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The effect of environmental information on
evolution of cooperation in stochastic games

Maria Kleshnina 1,7 , Christian Hilbe 2,7, Štěpán Šimsa 3,4,
Krishnendu Chatterjee3 & Martin A. Nowak 5,6

Many human interactions feature the characteristics of social dilemmas where
individual actions have consequences for the group and the environment. The
feedback between behavior and environment can be studied with the frame-
work of stochastic games. In stochastic games, the state of the environment
can change, depending on the choices made by group members. Past work
suggests that such feedback can reinforce cooperative behaviors. In particular,
cooperation can evolve in stochastic games even if it is infeasible in each
separate repeated game. In stochastic games, participants have an interest in
conditioning their strategies on the state of the environment. Yet in many
applications, precise information about the state could be scarce. Here, we
study how the availability of information (or lack thereof) shapes evolution of
cooperation. Already for simple examples of two state games we find sur-
prising effects. In some cases, cooperation is only possible if there is precise
information about the state of the environment. In other cases, cooperation is
most abundant when there is no information about the state of the environ-
ment. We systematically analyze all stochastic games of a given complexity
class, to determine when receiving information about the environment is
better, neutral, or worse for evolution of cooperation.

Cooperation can be conceptualized as an individually costly behavior
that creates a benefit to others1. Such cooperative behaviors have
evolved inmany species, fromuni-cellularorganisms tomammals2. Yet
they are arguably most abundant and complex in humans, where they
form the very basis of families, institutions, and society3,4. Humans
often support cooperation through direct reciprocity5. Here, people
preferentially help those who have been helpful in the past6. Such
forms of direct reciprocity naturally emerge when groups are stable,
and when cooperation yields substantial returns7. In that case, indivi-
duals readily learn to engage in conditional cooperation, using stra-
tegies like Tit-for-tat8–11 (TFT), Win-Stay Lose-Shift12,13 (WSLS), or
multiplayer variants thereof14–16. When everyone adopts these strate-
gies, groups can sustain cooperation despite any short-run incentives
to free ride17,18.

To describe direct reciprocity formally, traditional models of
cooperation consider individuals who face the same strategic inter-
action (game) over and over again. The most prominent model of this
kind is the iterated prisoner’s dilemma8. In this game, two individuals
(players) repeatedly decide whether to cooperate or defect. While the
players’ decisionsmay change fromone round to the next, the feasible
payoffs remain constant. Models based on iterated games have
become fundamental for our understanding of reciprocity. However,
they presume that interactions take place in a constant social and
natural environment. Individual actions in one round have no effect on
the exact game being played in future. In contrast, in many applica-
tions, the environment is adaptive, such as when populations aim to
control an epidemics19–21, manage natural resources22–24, or mitigate
climate change25–27. Changing environments in turnoften bring about a
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change in the exact game being played. Such applications are there-
fore best described with models in which there is a feedback between
behavior and environment. In the context of direct reciprocity, such
feedbacks can be incorporated with the framework of stochastic
games28–30.

In stochastic games, individuals interact over multiple time peri-
ods. Each period, the players’ environment is in one of several possible
states. This state can change fromone period to the next, depending on
the current state, the players’ actions, and on chance. Changes of the
state affect the players’ available strategies and their feasible payoffs. In
thisway, stochastic games are better able todescribe social dilemmas in
which individual actions affect the nature of a group’s future interac-
tions. Yet previous evolutionary models of stochastic games presume
that individuals are perfectly aware of the current state31–33. This allows
individuals to coordinate on appropriate responses once the state has
changed. In contrast, in many applications, any knowledge about the
state of the environment is at best incomplete. Suchuncertainties can in
turn have dramatic effects on human behavior34–37. Understanding the
impact of information on decision-making has been a rich field of study
in economics. Corresponding studies suggest that the effect of infor-
mation is often positive, even though there are situations inwhich it has
adverse effects38–40. Additionally, studies of partially observable sto-
chastic games suggest that settings with incomplete information can
benefit decision-makers41,42.

In the following, we explore how state uncertainty in stochastic
games shapes the evolution of cooperation. To this end, we compare
two scenarios. First, we consider the case when individuals are able to
learn the state of their environment and condition their decisions on
the current state. We will refer to this case as the ‘full-information
setting’. In the second case, individuals may be aware that they are
engaged in a stochastic game but they either ignore or are unable to
obtain information about the current state. As a result, their decisions
are independent of their environment. We refer to this case as the ‘no-
information setting’. To compare these two settings we focus on the
simplest possible case,where twoplayersmayexperience twopossible
states. Already for this elementary setup, we obtain an extremely rich
family of models that gives rise to many different possible dynamics.

Already here, we observe that conditioning strategies on state infor-
mation can have drastic effects on how people cooperate.

To quantify the importance of state information, we introduce a
measure to which we refer as the ‘value of information’. This value
reflects by howmuch the cooperation rate in a population changes by
gaining access to information about the present state. When this value
is positive, access to information makes the population more coop-
erative. In that case, we speak of a ‘benefit of information’. In general, it
is also possible to observe negative values, in which case we speak of a
‘benefit of ignorance’. With analytical methods for the important limit
of weak selection43–45, and with numerical computations for arbitrary
selection strengths, we compare the value of information across many
stochastic games. We identify settings where receiving information is
better, neutral, or worse for the evolution of cooperation. Most often,
information is highly beneficial. However, there are also a few notable
exceptions in which populations can achieve more cooperation when
they are ignorant of their state. In the following, we describe and
characterize these cases in detail.

Results
Stochastic games with and without state information
To explore the dynamics of cooperation in variable environments, we
consider stochastic games31–33. We introduce our framework for the
most simple setup, in which the game takes place among two players
who interact for infinitely many rounds, without discounting of their
future payoffs. In each round, players can find themselves in two
possible states, S = {s1, s2}. Depending on the state, players engage in
one of two possible prisoner’s dilemma games. In either game, they
caneither cooperate (C) or defect (D). Cooperationmeans topay a cost
c for the other player to get a benefit bi. The cost of cooperation is
fixed, but the benefit bi depends on the present state si (Fig. 1a).
Without loss of generality, we assume that the first state is more
profitable, such that b1 ≥ b2 > c≔ 1. However, states can change from
one round to the next, depending on the game’s transition vector
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Fig. 1 | Stochastic games with full and no information. a We study 2-state sto-
chastic games where transitions between the states depend on the players' actions.
In each state, players engage in aprisoners' dilemmawithbenefitb1 (orb2) and cost c.
The two benefit parameters b1 and b2 might reflect the group’s environmental
conditions. Without loss of generality, we assume b1 ≥ b2. b Transitions between the
states can be either completely determined by the player’s current actions (deter-
ministic game transitions), or they may additionally depend on chance events (sto-
chastic game transitions). In the two cases depicted here, environmental conditions
worsen when players defect, reducing the players' possible benefits. Once players
resume mutual cooperation, they may return to the more profitable first state. We

note that in thebottomcase, only a single transitiondependsonchance; in that case,
we speak of a single-stochastic transition vector. c In this work, we compare two
possible scenarios, depending on whether or not players are able to condition their
behavior on the current state (`full information' versus `no information'). dWith full
information, individuals can react differently to their opponent, depending on the
current state. As a result, they can choose among28 = 256 deterministicmemory-one
strategies. Without information, players need to act in the same way in each of the
two states. Hence there are only 24 = 16 deterministic memory-one strategies. The
acronymsALLC, ALLD, TFT,WSLS refer to unconditional cooperation, unconditional
defection, tit-for-tat, and win-stay lose-shift, respectively.
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Here, each entry qi
a~a 2 ½0, 1� is the probability that players find them-

selves in themore profitable state s1 in the next round. This probability
depends on the previous state si and on the players’ previous actions a
and ~a. For example, the transition vector q = (1, 0, 0; 1, 0, 0) corre-
sponds to a game in which players are only in themore profitable state
if they both cooperated in the previous round. Note that we assume
the transition vector to be symmetric. That is, transition probabilities
depend on the number of cooperators, but they are independent of
who cooperated (qi

CD =qi
DC for all i). We say a transition vector is

deterministic if each entry qi
a~a is either zero or one (Fig. 1b). Even for

deterministic vectors we speak of a ‘stochastic game’, because
games with deterministic transitions represent a special case of our
framework. Based on Eq. (1), there are 26 = 64 deterministic transition
vectors in total. We call a transition vector single-stochastic if there is
exactly one entry that is strictly between zero and one. Games
with single-stochastic transitions can serve as the most elementary
example of an interaction for which the environment depends on
chance events.

To explore how often players cooperate depending on the infor-
mation they have, we compare two settings (Fig. 1c). In the full-
information setting, players learn the present state before making
decisions. Thus, their strategies may depend on both the present state
and on the players’ actions in the previous rounds. Herein, we assume
that players make decisions based on memory-1 strategies. Such stra-
tegies only take into account the outcome of the last round46 (exten-
sions tomore complex strategies47–52 arepossible, but for simplicitywe
do not explore them here). In the full information setting, memory-1
strategies take the form of an 8-tuple,

pF = ðp1
CC ,p

1
CD,p

1
DC ,p

1
DD; p

2
CC ,p

2
CD,p

2
DC ,p

2
DDÞ: ð2Þ

Here, pi
a~a is the player’s probability to cooperate in state si, depending

on the focal player’s and the co-player’s previous actions a and ~a,
respectively. We compare this full-information setting with a no-
information setting, in which individuals are unable to condition their
behavior on the current state. In that case, strategies are 4-tuples

pN = ðpCC ,pCD,pDC ,pDDÞ: ð3Þ

We note that the set of no-information strategies is a strict subset of
the full-information strategies (they correspond to those pF for which
p1
a~a =p

2
a~a for all actions a and ~a). For simplicity, we assume in the

following that the players’ strategies are deterministic, such that each
entry is either zero or one. For full information, there are 28 = 256
deterministic strategies. For no information, there are 24 = 16 determi-
nistic strategies. Some results for stochastic strategies are shown in
Fig. S1a, b.

The players’ strategies may be subject to errors with some small
probability ε. This model parameter reflects the assumption that
people may occasionally make mistakes when engaging in
reciprocity53,54. In that case, an intended cooperation may be mis-
implemented as a defection (and vice versa). Games with errors have
the useful technical property that the long-run dynamics is inde-
pendent of the players’ initial moves46. For ε > 0, a player with
strategy p effectively implements the strategy (1 − ε)p + ε(1 − p). In
particular, even when the original strategy p is deterministic, the
effective strategy is stochastic. Given the error probability, the
players’ strategies, and the game’s transition vector, we can com-
pute how often players cooperate on average and which payoffs
they get (see Methods).

Because we are interested in how cooperation evolves, we do
not consider players with fixed strategies. Rather players can change
their strategies in time, depending on the payoffs they yield. To
describe this evolutionary dynamics, we use a pairwise comparison
process55. This process considers populations of fixed size N. Players

receive payoffs by interacting with all other populationmembers. At
regular time intervals, one player is randomly chosen and given the
opportunity to revise its strategy. The player may do so in two ways.
With probability μ, the player switches to a random deterministic
memory-1 strategy (similar to a mutation in biological models of
evolution). Otherwise, with probability 1 − μ, the focal player com-
pares its own payoff π to the payoff ~π of a random role model. The
player switches to the role model’s strategy with probability
ð1 + exp½�βð~π � πÞ�Þ�1. The parameter β > 0 is the strength of selec-
tion. The higher this parameter, the more individuals are prone to
imitate only those role models with a high payoff. Overall, these
assumptions define a stochastic process on the space of all possible
population compositions. For finite β, evolutionary trajectories do
not converge to any particular outcome because no population
composition is absorbing. However, because the process is ergodic,
the respective time averages converge to an invariant distribution.
This invariant distribution describes how often the population has a
given composition in the long run (see Methods).

We study this evolutionary process analytically when mutations
are rare and selection is weak (that is, when μ, β→0). In addition, we
numerically explore the process for arbitrary selection strengths. In
either case, we compute which payoffs players receive on average and
how likely they are to cooperate over time. By comparing the coop-
eration rates γ̂F and γ̂N for populations with full and no information,
respectively, we quantify how favorable information is for the evolu-
tion of cooperation.We refer to the difference,VβðqÞ : = γ̂F � γ̂N as the
value of (state) information. In general, this value depends on the
game’s transition vector q, as well as on the strength of selection β.
When this value is positive, populations achieve more cooperation
when they learn the present state of the stochastic game.

In the following, we describe the results of this baseline model in
detail. In the SI, we provide further results on the impact of different
game parameters (Fig. S1), other strategy spaces (Fig. S2), and alter-
native learning rules (Fig. S3).

The effect of state information in two examples
To begin with, we illustrate the effect of state information by
exploring the dynamics of two examples. Both examples are variants
of models that have been previously used to highlight the impor-
tance of stochastic games for the evolution of cooperation31. In the
first example (Fig. 2a), players only remain in the more profitable
first state if they both cooperate. If either of them defects, they
transition to the inferior second state. Once there, they transition
back to themore profitable state after one round, irrespective of the
players’ actions. The second statemay thus be interpreted as a ‘time-
out’31. For numerical results, we assume that cooperation yields an
intermediate benefit in the more profitable state and a low benefit in
the inferior state (b1 = 1.8, b2 = 1.3).

When we simulate the evolutionary dynamics of this stochastic
game, we observe that individuals consistently learn to cooperate
when they have full information. In contrast, without information, they
mostly defect (Fig. 2b). To explain this result, we numerically compute
which strategies are most likely to evolve according to the process’s
invariant distribution, for each of the two cases (Fig. 2c). In the full-
information setting, individuals predominantly adopt a strategy
pF = (1, 0, 0, 0; x, 0, 0, 1), where x∈ {0, 1} is arbitrary. This strategy may
be considered as a variant of theWSLS rule that has been successful in
the traditional prisoner’s dilemma12. In particular, it is fully cooperative
with itself.Weprove inSupplementaryNote 3 that this strategy forms a
subgame perfect (Nash) equilibrium if 2b1 − b2 ≥ 2c, which is satisfied
for the parameters we use (see also Fig. 3a). On the other hand, in the
no-information setting, this strategy is no longer available. Instead,
players can only sustain cooperation with the traditional WSLS rule
pN = (1, 0, 0, 1). This strategy is only an equilibrium under the more
stringent condition b1 > 2c. Because our parameters do not satisfy this
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condition, cooperation does not evolve in the no-information setting
(Fig. 3b). To explore how these results depend on the benefit of
cooperation b1 and on the selection strength β, Fig. 2d shows further
simulations where we systematically vary both parameters. In all con-
sidered cases, state information is beneficial because it allows indivi-
duals to give more nuanced responses.

The second example has a similar transition vector as the first,
with a singlemodification. This time, the inferior state is only left if at
least one of the two players cooperates (Fig. 2e). Although this
modification may appear minor, the resulting dynamics is strikingly
different. We observe that with and without state information,
individuals are now largely cooperative. However, they are most
cooperative when individuals do not condition their strategies on
the state information (Fig. 2f). For this stochastic game, we show in
Supplementary Note 3 that already the traditional WSLS rule is
subgame perfect for 2b1 − b2 ≥ 2c. As a result, WSLS is predominant
in the no-information setting (Fig. 3d). In contrast, in the full-
information setting, WSLS is subject to (almost) neutral drift by
strategies that only differ from WSLS in a few bits (Fig. 3c). These
other strategies may in turn give rise to the occasional invasion of
defectors. Overall, we find that this stochastic game exhibits a
benefit of ignorance when selection is sufficiently strong, and when
cooperation is particularly valuable in the more profitable state (i.e.,
in the upper right corner of Fig. 2h).

These examples highlight three observations. First, just as there
are instances in which state information is beneficial, there are also
instances in which state information can reduce how much coopera-
tion players achieve. Second, the stochastic games (transition vectors)
for which state information is beneficial may only differ marginally
from games with a benefit of ignorance. Finally, even if a stochastic
gameadmits a benefit of ignorance, this benefitmaynot be present for
all parameter values. Taken together, these observations suggest that
in general, the effect of state information can be non-trivial and
requires further investigation.

A systematic analysis of the weak-selection limit
To explore more systematically in which cases there is a benefit of
information (or ignorance), we study the class of all games with deter-
ministic transition vectors. We first consider the limit of weak selection
(β→0).Here, gamepayoffs onlyweakly influence how individuals adopt
new strategies. While a vanishingly small selection strength is a math-
ematical idealization, this limit plays an important role in evolutionary
game theory43–45. It often permits researchers to derive explicit solu-
tions when analytical results are difficult to obtain otherwise. In our
case, the limit of weak selection is particularly convenient, because it
allows us to exploit certain symmetries between the two possible states
s1 and s2, and between the two possible actions C and D, see Supple-
mentary Note 1. As a result, we show that instead of 64 stochastic
games, we only need to analyze 24. For each of these 24 transition
vectors q, we explore whether information is beneficial, detrimental, or
neutral (i.e., whether V0(q) is positive, negative, or zero).

First, we prove that half of the 64 stochastic games are neutral. In
these games, the full-information and the no-information setting yield
the same average cooperation rate in the limit of weak selection.
Among the neutral games, we identify three (overlapping) subclasses.
(i) The first subclass consists of those games that have an absorbing
state (15 cases). Here, either the first or the second state can no longer
be left once it is reached, because q1a~a = 1 or q

2
a~a =0 for all a and ~a. For

these games, state information is neutral because players can be sure
they are in the absorbing state eventually. (ii) In the second subclass,
transitions are state-independent31, whichmeans q1

a~a = q
2
a~a for all a and

~a (6 additional cases). For deterministic transitions, state-
independence implies that the current state can be directly inferred
from the players’ previous actions, even without obtaining explicit
state information. (iii) In the third subclass, neutrality arises because of
more abstract symmetry arguments, described in detail in Supple-
mentary Note 1. In particular, while the games in the first two sub-
classes are neutral for all selection strengths, the games in the third
subclass only become neutral for vanishing selection. One particular
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Fig. 2 | A comparison of the value of information in two games. a, e As an
example, we consider the dynamics of two games with deterministic transitions.
We refer to the first game with transition vector q1 = (1, 0, 0; 1, 1, 1) as a game with
timeout. The secondgamewith transition vectorq2 = (1, 0, 0; 1, 1, 0) corresponds to
a timeout game with conditional return. b, f To illustrate the evolutionary
dynamics, we simulate the pairwise comparison process for both settings (full and
no information). Full information yieldsmore cooperation in the first game but less
cooperation in the second. c, g To explore the impact of information in each game,

we numerically compute the abundance of all strategies, according to the invariant
distribution of the process (see Methods). In Fig. 3, we describe these abundances
in more detail. d, h By simultaneously varying the benefit b1 in the more profitable
state and the selection strength β, we explore for which parameters there is a
benefit of ignorance. Colors represent the value of information Vβ(q) according to
the invariant distribution of the process. Default parameters: b1 = 1.8, b2 = 1.3, c = 1,
population size N = 100, error rate ε =0.01, and selection strength β = 10.
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example of this last subclass is the game with transition vector
q = (1, 0, 0; 1, 1, 0), whichwe studied in the previous section (Figs. 2e–h
and 3c, d). There, we observed that this game can give rise to a benefit
of ignorance when selection is intermediate or strong. Here, we con-
clude that this benefit disappears completely for vanishing selection
(see also the lower boundary of Fig. 2h).

For the remaining 32 non-neutral cases, we identify a simpleproxy
variable that indicates whether or not the respective game exhibits a
benefit of information for weak selection (Fig. 4a). Specifically, in a
non-neutral game, information is beneficial if and only if X >0, with X
being

X = 1q1
CC = 1 +1q2CC =0

� �
� 1q1DD = 1 +1q2DD =0

� �
: ð4Þ

Here, 1A is an indicator function that is one if assertion A is true and
zero otherwise. One can interpret the variable X as a measure for how
easily the game can be absorbed in mutual cooperation (X ≥0) or
mutual defection (X ≤0). For example, if a game has a transition vector
with q1

CC = 1, groups can easily implement indefinite cooperation by
choosing strategies with p1

CC = 1. By doing so, players ensure they
remain in the first state, in which they again would continue to coop-
erate. Using the proxy variable X, we can conclude that there are two
properties of transition vectors that make state information beneficial
in the limit of weak selection. The transition vector either needs to
allow players to coordinate on mutual cooperation in a stable envir-
onment (q1

CC = 1, q
2
CC =0); or it needs to prevent players from coordi-

nating on mutual defection in a stable environment (q1
DD ≠ 1, q

2
DD ≠0).

Again by symmetry considerations, we find that there are as many
gameswith abenefit of information as there aregameswith abenefit of
ignorance (16 cases each, see Fig. 4a).

Exploring the impact of other game parameters
After characterizing the case of weak selection, we next explore the
dynamics under strictly positive selection. To this end, we numerically
compute the population’s average cooperation rate with and without
state information, for each of the 64 stochastic games considered
previously. To explore the impact of different game parameters, we
systematically vary the strength of selection (Figs. 4b and S4), the
benefit of cooperation (Figs. 4c and S5), and the error rate (Fig. S6). For
21 games, the evolving cooperation rates are the same with and with-
out information. These games are neutral either because there is an
absorbing state, or because transitions are state-independent (as
described earlier). For the remaining cases, we find that a clear
majority of them result in a benefit of information (Fig. 4b, c).

In the few cases with a consistent benefit of ignorance (the red
squares in Figs. S4–S6), there is overall very little cooperation. As a
result, themagnitudeof this benefit is oftennegligible.Only in twocases
one can find parameter combinations that lead to a sizeable benefit of
ignorance. The first case is the stochastic game considered in Fig. 2e–h
with transition vector q = (1, 0, 0; 1, 1, 0). The other case is a slight
modification of the first, having the transition vector q = (1, 0, 1; 1, 1, 0).
In both casesmutual cooperation leads to themoreprofitablefirst state.
Moreover, in both cases, players can use WSLS to sustain cooperation
even without state information, provided that 2b1− b2 ≥ 2c. But even
when this condition holds, the benefit of ignorance is constrained,
because even fully informed populations tend to achieve substantial
cooperation rates (Figs. S4–S6). Overall, these results suggest that for
positive selection strengths, a sizeable benefit of ignorance is rare.
Moreover, there seems to be no simple rule that predicts for which
stochastic games we can expect a benefit of ignorance (see Supple-
mentary Note 3, Section 3.3 for a more detailed discussion).
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Cooperation rate 10% Cooperation rate 99%

Fig. 3 | Strategy invasion analysis for the two timeout games. Here we analyze
the invasion dynamics between different resident populations for the two exam-
ples considered in Fig. 2. Every circle represents a possible resident strategy. The
frequency underneath indicates how often the respective resident population is
observed over the course of the evolutionary process according to the invariant
distribution. Strategies that have 100% self-cooperation rate (in the limit of rare
errors) are highlightedwith a green ring. Lines between the strategies represent the
direction of selection. Solid lines indicate that the respective fixation probability is
larger than 1/N. Dotted lines indicate that the fixation probability is smaller than 1/N

but greater than 1/(10N); in that case we speak of `almost-neutral drift'. a, b In the
timeout game with full information, there are several highly cooperative strategies
that are fairly robust against invasions. In contrast, for no information, players can
only maintain cooperation with WSLS, which is unstable for the given parameter
values. c, d The picture changes in the timeout gamewith conditional return. Here,
WSLS is stable in the game with no information. In contrast, when there is full
information,WSLS can be invaded through almost-neutral drift. Parameters are the
same as in Fig. 2.
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The effect of environmental stochasticity
In our analysis so far, we assumed that the environment changes
deterministically. Individuals who know the present state and the
players’ actions can therefore anticipate the game’s next state. This
form of predictability may overall diminish the impact of explicit state
information because it reduces uncertainty. In the following, we
extend our analysis to allow for stochasticity in the game’s transitions.
To gain some intuition, we start with a simple example taken from the
previous literature31 (see Fig. 5a for a depiction). According to the
game’s transition vector, q = (1, 0, 0, q, 0, 0), players always find
themselves in the less profitable second state if one or both players
defect. If both players cooperate, however, they either remain in the
first state (if they are already there), or they transition to the first state
with probability q (if they start out in the second state). This stochastic
game represents a scenario in which an environment deteriorates
immediately once players defect. If players resume to cooperate, it
may take several rounds for the environment to recover.

For this example, we find that the value of information varies non-
trivially, depending on the transition probability q and the strength of
selection β (Fig. 5b–e). Overall, parameter regions with a benefit of
ignorance seem to prevail (Fig. 5f). To obtain analytical results, again
we study the game for weak selection (β→0). In that case, the value of
information can be computed explicitly, as V0ðqÞ= � 3qð1�qÞ

64ð1 +qÞ. In parti-
cular, there is a benefit of ignorance for all intermediate values
q∈ (0, 1). This benefit becomes most pronounced for q=

ffiffiffi
2

p
� 1 (for

more details, see Supplementary Note 3, Section 3.4). As we increase
the selection strength, however, the dynamics can change, depending
on q. For small q, we continue to observe a benefit of ignorance,
whereas for larger q information tends to become beneficial (Fig. 5f).

To explore the scenarios with a benefit of ignorance, we record
which strategies players adopt for q =0.2. Without state information,
we find that players adopt WSLS almost all of the time (Fig. 5g). In
contrast, when players condition their strategies on state information,
WSLS is risk-dominated by a strategy that has been termed Ambitious
WSLS31 (AWSLS). AWSLS differs from WSLS after mutual cooperation,
in which case AWSLS only cooperateswhen players are in the first state
(i.e., q1

CC = 1 but q
2
CC =0). Once AWSLS is common in the population, it

opens up opportunities for less cooperative strategies to invade. In
particular, also non-cooperative strategies like Always Defect (ALLD)
are adopted for a non-negligible fraction of time (Fig. 5h). Overall, we
find that predicting the effect of information is non-trivial. While some
parameter combinations favor populations with full information, we
also observe a benefit of ignorance for a significant portion of the
parameter space.

To obtain a more comprehensive picture, we numerically analyze
all stochastic games with single-stochastic transition vectors. Because
the corresponding transition vectors have exactly one entry q between
0 and 1, there are 6 ⋅ 25 = 192 cases in total. We find several regularities.
First, similarly to games with deterministic transitions, we find that
there are 24 transition vectors for which the game is neutral. In all of

Possibility for mutual defection Possibility for mutual cooperation
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a Classification of all games with deterministic transitions

Impact of the payoff in State 1
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cImpact of selection strength
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Fig. 4 | Classification of games with deterministic transitions. a In the limit of
weak selection (β→0), we can define a simple proxy variable X by Eq. (4) that
indicates whether information is better, neutral, or worse for games with deter-
ministic transitions. When X =0 or when the stochastic game has an absorbing
state, the game is neutral. In all other cases, there is either a benefit of information
(when X >0) or a benefit of ignorance (when X <0). The bar diagram depicts the
respective value of information for each of the 64 possible cases. The panel is

symmetric; for each game with a benefit of information, there is a corresponding
game with the same benefit of ignorance. b Once we increase the selection
strength, games with a benefit of information become predominant. c We also
study the effect of b1 (the benefit of cooperation in themoreprofitable state) under
strong selection, β = 10. Again, most games are either neutral or show a benefit of
information. Unless explicitly noted otherwise, we use the same parameters as
before.
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thesegames, oneof the two states is absorbing. Second,we analyze the
remaining cases in the limit of vanishing selection (Fig. S7). Most of
these games follow the rule defined by the proxy variable X in Eq. (4),
with some exceptions discussed in detail in Supplementary Note 2.
Finally, for positive selection strengths we can again compute the
players’ average cooperation rates numerically. We do this for all 192
families of games for weak (Fig. S8), intermediate (Fig. S9), and strong
selection (Fig. S10). Similar to the case of deterministic transitions,
state information is beneficial in an absolute majority of cases
(Fig. S11). However, exceptions can and do occur. A notable benefit of
ignorance arises most frequently when mutual cooperation in the
more beneficial state leads the players to remain in that state, and
when mutual defection in any state is punished with deteriorating
environmental conditions.

Our computational methods are not limited to games with
deterministic or single-stochastic transitions. To obtain a compre-
hensive understanding of the general effect of state information, we
systematically explore the space of all stochastic transition vectors. To
make this analysis feasible, we assume the entries of q are taken from a
finite grid qkij 2 f0,0:2, 0:4, 0:6, 0:8, 1:0g, leading to 66 = 46, 656 pos-
sible cases.Our numerical results again confirm that for themajority of
these cases, environmental information is beneficial (Fig. S12b).
Although there is also a non-negligible number of games for which
populations are better off without information, the respective benefit
of ignorance is often small (Fig. S12a).

Discussion
When people interact in a social dilemma, their actions often have
spillovers to their social, natural, and economic environment56–59.
Changes in the environment may in turn modulate the characteristics
of the social dilemma.One important example of such a feedback loop

is the ‘tragedy of the commons’60. Here, groups with little cooperation
may deteriorate their environment, thereby restricting their own fea-
sible long-run payoffs.

Such spillovers between the groups’ behavior and their environ-
ment can be formalized as a stochastic game28. In stochastic games,
individuals interact for many time periods. In each period, they may
face a different kind of social dilemma (state). The way they act in one
state may affect the state they experience next. Recently, stochastic
gameshavebecomea valuablemodel for the evolutionof cooperation,
because changing environments can reinforce reciprocity31–33. In par-
ticular, the evolution of cooperation may be favored in stochastic
games even if cooperation is disfavored in each individual state31, see
also Fig. S2a, b. However, implicit in these studies is the assumption
that individuals are perfectly aware of the state they are in. Here, we
systematically explore the implications of this assumption. We study
to which extent individuals learn to cooperate, depending on whether
or not they know the present state of their environment. We say the
stochastic game shows a benefit of information if well-informed
groups tend to be more cooperative. Otherwise, we speak of a benefit
of ignorance.

Already for themost basic instantiation of a stochastic game, with
two individuals and two states, we find that the impact of information
is non-trivial. All three cases are possible: state information can be
beneficial, neutral, or detrimental for cooperation. To explore this
complex dynamics, we employ a mixture of analytical techniques and
numerical approaches. Analytical results are feasible in the limiting
case of weak selection43–45. Here, we observe an interesting symmetry.
For every stochastic game in which there is a benefit of information,
there is a corresponding game with a benefit of ignorance. This sym-
metry breaks down for positive selection. As selection increases, we
observe more and more cases in which state information becomes

Fig. 5 | Benefit of ignorance in a game with a single-stochastic transition. aWe
consider a stochastic game in which defection by any player leads to the inferior
second state. From there, players return to the more profitable first state after
mutual cooperation with probability q. b–f We compute numerically exact coop-
eration rates for the stochastic gamewith no information andwith full information,
for different values of the transition probability q and selection strength β. For no
and weak selection, there is a benefit of ignorance for all values of q∈ (0, 1). For
intermediate and strong selection, a benefit of ignorance persists when the

transition probability q is sufficiently small. g,h, We plot how often each strategy is
played for q =0.2 and strong selection. Because any defection leads to state 2, we
can use a simplified notation for full-information strategies,
p= ðp1

CC ;p
2
CC ,p

2
CD,p

2
DC ,p

2
DDÞ; the remaining three entries p1

CD, p
1
DC , p

1
DD are irrelevant

(Section 3.4 in Supplementary Note 3). We observe that when there is no infor-
mation,most players adoptWSLS.With full information, there is no clearly winning
strategy. Baseline parameters are the same as before. For no, weak, intermediate
and strong selection we use β =0, β =0.001, β = 1, and β = 10, respectively.
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beneficial.Moreover, in those few cases inwhich a benefit of ignorance
persists, this benefit tends to be small. These results highlight the
importance of accurate state information for responsible decision
making.

However, our research also highlights a few notable exceptions.
We identify several ecologically plausible scenarios where individuals
cooperate more when they ignore their environment’s state. One
example is the game displayed in Fig. 2e–h. Here, players only remain
in the profitable state when they both cooperate. Once they defect,
they transition to the inferior state. From there, they can only escape if
at least one player cooperates. This game reflects a scenario where the
group’s environment reinforces cooperation. Cooperative groups are
rewarded by maintaining access to the more profitable state. Non-
cooperative groups are punished by transitioning to an inferior state.
For this kind of environmental feedback it was previously observed
that the simpleWSLS strategy can sustain cooperation easily31–33. WSLS
can be instantiated without any state information. Once a population
settles at WSLS, providing state information can even be harmful; in
that case, individuals may deviate towards more nuanced strategies,
which in turn can destabilize cooperation. In this sense, our study
mirrors previous results suggesting that richer strategy spaces can
sometimes reduce a population’s potential to cooperate61.

To allow for a systematic treatment, we focus on comparably
simple games.Nevertheless, the number of gameswe consider is huge.
For example, if all transitions between states are assumed to be
deterministic (independent of chance), there are 64 cases to consider
(Figs. S4–S6). If all but one transition are deterministic, we obtain 192
families of games (each having a free parameter q∈ [0, 1],
Figs. S7–S10). In addition,we also systematically explore the set of fully
stochastic transition functions, by considering 46,656 different cases
(Fig. S12). In all these instances, we observe that seemingly innocent
changes in the environmental feedback or in the game parameters can
lead to complex changes in the dynamics. In particular, games with a
benefit of informationmay turn into gameswith abenefit of ignorance.
As shown in Fig. S13, we observe a similar sensitivity in games with
more than two players. These observations suggest that there may be
no simple rule that predicts the impact of state information. These
difficulties are likely to further increase as we extend the model to
more complex strategies47–52, or environments with multiple states31.

Overall, we believe our work makes at least two contributions.
First, we introduce a simple and easily generalizable framework to
explore how state information (or the lack thereof) affects the evolu-
tion of cooperation. This framework can be generalized into various
directions. For example, in our model we compare two limiting cases.
We either consider a population inwhichno one knows the state of the
environment, or in which everyone gets precise information about the
environment’s state. There are many interesting cases in between. In
some applications, populationmembersmay only obtain an imperfect
signal of the environment’s true state42. Alternatively, one may adapt
our model to explore games with information asymmetries. As one
instance of such amodel extension, individuals may choose to acquire
state information at a small cost. Suchamodelwouldallow researchers
to explore whether individuals acquire information exactly in those
games for which we find a benefit of information.

As our second contribution, our results illustrate the intricate
dynamics that arise in the presence of environmental, informational,
and behavioral feedbacks. By exploring these feedbacks in elementary
stochastic games, we can better understand the more complex
dynamics of the socio-ecological systems around us.

Methods
Calculation of payoffs in stochastic games
In this study, we compare the evolutionary dynamics for two strategy
sets. The first set SF is the set of all memory-one strategies for the full-
information setting. The second set SN consists of all memory-one

strategies for the no-information setting. Equivalently, we can define
SN as the set of all full-information strategies that do not condition
their behavior on the current state,

SN = p 2 SF ∣p
1
a~a =p

2
a~a 8a,~a 2 fC,Dg� �

: ð5Þ

We denote by PF and PN the respective sets of deterministic
strategies, for which all entries are required to be either zero or one. In
the following, we describe how to calculate payoffs when players have
full information. Since any strategy for the case of no information can
be associated with a full-information strategy, the same method also
applies to the case of no information.

As our baseline, we consider games that are infinitely repeated
and in which there is no discounting of the future. Given player 1’s
effective memory-1 strategy p and player 2’s effective strategy ~p, such
games can be described as a Markov chain. The states of this Markov
chain correspond to the eight possible outcomesω= ðsi,a, ~aÞ of a given
round. Here, si∈ {s1, s2} reflects the environmental state, and a, ~a 2
fC,Dg are player 1’s and player 2’s actions, respectively. The transition
probability to move from state ω= ðsi,a, ~aÞ in one round to
ω0 = ðs0i,a0, ~a0Þ in the next round is a product of three factors,

mω,ω0 = x � y � ~y: ð6Þ

The first factor

x =
qi
a~a if s0i = s1

1� qi
a~a if s0i = s2

(
ð7Þ

reflects the probability to move from environmental state si to s0i,
given the player’s previous actions. Since the game is symmetric, we
note that qi

DC is defined to be equal to qiCD. The other two factors are

y=
pi0

a~a if a0 =C

1� pi0

a~a if a0 =D
,

(
ð8Þ

~y=
~pi0
~aa if ~a0 =C

1� ~pi0
~aa if ~a0 =D:

(
ð9Þ

They correspond to the conditional probability that each of the
two players chooses the action prescribed in ω0. By collecting all these
transition probabilities, we obtain an 8 × 8 transition matrix
M = ðmω,ω0 Þ. Assuming that players are subject to errors and that the
game’s transition vector satisfies q ≠ (1, 1, 1, 0, 0, 0), this transition
matrix has a unique left eigenvector v. The entries via~a of this eigen-
vector give the frequency with which players observe the outcome
ω= ðsi,a, ~aÞ over the course of the game. For a given transition vector
q, we can thus compute the first players’ expected payoff as

πðp, ~pÞ=b1 v1CC + v
1
DC

� �
+ b2 v2CC + v

2
DC

� �� c v1CC + v
1
CD + v2CC + v

2
CD

� � ð10Þ

The second player’s payoff can be computed analogously. Simi-
larly, the average cooperation rate of the twoplayers can be defined as
follows.

γðp, ~pÞ= v1CC +
v1CD + v

1
DC

2

	 

+ v2CC +

v2CD + v2DC
2

	 

: ð11Þ

In this work, we focus on games without discounting. However,
similar methods can be applied to games in which future payoffs are
discounted by a factor of δ (or equivalently, to games with a con-
tinuation probability δ). For δ < 1, instead of computing the left
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eigenvector of the transition matrix, we define v to be the vector

v= ð1� δÞv0
X1
t =0

ðδMÞt = ð1� δÞv0ðI8 � δMÞ�1
: ð12Þ

In this expression, v0 is the vector that contains the probabilities
to observe each of the eight possible states ω in the very first round.
Moreover, I8 is the 8 × 8 identitymatrix. Similar to before, the entries of
v= ðvia,~aÞ represent the weighted average that describes how often the
two players visit the stateω over the course of the game62. The payoffs
and the average cooperation rate can then again be computedwith the
formulas in (10) and (11). We use this approach when we explore the
impact of the continuation probability δ on the robustness of our
results in Fig. S1e, f.

Evolutionary dynamics
To model how players learn to adopt new strategies over time, we
study a pairwise comparison process55 in the limit of rare
mutations63–66. We consider a population of fixed size N. Initially, all
players adopt the same resident strategy pR =ALLD. Then one of the
players switches to a randomly chosen alternative strategy pM. This
mutant strategy may either go extinct or reach fixation, depending on
which payoff it yields compared to the resident strategy. If the number
of players adopting the mutant strategy is given by k, the expected
payoffs of the two strategies is

πRðkÞ=
N � k � 1
N � 1

� πðpR,pRÞ+
k

N � 1
� πðpR,pM Þ, ð13Þ

πMðkÞ=
N � k
N � 1

� πðpM ,pRÞ+
k � 1
N � 1

� πðpM ,pMÞ ð14Þ

Based on these payoffs, the fixation probability of the mutant
strategy can be computed explicitly43,67,

ρðpR,pM Þ=
1

1 +
PN�1

i= 1

Qi
k = 1

exp �β πMðkÞ � πRðkÞ
� �� � : ð15Þ

As the selection strength parameter β approaches zero, this fixa-
tion probability approaches the neutral probability 1/N, as one may
expect. As β increases, the fixation probability is increasingly biased in
favor of mutant strategies with a high relative payoff.

If the mutant fixes, it becomes the new resident strategy. Then
another mutant strategy is introduced and either fixes or goes extinct.
By iterating this basic process for τ time steps, we obtain a sequence
(p0,p1,p2,…,pτ) where pt is the resident strategy present in the
population after t mutant strategies have been introduced. Based on
this sequence, we can calculate the population’s average cooperation
rate and payoff as

π̂ = lim
τ!1

1
τ + 1

Xτ
t =0

πðpt ,ptÞ, ð16Þ

γ̂ = lim
τ!1

1
τ + 1

Xτ
t =0

γðpt ,ptÞ: ð17Þ

Because the evolutionary process is ergodic for any finite β, these
time averages exist and are independent of the population’s initial
composition.

If players have infinitely many strategies, the payoff and coop-
eration averages in (16) can only be approximated, by simulating the
above described process for a sufficiently long time τ. However, when
strategies are taken from a finite set P, these quantities can be

computed exactly. In that case, the evolutionarydynamicscan againbe
described as a Markov chain63. Each state of this Markov chain corre-
sponds to one possible resident population p 2 P. Given that the
current resident population uses p, the probability that the next resi-
dent population uses strategy ~p≠p is given by ρðp,~pÞ=∣P∣. By calcu-
lating the invariant distribution w = (wp) of this Markov chain, we can
compute the average cooperation rates and payoffs according to Eq.
(16) by evaluating

π̂ =
X
p2P

wp � πðp,pÞ, ð18Þ

γ̂ =
X
p2P

wp � γðp ,pÞ: ð19Þ

Herein, we perform these calculations for the specific strategy
sets for full information and no information, PF and PN , respectively.
By comparing the respective averages γ̂F and γ̂N , we characterize for
which stochastic games there is a benefit of information, by comput-
ing VβðqÞ= γ̂F � γ̂N .

We use this process based on deterministic strategies, pairwise
comparisons, and rare mutations for all of our main text figures. As
robustness checks, we present several variations of this model in the SI.
For example, in Fig. S1a,b, we show simulation results for players with
stochastic memory-1 strategies. To this end, we assume that mutant
strategies are randomlydrawn from the spacesSF andSN . Tomake sure
that strategies close to the corners get sufficient weight, the entries pi

a~a
are sampled according to an arcsine distribution, as for example in
Nowak and Sigmund12. Similarly, in Fig. S1h, i, we show simulations for
positivemutation rates. In Fig. S2a, b,we compare the results fromFig. 2
to a setup in which players only engage in the game in the first state
(without any transitions), or in which they only engage in the game in
the second state. In addition, in Fig. S2c, d, we run simulations when
players are unable to condition their behavior on the outcome of the
previous round. Finally, to explore whether our qualitative results
depend on the specific learning process we use, we have also imple-
mented simulations with an alternative learning process, introspection
dynamics68–70. The respective results are shown in Fig. S3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The generated simulation data is available at https://github.com/
kleshnina/stochgames_info.

Code availability
All numerical computations were performed with Matlab. For some of
the symbolic calculationsweusedMathematica. The respective code is
available at zenodo71 and on GitHub: https://github.com/kleshnina/
stochgames_info.
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