaden the available
hydrogel-forming peptide library.

To better understand the self-assembly behaviors of peptides in
forming hydrogels and the resulting morphologies, coarse-grained
molecular dynamics (CGMD) has been employed to model peptide
self-assembly29–32. Ulijn andTuttle’s groups recently developed a useful
approach to provide valuable design rules for overcoming the limita-
tion of serendipity in discovering aggregation or self-assembly in
dipeptide and tripeptide systems33,34. However, molecular dynamics
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(MD) simulations of selected peptides could only give the information
(e.g., aggregation propensity, acronymized as AP) for predicting new
peptides that derive from the original ones. Importantly, due to the
enormous sequence quantities of peptides, brute-force MD is
becoming increasingly intractable for investigating the hydrogel for-
mation ability of longer-chain peptides33,35,36. To the best of our
knowledge, systematic studies on peptidic hydrogel prediction and de
novo design are less explored and remain challenging26,37.

This work provides an integrated computational, experimental,
and machine learning (ML) approach to build a score function for
discovering tetrapeptides for hydrogelation with an improved hit rate.
Tetrapeptides have sufficient structural and sequence diversity for

developing a peptide hydrogel library with ample candidates, while
requiring a moderate workload of simulation for generating training
data. This approach proceeds as follows, firstly, the computation
adopts CGMD and ML-trained regression model to provide an esti-
mation of AP (Fig. 1a). Based on the original score function APH

33, 55
peptides are selected and chemically synthesized (Fig. 1b) for ver-
ification of gelation. With the resulting gelation feasibility (i.e., yes or
no), a classificationmodel is trained to produce the gelation corrector
Cg fed to the original score function. An updated score function is then
devised as APHC (Fig. 1b). The process above is looped three times with
mutual information exchange between ML and experimental results
(Fig. 1b) to enhance the performance of Cg from experimental results
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Fig. 1 | Workflow of coupled experimental and machine learning approach for
discovering tetrapeptide hydrogels and their potential biological applica-
tions. a 104 uniformly distributed tetrapeptide sequences are obtained by hyper-
cubic sampling first. CGMD simulations are then performed to generate the
training data of aggregation propensity (AP), and regression models are trained to
predict the AP of the entire sequence space of tetrapeptides (204). b Based on the
available score function APH =AP2 × logP0.5, 55 peptides are selected and chemically
synthesized to verify the gelation ability (gel marked with 1 and non-gel marked
with 0). The sequence (feature) and the 1/0 (label) data are then passed to the

ML algorithm to train a classification model, producing a gelation corrector Cg for
each tetrapeptide. The APH score is then updated to APHC,1 = AP2 × logP0.5 × Cg,1, and
another batch containing 55 peptides is selected based on APHC and is synthesized
and verified. Then, the whole 110 sequences (feature) and 1/0 (label) data are
employed to update the classification model to generate Cg,2, and the APHC,1 score
are updated to APHC,2 = AP2× logP0.5 × Cg,2. Based on APHC,2, the third batch of 55
peptides are selected and chemically synthesized, and Cg,2 and APHC,2 are updated
toCg,3 andAPHC,3. cThedenovodesignedpeptidehydrogel is applied to serve as an
efficient adjuvant for enhancing antibody production of RBD protein.
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of 165 peptides, 100ofwhichcould formhydrogels after gelation tests.
Finally, tetrapeptide hydrogels obtained by de novo design from our
computational model are selected as immune adjuvants to boost
humoral immune recognition towards the receptor binding domain
(RBD) of SARS-CoV-2 virus (Fig. 1c). The results show that the selected
tetrapeptide hydrogel boosts the immune response of amodel protein
RBD from the spike protein of coronavirus. Overall, an 8,000-peptide
library for gelation is built based on APHC with a gelation rate reaching
87.1% (Supplementary Data 2), providing great potential for further
innovations in peptide-based soft materials.

Results
Performance of corrected score function APHC

We employed cost-effective ML prediction instead of performing
brute-force CGMD for generating the AP values of the entire space of
tetrapeptides containing 160,000 sequences. Therefore, accurate
prediction of AP values relying on ML regression models should be a
prerequisite for obtaining potential hydrogels. We tested various
training conditions, including training algorithms, feature repre-
sentation approaches, and the size of training datasets to obtain
an optimal AI model (Supplementary Figs. 2–4, Supplementary
Tables 2–4, and SupplementaryData 1). Using the algorithmof support
vector machine (SVM)38 with 10,000 training data represented by
80-bit one-hot approach with amino acid sequence (Supplementary
Table 3), we obtained a reliable SVM model with training/testing per-
formance of 0.095/0.092 in mean absolute difference (MAEtr/MAEte)
and 0.928/0.933 in coefficient of determination (R2

tr/R
2
te)

39 (Fig. 2a, b).
Further analysis of the prediction performance of SVMmodel revealed
that the error between the predicted AP (APprd) and simulated AP
(APsim)was less than2.5%as APsimwasgreater than 1.5 (Fig. 2c), proving
the reliability and capability of the selected model on predicting
peptide aggregates and further formation of hydrogels.

Distinctive from all available score functions focusing on the
prediction of peptide self-assembly33, we constructed a corrected
score function APHC within three loops (Fig. 2d–f) for improving the
gelation hit rate. Since thefinal goalwas todevelop ahydrogel-forming
peptide library with the minimum candidate numbers and the highest
gelation possibility, we constrained our gelation hit rate assessment
within the top 8000 assessing scores (APH and APHC). We calculated
APH (Fig. 1b) in the first loop and randomly selected 55 peptides (26
peptides that were among the top 8000 in the APH ranking), which
were possibly to form hydrogel according to human expertise. It was
found that 16 among the 26 peptides (within the top 8000) could form
a hydrogel, and a corresponding gelation hit rate of 61.5% could be
achieved with the APH score, while a similar hit rate of 63% can be
achieved with the APprd score alone (Fig. 2d, left panel). With the total
55 gelation results, we trained a classification model to generate the
gelation corrector Cg,1 with an averaged accuracy of 0.735 (averaged
over ten parallel ML experiments, Fig. 2d, right panel). During the
second loop, we calculated APHC,1 (APHC,1 = APprd

2 × logP0.5 × Cg,1) and
selected another 55 peptides, 30 of whichwere in the top 8000 APHC,1,
and 23 peptides (of the 30 peptides) formed hydrogels, resulting in a
hit rate of 76.7% within the top 8000 APHC,1 pool, while the APH score
yielded only a gelation hit rate of 64.7% (Fig. 2e, left panel). Aug-
menting the gelation results from the second batch to the first batch
(total 110 data), we retrained a classification model to update the
gelation corrector from Cg,1 to Cg,2 with an average accuracy of 0.746
(Fig. 2e, right panel). Proceeding to the third loop, we updated the
APHC,1 to APHC,2 (APHC2 = APprd

2 × logP0.5 × Cg,2). Similar to the previous
two loops, we selected 55 peptides, and a gelation hit rate of 81.6%
(31 out of 38) was generated within the top 8000 APHC,2 and a rate
of 75.0% was achieved with APHC,1 alone (Fig. 2f, left panel). With a
total of 165 experimental gelation results, a final classification
model was trained and produced gelation corrector Cg,3 with an
averaged accuracy of 0.767 (Fig. 2f, right panel) and score APHC,3

(APHC,3 = APHC = APprd
2 × logP0.5 × Cg,3) for each peptide, and a gelation

hit rate of87.1%wasfinally achievedwith the top8,000APHC,3 (Fig. 2g),
while the APprd and APH could only produce a gelation hit rate around
66% (Fig. 2h) based on the 165 gelation results. We listed the top 8,000
Cg and APHC (Supplementary Data 2 and 3) peptides for the con-
venience of selection and comparison.

To further differentiate between APHC and APH in predicting
peptide hydrogels, we next compared the relationship between APHC
and logP’ (Fig. 2i) as well as APH and logP’ (Fig. 2j) of experimentally
synthesized 165 peptides that weremarked with blue (gelation: yes) or
red (gelation: no) dots, and those of total tetrapeptides (gray dots).
Here, logP’ indicated normalized hydrophilicity between 0 and 1. In
addition to the relationship between APHC and logP’, the relationship
between APHC-AP and APHC-Cg was also investigated (Supplementary
Fig. 6a, b). No linear correlation for APHC and logP’ (also APHC and AP)
can be observed, demonstrating that hydrophobicity and aggregation
propensity were not the only two contributors to gelation, for
instance, lower isoelectric points (i.e., 4.5 ~ 6 on pH scale) could
improve the gelation performance (Supplementary Fig. 6c) due to the
Columbic interaction and hydrogen bonds, inducing the formation of
water-containing networks between deprotonated peptides and water
solvent. These results indicated the significance of cooperating
experimental input (i.e., Cg) into a prediction of hydrogel-forming
sequences. Furthermore, it was conducive for hydrogelation when
logP’ was in the range of 0.05 to 0.4, as evidenced that the logP’ of all
gelating peptides were in this range (Fig. 2i). Peptides with too weak
hydrophilicity (<0.05) possibly form precipitates while ones with too
strong hydrophilicity (>0.4) maintain in solution. The APH also
assigned high scores to peptides with logP’ in the range of 0.05 to 0.4.
However, APH cannot efficiently pinpoint peptides with high gelation
potential and low APprd. As a result, more gelation peptides fall out of
top 8000compared toAPHC (Fig. 2j).Wehave also compared the ranks
of APHC and APH of the complete sequence space of tetrapeptides
(Fig. 2k). APHC can significantly increase the rank of peptides which
could potentially form hydrogels (maximum absolute difference in
rank between APHC and APH is 8.5 × 104), such as WVII (by 14311) and
IMVV (by 57146), while decreasing the rank of peptides that hardly
form the hydrogel, such as WPYY (by 33033) and WWCP (by 50677).
These four peptides were synthesized, validating that WVII and IMVV
can form hydrogel while WPYY and WWCP cannot (Fig. 2l, Supple-
mentary Data 6 and 7).

Discovery and characterization of peptide hydrogels
After validating the efficiency of APHC in predicting tetrapeptide
hydrogels,wedetailed thephase state of 165 synthesized tetrapeptides
and the observed assembly behavior in an aqueous solution. Having
demonstrated the identity of each synthetic tetrapeptides by mass
spectrometry (MS, Supplementary Data 4) and nuclear magnetic
resonance spectroscopy (NMR, Supplementary Data 5), we defined the
hydrogel as the formation of a self-supporting, non-flowingmixture of
water and hydrogelator through the vial-inverting method. Figure 3a
(Insert optical images) showed the 6 representative tetrapeptides
(FVIY, WEFF, WKFF, WTIF, WVFY, and IFYT) hydrogels in the glass vial,
probably due to the π-π interaction of more than two aromatic
amino acids in the tetrapeptide. Transmission electron microscope
(TEM) studies (Fig. 3a and Supplementary Data 6) showed that the
hydrogel formed by FVIY, WEFF, WKFF, or WTIF contained entangled
nanofibers, while the hydrogel formed by WVFY or IFYT contained
interlaced nanosheets. MD simulations (1250ns) confirmed the
observation of TEM results, and the front ranking of APHC demon-
strated the formation of these hydrogels. Mechanical properties
of tetrapeptide hydrogels (Fig. 3b and Supplementary Fig. 7) indicated
that both the elasticity (G’) and the viscosity (G”) exhibited weak fre-
quency dependence between 0.01 and 100Hz. The G’ values
were higher than G” values, suggesting the formation of a hydrogel.
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Fig. 2 | “Human-in-the-loop” for obtaining corrected score APHC. a Performance
of different algorithms (i.e., LR: linear regression; NN: nearest neighbor; RF: random
forest; SVM: support vector machine) with different numbers of training datasets
(i.e., 1,000, 5,000, and 10,000). b Training and testing performance of ML model
trained with SVM and 10,000 data using one-hot representation. The color scale
indicates the density of the data points. c Error distribution with respect to simu-
lated AP value (APsim). d First batch: ranking of experimentally selected peptides
with respect toAPprd andAPH, and accuracy of resultedCg,1. TheChi-square statistic
test (single-sided test) has been performed, with the null hypothesis that the pro-
portion of hydrogel-forming peptides in the population of top 8000 APH score is
larger or equal to 61.5%, with a degree of freedomof 1 and significance level of 0.05.
e Second batch: ranking of experimentally selected peptides with respect to APH
and APHC,1, and accuracy of results inCg,2. The Chi-square statistic test (single-sided
test) has been performed with a degree of freedom of 1 and a significance level of
0.05. fThirdbatch: ranking of experimentally selectedpeptideswith respect to APH

and APHC,2, and accuracy of resulted Cg,3. The Chi-square statistic test (single-sided
test) has been performed with a degree of freedom of 1 and a significance level of
0.05. gGelation hit rate of experimentally synthesized tetrapeptideswithin the top
8000 ranking with respect to APH (first batch), APHC,1 (second batch), APHC,2 (third
batch), and APHC,3 (final). h The comparison between final gelation hit rates eval-
uated by APprd, APH, and APHC. i (The Chi-square statistic test (single-sided test) has
been performed with a degree of freedom of 1 and significance level of 0.05.) and
j Distribution of APHC and APH with respect to logP’ of experimentally synthesized
165 tetrapeptides (blue indicates gelation while red indicates solution) and the
complete sequence space of tetrapeptides (gray). k Comparison between the
ranking of APHC (r-APHC) and APH (r-APH), where color indicates the absolute dif-
ference between r-APHC and r-APH of a single tetrapeptide. l TEM images of WPYY,
WWCP, WVII, and IMVV (Inserts: optical images of the corresponding peptide).
Source data are provided as a Source Data file.
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Fourier transforms infrared (FTIR) spectroscopy (Fig. 3c) in the amide
I region (1620–1648 cm−1, C =O stretching vibration) revealed the
presence of β-sheet conformation in all these six hydrogels, further
indicating the presence of highly ordered peptide nanostructures.

We also paid attention to those non-hydrogel-forming tetrapep-
tides to obtain rules of sequences of non-gelating peptides. Figure 3d
(Insert optical images) showed six representative tetrapeptides (TRFS,
PGWW, FGWW, RRRR, LRFH, and RWVF) with low APHC ranking, some

t = 1.25 μsFVIY

WEFF

WKFF

WTIF

WVFY

IFYT

Hydrogelsa b c Non-Hydrogelsd
t = 1.25 μsTRFS

PGWW

FGWW

RRRR

LRFH

RWVF

Hydrogels Non-Hydrogelse f

Fig. 3 | Experimental investigations on the self-assembly behavior of 165 syn-
thetic tetrapeptides. a TEM images of 6 representative hydrogels of synthetic
tetrapeptides, respectively. Inserts: optical images of the corresponding hydrogel
(pH between 7.0 to 7.5). MD simulation results (1250ns) and APHC ranking were
shown in the right column. b Dynamic frequency sweep of tetrapeptide hydrogels
at the strain value of 0.5%. c FTIR spectra in the amide I region of tetrapeptide
hydrogels. d TEM images of 6 representative non-hydrogels of tetrapeptide Insets:

optical images of corresponding solution/suspension (pH = 7.5). MD simulation
results (1250 ns) and APHC ranking were shown in the right column. e Statistics and
classification of morphologies obtained by TEM for hydrogel-forming tetrapep-
tides (100 peptides). f Statistics and classification of morphologies obtained by
TEM for non-hydrogel-forming tetrapeptides (65 peptides). Source data are pro-
vided as a Source Data file.
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of which were highly soluble while others were barely soluble in
water. TEM images (Fig. 3d and Supplementary Data 6) showed that
these six peptides formed aggregates with different sizes in an aqu-
eous solution, which were qualitatively consistent with the morphol-
ogies obtained in MD simulations except for RRRR (Fig. 3d, right
column), showing different levels of aggregation. Taking the TEM
result of RRRR together, we attributed this to the thermodynamic
factor of concentration. Finally, we presented a summary of the
assembledmorphologies of all synthesized tetrapeptides (Fig. 3e, f and
Supplementary Data 6), indicating that hydrogel-forming tetrapep-
tides tended to form fibers, sheets, or hybrid morphology (70%) in an
aqueous solution. Non-hydrogel-forming tetrapeptides self-assembled
into aggregates, spheres, or particulate supramolecular structures
(86%). The results above confirmed the self-assembled nanostructures
and hydrogelation results of these synthetic tetrapeptides, as pre-
dicted by the corrected score function APHC.

Hydrogelation laws from experiment and simulation results
One hundred and sixty-five synthesized peptides were presented with
different colors indicating the capabilities of hydrogel formation
(Fig. 4a). The average rank of APHC (Fig. 4b) for peptides gelation at
four certain concentrations was 2664, 2801, 3646, and 4899, respec-
tively, which was consistent with the experimental results (Supple-
mentaryData 7) of the gelation capability, demonstrating the reliability
of APHC in screening tetrapeptides for the hydrogel formation.

Hydrogelation laws (i.e., the effect of position and type of amino
acids on gelation) deduced from the experimentally synthesized
peptides gelators (100 data) and computationally selected candidates
(top 8000 data based on APHC) exhibited reasonable consistency

(Fig. 4c). Aromatic amino acids (F and Y) had the largest contribution
to gelation, especially when located at positions 3 and 4 near the
C-terminus. The W had a much lower contribution due to the strong
hydrophobicity, which may lead to suspension with precipitation
instead of forming a hydrogel. The H amino acid with a five-membered
ring structurewas favored in position 3 in gelation peptides. Second to
F, W, and Y, the amino acids I, L, V, and M can also contribute to
gelation due to hydrophobicity carried by side chains. The simulation
results only slightly increased the percentage of I, L, V, and M at
positions 2 and 3, while the experimental results raised the percentage
of I, L at positions 1 and 3 and V at position 2. The contribution of the
polar amino acids N, Q, S, T, and C to gelationwas identical in both the
experiment and simulation. N and Q with strong polarity were rarely
found in gelation peptides with scarce occupancy at position 1 or 2. S
and T with moderate polarity were beneficial for gelation when S was
located at positions 1, 2, and 4 and T at 1, 2. Apolar amino acid C
contains the -SH group, which may induce the formation of disulfide
bonds and stable nanostructures, especiallywhen located atposition 1.
Amino acid P contributed to the hydrogel formation when located at
position 1 because of the potential formation of the “kink”
structure33,40, promoting self-assembly. Meanwhile, G without func-
tional side chains cannot significantly contribute to gelation. Charged
amino acids D, E, R, and K had a minimal contribution to gelation.
However, peptides with K near the N-terminus were found to form
hydrogel due to the attraction of opposite charges driving self-
assembly.

To gain an overview of the effects of position-type on gelation,
we analyzed the APHC scores of the complete space sequence of
tetrapeptides with fixed position 4 (fixed F, Fig. 4d; fixed remaining

Fig. 4 | Hydrogelation laws from experiments and simulations. a Sequences of
165 synthesized tetrapeptides. The number in each fill represents the rank of APHC.
Different color represents the hydrogelation capability at different concentrations.
b Averaged rank of APHC of hydrogel-forming peptides at 30, 60, 90, and 120mM,
aswell asnon-gelatingpeptides at 120mM(after thedashed line),n = 46 for 30mM,
n = 30 for 60mM, n = 24 for 90 and 120mM (with gelation), and n = 65 for 120mM
(without gelation, n represent the number of synthetic tetrapeptides in each

category. c Contribution of each amino acid at different positions to hydrogel
formation, compared between 100 experimental data of hydrogel-forming pep-
tides and the top 8,000 APHC simulation data. d Distribution of 8,000 APHC with
amino acid F fixed at the C terminus (P4). The x-axis is P1 (N-terminus), the y-axis is
P2, and the third position is illustrated in the rectangular box. Source data are
provided as a Source Data file.
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19 amino acids, Supplementary Figs. 8–26). Different from Fig. 4c, we
can discern the effect of doublets and triplets of amino acids on
gelation, other than a single amino acid. It can be confirmed that
aromatic-aromatic (F, W, Y – F, W, Y) and aromatic-hydrophobic (F, W,
Y – I, L, M, V) doublets had positive effects on gelation synergistically.
In addition, aromatic amino acids bonded with P and K exhibited
similar positive performance. These rules can also be applied to the
triplets. In addition, we analyzed the position-type percentage with

respect to adjacent amino acids, based on the 100 hydrogel-forming
peptides in the experiment and 8000 peptides with the highest APHC
score in the simulation (Supplementary Fig. 27). It can also be deduced
that aromatic-aromatic and aromatic-hydrophobic doublets have the
most significant contribution to hydrogelation, and position-specific
rules regarding other amino acids are also congruent with those
deduced from Fig. 4c, d. For example, amino acid A is barely found in
the fourth position, except when F or Y is located in the third position.
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Fig. 5 | Response to tetrapeptide-based hydrogel nano vaccination. a 6–8weeks
C57BL/6 mice were immunized thrice at day 0, 7, and 14 with 15μg RBD (RBD
group), 12.5μL aluminum adjuvant, and 15μg RBD (Alum + RBD group), 60mM
tetrapeptide hydrogel and 15 μg RBD (YAWF +RBD group). Serum and splenocytes
were collected onday 21.b Enzyme-linked immunosorbent assay (ELISA) responses
to serum samples (RBD-specific) at different dilutions. SARS-CoV-2 RBD-specific
IgG antibodies (IgG, IgG1, IgG2b, and IgG2c) were analyzed by endpoint dilution
ELISA and measured as absorbance at 450 nm. The data were shown as the
mean ± SEM (n = 6biologically independentmice), and the p valueswere calculated
by comparingRBDwith YAWF+RBDusing a one-wayANOVA test. c 7 days after the
last immunization, splenocytes were collected and re-stimulated with RBD protein.

The bars shown were mean ± SD (n = 6 biologically independent samples), and
differences between RBD and other treatments were determined using a one-way
ANOVA test. The secretion of IL-5 and IFN-γ in the splenocytes supernatants was
detected using ELISA. d Optical images of bone marrow-derived dendritic cells
(BMDCs) treated with RBD-loaded tetrapeptide hydrogel (scale bar = 100 μm).
e Flow cytometry analysis of BMDCs expressing CD83, CD80, and CD86. f The level
of IL-6 and TNF-α in BMDCs culture supernatants were analyzed using ELISA. The
data were shown as the mean ± SD (n = 3 biologically independent samples), and
differences between RBD and other treatments were determined using one-way
ANOVA test. Source data are provided as a Source Data file.
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In summary, we have presented a complete picture of the relationship
between the gelation ability and position & type of 20 natural
amino acids, providing schematic guidance for experimentalists to
design tetrapeptide hydrogels and possibly functional applications
associated.

Boosting antibody production of RBD vaccine
The advantage of self-assembling peptidematerials is their remarkable
multivalency, which contributes to improved immunogenicity. It is
generally known that multivalency can repeatedly display ligands or
epitopes to increase affinity for specific receptors while enhancing
antibody responses8,9,41–43. The RBD of the spike protein covering the
surface of SARS-CoV-2 attracted our interest as a promising target
antigen for COVID-19 vaccines44–47. We hypothesized that tetrapeptide
hydrogel could provide a biodegradable platform to encapsulate RBD
protein and enhance humoral immune responses against RBD protein.
Since YAWFhas aAPHC rankwithin the top 8000 (1661, Fig. 4a) and can
form hydrogels containing nanofibrous network (Supplementary
Fig. 28), we selected this tetrapeptide as a vaccine adjuvant candidate.
We quantified the production of antigen-specific antibodies in C57BL/
6mice, whichwas a crucial indicator for evaluating the performance of
the SARS-CoV-2 vaccine (Fig. 5a). Compared with the RBD group, the
results (Fig. 5b) showed that the FDA (U.S. Food and Drug Adminis-
tration) approved adjuvant aluminumcould enhance the generation of
IgG by 20.7-fold. The hydrogel formed by YAWF remarkably increased
the generation of IgG by 41.6-fold (the endpoint titres of RBD, alumi-
num, and YAWF were shown in Supplementary Fig. 29), suggesting
that the tetrapeptide hydrogel could boost the immune response
in vivo. The results also indicated that the hydrogel group significantly
enhanced the production of IgG1, which was similar to the aluminum
group. The RBD-specific IgG2b response in the hydrogel group
increased around 9.7-fold, compared with the commercial aluminum
adjuvant group. As for IgG2c, the hydrogel formed by YAWF main-
tained high IgG2c titers, surpassing the ones in the aluminumgroup or
control group (Fig. 5b and Supplementary Fig. 29).

During the infection, the regular pathway to produce IgG anti-
body is highly related to the proliferation of SARS-CoV-2-specific CD8+

or CD4+ T cells, which is reflected by the elevated secretion of several
typical cytokines, including interleukin-5 (IL-5) and interferon-γ (IFN-γ).
Compared with the aluminum adjuvant group, the mice that received
YAWF based vaccine showed a higher IL-5 level in their splenocytes
culture, and IFN-γ secretion was also obviously evoked (Fig. 5c). Thus,
the YAWF stimulated an obvious cell-dependent adaptive immune
response. To further confirm the capability of the tetrapeptide vaccine
to regulate related cell immunity, the upstream dendritic cells (DCs)
activation enhanced by tetrapeptide hydrogel was evaluated. The DCs
treated with YAWF vaccine showed promising activation as the per-
centage of CD83, CD80, and CD86 expressing cells augmented to
72.0%, 71.1%, and 50.5% (Fig. 5e and Supplementary Fig. 30). Such
intense activation could also be proved by the clustering of DCs
(Fig. 5d) producing raised levels of Th-1 cytokines (Fig. 5f). To sum up,
de novo designed tetrapeptide hydrogels as immune adjuvant suc-
cessfully enhanced the immune response to RBD protein in vivo,
providing great inspiration for us to explore natural tetrapeptide
hydrogel library for biomedical applications.

Discussion
This work demonstrated an efficient “human-in-the-loop” framework
that integrated coarse-grainedmolecular dynamics, machine learning,
and experiments for the prediction and discovery of peptide hydro-
gels. The framework evolved into an updated score function APHC to
evaluate the hydrogelation feasibility of 160,000 natural tetrapep-
tides, and a gelation hit rate of 87.1% with the top 8,000 APHC rank was
achieved. The simulation and experiment revealed similar hydrogela-
tion laws for short peptide design. Subsequently, a de novo-designed

tetrapeptide hydrogel based on our hydrogelation laws was success-
fully applied in SARS-CoV-2 vaccine adjuvant, proving the potentials of
the peptide libraries within the top 8,000 APHC rank for developing
versatile biological and medical applications. Moving forward, the
“human-in-the-loop” framework can be further automated by
employing a robotic platform for synthesizing new peptides and per-
forming machine learning for training classification models. The fra-
mework described here can also be extended to the efficient design of
other functional materials/devices, including the terminal-covered
peptide hydrogels, peptide batteries, peptide fluorescence probes,
and peptide semiconductors, contributing to modern organic nano-
technology employing short peptide building blocks as key structural
and functional elements.

Methods
Ethical approval
All mice were handled in accordance with institutional guidelines, and
all animal experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) of Westlake University (IACUC Protocol
#21-046-WHM).

Material sources
Fmoc-amino acids were obtained from GL Biochem (Shanghai, China).
2-Cl-trityl chloride resin was obtained from Nankai Resin Co. Ltd.
(Tianjin, China). Commercially available reagents were used without
further purification unless noted otherwise. Deionized water was used
for all experiments. All other chemicals were reagent grade or better.
Horseradish peroxidase-conjugated goat anti-mouse IgG, IgG1, IgG2b,
and IgG2c (1030-05, 1071-05, 1091-05, and 1078-05, 1:5000 dilution)
were obtained from Southern Biotech (USA). Mouse IFN-γ, IL-5, TNF-α
and IL-6 ELISA kits (430807, 431204, 430907, and 431307) were
obtained fromBiolegend (USA). RecombinantmurineGM-CSF and IL-4
(315-03 and 214-14) were purchased from Peprotech (USA). FITC anti-
mouse CD83 Antibody, FITC anti-mouse CD80 Antibody, and PE anti-
mouse CD86 Antibody (121505, 104705, and 159204, 0.5 µg per million
cells in 100 µL volume for usage) were purchased from Biolegend
(USA). Imject Alum Adjuvant was obtained from Thermofisher (USA).
RBD-Fc (Z03513, SARS-CoV-2 Spike protein, RBD, mFc Tag, CHO-
expressed) and RBD-H (Z03479, SARS-CoV-2 Spike protein, RBD, His
Tag,) were purchased from Genscript Biotech (Nanjing, China). This
research followed institutional guidelines, and all animal experiments
were approved by the Institutional Animal Care and Use Committee of
Westlake University.

Coarse-grained molecular dynamics (CGMD)
To speed up the simulation/screening, coarse-grained molecular
dynamics (CGMD) simulations were adopted to generate machine
learning (ML) training data, which were performed with the open-
source GROMACS package48,49 and Martini2 force field50–52. The all-
atom tetrapeptide structures (prepared based on CHARMM3653) were
coarse-grained using the python script martinize.py51. In simulations
for screening purposes, total of 300 coarse-grained tetrapeptides (as
zwitterions) were solvated randomly in a 13 nm × 13 nm × 13 nm box
with water whose density was set as approximately 1 g/cm3 (~18700
water beads). The charge of the tetrapeptide/water system was main-
tained neutral by adding the proper amount of Na+ or Cl-, and the
system was also maintained at neutral pH. The whole system was then
energy-minimized using the steepest descent algorithm54, until the
maximum force on each atom was less than 20 kJmol-1 nm-1. Subse-
quently, the systemwas passed to an equilibration run for 5 × 106 steps
with a time step of 25 fs, resulting in a total simulation time of 125 ns.
The temperature and pressure during the equilibration were con-
trolled through Berendsen algorithm at 300K and 1 bar, respectively.
A total of 15,000 such simulations were performed, and the selection
of the initial 15,000 tetrapeptides was based on Latin hypercubic
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sampling55. To obtain more accurate and stable morphology of self-
assembled structure, a 1,250 ns duration was employed, and the final
morphology results were averaged over 8 identical simulations.

To quantitatively characterize the degree of self-assembly, we
adopted the aggregation propensity (AP) value33, which was calculated
by:

AP=
SASAinitial

SASAfinal
ð1Þ

Where the SASAinitial and SASAfinal are the solvent (i.e., tetrapep-
tides) accessible surface area at the beginning and end of a CGMD
equilibration run.

Self-assembled peptides cannot guarantee the formation of
hydrogels, which was also affected by the hydrophobicity of peptides.
Therefore, a hydrogel formation score function APHC considering
hydrophobicity was utilized to screen out the peptides with the high-
est possibility of hydrogel formation under current experimental/
computational conditions, as shown below:

APHC =AP’× logP’×Cg ð2Þ

logP=
X4

i= 1

4Gwat�oct,i ð3Þ

Where the AP’ and the logP’ are normalized AP and logP value
(normalized to 1), and α (=2) and β (=0.5) are two coefficients deter-
mining the significance of AP’ and the logP’.ΔGwat-oct, i (kcalmol-1) is the
Wimley–White whole-residue hydrophobicities for each amino acid56.
Cg is the gelation corrector output by the ML classification model
trained with experimental gelation results.

Machine learning
Four different ML algorithms were deployed: Random Forest (RF)57,
Linear Regression (LR)58, Nearest Neighbor (NN)59, and Support Vector
Machine (SVM)60. Mean absolute error (MAE) and coefficient of
determination (R2)39 were calculated to assess the performanceof each
ML model. Different numbers of training data sets prepared by Excel
2019 (i.e., 1000, 5000, and 10,000) were used to train the MLmodels.
In each training, 80% of the training data was used for training, while
the remaining 20% was used for validation (Fig. 1b). After obtaining
each model, another 5000 data were employed for independent
testing.

Before training the ML model, we converted the amino acid
sequence into numerical data with 4-integer and 80 bit one-hot
representation approaches (shown in Supplementary Table 3, taking
Glu-His-Asn-Thr, i.e., EHNT, as an example), aiming for enhanced
model performance with optimal data presentation approach. More-
over, a tetrapeptide can be considered as a “tripeptide” with each
“position” represented by one of the 400 possible dipeptide sequen-
ces, namely, a tetrapeptide can have 1200 possible bits with 3 of them
to be 1. Therefore, we also trained models with a 1200-bit one-hot
representation converted from the dipeptide sequence composition.

All the model training and prediction were conducted via
ASCENDS code61, which employs a Python-based open-source data
analytic toolkit, scikit-learn62. The training was initially performed
based on the default hyperparameter settings in ASCENDS (Supple-
mentary Table 5). To investigate the effect of hyperparameters on
training performance, we selected three kernels and different para-
meters and ranges for tuning (Supplementary Table 6)63. The perfor-
mance of the SVM model with varying hyperparameters were
illustrated in Supplementary Fig. 5. The highest training performance
of MAEtr was 0.090 and R2

tr was 0.934, as kernel = rbf, C = 100, and
gamma = 0.001. However, it was only slightly increased compared to

the generated training performance (MAEtr = 0.095, R2
tr = 0.928, as

shown in Fig. 2b) with the default hyperparameters (kernel = rbf, C = 1,
and gamma = auto, equaling to 1/n_features = 1/80 = 0.0125). The
slightly increased training performancewould haveminimal impact on
the prediction, and we thus concluded that the default hyperpara-
meters were good enough for achieving reliable prediction results.

Synthesis, purification, and characterization of tetrapeptides
The selected tetrapeptides were synthesized by solid-phase peptide
synthesis (SPPS) using 2-chlorotrityl chloride resin, and the side chains
of the corresponding N-Fmoc protected amino acids were properly
protected by different chemical groups (Supplementary Fig. 1). First,
the C-terminal of the first amino acid was conjugated to the resin.
Anhydrous N, N’-dimethyl formamide (DMF) containing 20% piper-
idine was used to remove Fmoc group. To couple the next amino acid
to the free amino group, HBTU (O-(Benzotriazol-1-yl)-N, N, N’, N’-tet-
ramethyluronium hexafluorophosphate) was used as coupling reagent
and the organic base N, N-diisopropylethylamine (DIPEA) was added.
The growth of the peptide chain was performed according to the
established Fmoc SPPS protocol. After the final coupling step, the
excess reagent was rinsed with DMF, followed by five washing steps
using dichloromethane (DCM) for 1min (5mL per gram of resin). The
peptidewas cleaved using cleavage reagent (trifluoroacetic acid (TFA):
triisopropylsilane (TIS): H2O= 95%: 2.5%: 2.5) for 45minutes. 20mLper
gram of resin of ice-cold diethyl ether was then added to the con-
centrated cleavage reagent. The resulting precipitate was centrifuged
at 1500 g for 10minutes at 4 °C. The supernatant was then decanted,
and the resulting solid was dissolved in H2O/CH3CN (1:1) for HPLC
separation. HPLC was conducted at Agilent 1260 Infinity II Manual
Preparative Liquid Chromatography system using a C18 RP column
with CH3CN (0.1% of trifluoroacetic acid) and water (0.1% of tri-
fluoroacetic acid) as the eluents (SupplementaryTable 1). The purity of
each tetrapeptide was verified by HPLC, and the purified tetrapeptide
was dissolved in 200μL of 0.1mg/mL methanol to prepare Mass
spectrometry (MS) samples. MS was conducted at the Agilent Infini-
tyLab LC/MSD system with MSD signal set as positive ion mode. NMR
samples were prepared by dissolving purified tetrapeptides in 600μL
of 8mg/mL DMSO-d6. 1H NMR spectra were obtained on a Bruker
BioSpin AVANCE NEO spectrometer (500MHz, Switzerland), using
tetramethyl silane as an internal standard. The structure of tetrapep-
tide was verified by MS and 1H NMR.

Transmission electron microscope
We used the negative staining technique to observe the morphologies
formed by peptides. A micropipette was used to load 10μL of sample
solution to a carbon-coated copper grid, and we used a piece of filter
paper to remove the excess solution. After rinsing the grid with the
deionized water, we used uranyl acetate to stain the sample for
1minute and then rinsed the grid with deionized water again. The
excess liquid was drained with filter paper and conducted on a Talos
L120C system, operating at 120 kV.

Peptide hydrogel formation
Thiswork defines hydrogel formation as a self-supporting, non-flowing
mixture of water and hydrogelator by the vial-inverting method. All
purified tetrapeptides were dissolved in ultrapure water (to form a
30mM solution initially), followed by the stepwise addition of 1 N
NaOH solution to adjust the overall aqueous pH to 6.5–8.5.Meanwhile,
a short-term ultrasonication treatment was applied after each pH
adjustment to facilitate peptide solubilization and speed up peptide
self-assembly. These operations could be repeated several times until a
viscous, translucent colloid was formed, suggesting the initial stage of
the gelation process. The mixture was allowed to stand in for another
48 h for complete hydrogelation. Upon the absence of gelation phe-
nomenon during the aforementioned loops, we increased the peptide
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concentration (60mM, 90mM, and 120mM were selected) and re-
started such gelation operation loop to explore their gelation
feasibility.

Rheology
During the experiment, a rheology test was carried out on an ARES-G2
(TA instrument) system with a 25mm parallel plate at a 500 μm gap
during the experiment. In the process of dynamic frequency (strain =
0.5%) scanning, the obtained hydrogel was transferred to the test
platform with a pipette, and the changes of elastic modulus (G’) and
viscousmodulus (G”) of the hydrogel during scanning (frequency from
100–0.01Hz) was tested. The hydrogels were then characterized by
dynamic strain sweep at a fixed frequency of 1 Hz, and the changes in
elastic modulus (G’) and viscous modulus (G”) of the hydrogel were
recorded (strain: 0.01–100%).

Fourier transform infrared spectroscopy
Samples of tetrapeptide hydrogel were first lyophilized to powder,
then we placed the sample on a diamond single reflection attenuated
total reflectance (ATR)module. Spectrawere recordedon a FTIRmicro
spectrometer (ThermoFisher Nicolet iS50) by averaging 32 scans at a
spectral resolution of 1 cm-1.

Preparation of tetrapeptide hydrogel vaccines
YAWF was dissolved in 600μL of endotoxin-free PBS buffer (≤0.5 EU/
mL, Cellcook Biotech Co. Ltd., Guangzhou, China). A homogeneous
hydrogelwas formedby adjusting thefinalpH to 7.5 by 1 NNaOH. Then
RBD protein (RBD-Fc) was added to the hydrogel, followed by vor-
texing and standing at room temperature for one hour to obtain a
tetrapeptide hydrogel protein vaccine. For in vivo immune evaluation,
C57BL/6 J mice were randomly divided into three groups (n = 6): (1)
15μg RBD protein (RBD group); (2)12.5μL aluminum adjuvant and
15μg RBD protein (Alum + RBD group); (3) 60mM tetrapeptide
hydrogel and 15μg RBD protein (YAWF +RBD group). Eachmouse was
injected subcutaneously in the groin with 100μL of the prepared
vaccine.

Mice
C57BL/6 J mice (female, 6-8 weeks old) were obtained from the
laboratory animal resources center (LARC) at Westlake University.
They were housed in specific pathogen-free (SPF) conditions, and a 12-
h light/12-h dark cycle was used. The housing temperature for mice is
between 20–26 °C with 40–70% humidity.

Tetrapeptide hydrogel in promoting dendritic cells maturation
Bonemarrow cells were isolated from the femur and tibia of C57BL/6 J
mice and then cultured in 1640medium containing GM-CSF (5 ng/mL)
and IL-4 (5 ng/mL) at 37 °C for 6 days64. The collected immature DCs
were plated in a 24-well plate at a density of 1 × 106 cells per well. After
24 h, 50μL of the blankmedium, vaccine, and LPS were added to each
well, respectively, then the medium volume was supplemented to
1mL. The cells were cultured for another 24 h and centrifuged to col-
lect the cells and supernatant. The acquired cells were labeled with
FITC-tagged anti-CD80, FITC-tagged anti-CD83, and PE-tagged anti-
CD86 for flow cytometry (CytExpert Software for CytoFLEX 2.4.0.28).
The production of IL-6 and TNF-α in the cell culture supernatants was
also analyzed by ELISA kit.

ELISA for antibody titer
The production of anti-RBD IgG, IgG1, IgG2b, and IgG2c antibodies in
mice serum was analyzed by ELISA. RBD proteins (RBD-H) were plated
on 96-well uncoated ELISA plates (Biolegend) at 3μg/mL in PBS buffer
overnight at 4 °C. Theplatewasblockedwith 1%BSA for 2 h at 37 °C. By
washing the plate three timeswith PBST (Phosphate buffer saline (PBS)
with 5‰Tween20), 100μLdilutedmice serumwasadded intoperwell

and incubated at 37 °C for 2 h. The plate was washed with PBST four
times. Each well of 96-well plate was added with 100μL HRP-labeled
goat anti-mouse IgG, IgG1, IgG2b, and IgG2c binding antibody (1: 5000
diluted in blocking buffer) at 37 °C for 1 h. After washing the plate four
times with PBST, 50 μL 3,3′,5,5′-tetramethylbenzidine (TMB) was
added into per well. The reaction was stopped with 50μL 2M H2SO4.
The absorbance value at 450 nm and 570nm wavelength was deter-
mined by a Microplate reader (Thermo Fisher Scientific, Varioskan
LUX). Titers were analyzed with log 10 serum dilution plotted against
absorbance at 450nm minus absorbance at 570 nm. Antibody titer
values were defined as the highest serum dilution that gave an optical
density above 0.1.

Cytokine production
On the 7th day after the last immunization, fresh splenocytes were
collected by grinding the mouse spleen65. The splenocytes (5 × 106

cells/mL) from each group of mice were plated in 24-well plates, and
stimulated with soluble RBD protein (50μg/mL) for 96 h. The pro-
duction of IFN-γ and IL-5 in cell culture supernatants was analyzed by
ELISA kit.

Statistics and reproducibility
Statistical significance was determined using a one-way ANOVA test.
Statistical analyses were performed using GraphPad Prism 8. For all
representative TEM or optical images, experiments were performed
three times independently with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary information files. Any addi-
tional requests for information can be directed to, and will be fulfilled
by, the lead contact. Source data are provided with this paper.
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