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Molecular profiling of aromatase inhibitor
sensitive and resistant ER+HER2-
postmenopausal breast cancers

Eugene F. Schuster 1,2 , Elena Lopez-Knowles1,2, Anastasia Alataki1,2,
Lila Zabaglo3, Elizabeth Folkerd1,2, David Evans3, Kally Sidhu3,
Maggie Chon U. Cheang4, Holly Tovey4, Manuel Salto-Tellez5,6,7, Perry Maxwell5,
John Robertson8, Ian Smith9, Judith M. Bliss4 & Mitch Dowsett 9

Aromatase inhibitors (AIs) reduce recurrences and mortality in post-
menopausal patients with oestrogen receptor positive (ER+) breast cancer
(BC), but >20% of patients will eventually relapse. Given the limited under-
standing of intrinsic resistance in these tumours, herewe conduct a large-scale
molecular analysis to identify features that impact on the response of ER +
HER2- BC to AI. We compare the 15% of poorest responders (PRs, n = 177) as
measured by proportional Ki67 changes after 2 weeks of neoadjuvant AI to
good responders (GRs, n = 190) selected from the top 50% responders in the
POETIC trial and matched for baseline Ki67 categories. In this work, low ESR1
levels are associatedwith poor response, high proliferation, high expression of
growth factor pathways and non-luminal subtypes. PRs having high ESR1
expression have similar proportions of luminal subtypes to GRs but lower
plasma estradiol levels, lower expression of estrogen response genes, higher
levels of tumor infiltrating lymphocytes and immune markers, and more TP53
mutations.

The lifetime risk of a woman presenting with breast cancer (BC) is now
1 in 71. Over 80% of cases are oestrogen receptor positive (ER+) and
that proportion is expected to increase over the coming years. Vir-
tually all patients with primary ER +BC receive at least 5 years of
endocrine therapy targeted at reducing or eliminating oestrogenic
signalling. In postmenopausal women, this is most frequently with an
aromatase inhibitor (AI) because these drugs have been shown to
reduce mortality from BC by approximately 40%; nevertheless, redu-
cing this further is a priority for contemporary research, as patients
with ER +BC have a steady risk of recurrence for 15 years ormore after
treatment.More than 20% of patients with ER+ tumours will eventually

have a relapse2; therefore, there is an urgent need to understand the
mechanisms that underpin intrinsic and acquired resistance to oes-
trogen deprivation therapy3.

ER + BC has been well studied with many pathways and genomic
alterations being characterized in untreated patients and associated
with recurrence rates, but there have been few large-scale studies
looking at response to oestrogen depletion. Importantly, there are
several gene expression profile assays that have emerged from large-
scale datasets of primaryBC that can accurately estimate the individual
risk of recurrence but do not predict response to treatment4–6. Only
the Breast Cancer Index (BCI) HOXB13/IL17BR ratio (H/I) has been
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shown to predict of benefit from endocrine therapy7. In addition, the
difficulty of generating ER+ cell lines from patients has limited pre-
clinical studies in AI resistance, andmost of the pre-clinical studies that
have been conducted to date are associated with acquired AI resis-
tance, which can be very different from intrinsic resistance8.

Studies investigating the association of biomarkers with treat-
ment resistance that depend on disease recurrence as their index of
resistance are confounded by prognostic clinical factors, such as
tumour size and nodal status. Surgery can eradicate disease in some
patients and thereby remove the potential for recurrencebut there are
currently no tools to distinguish such patients from those that do not
recur as a result of endocrine treatment alone. Studying the biologic
response to AI in the presurgical setting is therefore an attractive
option that we and others have exploited over recent years to under-
stand intrinsic resistance toAI.While clinical response, i.e. shrinkage of
the tumour, can be used as the marker of response, most of these
studies have used change in the proliferative marker Ki67 as the index
of responsiveness9–11 since this has been found to predict benefit from
adjuvant endocrine therapy.

In the current study,wedrewonbiopsy samples taken fromnearly
3000postmenopausal patients with ER +BC treated presurgically with
2 weeks of an AI from the PeriOperative Endocrine Treatment for
Individualised Care (POETIC) clinical trial. Ki67 was measured at
diagnosis and at surgery in the tumours of these patients and it was
confirmed that Ki67 after 2-weeks’ treatment is more prognostic of
5-year recurrence risk thanbaseline Ki67 in ER +HER2- BC: recurrences
were 60% lower for patients with baseline Ki67 ≥ 10% that fell below
10% after 2 weeks of AI (8.4% recurrence within 5 years) compared to
patients whose Ki67 remained high (≥ 10%) after AI (21.7% recurrence
within 5 years)12, suggesting intrinsic AI resistance is a major factor in
‘early’ recurrence (< 5 years). Additional follow-up work will be
undertaken to determine if the relationship of Ki67 response to AI with
later recurrences persists beyond 5 years after diagnosis and to
determine associations between clinicopathological/molecular fea-
tures and recurrence despite good response to AI.

To identify correlates of AI response, we undertook analysis of a
diverse set of biomarkers, including comprehensive transcriptome
RNA sequencing for discovery, plasma estradiol levels due to our
previous report of the strong association between estradiol levels and
expression of oestrogen-responsive genes13, immune markers and
tumour-infiltrating lymphocytes (TILs) due to our earlier report of an
association between immune-related gene expression and AI
resistance14, and targeted DNA sequencing of genes known to be fre-
quently mutated in BC15,16 or have been associated with AI resistance8.
Patients with the poorest anti-proliferative response to AI were mat-
ched to patients with good responses. Importantly, matching was
basedonbaselineKi67proliferation categories to ensure that the good
(GRs) and poor responders (PRs) had a similar risk of recurrence based
on at least that factor. This strategy aimed to avoid an analysismodel in
which good responders would be enriched for low proliferation and
therefore better prognosis tumours.

Results
Patient cohort
The design and primary results of the POETIC trial are detailed
elsewhere12. In brief, 4480 postmenopausal women with primary
ER +BC were randomised 2:1 to receive either treatment with a non-
steroidal AI (letrozole or anastrozole) for 2 weeks before and 2 weeks
after surgery or to no perisurgical treatment. Only AI-treated patients
with HER2- tumours, paired baseline and surgery Ki67 available, and
baseline Ki67 immunohistochemistry (IHC) > 10% (to minimise
imprecision in proportional Ki67 falls)were included for selection. The
15% of patients in the AI-treated group that showed the least propor-
tional fall in Ki67 (PRs)were selected andmatched toGRs from the 50%
of patients showing the greatest proportional fall in Ki67. As the

average baseline Ki67 IHC for PRs was more than 50% higher than the
average of all baseline Ki67 IHC in POETIC, GRs were matched to PRs
based on baseline Ki67 categories (10–20%, 20–30%, and ≥30%) to
ensure similar baseline proliferation rates.

In the POETIC trial, 67% of the ER +HER2- BC had Ki67 IHC> 10%
and were therefore eligible for this study. Thus, the included PRs and
GRs represented 10% and 34% of the total ER +HER2- population in
POETIC, respectively (Supplementary Fig. 1a). In total, 367 (190 GRs;
177 PRs) and 341 (174 GRs; 167 PRs) paired sample sets from AI-treated
patients were available for RNA-seq and targeted exome sequencing,
respectively. A fewunpaired sampleswere sequencedbut not included
in the analysis. A consort diagram (Supplementary Fig. 1b) shows the
reasons for sample availability. The demographics for these patients
are shown in Table 1. In general, the GRs and PRs had similar clin-
icopathological characteristics except for greater number of PRs that
were <59 years old, had grade 3 tumours, or had chemotherapy.

Oestrogen receptor levels
Expression of ER is an established determinant of responsiveness to
endocrine therapies. It is well known that there is a good relationship
between ESR1 and ER protein expression in BC17 and we have reported
this separately for the POETIC trial18. Our first analysis was therefore to
assess the relationship between ESR1 expression from the RNA-seq
data. Figure 1a shows that only 2 of the 190 GRs had ESR1 levels below
12 log2 normalised counts compared with 58 out of the 177 PRs. Thus,
low ESR1 amongst these cases that were diagnosed locally as ER+
appears to be a major determinant of poor response in approximately
a thirdof patients.We therefore created 2 categories of PRswith values
of ESR1 above and below 12 for log2 normalised counts (PRs ESR1HIGH

and PRs ESR1LOW, respectively). Hierarchical unsupervised clustering of
genes differentially expressed between GRs and all PRs is shown in
Fig. 1b and emphasizes the major difference between PRs ESR1HIGH and
PRs ESR1LOW tumours with the latter segregating almost completely
fromall other tumours (to the right of Fig. 1b). This is also illustrated by
the greater than 10-fold difference of the baseline expression of the
ER-regulated genes TFF1 and PGR between PRs ESR1HIGH and PRs
ESR1LOW (FDR < 10−10 for both genes in DESeq2 analysis) (Fig. 1d, f;
Supplementary Data 1). PgR IHC and PGR RNA-seq values were highly
correlated for baseline samples (Spearman rho =0.87, p < 10−100)
(Supplementary Fig. 2a), and PgR protein expression was also sig-
nificantly higher in GRs compared with PRs ESR1HIGH and PRs ESR1LOW

(p = 1 × 10−5 and 3 × 10−23, respectively; Mann–Whitney test) (Fig. 1h).
PgRwas not detected using IHC in 2% (4/183) of GRs, 12% (13/111) of PRs
ESR1HIGH and 77% (43/56) of PRs ESR1LOW at baseline. MKI67 gene
expression and Ki67 IHC were significantly higher in PRs ESR1LOW

compared with PRs ESR1HIGH and GRs (FDR =0.003, DESeq2 analysis
and p = 5.5 × 10−7, Mann–Whitney analysis, respectively) but not PRs
ESR1HIGH compared to GRs (Fig. 1e, I; Supplementary Data 1). PRs
ESR1LOW are associatedwith a significantly higher percentage of grade 3
tumours compared to GRs (p =0.0003, Fisher-exact) and PRs ESR1HIGH

(p = 0.03, Fisher-exact), and grade 3 tumours are much more likely to
be offered chemotherapy.

In addition, principal component analysis (PCA) shows clear
separation between PRs ESR1LOW and tumours expressing high ESR1
(GRs and PRs ESR1HIGH) (Fig. 1j). Only 15% of the genes expressed sig-
nificantly differently between all PRs and GRs are also significantly
differentially expressed between ESR1HIGH and GRs, while 75% are sig-
nificantly differentially expressed between PRs ESR1LOW and PRs
ESR1HIGH, also suggesting that the differences between ESR1LOW and
ESR1HIGH samples dominate any comparison (Supplementary Fig. 2c,
Supplementary Data 1). The top two differentially expressed genes
betweenGRs and both all PRs and PRs ESR1LOWwere ESR1 (down in PRs)
and FOXC1 (up in PRs), a gene known to be associated with basal-like
BC19; neither of them are significantly different between GRs and PRs
ESR1HIGH (Supplementary Data 1). Further comparisons were therefore
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focused largely on identifying differences between GRs and PRs
ESR1HIGH although we also present the PRs ESR1LOW for completeness.

Changes in gene expression with AI
Suppression of oestrogen response (as represented by PGR) between
baseline and 2weeks for PRs ESR1HIGHwasobserved to be similar toGRs
(log2 FC 1.5 and 1.8, respectively) (Fig. 1k). Differences in proliferation
were not similar (as represented by MKI67 with log2 FC of −0.4 and
−2.3, and % change in Ki67 of −12% and −91% in PRs ESR1HIGH and GRs,
respectively) (Fig. 1l, m). These data indicate that PRs ESR1HIGH had a

response to AI that was distinct from both GRs and PRs ESR1LOW and
importantly, this suggests a disconnect between signalling that con-
trols classical oestrogen-responsive genes and that controlling pro-
liferation in PRs ESR1HIGH.

Intrinsic subtyping
Intrinsic subtyping was determined by adapting the gene-level median
centering approach20 (see ‘Methods’, Supplementary Fig 2d, e). PRs
ESR1LOW were highly enriched with non-luminal subtypes (62% Basal,
29% HER2-enriched [HER2-e]), and 20% (1/5) luminal subtypes in this
group were high confidence calls (>0.95) compared to 92% (49/53)
non-luminal high confidence calls. The GRs and PRs ESR1HIGH were
similar to one another in their enrichment of luminal subtypes (Fig. 2a,
Supplementary Fig. 3a–d): GRs included 1% Basal, 1% HER2-e, 42%
Luminal A (LumA), 56% Luminal B (LumB) cases, while PRs ESR1HIGH

included 0%Basal, 8%HER2-e, 35% LumA, 53% LumB cases. Thus, other
than a significantly higher proportion of HER2-enriched cases in the
PRs ESR1HIGH than in GRs (p = 0.01, Fisher-exact), there was little dif-
ference in intrinsic subtypes between these two response groups.
Figure 2b shows the individual cases associated with the different
subtypes according to ESR1 expression and % change in Ki67. Of par-
ticular note, therewas no distinct separation between LumAand LumB
tumours among either the GRs or PRs ESR1HIGH based on the change in
Ki67. Figure 2c shows hierarchical supervised clustering of PAM50
gene expression separately for each of the response subgroups with
normalization across the whole population. It emphasizes the major
difference between the PRs ESR1LOW and the other two groups and the
relatively modest difference between the GR from the PRs ESR1HIGH.
However, two genes, EGFR and FGFR4, the two growth factor receptor
genes in the PAM50 set, showed a significant difference (FDR =0.0006
and FDR =0.0002, respectively, DESeq2; Supplementary Data 1)
betweenGRsandPRs ESR1HIGHwith both these genes beingmorehighly
expressed in PRs ESR1HIGH. FGFR4 has been associated with HER2-e
subtypes and AI endocrine therapy resistance21–23 and is significantly
differentially expressed between GRs and PRs ESR1HIGH (FDR =0.0002,
DESeq2; Supplementary Data 1). Both FGFR4 andCLCA2 (FDR =0.0002
GRs vs. PRs ESR1HIGH) showed high expression specific to HER2-e sub-
types but not the HER2/ERBB2 gene (Supplementary Fig. 3e-g, Sup-
plementary Data 1). Similarly, FOXC1 expression was specific to Basal
subtypes (Supplementary Fig. 3h).

Breast Cancer Index (BCI) HOXB13/IL17BR ratio (H/I)
The HOXB13/IL17BR ratio (H/I) has been shown to be predictive of
benefit from endocrine therapy and extended endocrine treatment
with low scores showing significant benefit7. We observed the mean
baseline H/I from the RNA-seq datawas higher in PRs compared to GRs
(meanH/I GRs = 0.32, PRs ESR1HIGH = 0.39, and PRs ESR1LOW = 0.49) with
H/I significantly higher in PRs ESR1HIGH and PRs ESR1LOW compared to
GRs (p = 0.048 and p = 0.0006, respectively; Mann–Whitney), con-
sistent with evidence that H/I can predict benefit from endocrine
therapy.

Annotation enrichment
A large number of genes were significantly (FDR <0.05) differentially
expressed at baseline (2034 of 16,832 expressed genes) (Supplemen-
tary Data 1). Genes expressed significantly higher in PRs ESR1HIGH

compared to GRs were enriched for immune-related gene sets (e.g.
adaptive immune response, T-cell activation, allograft rejection, and
interferon-gamma response), while genes lower in PRs ESR1HIGH were
enriched for oestrogen response genes (Supplementary Data 2).

Gene set enrichment analysis (GSEA)
GSEA revealed 17 hallmarks that were significantly different between
GRs and PRs ESR1HIGH with only two being expressed to a lesser extent
in PRs ESR1HIGH: the oestrogen response early and late gene sets

Table 1 | The demographics of patients in study separated by
GRs and PRs

GRs n = 190 PRs n = 177

Age at randomisation (years)

Median 68 66

<59 19% (37) 29% (51) p = 0.003 (Fisher-exact)

60–69 39% (75) 34% (61)

70–79 29% (56) 24% (42)

≥80 11% (21) 12% (22)

Unknown 1% (1) 1% (1)

Tumour size (cm)

Median 2 2.1

≤2 55% (104) 46% (81)

>2 & ≤5 43% (82) 51% (91)

>5 2% (3) 1% (2)

Unknown 1% (1) 1% (2)

Tumour grade

G1 8% (16) 7% (12)

G2 61% (115) 45% (79) p = 0.002 (Fisher-exact)

G3 24% (45) 41% (72) p = 0.001 (Fisher-exact)

Unknown 7% (14) 8% (14)

Nodal status

0 59% (113) 56% (100)

1–3 28% (53) 31% (55)

≥3 12% (23) 12%(12%)

Chemotherapy

Yes 29% (43) 42% (75) p = 0.0001 (Fisher-exact)

Unknown 2% (3) 1% (2)

Vascular invasion

No 61% (115) 58% (103)

Yes 35% (67) 34% (60)

Unknown 4% (8) 8% (14)

Histological type

IDC 83% (157) 88% (155)

ILC 13% (25) 10% (17)

Other 2% (4) 2% (4)

Unknown 2% (4) 1% (1)

Ki67 % Baseline

Median 26% (range 10%
to 73%)

29% (range 10%
to 97%)

Ki67 % 2wk

Median 2% (range 0%
to 11%)

24% (range 6%
to 95%)

p = 1.16 × 10−60

(Mann–Whitney)

Ki67 % Change

Median −91% (range −80
to −100%)

−14% (range 48%
to 184%)

p = 1.42 × 10−61

(Mann–Whitney)

Significant differences (p < 0.05) between Grs and PRs determined by two-sided Fisher’s exact
test for categories and by two-sided Mann–Whitney test for continuous variables (Ki67).
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(Fig. 3a). Thus, oestrogen-responsive gene expression at baseline was
overall lower in this PR subgroup, despite ESR1 expression being
similar to GRs.

Of particular note, about half of the hallmarks that were upregu-
lated in PRs ESR1HIGH compared with the GRs were associated with
immune processes, and these immune hallmarks were highly sig-
nificantly correlated with each other (FDR <0.05). In addition, the
immune hallmarks were correlated with genes upregulated after KRAS
activation (KRAS Signaling Up) and genes regulated by NF-κB in
response to tumour necrosis factor alpha (TNFA) (TNFA Signaling via
NF-κB). Both KRAS Signaling Up and TNFA Signaling via NF-κB hall-
marks were also significantly higher in PRs ESR1HIGH, and the genes
within these hallmarks significantly overlapped with immune hall-
marks, including interferon-gamma response (FDR = 2 × 10−7 and
FDR = 3 × 10−30, respectively; hypergeometric distribution calculation).
Similarly, hypoxia is higher in PRs ESR1HIGH, consistent with our earlier
observation of a hypoxia metagene being correlated with poor Ki67
suppression by AI24, and positively correlated with immune hallmarks,
as are two other hallmarks (apical junction and epithelial-
mesenchymal transition) that showed correlation with hypoxia.
Xenobiotic metabolism was higher in PRs ESR1HIGH and showed only
modest correlation with immune-associated hallmarks. In contrast,
oestrogen response hallmarks were inversely correlated with several
immune-related gene sets (Fig. 3b). Finally, the two gene signatures
associated with proliferation (G2M checkpoint and mitotic spindle)
showedhigher expression in PRs ESR1HIGH andwere strongly correlated
with one another but showed little correlation with any of the other
signatures.

Correlationswere alsocalculatedbetween thehallmarks thatwere
significantly different in the comparisons between any of the Ki67
response groups using data from all GRs and PRs samples. In general,

the correlations are similar to those found in Fig. 3b but with stronger
negative correlations being observed between oestrogen response
and immune hallmarks (Supplementary Figure 4a). The heatmap in
Supplementary Fig. 4b showed the distribution of correlations and
heterogeneity between patients and those patients that have high
expression of interferon response genes but medium to low expres-
sion of Interleukin-2/Interleukin-6 (IL2/IL6) signalling genes.

Figure 3c showed the log2 ratio of the expression of individual
genes that fall in each of the GSEA Hallmarks in PRs ESR1HIGH versus
GRs. The large majority of genes for both interferon-gamma response
(82%), interferon alpha response (75%), and TNF signalling via NF-κB
(73%) were more highly expressed in the PRs ESR1HIGH cases. Similar
patterns are observed when comparing in PRs ESR1LOW and GRs (Sup-
plementary Fig. 5a).

We subjected the gene expression data to deconvolution by
Consensus TME25 analysis (Fig. 3d). The overall immune score was
highly significantly greater in the PRs ESR1HIGH than in the GRs (p = 2.8e
−10). All immune cell types were indicated as being significantly more
highly associated with PRs ESR1HIGH, suggesting that these tumours
might be considered immune hot relative to GRs with little distinction
in the immune cells involved. While some of the statistical differences
for a number of the cell types were modest, this appears to be due to
the number of genes associated with the cell type rather than the
amplitude of the difference. Hallmark and Consensus TME analysis of
PRs ESR1LOW versus GRs showed similar but more extreme differences
(Supplementary Fig. 5, 6).

Plasma oestrogen levels
Given that estradiol is the predominant signal for ER-dependent
tumour progression, we compared plasma estradiol levels between
the three response groups. Four values above 130 pmol/l were
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Fig. 3 | Hallmark GSEA and TME analysis. a Plot of normalized enrichment score
(NES) of Molecular Signature Database (MSD) Hallmark gene sets from Gene Set
Enrichment Analysis (GSEA) for all PRs vs GRs, GRs vs PRs ESR1LOW and GRs vs PRs
ESR1HIGH and PRs ESR1LOW vs PRs ESR1HIGH comparisons. Hallmarkswith FDR<0.05 in
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are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-39613-z

Nature Communications |         (2023) 14:4017 5



excluded from the analysis, since these were not plausibly post-
menopausal. Figure 4a shows there was a significantly higher mean
level of estradiol in the GRs than in the PRs ESR1HIGH (p = 0.003,
Mann–Whitney test), but no difference of GRs from the PRs ESR1LOW

in which signalling through ER would be considered minimal.
However, unlike the comparison of ESR1 expression, there was no
distinct cut-off below which GRs were very unlikely to be repre-
sented. Estradiol levels were significantly correlated with expres-
sion of oestrogen response early (FDR = 0.01, Spearman) (Fig. 4b)
and late (FDR = 0.02, Spearman) GSEA Hallmarks but no other
hallmarks in tumours with high ESR1 expression. Therefore, low
expression of oestrogen response genes may be in part due to the
effect of the lower plasma estradiol levels in the PRs ESR1HIGH group.
In addition, two out of the top three genes that correlated with
plasma estradiol levels in GRs and PRs ESR1HIGH are known to be
regulated by oestrogen and ER (PGR rho = 0.26; GREB1 rho = 0.27,
Spearman) and are also expressed in significantly lower levels in PRs
ESR1HIGH compared to GRs (Supplementary Data 2). There is a trend
for lower estradiol in PRs ESR1HIGH compared to GRs regardless of
subtype and a significant difference in LumB tumours (p = 0.004,
Mann–Whitney) (Fig. 4c).

Tumour-infiltrating lymphocytes (TILs)
Percentage of stromal TILswasmeasured for 366 out of 367 samples in
this dataset. TILs were significantly higher in both PRs ESR1HIGH and PRs
ESR1LOW compared to GRs (Fig. 5a), with 11% of GRs, 16% of PRs ESR1HIGH

and 36% of PRs ESR1LOW being in the intermediate TILs category (11 to
59% immune cells in stroma)26. There were no TILs scores in the high
category (>60%). As expected, TILs were highly correlated with T-cells
(particularly T-regulatory cells [Tregs]), immune-related Hallmark
gene sets, and PI3K/AKT/MTOR signalling, and inversely correlated
with oestrogen response (Fig. 5b, c). Work by others has shown acti-
vated mTOR-dependent translation in TILs27. In addition, TILs were
higher in PRs ESR1HIGH compared to GRs, regardless of subtype and
significantly higher in both luminal subtypes (Fig. 5d). There was no
significant correlation of TILs with estradiol levels (Supplemen-
tary Fig. 7a).

Multiplex immunofluorescence (mIF) phenotyping
To better understand and characterize TILs, we randomly selected 25
samples fromeachof theGR, PRsESR1HIGH andPRs ESR1LOW populations
for mIF analysis and inspected the FFPE blocks for the amount of
residual tumour. Those samples with insufficient amount of tumour
were excluded and 15 samples were randomly selected from the
remainder for each population.

Immune phenotyping was based on 5 markers: CD3 which is part
of the T-cell receptor complex, CD20 which is a B-cell surface marker,
CD68 which is transmembrane glycoprotein that is highly expressed
by human monocytes and tissue macrophages, and FOXP3 which is a
transcriptional regulator found in immunosuppressive Tregs.
Figure 6a–f illustrates the multiplexed staining of ER, CD3, CD20,
CD68, FOXP3 and CD3/FOXP3 co-localization and selection of ER-
positive regions to separate tumour from stromal compartments. As
expected, density of the immunophenotypic features in tumour
compartments was lower than in stromal compartments, and density
was the highest for CD3 and CD68. There was also a trend for a higher
density of immune markers in PRs compared to GRs with significant
differences in CD20 stroma density (Supplementary Fig. 7b–k)

Analysis showed a highly significant correlation between TILs and
FOXP3 marker density in the stroma compartment (Fig. 6g), confirm-
ing the association of TILs with Tregs (Fig. 5b). Stromal biomarker
density was highly correlated to the gene expression of the encoding
gene (CD3/CD3D, FOXP3/FOXP3 and CD20/MS4A1; CD68 expression
was too low and excluded) (Fig. 6h). There was also a strong and sig-
nificant positive correlation between stromal expression of CD20,
CD3, FOXP3 and CD3/FOXP3 but not CD68 with the GSEA immune
hallmarks and weak negative correlation with oestrogen signalling
(Fig. 6i). Similar but weaker correlations were foundwith immune cells
expressing these markers in the tumour compartments.

The immune phenotyping using mIF showed the expected
correlations with TME deconvolution with particularly strong cor-
relations of CD20 and CD3 with the B- and T-cell gene signatures,
respectively (Fig. 6j). CD68 staining correlated strongly with eosi-
nophils and mast cell signatures as well as with the macrophage
signature as expected.
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Fig. 4 | Estradiol levels and correlations with oestrogen response. a Violin/
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beyond this range. The number of independent samples used for comparisons
between GRs and PRs is shown. Significant differences (p <0.05) determined by
two-sided Mann–Whitney tests. Source data are provided as a Source data file.
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Somatic mutations
The proportion of patients showing mutations of the 87 sequenced
were as expected for a population of ER+ tumours16,28, with 35% being
mutated for PIK3CA, 24% TP53, 10% CDH1, 10% KMT2C, 10% for GATA3,
and 9% MAP3K1 (Fig. 7a) with similar mutually exclusive or co-
occurringmutations (Supplementary Fig. 8a). Following correction for
multiple testing, none of the targeted genes showed a significant dif-
ference in mutation prevalence between the GRs and PRs ESR1HIGH,
although differences in RB1, TP53, ARID1B andDNAH11were p <0.05 in
unadjusted p-values with all showing higher prevalence in PRs
ESR1HIGH (Fig. 7b).

There weremore extreme differences in PRs ESR1LOW with a much
higher incidence of TP53 and PTEN mutations (adjusted p values <
0.05), and few if any mutations in GATA3 or CDH1 mutations (unad-
justed p values < 0.05) (Fig. 7c). This is consistent with the basal tran-
scriptional profile and non-luminal subtypes found in most of the
tumours in that group (Supplementary Figs. 8 and 9).

There was a significant difference (p =0.02, Mann–Whitney)
between the number ofmutations in GRs (mean 2.7mutations/tumour)
compared to PRs (mean 3.6 mutations/tumour), but not between GRs
andPRsESR1HIGH (mean3.7mutations/tumour) or PRs ESR1LOW (mean3.3
mutations/tumour). Tumours with TP53 mutations also had significant
differences (p=0.001,Mann–Whitney) compared to tumourswithwild-
type TP53 (mean 4.2 and 2.8 mutations/tumour, respectively). TP53
mutation was associated with higher Ki67 levels at baseline and after 2
weeks of AI (Supplementary Fig 10). There was a trend for TILs to be
higher in TP53MUT tumours and significantly higher in PRs ESR1HIGH

(Fig. 8a). For intrinsic subtypes, there was a trend for higher TP53
mutations in PRs ESR1HIGH with a significant difference between TP53

mutations in LumA GRs and PRs ESR1HIGH (3% and 22%, respectively;
p =0.004, Fisher-exact; Fig. 8b).

Copy number alterations
Copynumber gains and losses occurred at similar percentages across
the genome inGRs andPRs ESR1HIGH except for gains in PRs ESR1HIGH at
chr6q (encoding ESR1,MED23, FOXO3, and SYNE1 present in targeted
exome), regions in chr2p (encoding BIRC6 and DNMT3A in targeted
exome), and a small region in chr9q34 although this region was
not well covered by the targeted exome sequencing (Fig. 8c,
Supplementary Data 3 and 4). MED23, FOXO3 and SYNE1 were
expressed at significantly higher levels in PRs ESR1HIGH (FDR < 0.05,
Supplementary Data 1).

PRs ESR1LOW showed many more significant differences in copy
number alterations (Supplementary Fig. 11, Supplementary Data 3),
especially in chromosome 16q. This is likely due to the lack of lobular
tumours in PRs ESR1LOW (3%) compared to GRs (13%) and PRs ESR1HIGH

(13%) and also reflected in the percent of somatic mutations in
E-cadherin in each group (CDH1 mutations 2% PRs ESR1LOW; 13% GRs
and 10% PRs ESR1HIGH) (Supplementary Fig. 8b, c).

No significant difference in overall chromosomal instability (% of
genome with copy number gain or loss) was observed between GRs
and PRs ESR1HIGH or ESR1LOW and overall chromosomal instability was
not correlated with TILs. However, tumours with TP53 mutations or
loss of TP53 copy number had significantly greater percentage of the
genome with copy number alterations (p =0.0003 and p <0.0001,
respectively; Mann–Whitney, Supplementary Fig. 11b). The number of
tumours with both somatic mutations and loss of one or more copy
number in TP53 were significantly higher in PRs ESR1HIGH (23%;

Fig. 5 | TILs and correlationswithHallmark processes andTME. aViolin/Boxplot
of TILs per AI response group. Spearman correlations of TILs and Consensus
Tumour Microenvironment (TME) breast cancer (b) and Molecular Signature
Database Hallmark gene sets (c) single sample Gene Set Enrichment Analysis
(ssGSEA) scores from only GRs and PRs ESR1HIGH or from all data GRs and PRs
combined. Significant correlations (FDR<0.05) are shown.d Violin/Boxplot of TILs
for subtypes within GRs (blue boxplots) and PRs ESR1HIGH (orchid boxplots) for

HER2-E (pink outlines), LumA (blue outlines) and LumB (light blue outlines). Basal
subtypes not shown due to small number of these subtypes. Boxplots present 25th,
50th (median), and 75th percentile values. Whiskers extend no larger than ±1.5
times the inter-quartile range with outliers plotted individually beyond this range.
The number of independent samples used for comparisons betweenGRs and PRs is
shown. Significant differences (p <0.05) determined by two-sided Mann–Whitney
tests. Source data are provided as a Source data file.
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p =0.002, Fisher-exact) and PRs ESR1LOW (25%; p =0.008, Fisher-exact)
compared to GRs (9%) (Fig. 8d, Supplementary Fig. 11c).

Discussion
The findings from this study confirm the wide range of pathways that
are associated with intrinsic resistance to an AI, including low ESR1/ER
expression, low expression of oestrogen response genes, HER2-e and
Basal-like subtypes, higher immune-related markers, TP53 mutations
and higher growth factor expression (Fig. 9). While PRs ESR1HIGH and
PRs ESR1LOW shared someAI resistancephenotypes at thepathway level
(Fig. 3a), the two groups were very distinct on the molecular level
(Fig. 1b) and likely to have different overall prognosis with worse
outcome expected for the non-luminal subtypes29 that are highly
enriched in PRs ESR1LOW.

While GRs clearly benefit from AI treatment, it is not known whe-
ther additional decreases in Ki67might have occurred in PRs ESR1HIGH if
longer AI treatment had been given, but in the IMPACT trial AI-induced
suppression of Ki67 was only marginally greater after 12/14 weeks than
at 2 weeks9,30. Some oestrogen response genes (e.g. PGR) are still
supressed in PRs ESR1HIGH, suggesting ER signalling is still functional in
these tumours but not driving proliferation. This highlights the
importance of using markers of proliferation to identify AI response
insteadof other surrogatemarkers associatedwith oestrogen response.

An unexpected association was lower estradiol levels in PRs
ESR1HIGH, but this observation is likely to explain the low expression of

oestrogen response genes and lack of response to AI in these patients,
as proliferation is not likely to be strongly driven by oestrogen in these
tumours. Higher plasma estradiol levels have been consistently
reported inpostmenopausal women thatdevelopBC and this has been
seen most strongly in those with ER+ BC31. This suggests that a con-
tinuum whereby high exposure to estradiol promotes those ER
tumours with the highest sensitivity and the proliferation in those
tumours is the most sensitive to estradiol deprivation. We also
observed gains in chr6q in PRs ESR1HIGH, which encodes ESR1 and two
genes, MED2332 and FOXO333, known to interact with ESR1. The tran-
scriptional mediator MED23 plays a key role in the oestrogen-
dependent BC growth and is associated with poor outcomes32.

Beyond oestrogen-related markers, there was a strong relation-
ship between immune markers and AI resistance, and this is con-
cordant with our earlier observation in a different, smaller
population14. This observation of an association of immune features
with poor response to endocrine therapy contrasts with the better
outcome of patients with triple negative BC seen with high TILs
count34. In the large German Breast Group study of outcome for dif-
ferent subtypes according to TILs, the longer disease-free survival for
triple negative disease with higher TILs was as expected but no
improvement was seen in patients with ER +HER2- disease35. There is
growing number of retrospective studies showing that immune-
related biomarkers have prognostic value in ER +BC beyond higher
TILs, including poor outcomes associated with higher tumour
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Fig. 6 | mIF and correlations with cell markers, hallmarks and TME.
a Representative image of scanned needle core biopsy of breast showing tumour
regions outlined in cyan and positive for ER (Opal 620, Orange), and immune active
stroma showing CD3 (Opal 690, Red), FOXP3 (Opal 570, Yellow), CD3/FOXP3 (Red
+Yellow), CD20 (Opal 520,Green),CD68 (Opal 780,White), andnuclei (DAPI, Blue).
Scale bar = 100 µm. Turquoise outline of tumour compartment (ER+ cells) and cells
outside tumour compartment aremapped as stroma. Red box indicating section of
slide shown in subsequent panels that highlight the immune active stroma: b CD3,
c FOXP3, d CD3/FOXP3, e CD20, f CD68. Scale bar in (b–f) = 20 µm. For each

patient, a single 5 µmsectionwasmountedon a slide, stained and cell density (cells/
µm2) quantified. Spearman correlations between density of immune markers for
tumour/stroma compartments and expressed genes that encode the immune
markers (g), genes encoding the protein markers except CD68 as gene expression
values were too low (h), single sample Gene Set Enrichment Analysis (ssGSEA)
Molecular Signature Database Hallmark gene set scores (i), Consensus Tumour
Microenvironment (TME) breast cancer gene set scores (j). Significant Spearman
correlations (FDR <0.05) are shown. Source data are provided as a Source data file.
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infiltration of immunosuppressive FOXP3+ Tregs and higher expres-
sion of negative regulators of T-cell immune functions, such as CTLA4
and PD-L1. In addition, there is a need for prospective trials to better
understand this relationship and the relationship between low ER/
oestrogen signalling and higher expression of immunosuppressive
markers (Figs. 5, 6 and Supplementary Data 2).

Several different immune features indicated a broad involvement
of many immune cell types, but they were strongly indicative of
involvement of the adaptive immune system. There was a significant
correlation between the gene expression for CD3, CD20 and FOXP3
with the mIF analysis, supporting the validity of this multiparameter
immunofluorescence. There was also a significant correlation of TILs,
T-regulatory cell gene sets, and T-regulatory cell marker FOXP3;
however, only significantly higher levels of stromal B-cellmarker CD20
were observed in PRs. As expected, these mIF markers were pre-
dominantly expressed in the stromal compartment.

A key question is whether the generally increased immune fea-
tures of the PRs are a determinant of resistance or amarker of it that is
correlated with other features that are more directly determining
resistance. Somatic mutational burden, neoantigen load, and CNV
load have each been shown to weakly correlate with immune infiltra-
tion but not specific recurrent genomic alterations (e.g. a mutations or
site of copy number gain/loss). Here, we have shown a weak but sig-
nificant association of TILs with TP53 mutations but there are likely
other drivers of immune infiltration. Somatic mutational burden and
TILs were not correlated in our dataset, but this analysis is limited by
our panel size (87 genes). However, the targeted panel captured
regions across the genome at approximately 3 Mbp resolution (Sup-
plementary Data 4) and provided copy number estimates across the
genome. We did not observe a correlation of chromosomal instability
with TILs nor a differencebetween chromosomal instability inGRs and
PRs. There is a modest but significant difference between GRs and PRs
ESR1HIGH across several measures of immune infiltration and related

gene expression, but TILs are not likely to be a major driver of Ki67
response when ESR1 expression is high. It should be noted that overall
immune-related features are inversely correlated with oestrogen
response (Figs. 3b and 5c). Additional work needs to be undertaken to
determine the interaction between expression of oestrogen-
responsive genes and immune signalling.

If endocrine resistance is in part driven by aspects of the immune
phenotype, such as by the presence of cytokines that impact on BC
growth, this would provide both a target for therapy and a factor to be
awareofwhenundertaking clinical trials of immunemodulation. It is of
particular interest that the IL6/STAT3/JAK3 pathway is strongly asso-
ciated with the endocrine resistance, as IL6 is known to be secreted by
someBC cells in response to oestrogen deprivation14 and is a stimulant
of inflammation36. IL6-like cytokines are known to exert their effect
through the shared signal transducer IL6ST37 which was included as
one of just four genes in a classifier of endocrine resistance in the
neoadjuvant setting38. There is a number of clinically registered anti-
IL6 and anti-IL6R antibodies that could potentially be exploited in this
area; however, caution should be exerted with immune therapies until
a better understanding of the biology of these tumours and responses
to treatment are known. The results of the randomized phase II
SAFIR02-BREAST IMMUNO trial, which randomized patients with
HER2- advanced disease to the immune checkpoint inhibitor, durva-
lumab, or maintenance chemotherapy after a course of induction
chemotherapy, suggested a worse progression-free survival in the ER+
group treated with durvalumab.

While our endpoint was the change in Ki67, a number of studies
use a high value of Ki67 after 2 weeks, commonly >10%, as indicative of
endocrine resistance39,40. A high 2-week Ki67 value can be used to
identify patients at sufficiently high risk of recurrence on an endocrine
agent alone to merit either treatment with an additional agent or dif-
ferent treatment altogether (e.g. chemotherapy)12,41,42, but it is not
indicative of the response to AI. However, these differences in defining
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Fig. 7 | Oncoplot and barplots of top somatic mutations. a Oncoplot of top
mutated genes (>1%) with all patients in substudy with top barplot showing
tumour mutation burden. Barplots of top 10 genes showing differences between
% mutated in GRs and PRs ESR1HIGH (b) and mutated in GRs and PRs ESR1Low (c).
Ranking of genes, p-values and adjusted p-values based on mafCompare function

in maftools. Plots include variant classifications (frame-shift deletions—blue,
frame-shift insertions—purple, missense—green, nonsense—red, nonstop—light
blue, splice site—orange, in-frame deletion—yellow, in-frame insertion—dark red,
and multi-hit—black). Source data are provided as a Source data file.
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Ki67 endpoints may not have been of great importance in our study,
since less that 1% of GRs in our study hadKi67 > 10% after 2 weeks of AI
treatment compared to 90% of PRs.

We found that 1/3 of PRs had low ESR1 levels and91%of thesewere
non-Luminal subtypes. Such low levels of the key determinant of
response to AIs provide a means of resistance and we therefore
excluded these cases from the key comparisonswithGRs. This ensured
that markers would not be erroneously identified as associated with
resistance by virtue of their correlation with low ESR1 expression. The
risk of such spurious associations is emphasized by only 15% of genes
that were expressed significantly differently between all PRs and GRs
as well as between PRs ESR1HIGH and GRs. This issue should be borne in
mind in all studies of endocrine resistance.

It was striking that the proportion of LumA and LumB tumours
wasnot greatly different betweenGRs andPRs ESR1HIGH, although there
was an enrichment of HER2-enriched subtypes in PRs ESR1HIGH. This is
an observation we made previously in a much smaller population14. It
supports the better outcome of luminal A tumours on endocrine
therapy being predominantly due to their better intrinsic prognosis
and much less due to a better response to endocrine therapy. Addi-
tional work needs to be undertaken across the wider POETIC trial to
understand the independent prognostic values of intrinsic subtypes
and AI response. As PRs ESR1HIGH showed partial response to AI, it is
possible that these tumours may gain more benefit from AI than the
non-luminal tumours in PRs ESR1LOW.

In addition to the immune hallmarks discussed above, significant
associations of PRs ERS1HIGH with G2M checkpoint and mitotic spindle
hallmarks are evidence of dysregulated control of proliferation,

despite the balancing of baseline Ki67 levels between the GRs and PRs
populations. Patients showing these features might be good candi-
dates for CDK4/6 inhibitors, whichwe and others have shown to cause
profound decreases in Ki67 in tumours showing incomplete suppres-
sion with an AI alone.

In the past, many studies of model systems of endocrine
resistance have highlighted the prominence of growth factor sig-
nalling pathways as causative and attractive for targeting43–45. In the
current study, we highlighted the greater expression of two growth
factor receptors (FGFR4, which is associated with HER2-e subtypes,
and EGFR) in PRs ERS1HIGH, but these features poorly distinguish
between GRs and PRs ERS1HIGH (Fig. 9). Clinical studies in ER + HER2-
disease focusing on growth factor receptor pathways have been
discouraging.

Our mutational studies did not find any highly significant somatic
mutations to be associatedwith resistance after correcting formultiple
analyses when comparing GRs and PRs ESR1HIGH, but TP53 and RB1
mutations were enriched in PRs ESR1HIGH and TP53 very significantly
enriched in PRs ESR1LOW. The significant enrichment of TP53mutations
in LumA PRs ESR1HIGH suggests that TP53 may have a major role in
response to AI in this subtype and further studies are needed to vali-
date this finding. There was a trend for higher TILs in tumours with
TP53 mutations but only reached significance in PRs ESR1HIGH, sug-
gesting TP53 mutations may play a role in immune infiltration but is
unlikely to be a major driver. The low frequency of most mutations is
statistically challenging even when comparing subgroups within a
large study but can still suggest potential mechanisms to explore in
future research.

Fig. 8 | TILs, TP53 mutations and copy number alterations. a Violin/Boxplot of
TILs associated with TP53 status in GRs, PRs ESR1HIGH and PRs ESR1LOW. Boxplots
present 25th, 50th (median), and 75th percentile values. Whiskers extend no larger
than ±1.5 times the inter-quartile range with outliers plotted individually beyond
this range. The number of independent samples used for comparisons between
GRs and PRs is shown. Significant differences (p <0.05) determined by two-sided
Mann–Whitney tests. b Barplot of the percent of tumours with TP53mutations for

LumA,LumBandHER2-E subtypes inGRs, PRs ESR1HIGH. cPlots of thepercent ofGRs
(blue) or PRs ESR1HIGH (orchid) with gains or losses at individual chromosomal
locations. Purple bars highlight regions with significant differences between GRs
and PRs ESR1HIGH (Fisher-exact test with FDR/Benjamini and Hochberg adjustment).
d Percent of patients with TP53mutations and/or loss of copy number. Source data
are provided as a Source data file.
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We observed that some recurrent copy number alterations
occurred at much higher frequencies than somatic mutations in
agreement with other studies28. Additional studies of regions of 6q are
required to understand if these regions play a role in AI resistance or
sensitivity. When combining copy number alterations and somatic
mutations, there was a significant enrichment of PRs with both TP53
loss and mutations (23% ESR1HIGH and 25% ESR1LOW) compared to GRs
(9%), suggestingp53 status in ER +HER2- canhave amajor impact onAI
response. It has been shown that patients with somatic mutations and
loss of wild-type TP53 have poor outcomes46, and poor response to AI
in these tumours is likely to impact outcomes.

The study presented here is a genomic comparison between GRs
and PRs to AI treatment, validates several known factors (low ESR1/ER
expression, low oestrogen response signalling, higher expression of
growth-factor receptors and TP53 mutations) associated with poor
response, and associates additional features with poor response to AI
(low oestrogen, immune infiltration, and gains of chr6q) that need
further validation. With the emergence of new treatment options for
primary ER +HER2- BC, this work is relevant to further treatment of
patients and establishing biomarkers that can bedeveloped for patient
management. Finally, the work highlights the importance of using the
proliferation biomarker Ki67 to determine intrinsic AI resistance, as
persistent proliferation after AI treatment is amarker of resistance that
is independent of mechanism.

Methods
Patients provided written informed consent before enrolment and
POETIC was approved by the London–South East Research Ethics
Committee (reference 08/H1102/37). Samples were selected for ana-
lysis from postmenopausal women with primary ER +BC that partici-
pated in the POETIC trial (CRUK/07/15; ClinicalTrials.gov,
NCT02338310; the European Clinical Trials database, EudraCT2007-

003877-21; and the ISRCTN registry, ISRCTN63882543). The POETIC
trial randomized 4480 postmenopausal women with palpable or at
least 1.5 cm tumours by ultrasound to receive AI 2 weeks before and
2weeks after surgeryor no perisurgical treatment. See Smith et al.12 for
more details of the full trial. Core-cut biopsies were taken from all
patients prior to starting the AI and either a core-cut biopsy or a piece
of the excision biopsywas taken for each patient at the time of surgery
and was fixed in formalin. Core-cut biopsies at diagnosis and surgery
were alsoplaced into RNAlater in a proportion of the patients and have
been reported on previously,47,48 but only Formalin-Fixed Paraffin-
Embedded (FFPE) samples were used in the current report. Blood
samples were taken prior to starting the AI, immediately prior to sur-
gery and at first follow-up after surgery.

HER2- patients selected for this substudy were taken from the AI
treatment arm of POETIC. Also, baseline Ki67 IHC was >10% to
minimise imprecision in proportional Ki67 falls. PRs to AI were
defined as the patients in the lowest 15% of anti-proliferative
response to AI based on the proportional change in Ki67 between
baseline and 2 weeks. PRs were matched with GRs within the top 50%
of anti-proliferative response based on baseline Ki67 to ensure that
the GRs selected were not biased for low proliferation tumours (e.g.
Luminal A) (Supplementary Fig. 1b). GRs were matched to PRs based
on Ki67 categories (10–20%, 20–30%, and ≥30%) using the ccmatch
function in stata.

MIB1 (1:50 dilution) was used as the primary antibody to stain
Ki67, and detection was done with the REAL EnVision system, both
fromDAKO (Glostrup, Denmark until 2016; now Agilent Technologies,
Didcot, UK; Dako Cat. M7240). Sample and between-batch quality
control scoring was according to methodology on which the Interna-
tional Ki67 in Breast Cancer Working Group Party had based its
Ki67 scoring recommendations12,49. HER2 status was measured locally
using IHC and/or fluorescence in situ hybridization.

Fig. 9 | Top features for GRs and PRs categories. Oncoplot of top features of AI
resistance across PRs (a), PRs ESR1LOW (b), PRs ESR1HIGH (c), and GRs (d). Low oes-
trogen response (basedonHallmarkOestrogenResponse Early ssGSEA scores), low

E2 levels, high TILs, and high expression of EGFRdeterminedbymedian expression
of these features across all samples. Source data are provided as a Source data file.
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RNA and DNA extraction
RNA and DNA were coextracted from three microdissected 10 µm
formalin-fixed paraffin-embedded (FFPE) sections, from the baseline
and surgery samples of the patients included in the study (Supple-
mentary Fig 1A). The ROCHE High Pure miRNA Isolation kit (Roche,
Basel, Switzerland) and the Allprep FFPE kit for DNA (Qiagen) were
used following SOP M027 from The Cancer Genome Atlas (TCGA)
Program developed by the Biospecimen Core Resource at Nationwide
Children’s Hospital in Columbus, Ohio. Quantification was done using
high-sensitivity RNA and DNA Qubit assays (Thermo Fisher Scientific,
Carlsbad, CA) following the manufacturers’ protocol.

DNAwas extracted from blood using the EZ1 DNA Blood 350 µl kit
and EZ1 Advanced XL magnetic bead system (Qiagen) following man-
ufacturer’s instructions.

RNA-seq and analysis
At least 200ng were used for exon-capture-based RNA-seq library
preparation using the SureSelect XT RNADirect kit and the SureSelect
Exome V6+UTR Capture kit (Agilent, Santa Clara, CA). Libraries were
sequenced on theNovaSeq platform (Illumina, San Diego, CA). Salmon
was used for quantifying the expression of transcripts50 based on
gencode version22GTF transcript annotation. InR (version 4.0.2 using
Bioconductor version 3.15), the filterByExpr function in edgeR51 was
used to determine expressed genes and DESeq252 was used for
detection of differentially expressed genes by the use of negative
binomial generalized linear models. DOSE and clusterprofiler53 were
used for gene set enrichment analysis (GSEA) of Hallmark and Gene
Ontology gene sets from the Molecular Signature Database54,55. Con-
sensus Tumour Microenvironment (TME) was used for generating BC
specific generating cancer specific signatures for multiple cell types25.
Single set GSEA (ssGSEA) enrichment scores,56 as calculated in the
GSVA package in R, were used to represent the degree to which the
genes within a gene set were co-ordinately up/down regulated in a
sample. Benjamini & Hochberg (1995) method (false discovery rate
[FDR]) was used for multiple correction (p-value adjustment).

Intrinsic subtyping
Intrinsic subtyping of Basal-like (Basal), HER2-enriched (HER2-e),
Luminal A (LumA) and Luminal B (LumB) was determined by a varia-
tion of gene-level median centering20 based on 59 samples that were
additionally subtyped with the Nanostring BC360 codeset. As our
subset of tumours would have different distribution of ER +HER2-
subtypes than theTCGAdata (due to the relativelyhighproliferationof
our subset) (Supplementary Fig. 2d, e), we identified a small random
subset of samples in both the TCGA ER +HER2- and our dataset to use
formedian centering thatwouldmaximise the number of patientswith
the correct subtype call. A random selection of 5 to 15 samples with
BC360 subtypes was taken and matched by subtype distribution to a
random selection from a public microarray training set (220arrays_-
nonUBCcommon+12normal_50g.txt). Subtype calls in the RNA-seq
dataset was based on mean centering to the matched microarray data
subset. Randomselectionwas done 1.5million times and themaximum
overlap between BC360 and RNA-seq subtype calls (57 out of 59; 97%
concordance) was used as the calibration factor to make subtype calls
on the whole dataset. Themaximum iteration used 8 samples (4 Basal,
3HER2-enriched and 1 LuminalB), and Pearson correlationwas0.91 for
all subtype correlations (Basal, HER2-enriched, Luminal A, and Luminal
B) between BC360 and gene-centred RNA-seq calls from the common
59 samples.

Targeted exome sequencing and analysis
A targeted exome panel was designed covering 87 genes (Supple-
mentary Data 4) selected to include genes with genomic alterations
(somatic mutations and/or copy number alterations) associated with
de novo resistance to AI. The panel also included genomic regions

approximately every 3 Mbp to allow detection of chromosomal
instability across the genome. Blood from eight patients was used for
controls to detect any systematic biases in the library preparation and
sequencing. A total of 250ng DNA was used for library preparation
conducted using the SureSelect XT Low Input Reagent Kit (Agilent,
Santa Clara, CA) and target regions of interest captured by Target
Enrichment Baits produced by Agilent. Libraries were sequenced on
the NovaSeq platform (Illumina, San Diego, CA). Sequencing adaptors
were trimmed by trim-galore (www.bioinformatics.babraham.ac.uk/
projects/trim_galore/). The BWA software (version 0.7.15) was used to
align trimmed fastq sequences to genome version hg38. Protocols
based on the GATK version 4.0 to mark read duplicates, recalibrate
base quality scores and filter mutation calls were performed57 on the
aligned bam files. Mutect2 from GATK was used to call somatic
mutations and Ensembl Variant Effect Predictor58 was used to annotate
the effects ofmutations on protein coding genes. Onlymutations with
5% allele frequency, observed in at least five alternative reads, high to
moderate consequences on a protein sequence, and ExAC and gno-
mAD allele frequencies below 10−5 were included for analysis with
maftools59. Mutations were visually confirmed using the Integrative
Genomic Viewer version 2.13.0 (https://software.broadinstitute.org/
software/igv/). A panel of normals was generated from the eight blood
samples to identify germline mutations and systematic biases. The
cnv.hmm method in CNVkit60 version 0.9.7 was used to call copy
number alterations.

Plasma estradiol
Plasma estradiol levels were measured in baseline samples by liquid
chromatography and tandem mass spectrometry in Biochemistry
Department in theWythenshaweHospital,Manchester University NHS
Foundation trust.

Quantification of estradiol. Calibrators, quality controls and samples
(250 µL) were pipetted into the wells of a 96-well plate and 150 µL of
deionized water and 40 µL of 17β-estradiol-2,3,4-13C3 working internal
standard at a concentration of 10 µg/L were added to each well before
the plate was heat-sealed and vortex mixed for 1min. The contents of
each well were then transferred to the corresponding well of a 400 µL
supported liquid extraction (SLE) plate. Estradiol was subsequently
eluted from the SLE plate using 900 µL methyl tert-butyl ether and
collected into a second 96-well plate. The eluate was dried and
reconstituted in 75 µL of 40% methanol.

Chromatography. An Acuity® ultra-performance liquid chromato-
graphy classic system was used for chromatographic separation.
Mobile phases consisted of (A) deionized water with 50 µmol/L
ammonium fluoride and (B) methanol. The prepared sample (37.5 µL)
was injected onto a 2.1 × 150mm 2.7 µm Waters Cortecs® C18 column
coupled to a Waters in-line filter. Starting conditions were 60%mobile
phase B at a flow rate of 0.4mL/min, which was maintained for 3min
before increasing to 95% B. Subsequently, the mobile phase compo-
sition was held for 0.7min before returning to starting conditions to
re-equilibrate. The total run time injection-to-injection was 4.2min.

Analysis. Following chromatographic separation, the column eluate
was directed into a Waters Acquity® Xevo TQ-XS mass spectrometer.
The mass spectrometer was operated in the negative electrospray
ionisation mode, the capillary voltage was maintained at 2.5 kV, and
the source temperature was 150 °C. The desolvation temperature and
gas flowwere 650 °C and 1200 L/Hr, respectively. A 1/x weighted linear
regression model was applied and the ratio of analyte peak height to
internal standard peak height was plotted against estradiol con-
centration (pmol/L). The limit of quantification was 3 pmol/L.

For the liquid chromatography tandemmass spectrometry assay,
the coefficient of variation for estradiol concentrations of 125 pmol/L
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was <7% and 10% at 22 pmol/L, and the correlation coefficient (R2) with
a commercial immunoassay (Abbott Diagnostics, Maidenhead, UK)
was 0.9861. The performance characteristics were validated against the
FDA’s published criteria (https://www.fda.gov/files/drugs/published/
Bioanalytical-Method-Validation-Guidance-for-Industry.pdf) and has
Medical Laboratory Accreditation (ISO 15189) from the United King-
dom Accreditation Service.

Tumour-infiltrating lymphocytes
Tumour-infiltrating lymphocytes (TILs) were counted in the stromal
compartment (=% stromal TILs) from hematoxylin and eosin (H&E)
stained tumour sections following guidelines described by Salgado
et al.26.

Multiplex immunofluorescence analysis
A multiplex immunofluorescence (mIF) panel consisting of antibodies
to ER (6F11), 1.5 µg/ml (Novocastra); CD3 (LN10), 0.3 µg/ml (Novocas-
tra); FOXP3 (236A/E7), 5 µg/ml (Abcam); CD20 (L26), 0.2 µg/ml (Dako);
and CD68 (514H12), 0.2 µg/ml (Novocastra), and, respectively, mat-
chedOpal pairings ofOpal 620,Opal 690,Opal 570, Opal 520 andOpal
780, used as permanufacturer’s instructions (Akoya UK) was validated
as outlined by Pulswatdi et al. (2020) on whole face, breast resected
FFPE sections62. Briefly, validation included chromogenic and fluor-
escent singleplex optimisation, multiplex immunofluorescence opti-
misation and validation, optimization of high throughput image
acquisition and analysis, and testing of the validated workflow, from
staining to digital image analysis. Sections were counterstained with
DAPI for nuclear detail and mounted in ProLong Gold Antifade
Mountant (Thermo Fisher).

Chromogenic immunostained slides were scanned using the
Aperio AT2 (Leica Biosystems) at ×20 magnification. All fluorescently
labelled slides were scanned on the Vectra Polaris (Akoya) at ×20
magnification, and appropriate exposure times were established by
auto-exposing on a tissue known to be positive for all biomarkers.
Images were acquired using tile scanning with the 7-colour whole-slide
unmixing filters (DAPI + Opal 570/690, Opal 480/620/780, and Opal
520). Spectral unmixing and autofluorescence removal was performed
using the synthetic Opal library available in inForm and a tissue-
specific autofluorescence image. Resultant image tiles were then stit-
ched together within the open-source software QuPath v0.2.3 to pro-
duce a whole-slide multichannel, pyramidal OME-TIFF image63. All
images were reviewed for quality and consistency before being con-
sidered for digital image analysis.

Digital image analysis process took place using QuPath v0.2.3.
Briefly, the tissue was annotated as a region of interest (ROI) where
areas of necrosis, fat, staining and tissue artefacts, and ductal carci-
noma in situ/normal ducts were largely excluded. Following cell
identification using the StarDist script, epithelial tumour and stroma
ROIs were identified either on epithelial tumour ER pixel value greater
than a user defined threshold, or in cases where ER staining was low,
using machine learning training of an average five examples of epi-
thelium and five examples of stroma. The resulting imageswere always
visually reviewed for consistency and accuracy. Biomarker positivity
was identified using a machine learning classifier, generated using an
average of 20 points of positive expression and 20 points of negative/
ignore. A composite classifier for FOXP3/CD3 was generated by com-
bining single classifiers and included in the data analysis. Quantifica-
tion of biomarker output for each case was based on biomarker cell
densities (µm2) for tumour or stroma ROIs.

Statistics and reproducibility
No statistical method was used to predetermine sample size of this
substudy of the POETIC trail. RNA and DNA samples were excluded if
no tissue was available or nucleotide yields were too low for sequen-
cing, if the librarypreparation failedor if the read coveragewas too low

after sequencing (see Supplementary Fig. 1b for details). Samples were
excluded from TILs analysis if an H&E slide was not available (n = 1).
Estradiol could not be measures in 18 samples and additional samples
were excluded (n = 3) because an accurate measurement could not be
generated. Samples with estradiol >130 pmol/L were also excluded
from correlation analysis, as these patients may not be post-
menopausal. Seven samples from the mIF analysis did not pass quality
control measures and were excluded. Due to the scarcity of the sam-
ples, only a single biological replicate could be used in each experi-
ment. Researchers processing RNA/DNA samples, measuring TILs and
estradiol, and measuring mIF cell density were blinded to good/poor
responder groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets from the POETIC clinical trial are available under
restricted access for privacy and legal issues. Access to data can be
obtained by submission and approval of a data and sample request
form to the POETIC Trial Management Group (TMG), and reasonable
academic requests are likely to be approved within a few months, as
the TMG meets several times a year. Data files and details to request
access are available from the European Genome-Phenome Archive
(EGA) which provides a public and permanent archive for sequencing
datasets (Full Dataset - EGAD00001010919; RNAseq study -
EGAS00001007302; Targeted Exome study - EGAS00001007303).
The processed data are provided in the Supplementary Information/
Source data files. Source data are provided with this paper.
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