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The intersection of the retrieval state and
internal attention

Nicole M. Long 1

Large-scale brain states or distributed patterns of brain activity modulate
downstream processing and behavior. Sustained attention and memory
retrieval states impact subsequent memory, yet how these states relate to one
another is unclear. I hypothesize that internal attention is a central process of
the retrieval state. The alternative is that the retrieval state specifically reflects
a controlled, episodic retrieval mode, engaged only when intentionally
accessing events situated within a spatiotemporal context. To test my
hypothesis, I developed a mnemonic state classifier independently trained to
measure retrieval state evidence and applied this classifier to a spatial atten-
tion task. I find that retrieval state evidence increases during delay and
response intervals when participants are maintaining spatial information.
Critically, retrieval state evidence is positively related to the amount of
maintained spatial location information and predicts target detection reaction
times. Together, these findings support the hypothesis that internal attention
is a central process of the retrieval state.

The neural mechanisms that enable access to stored information are
critical to cognition, yet our understanding of these mechanisms
remains limited. If you try to remember what you had for dinner last
night, youmight imagine yourself at thedinner table trying to picture a
dish of food in front of you. You may need to engage a brain state—a
temporally sustained and spatially distributed activity/connectivity
pattern1–3—in order to access stored information about last night’s
dinner. However, whether the brain state that you initiate to accom-
plish this task is specific to memory or more generally related to
attention is an open question.

The retrieval state (or mode) has been defined as a set of pro-
cesses governing controlled, episodic retrieval4—that is, intentional
access of past events situated within a spatiotemporal context, as
opposed to access of general knowledge or semantic memory. The
retrieval state is distinct fromretrieval orientation, the specific content
of the to-be-retrieved stored representation, retrieval effort, how easy
or difficult it is to access the stored representation, and retrieval suc-
cess, whether or not the desired representation is ultimately accessed.
Engagement in the retrieval state is considered a necessary precursor
for successful episodic retrieval5,6. Although univariate signal changes
in right prefrontal cortex5–8 have been linked to the retrieval state,
recent work suggests that the retrieval state may be supported by

large-scale brain networks rather than a single brain region. Specifi-
cally, distributed cortical activity patterns can reliably distinguish
memory encoding and memory retrieval states9–12 and may be driven
by connectivity changes within the hippocampus13,14.

However, the retrieval state may instead largely reflect internal
attention, rather than episodic retrieval per se. Internal attention is the
selection of stored representations and lies in contrast to external
attention, the selection of sensory stimuli15. There is a broad overlap
between memory and attention systems16,17 whereby attention can be
directed tomemorygoals and content18 andmemory, bothworking and
long term, can guide or capture attention19–27. In particular, theoretical
work suggests that memory retrieval may constitute a form of internal
attention15,28,29. Computational models that include a ‘spotlight of
attention’ can fit behavioral data from an ‘episodic flanker task’ in which
participants perform cued recognition29, providing foundational evi-
dence that retrieval may constitute internal attention. The critical next
step is to link, via neural measures, memory brain states to attention.

Linking memory brain states to attention is critical given the
impact that bothmemory and attention states have on behavior. Lapses
in sustained attention negatively impact subsequent memory30–32 and
engagement in a retrieval state can come at the expense of engaging an
encoding state, leading to diminished subsequent memory9. To the
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extent that the retrieval state extends beyond controlled, episodic
memory retrieval, there are potentially wide-ranging consequences
throughout cognition for engaging in this brain state. An internal
attention state may facilitate decisions made based on stored infor-
mation, but may similarly impair perceptual processes that depend on
external attention. Furthermore, in line with extant proposals29,
demonstrating a link between internal attention and the retrieval state
would suggest that memory and attention systems are subject to the
same limited capacity and processing constraints.

My hypothesis is that internal attention is a central process of the
retrieval state. To test this hypothesis, I developed a mnemonic state
classifier, a multivariate pattern classifier trained to distinguish mem-
ory encoding vs. memory retrieval states. I have previously demon-
strated that such a classifier—trained on neural signals during a
mnemonic state task in which participants either encode a current
stimulus or retrieve a prior stimulus while perceptual input andmotor
output are held constant—can be used to measure engagement in the
retrieval state9–11. I applied this mnemonic state classifier to indepen-
dent data collected in the current study in which participants perform
a spatial attention task33,34. Participants are given a cue (left, right, or
neutral) that does or does not (valid vs. invalid/neutral) predict the
upcoming location of a to-be-detected probe and the stimulus onset
asynchrony between cue and probe onset is variable (Fig. 1A, B).
Because the classifier was trained to distinguish memory states, I refer
to ‘retrieval state evidence’ throughout the text, although I expect that
this signal is modulated by internal attention.

Here I show that (1) changing demands in the attention task mod-
ulates the retrieval state, (2) internally attended information is related to

retrieval state engagement, and (3) retrieval state engagement predicts
behavioral performance. These findings are consistent with the
hypothesis that internal attention is a key process of the retrieval state.

Results
Voluntary attention impacts behavior
Consistent with prior work35–38, I find that voluntary attention impacts
behavior; namely, valid cues speed reaction times (RTs) whereas
invalid cues slow RTs (Fig. 1C). I conducted a 3 × 3 repeated measures
ANOVA (rmANOVA) with factors of cue type (valid, neutral, invalid)
and stimulus onset asynchrony (SOA; 200, 400, 800ms). Only trials in
which participants responded to a target were included. There was a
main effect of cue type (F2,72 = 38.47, p <0.001, η2

p =0.52) with the
fastest responses for validly cued targets (M = 413.5ms, SD = 17.42ms),
followed by neutrally cued targets (M = 420.1ms, SD = 17.81ms), and
the slowest responses for invalidly cued targets (M = 426.0ms,
SD= 17.19ms; valid vs. neutral, t36 = −6.624, p <0.001, d =0.3735, CI =
[−8.595,−4.566]; neutral vs. invalid, t36 = −4.247, p <0.001, d = 0.3374,
CI = [−8.726, −3.086]; FDR corrected). There was a main effect of SOA
(F2,72 = 30.69, p <0.001, η2

p =0.46), with the fastest responses for the
400msSOA (M=412.9ms, SD = 17.74ms), followedby the800msSOA
(M = 419.2ms, SD = 19.28ms), and the slowest responses for the
200ms SOA (M = 427.6ms, SD = 16.95ms; 200 vs. 400ms, t36 = 8.418,
p <0.001, d = 0.8521, CI = [11.22,18.34]; 400 vs. 800ms, t36 = −3.588,
p =0.001, d =0.3437, CI = [−9.969,−2.769]; 200 vs. 800ms, t36 =
3.961, p < 0.001, d =0.4634, CI = [4.105,12.72]; FDR corrected). There
was no credible evidence of an interaction between cue type and SOA
(F4,144 = 1.286, p = 0.278, η2

p = 0.03). Together, these results suggest
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Fig. 1 | Trial structure andbehavioral results. ATo reduce exogenous attention, a
central diamond and two flanking squares on either side were present throughout
the session and participants were instructed to maintain central fixation through-
out the study. Every trial followed this basic structure. A cue (single or double-
headed arrow) is presented for 100ms. Cue offset is followed by a variable stimulus
onset asynchrony (SOA) of either 200, 400, or 800ms (the 200ms SOA is shown
here). Following the delay interval, a probe is presented for 100ms. Participants are
given 500ms following probe onset (shaded grey box; includes the probe interval)

to provide a response.B If the probewasa target (anX), participantswere tomakea
response via keyboard. If the probe was a lure (a plus), participants were to with-
hold their response. C Voluntary attention modulates behavior (n = 37 partici-
pants). Reaction times (RTs) are faster for validly (blue) cued compared to neutral
(grey) trials and for neutral compared to invalidly (red) cued trials. RTs are faster for
the 400ms SOA compared to the 200 and 800ms SOAs. Box-and-whisker plots
showmedian (center line), upper and lower quartiles (box limits), 1.5x interquartile
range (whiskers) and outliers (diamonds).
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that participants utilize the cue to direct voluntary attention to the
cued spatial location, which facilitates target detectionwhen the cue is
valid and impairs target detection when the cue is invalid. Participants
are generally faster when they have more time to prepare prior to
probe onset.

Retrieval state engagement fluctuates over time
Given robust cross-participant classification of memory states
(Fig. 2A), the first goal was to measure trial-level retrieval state evi-
dence across time in the attention task. To the extent that internal
attention is a central process of the retrieval state, there should be
temporal dissociations in retrieval state evidence based on the chan-
ging attentional demands across the trial. Namely, I should find
decreased retrieval evidence during the first 100ms given that exter-
nal attention will be directed to the cue. I should find increased
retrieval evidence during both the delay and response intervals, given
that participants must maintain perceptually absent cue or probe
information during these intervals. As I am interested in retrieval state

fluctuations over time and because time intervals necessarily vary
across SOAs, each SOA is evaluated separately.

I measured retrieval state evidence across nineteen 100ms time
windows, separately for each SOA and averaged across cue type
(Fig. 2B). For a comprehensive view of the impact of the attention task
on the retrieval state, I show all SOAs in a single figure; however, it is
important to note that the 200 and 400ms SOAswill have ended prior
to the end of the time interval shown (at 1300ms for the 200ms SOA
and at 1500ms for the 400ms SOA). For statistical analysis, I analyzed
each SOA with custom time windows based on the trial duration.
Across all SOAs, there was amain effect of time (200ms: F7,252 = 109.4,
p <0.001, η2

p = 0.75; 400ms: F9,324 = 85.77, p <0.001, η2
p = 0.70;

800ms: F13,468 = 74.2, p <0.001, η2
p =0.67), driven by decreased

retrieval evidence early in the trial (prior to 500ms) and increased
retrieval evidence later in the trial (after 500ms). These analyses reveal
that the retrieval state is modulated by the changing demands of the
attention task. Critically, if the retrieval state solely reflected con-
trolled, episodic retrieval, there would have been no evidence for

Fig. 2 | Retrieval state evidence over time in an attention task. A Mean classi-
fication accuracy across all participants (solid vertical line) is shown along with a
histogram of classification accuracies for individual participants (gray bars) and
mean classification accuracy for permuted data across all participants (dashed
vertical line). Mean classification accuracy was 60%, which differed significantly
fromchance (two-tailed, paired t-test, p <0.001).B–E Positive y-axis values indicate
greater retrieval state evidence (n = 37 participants). The solid vertical line at time
0–100ms indicates the onset of the cue. The vertical dashed lines indicate the
onset of the probe, which varies as a function of stimulus onset asynchrony (SOA).
B All trials are included; data have been averaged over cue type. Note that trial
duration varies as a function of SOA, meaning that shorter SOA trials (200 and
400ms) will end prior to the final time window shown. Across all SOAs, the trial
initially begins with a decrease in retrieval that persists for ~500ms, followed by an

increase in retrieval that is maximal around the time point when the average
response is made (indicated by the circles). C–E Each panel shows retrieval evi-
dence separated by cue type (purple: cued, average of valid/invalid; grey: neutral)
across the 100ms cue and variable delay intervals. C The difference in retrieval
state evidence between cued and neutral trials for the 200ms SOA condition was
not significant. D Retrieval evidence is greater for cued compared to neutral trials
for the 400ms SOA condition E Retrieval evidence is greater for cued compared to
neutral trials for the 800ms SOA condition. Post-hoc comparisons revealed sig-
nificantly greater retrieval evidence for cued compared to neutral trials in the
700–800ms interval (two-tailed, paired t-test, p =0.003, FDR corrected). Error
bars represent standard error of the mean. **p <0.01; ***p <0.001, two-tailed,
paired t-test, FDR corrected.
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retrieval state modulation given that there are no episodic memory
demands in the attention task.

Voluntary attention modulates delay interval retrieval evidence
Maintaining spatial location across a delay facilitates target detection39

and spatial attention can be directed to internal representations in
working memory40. To the extent that internal attention is a central
process of the retrieval state, I expect to find that delay interval
retrieval state evidence is greater for cued (valid and invalid) com-
pared to neutral trials.

For each SOA, I averaged retrieval evidence across valid and
invalid trials, as prior to the probe, valid and invalid trials are equiva-
lent (Fig. 2C–E; Table 1). For all three SOAs, there was a main effect of
time, indicating that retrieval state engagement fluctuates over the
delay interval, consistent with the full trial analysis above. For both the
400 and 800ms SOAs, there was a significant main effect of cue type,
with greater retrieval state evidence for cued compared to neutral
trials (400ms: cued, M = −0.0598, SD=0.0325, neutral, M = −0.0732,
SD = 0.0373, t36 = 2.213, p =0.033, d =0.3833, CI = [0.0011,0.0257];
800ms: cued, M = −0.0235, SD=0.0351, neutral, M = −0.0404,
SD = 0.0391, t36 = 3.088, p =0.004, d =0.4532, CI = [0.0058,0.0279]).
For the 800ms SOA, there was a significant interaction between
cue type and time, driven by greater retrieval evidence for
cued compared to neutral trials from 500–800ms, with the
700–800ms time window surviving FDR correction (500–600ms:
t36 = 2.427, p = 0.020, d =0.5127, CI = [0.0044,0.0488]; 600–
700ms: t36 = 2.317, p =0.026, d =0.4532, CI = [0.0032,0.0477];
700–800ms: t36 = 3.224, p =0.003, d =0.6330, CI = [0.0131,0.0574]).
To directly compare delay interval retrieval evidence across SOAs, I
averaged retrieval evidence over the delay interval and performed a 2
(cued/neutral) × 3 (SOA) rmANOVA. There was a main effect of cue
(F1,36 = 6.524, p =0.015, η2

p =0.15), driven by greater retrieval evidence
for cued compared to neutral trials. There was a main effect of SOA

(F2,72 = 30.97, p <0.001, η2
p = 0.46), with increasing retrieval evidence

over longer delays. There was no credible evidence for a cue by SOA
interaction (F2,72 = 2.599,p =0.081,η2

p = 0.07). Together, thesefindings
demonstrate that voluntary attention is linked with retrieval state
engagement.

Having shown that retrieval evidence is modulated by voluntary
attention, I next sought to directly test the relationship between the
retrieval state and the information to which attention is directed.
During the delay interval, internal attention should be directed to the
cue location (left/right on cued trials). If internal attention is a central
process of the retrieval state, then retrieval state evidence should scale
with cue location evidence.

I first established that cue direction (left, right, neutral) can be
decoded during the delay interval (Fig. 3A). For each SOA, I averaged
spectral power across the respective delay interval (100–300,
100–500, or 100–900ms). I performed within participant leave-one-
run-out cross-validated classification. For each SOA, I found sig-
nificantly above chance (as determined through permutation proce-
dure, see Methods) classification accuracy (200ms: M = 35.64%,
SD = 3.55%, t36 = 4.088, p <0.001, d = 0.975, CI = [0.0124,0.037];
400ms: M = 36.84%, SD = 3.73%, t36 = 5.838, p <0.001, d = 1.344, CI =
[0.0232,0.0479]; 800ms: M = 36.62%, SD = 3.17%, t36 = 6.294,
p <0.001, d = 1.474, CI = [0.0225,0.0438]). Thus, it is possible to reli-
ably decode to which cue direction (left, right, or neither) participants
are attending during the delay interval.

I next tested the relationship between cue direction and retrieval
evidence (Fig. 3B). For each participant, I extracted left/right cue
direction evidence (using neutral evidence as a baseline, seeMethods)
and retrieval evidence during the delay interval, separately for each
SOA. For each participant, I performed a Pearson correlation across
trials, separately for left and right cues, and averaged Fisher Z trans-
formed rhovalues across cuedirection. Therewas a significant positive
correlation for the 800ms SOA (zRho = 0.0408, t36 = 2.969, p = 0.005,

Table 1 | Delay interval retrieval state evidence as a function of cue type, SOA, and time, repeated measures ANOVAs

SOA=200 SOA=400 SOA=800

Effect df F p η2
p df F p η2

p df F p η2
p

Main effect of time 1,36 64.82 <0.001 0.64 3,108 27.34 <0.001 0.43 7,252 79.5 <0.001 0.69

Main effect of cue 1,36 0.071 0.792 0.002 1,36 4.899 0.033 0.12 1,36 9.535 0.004 0.21

Interaction of time × cue 1,36 0.004 0.952 0.0001 3,108 0.459 0.712 0.01 7,252 4.436 <0.001 0.11

Fig. 3 | Delay interval cue direction and memory state. Spectral power was
averaged over the respective delay intervals (100–300, 100–500, 100–900ms) for
the current analyses.A Each histogram shows the classification accuracy for within
participant leave-one-run-out cross validated classification of the cue direction
(left, right, neutral) during the delay interval for each SOA condition. Cue direction
decoding during the delay interval is significantly above chance (two-tailed, paired
t-test, p’s < 0.001, as determined by permutation procedure). B I performed trial

level Pearson correlations between cuedirection evidence (left or rightwith neutral
evidence as a baseline, see Methods) and retrieval state evidence (n = 37 partici-
pants). There is a significant correlation between cue direction evidence and
retrieval state evidence for the 800ms SOA condition (two-tailed, paired t-test,
p =0.005, FDR corrected). Box-and-whisker plots showmedian (center line), upper
and lower quartiles (box limits), 1.5x interquartile range (whiskers) and outliers
(diamonds). **p <0.01; ***p <0.001, two-tailed, paired t-test, FDR corrected.
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d =0.4948, CI = [0.0129,0.0687]). Although numerically positive, there
was not a significant correlation for the 200 or 400ms SOA (200ms:
zRho =0.0019, t36 = 0.1533, p =0.879, d =0.3212, CI = [−0.0227,
0.0264]; 400ms: zRho =0.0319, t36 = 1.9271, p = 0.062, d = 0.0256,
CI = [−0.0017,0.0655]). A 1 × 3 (SOA) rmANOVA with zRho as the
dependent variable did not reach significance (F2,72 = 2.95, p = 0.059,
η2
p =0.08); average zRho across SOAs was significantly greater than

zero (zRho =0.0249, t36 = 2.378, p =0.023, d =0.3964, CI = [0.0037,
0.046]). These results indicate that cue information and retrieval evi-
dence are generally positively associated across the delay interval.

Retrieval evidence fluctuates during the response interval
To the extent that internal attention is a central process of the retrieval
state, retrieval state evidence should be modulated during the
response interval. The probe (a plus or a cross) is shown for 100ms
following the delay interval. The participant’s task is to make or with-
hold a response within 500ms of probe onset, depending on which
probe is presented. Importantly, since the probe is presented for only
100ms, the participant must hold in mind information about the
probe in order to make a decision. Such a condition should require
internally directed attention to the perceptually absent probe. I
therefore expect that across all trials—regardless of cue type, SOA, and
probe type—retrieval state evidence will increase leading up to the
time in which a response is made or withheld. I further anticipate that
cue type and SOA will modulate response interval retrieval state evi-
dence. Specifically, valid cues should enable participants to attend to
the correct location prior to probe onset and reduce or eliminate
demands to re-orient attention to a different location. These reduced
external attention demands may facilitate engagement of the retrieval
state. For shorter SOAs, participants are likely still processing the cue
and thus may exhibit less retrieval evidence for those SOAs.

I assessed probe-locked retrieval state evidence during the
response interval (Fig. 4A) via a 3 × 3 × 5 rmANOVA with factors of cue
type (valid, neutral, invalid), SOA (200, 400, 800ms), and time win-
dow (0–500ms in five 100ms windows). I report the full results in
Table 2 and highlight the follow-up tests here. The three way interac-
tion between cue type, SOA and time window was not significant and
Bayes Factor analysis revealed that a model without the three-way
interaction term is preferred to amodel with the three-way interaction
term by a factor of 1.267 × 1019. All other main effects and interactions
were significant.

I expected retrieval evidence to increase leadingup to the response
as participants direct internal attention to the maintained probe. There
was a main effect of time whereby retrieval evidence was maximal
around the time of the average response (400–500ms). I performed
post-hoc one sample t-tests at each timewindowand found a significant
decrease in retrieval evidence during the first two time windows
(0–100ms: t36 = −5.441, p<0.001, d =0.8945, CI = [−0.0321,−0.0147];
100–200ms: t36 = −2.338, p =0.025, d =0.3844, CI = [−0.0241,−0.0017];
FDR corrected) and a significant increase in retrieval evidence during
the latter three time windows (200–300ms: t36= 2.260, p =0.030,
d =0.3715, CI = [0.0017,0.0312]; 300–400ms: t36 = 7.537, p <0.001, d =
1.239, CI = [0.0545,0.0946]; 400–500ms: t36 = 12.82, p <0.001,
d = 2.108, CI = [0.0882,0.1213]; FDR corrected). Thus, over time,
engagement in the retrieval state increases, possibly reflecting
increased internal attention directed to information about the probe.

By preemptively directing attention to the correct probe location,
valid—relative to invalid and neutral—cues may speed entrance into a
retrieval state, leading to an increase in retrieval evidence at earlier time
intervals. There was a main effect of cue type and an interaction
between cue type and time whereby retrieval evidence was greater for
valid compared to invalid andneutral trialswithin thefirst 200msof the
response interval (Fig. 4A, left panel). Post-hoc 1 × 3 (cue) rmANOVAs
at each time window revealed a significant effect of cue from
0–200ms (0–100ms: F2,72 = 5.171, p=0.008, η2

p =0.1256; 100–200ms:

F2,72 = 7.007, p =0.002, η2
p =0.1629; FDR corrected). Follow-up paired t-

tests revealed significantly greater retrieval evidence for valid com-
pared to invalid trials in the 100–200ms window (t36 = 3.221, p =0.003,
d =0.4386, CI = [0.0065,0.0288] FDR corrected) and for valid com-
pared to neutral trials from0–200ms (0–100ms: t36 = 3.824, p <0.001,
d =0.5433, CI = [0.0072,0.0234]; 100–200ms: t36 = 3.693, p <0.001,
d =0.4891, CI = [0.0071,0.0245]; FDR corrected). There was no credible
evidence for differences between neutral and invalid trials (t’s < 1.2,
p’s >0.26). Themain effect of cuedidnot reach significance for the later
time windows (200–300ms: F2,72 = 2.980, p =0.057, η2

p =0.0764;
300–400ms: F2,72 = 0.6425, p =0.529, η2

p =0.0175; 400–500ms:
F2,72 = 0.6953,p=0.502,η2

p =0.0189). These results show that valid cues
facilitate entrance into a retrieval state. It may be that less external
attention is needed to process the probe or that no reorientation of
external attention (to a different location) is needed on valid trials.
Reduced demand to either switch into an external state and/or to
reorient external attention to a different spatial location may result in
the greater degree of retrieval state evidence on validly cued trials.

To the extent that participants are still directing external attention
to the just-presented cue, entrance into a retrieval state should be
delayed specifically for the 200ms SOA. Therewas amain effect of SOA
and an interaction between SOA and time whereby retrieval evidence
was decreased for the 200 compared to 400 and 800ms SOAs (Fig. 4A,
middle panel). I performed post-hoc 1 × 3 (SOA) rmANOVAs at each
time window and find a significant effect of SOA for all time
windows excluding the final 400–500ms window (0–100ms:
F2,72 = 65.25, p <0.001, η2

p =0.6445; 100–200ms: F2,72 = 45.76,
p <0.001, η2

p =0.5597; 200–300ms: F2,72 = 13.86, p <0.001, η2
p =0.278;

300–400ms: F2,72 = 3.460, p =0.037, η2
p =0.0877; 400–500ms:

F2,72= 2.414, p=0.097, η2
p =0.0628; FDR corrected). Follow-up paired t-

tests revealed significantly decreased retrieval evidence for the 200
compared to 400ms SOA in all four time windows (0–100ms: t36=
−8.781, p <0.001, d = 1.920, CI = [−0.1037,−0.0648]; 100–200ms:
t36 = −9.491, p<0.001, d= 1.693, CI = [−0.0884,−0.0572]; 200–
300ms: t36 = −5.931, p<0.001, d =0.796, CI = [−0.0511,−0.0251];
300–400ms: t36 = −2.549, p=0.015, d =0.2589, CI = [−0.0296,-0.0034];
FDR corrected) and for the 200 compared to 800ms SOA from
0–300ms (0–100ms: t36 = −9.831, p <0.001, d = 2.355, CI =
[−0.1143,−0.0752]; 100–200ms: t36 = −6.483, p <0.001, d = 1.240, CI =
[−0.0686,−0.0359]; 200–300ms: t36 = −2.669, p =0.011, d =0.4448,
CI = [−0.0392,−0.0053]; 300–400ms: t36 = −1.864, p=0.071, d =
0.2229, CI = [−0.0302,0.0013]; FDR corrected). Retrieval evidence was
significantly greater for the 400 compared to 800ms SOA from
100–300ms (100–200ms: t36 = 2.63, p =0.013, d=0.4539, CI =
[0.0047,0.0363]; 200–300ms: t36 = 2.292, p =0.028, d =0.2921, CI =
[0.0018,0.0299]; FDR corrected), but not for the remaining time win-
dows (t’s < 1.4, p’s >0.15). These findings support the interpretation that
external attention is still focused on the cue during the 200ms SOA
which diminishes overall engagement of the retrieval state on these
trials.

Finally, there was an interaction between cue type and SOA driven
by greater retrieval evidence on valid trials during the shortest SOA. I
performed post-hoc 1 × 3 (cue) rmANOVAs for each SOA and find a
significant effect of cue for the 200ms SOA (200ms: F2,72 = 7.943,
p <0.001, η2

p =0.1808; FDR corrected). Retrieval evidence was sig-
nificantly greater for valid compared to both invalid (t36 = 4.117,
p <0.001, d =0.5897, CI = [0.0133,0.039], FDR corrected) and neutral
(t36 = 2.617, p =0.013, d =0.3936, CI = [0.003,0.0258], FDR corrected)
trials, but did not significantly differ between neutral and invalid trials
(t36 = 1.518, p=0.138, d =0.2673, CI = [−0.0271,0.0039]). There was no
significant effect of cue for the other SOAs (400ms: F2,72 = 1.564,
p =0.216, η2

p =0.0416; 800ms: F2,72 = 0.3399, p=0.713, η2
p =0.0094).

These results are consistent with the prior analyses showing that valid
cues induce stronger retrieval state engagement relative to neutral and
invalid trials.
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Table 2 | Response interval retrieval state evidence and probe decoding accuracy as a function of cue type, SOA, and time,
repeated measures ANOVAs

Retrieval Evidence Probe Location Probe Identity

Effect df F p η2
p F p η2

p F p η2
p

Main effect of time 4,144 113.2 <0.001 0.76 81.6 <0.001 0.69 138.1 <0.001 0.79

Main effect of cue 2,72 3.208 0.046 0.08 0.313 0.732 0.0086 9.269 <0.001 0.20

Main effect of SOA 2,72 36.68 <0.001 0.50 3.896 0.025 0.10 5.067 0.009 0.12

Interaction of time × cue 8,288 2.228 0.026 0.06 1.378 0.206 0.04 1.153 0.328 0.03

Interaction of time × SOA 8,288 26.74 <0.001 0.43 2.847 0.005 0.07 1.215 0.290 0.03

Interaction of cue × SOA 4,144 2.687 0.034 0.07 1.09 0.364 0.03 1.559 0.189 0.04

Interaction of cue × SOA × time 16,576 0.625 0.865 0.02 0.859 0.617 0.02 0.739 0.755 0.02

Hit
Correct Rejection

200ms
400ms
800ms

invalid
neutral
valid

(A) Retrieval state evidence increases leading up to decision

(B) Probe location decoding increases leading up to a decision

(C) Probe identity decoding increases leading up to a decision

200ms
400ms
800ms

invalid
neutral
valid

200ms
400ms
800ms

invalid
neutral
valid

Fig. 4 | Response interval retrieval state and probe classification accuracy.
A Each panel shows probe-locked retrieval state evidence; positive values indicate
greater retrieval state evidence (n = 37 participants). The dashed vertical line at
time 0–100ms indicates the onset of the probe (cross target or plus lure). The left
panel shows retrieval state evidence separated by cue type (invalid, red; neutral,
grey; valid, blue). The middle panel shows retrieval state evidence separated by
SOA (200, 400, 800ms). The right panel shows retrieval state evidence separately

for hits (cross targets to which participants responded; dark green) and correct
rejections (plus lures to which participants withheld a response; light green).
B Classification accuracy for within participant leave-one-run-out cross validated
classification of the probe location (n = 37 participants). C Classification accuracy
for within participant leave-one-run-out cross validated classification of probe
identity (n = 37 participants). Error bars represent standard error of the mean.

Article https://doi.org/10.1038/s41467-023-39609-9

Nature Communications |         (2023) 14:3861 6



Taken together, the assessment of the retrieval state during the
response interval reveals modulations consistent with the interpreta-
tion that the retrieval state reflects internal attention. Namely, valid
cues and longer SOAs promote retrieval state engagement, potentially
by reducing external attentiondemands either to the probe or the cue,
respectively.

My interpretation is that the increase in retrieval state evidence
over time reflects internal attention to the probe; however, it is
possible that the retrieval evidence increase is driven by prepara-
tion for a motor movement. I can directly test this alternative by
comparing retrieval state evidence as a function of response con-
dition. I assessed retrieval evidence for hits (cross trials to which
participants responded) and correct rejections (CRs; plus trials to
which participants withheld a response; Fig. 4A, right panel). I
conducted a 2 × 5 rmANOVA with condition (hit, CR) and time win-
dow as factors. There was no credible evidence for a main effect of
condition (F1,36 = 0.018, p = 0.894, η2

p = 0.0004). There was a main
effect of time (F4,144 = 108.9, p < 0.001, η2

p = 0.75). There was a sig-
nificant interaction between condition and time (F4,144 = 12.65,
p < 0.001, η2

p = 0.26). Numerically, relative to CRs, hits are char-
acterized by decreased retrieval evidence in the first 200ms and
increased retrieval evidence in the last two 200ms of the response
interval; however there are no significant differences in retrieval
evidence that survive multiple comparisons correction (t’s < 2.23,
p’s > 0.03). That I find an increase in retrieval evidence evenwhen no
response is made provides evidence against the interpretation that
retrieval evidence is solely driven by motor responses. Instead,
retrieval fluctuates dynamically over time depending on the deci-
sion made and increases when a decision is made based on internal
information, regardless of whether an actual response is made.

Probe information fluctuates during the response interval
To the extent that the retrieval state reflects internal attention, infor-
mation maintained during the response interval—probe location or
identity—should be related to retrieval evidence. This is analogous to

the link that was demonstrated between delay interval retrieval and
cue direction evidence.

Ifirst established that probe location (left, right) andprobe identity
(cross, plus) can be reliably decoded during the response interval.
I performed within participant leave-one-run-out cross-validated clas-
sification on spectral signals averaged across the response interval
(0–500ms relative to probe onset). I find significantly above chance
classification accuracy of both probe location (M =65.44%, SD=6.14%,
t36 = 15.06, p <0.001, d = 3.555, CI = [0.1336,0.1753]) and probe
identity (M=60.33%, SD= 5.14%, t36 = 12.09, p <0.001, d = 2.847,
CI = [0.0862,0.1209]).

As was the case with retrieval evidence, I expect probe informa-
tion to vary across the response interval and as a function of cue type
and SOA. Specifically, I expect probe information to increase leading
up to the response and that decoding accuracy will be higher when
participants can preallocate internal attention—that is, during valid
trials and longer SOAs. I assessed the impact of cue type, SOA, and time
on classification accuracy from the probe location and identity clas-
sifiers (Fig. 4B, C; Table 2). I performed within participant leave-one-
run-out cross-validated classification across each of the five 100ms
timewindows. I then back-sorted trials by cue type and SOA to test for
dissociations in classification accuracy. I conducted 3 × 3 × 5 rmANO-
VAs with cue type, SOA, and time window as factors.

Probe information was modulated by time and selectively by cue
type and SOA, depending on the type of information. Classification
accuracy was consistently modulated by time whereby both identity
and location accuracy was higher during later time windows. Location
accuracy was modulated by SOA whereby location accuracy was
greater for the 800 compared to 200ms SOA (t36 = 3.302, p =0.002,
d =0.2468, CI = [0.0042,0.0177], FDR corrected) and did not sig-
nificantly differ between the other two SOAs (200 vs. 400ms:
t36 = −1.257, p = 0.217, d = 0.1123, CI = [−0.0145,0.0034]; 400 vs.
800ms: t36 = −1.3642, p =0.181, d =0.1094, CI = [−0.0134,0.0026]).
Identity accuracy was modulated by cue type whereby identity accu-
racywasgreater for valid relative to invalid trials (t36 = 3.905,p <0.001,

(B) Retrieval and probe 
identity evidence 
predict reaction times

(A) Probe location and retrieval evidence are positively 
correlated

Identity Location

Fig. 5 | Relationship between probe information, retrieval evidence, and
behavior. A I performed trial level Pearson correlations between probe identity
(cross, plus) evidence (left panel) or probe location (left, right) evidence (right
panel) and retrieval state evidence across the response interval (n = 37 partici-
pants). There is a significant positive correlation between probe location and
retrieval evidence during the 200–500ms of the response interval (two-tailed,
paired t-tests, 200–300ms: p = 0.042, 300–400ms: p =0.003, 400–500ms:
p =0.016, FDR corrected). Error bars represent standard error of the mean.
B I performed multiple linear regression in which I used retrieval evidence and

probe identity evidence during the 300–400ms time window to predict reaction
times (RTs; n = 37 participants). Only trials with RTs > 400ms are included. There
were significant negative betas for both regressors (two-tailed, paired t-tests,
retrieval evidence: p <0.001, probe identity evidence: p =0.001, FDR corrected)
meaning that more retrieval evidence and more probe identity evidence predict
faster RTs. Box-and-whisker plots show median (center line), upper and lower
quartiles (box limits), 1.5x interquartile range (whiskers) and outliers (diamonds).
*p <0.05; **p <0.01; ***p <0.001; two-tailed paired t-tests, FDR corrected.
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d =0.3184, CI = [0.0059,0.0185]; FDR corrected) and for neutral rela-
tive to invalid trials (t36 = 3.2243, p =0.003, d =0.2939, CI =
[0.004,0.0175]; FDR corrected), but did not significantly differ for
valid vs. neutral trials (t36 = 0.515, p =0.610, d = 0.0388, CI =
[−0.0042,0.0071]). Identity accuracy was also modulated by SOA
whereby identity accuracy was greater for the 800 relative to 200ms
SOA (t36 = 3.030, p = 0.005, d =0.3167, CI = [0.0038,0.0194], FDR cor-
rected), but did not significantly differ between the other SOAs (200
vs. 400ms: t36 = −2.011, p =0.052, d = 0.1922, CI = [−0.0147,0.0001];
400 vs. 800ms: t36 = −1.198, p =0.239, d =0.1102, CI =
[−0.0116,0.003]). Together, these results mirror the retrieval state
findings, namely that with accurate cue information (valid trials) and
with more time to prepare (longer SOAs), probe information is of
higher fidelity—more decodable—during the response interval.

Probe maintenance engages retrieval and retrieval facilitates
responses
Having shown that both retrieval evidence and probe information
fluctuate across the response interval, I next tested the relationship
between probe information and retrieval state evidence. I performed
Pearson correlations between either probe identity evidence
(Fig. 5A, left panel) or probe location evidence (Fig. 5A, right panel)
and retrieval evidence at each time window. I performed the correla-
tions across all trials irrespective of cue type or SOA as I expect
a positive association between probe information and retrieval
state across all conditions. There were no significant correlations
between identity and retrieval evidence (t’s < 1.9, p’s > 0.06). There
was a significant positive correlation between location and
retrieval evidence from 200–500ms (200–300ms: t36 = 2.578, p =
0.014, d = 0.4297, CI = [0.0054,0.0448]; 300–400ms: t36 = 3.191,
p =0.003, d = 0.5318, CI = [0.0079,0.0354]; 400–500ms: t36 = 2.536,
p =0.016, d =0.4227, CI = [0.0032,0.0283]; FDR corrected), but not
during the first two time windows (t’s < 0.60, p’s > 0.55). These results
show that as retrieval evidence increases, so too does information
about the probe’s location.

My final goal was to link retrieval state evidence and behavior. It is
possible that retrieval evidence builds up over time when no external
information is present (e.g. during the delay and response intervals),
but is not directly related to behavior. If the retrieval state reflects
attention directed to different sources of internal information (cue or
probe), as shown in the analyses above, it should predict RTs. I expect
probe identity information to also predict RTs, given that this infor-
mation is needed tomake a decision. I focused specifically on evidence
from 300–400ms as this time window immediately precedes the
majority of responses (64% of responses were made during the
400–500ms window).

I conducted a multiple linear regression analysis with retrieval
evidence and identity evidence during the 300–400ms time window
as regressors (Fig. 5B). I omitted location evidence given its correlation
with retrieval evidence. I only included target trials with RTs > 400ms.
I modeled all trials together irrespective of cue type and SOA to
maximize the number of trials available for the regression estimates
and because I expect that more evidence should predict faster RTs
regardless of cue type and SOA. I find significant negative betas for
both regressors. Increases in retrieval evidence predicts faster RTs
(M = −3.205, SD = 4.233, t36 = 4.543, p <0.001, d = 0.7572, CI =
[1.774,4.636]), as do increases in identity evidence (M = −0.1875, SD =
0.3232, t36 = 3.481, p =0.001, d =0.5801, CI = [0.0782,0.2967]). Toge-
ther these findings demonstrate that both retrieval evidence and
information about probe identity facilitate target responses.

Discussion
The aim of the present study was to test the hypothesis that internal
attention is a central process of the retrieval state. I used multivariate
pattern analysis across two independent studies to measure retrieval

state engagement in a spatial attention task with no episodic memory
demands. I find retrieval state fluctuations in response to external and
internal attention demands and specifically that retrieval state evi-
dence increases during periods of timewhen internal attention should
be employed and no external information is present. Critically, I find
that increases in retrieval state evidence relate to the information
being attended and predict faster reaction times (RTs), linking the
retrieval state to behavior. Together, these findings demonstrate that
internal attention constitutes a central process of the retrieval state,
which has implications for the role of this brain state across many
cognitive contexts.

Retrieval state evidence fluctuates throughout the trial in the
attention task. At the broadest level, if the retrieval state solely reflected
controlled, episodic retrieval4, then there should have been no retrieval
state modulation in the current study. Given that retrieval state evi-
dence decreased in response to the cue and increased during the delay
and response intervals, this provides support for the hypothesis that
internal attention is a central process of the retrieval state. Internal
attention is the selection of the stored contents of the mind, including
working and long term memory representations15. My interpretation is
that participants direct their mind’s eye inwards at multiple points in a
given trial in the attention task and that retrieval evidence tracks the
extent to which participants have selected internal representations.
This interpretation is in line with recent theoretical models in which an
internal attentional spotlight supports memory retrieval by focusing
attention to stored episodic representations29.

Prior work has proposed that internal attention is responsible for
selecting relevant features of a memory after an episodic retrieval
mode has been established41. In this view, internally directed attention
is more in line with retrieval orientation than the retrieval mode.
However, if episodic retrieval had to precede the act of turning the
mind’s eye inward, I would not have observed any retrieval state fluc-
tuations in the present study, as there were no episodic retrieval
demands. My interpretation is that attention must be directed
internally before one can retrieve an episodic memory and that the
episodic component constitutes the orientation rather than the state.
It is more parsimonious to posit a single internal attention state that is
needed for both episodic and semantic retrieval, since both rely on
stored representations. That episodic and semantic retrieval recruit
highly overlapping neural substrates—in particular, the default mode
network42,43, which in turn has been directly linked to internal
attention44—provides evidence in support of this account. Internal
attention may still be necessary for successful episodic retrieval—the
original proposed function of the retrieval mode—but internal atten-
tion will also be necessary for selecting any form of internal informa-
tion, regardless of the specific content.

Beyond fluctuating over time, I have directly linked the retrieval
state to the internal information that is selected. When participants
maintain cue direction during the delay, retrieval evidence increases
and is positively related to information about the cue direction. Simi-
larly, when participants maintain probe information during the
response interval, retrieval evidence increases leading up to the
response and is positively related to probe location information.
Working memory maintenancemay serve as the mechanism that links
the retrieval state and internal attention. There is an intimate con-
nection between selective attention, working memory, and long term
memory16. In particular, selective attention and working memory
processes recruit shared neural substrates17,39,45–47. Furthermore, uni-
variate workingmemorymaintenance signals are engaged during long
term memory retrieval48 and multivariate perceptual representations
are reinstated both during working memory maintenance and long
term memory retrieval49. Taken together, these findings support the
interpretation thatworkingmemorymaybe recruited formaintenance
of both the retrieved stimuli in the mnemonic state task and the cue/
probe spatial information in the attention task. A prediction from this

Article https://doi.org/10.1038/s41467-023-39609-9

Nature Communications |         (2023) 14:3861 8



interpretation is that retrieval state engagement shouldbeobserved in
any task which includes/relies on working memory maintenance.

I find that as spatial information fidelity increases (whether cue
direction or probe location), retrieval evidence correspondingly
increases. Spatial attention and spatial working memory are clearly
linked to spectral power in the alpha band50–52. Specifically, posterior
alpha power is decreased over the hemisphere contralateral to the
visual hemifield to which attention (internal or external) is directed53.
Themnemonic state classifier includes posterior alpha power among its
features, along with other electrodes and frequencies. Given that
retrieval evidence correlates to spatial information, one may ask whe-
ther the retrieval state is simply indexing spatial working memory. To
the extent that spatial information is what is being maintained and/or
attended, retrieval state evidence should reflect these demands. How-
ever, it is unlikely that the retrieval state exclusively or solely reflects
spatial working memory. Note that the mnemonic state classifier
I developed was trained on centrally presented object stimuli with no
spatial attention demands. Although location information may be
automatically encodedor retrieved54, this spatial informationwould not
differentiate encode and retrieve trials and therefore is unlikely to drive
classifier performance. Furthermore, the classifier had no a priori
information about left vs. right spatial locations and thus cannot purely
reflect such information. Instead, my interpretation is that the retrieval
state reflects any form of internally directed attention, whether to
spatial, episodic, semantic, or other perceptual information that is not
currently present in the external environment. However, future work is
necessary to directly test the extent towhich the retrieval state is driven
by maintenance of spatial vs. non-spatial information.

Increases in retrieval state evidence predicts faster RTs. This
extends prior work showing that memory states impact memory
behavior9 and indicates that memory states also influence attention-
based perceptual decisions. Pre-allocating voluntary attention can
facilitate behavioral responses55. Here I show that retrieval evidence
increases leading up to a decision and facilitates responses. Via internal
attention processing, the retrieval state may track and predict
numerous behaviors that depend on accessing stored information.

The current findings suggest an intimate connection in the neural
mechanisms between memory and attention systems, particularly in
regards to large-scale brain activity patterns or states. A critical next
step will be to perform direct cross-task classification on a set of a
retrieval and internal attention tasks in order to determine the extent
to which the two tasks overlap. Robust cross-task classification would
provide evidence that the retrieval state and internal attention are one
and the same, whereas the current findings leave open the possibility
that specific processes beyond internal attention are unique to the
retrieval state. Conceptually, reframing the retrieval state as an internal
attention state would reduce the parameter space with which these
systems can be understood29 and would suggest that both systems
share processing constraints and are subject to the same capacity
limitations. In practical terms, the approach and data utilized in this
manuscript can be applied to any dataset with the same features (63
electrodes and 46 frequencies) in order to estimate retrieval state
engagement. By applying the mnemonic state classifier used here, it
will be possible tomeasure how retrieval impacts not justmemory and
attention processes, but also decision making—e.g. how online evi-
dence accumulation impacts decisions56, how stored information is
used to inform value-based decisions57, and how persistence in a
retrieval state may impair perception of external information.

An important direction for future work will be to define the
boundary conditions between external attention and the memory
encoding state. Because of the structure of the mnemonic state classi-
fier, a decrease in retrieval evidence is synonymous with an increase in
encoding evidence. Although I expect that at least someelements of the
encoding state reflect external attention, I cannot address this question
in the present manuscript as I intentionally did not include a memory

test so as to eliminate episodicmemorydemands.Given thepersistence
of decreased retrieval state evidence for several hundred milliseconds
after cue presentation in the current study, I anticipate that such
(relatively) slow state changesmay account for phenomena such as the
attentional blink58. The inability to redirect attention to a second target
presented in close succession to a previous target may be connected
with the need to shift between large-scale brain states. Furthermore, the
present work raises questions regarding the temporal dynamics of
memory brain states, including how individuals transition into and out
of these brain states and the consequences for behavior of switching vs.
staying in a particular brain state.

In summary, I demonstrate that the retrieval state, a neural brain
state supported by distributed cortical activity patterns, is largely
driven by internal attention. Retrieval evidence is modulated by
voluntary attention and facilitates behavioral responses in an
attention-based target detection task. Engagement of internal atten-
tion as part of the retrieval state means that this brain state is likely
engaged and influencing behavior throughout cognition, opening new
avenues for critical work to investigate how brain states impact
cognition.

Methods
This research complies with all relevant ethical regulations and was
approved by the University of Virginia Institutional Review Board for
Social and Behavioral Research.

Participants
Forty (31 female; ages 18–28, mean age = 20.25 years), native English
speakers from the University of Virginia community participated.
Gender was determined based on self-report and no gender based
analyses were conducted as there were no expectations that any
effects would covary with gender. All participants had normal or
corrected-to-normal vision. Informed consent was obtained in accor-
dance with the University of Virginia Institutional Review Board for
Social andBehavioral Research andparticipantswere compensated for
their participation. No statistical method was used to predetermine
sample size; sample size was based on prior work9. Three participants
were excluded from the analyses. One participant was excluded due to
data loss. Two participants were excluded due to poor signal quality
(impedances were above the threshold of 50 kΩ). Data are reported
from the remaining 37 participants.

Experimental design
Stimulus presentation and behavioral data collection were performed
using the SMILE package (1.0.0).

Attention task. The design of the current study was based on the
‘Central Expectancy Task’ reported in ref. 34. To reduce exogenous
attention, a central diamond and two flanking squares on either side
were present throughout the session and participants were instructed
tomaintain central fixation throughout the study (Fig. 1A). Therewere a
total of 1152 trials divided into 16 runs. Each trial began with a cue, a
centrally presented single- or double-headed arrow. There were three
cue types, valid, invalid, and neutral. Participants were instructed to
covertly attend to thecued (valid/invalid) locationon trialswith a single-
headed arrow. 66% of cues were valid or invalid (n = 768) and 33% were
neutral (n = 384). 75% of cued trials were validly cued (n = 576) and 25%
of cued trials were invalidly cued (n = 192). The cue remained on the
screen for 100ms. After a variable stimulus onset asynchrony (SOA), a
probe stimulus appeared. The three SOAconditionswere 200, 400, and
800ms. The probe stimulus could either be a cross or a plus and the
probe remained on the screen for 100ms. Participants were to respond
by pressing a keyboard key when they detected a cross probe and to
withhold a responsewhen they detected a plus probe. Participantswere
encouraged to respond as quickly and accurately as possible.
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Participants were given a 500ms interval to respond to the probe. Each
trial was separated by a 500ms interstimulus interval. Trial condition
varied randomly; cue type, SOA and probe type were fully crossed and
conditions were distributed equally within each run.

Mnemonic state task. Participants were biased via explicit instruc-
tions on a trial-by-trial basis to engage an encoding or retrieval state,
while perceptual input and behavioral demands were held constant. In
this mnemonic state task (for specific study parameters, please see
refs. 11, 12), participants viewed two lists of object images. For the first
list, eachobjectwasnew. For the second list, eachobjectwas again new
but was categorically related to an object from the first list. For
example, if List 1 contained an image of a bench, List 2 would contain
an image of a different bench. During List 1, participants were
instructed to encode each new object. During List 2, however, each
trial contained an instruction to either encode the current object (e.g.,
the new bench) or to retrieve the corresponding object from List 1 (the
old bench). Each object was presented for 2000ms. Participants
completed either a two-alternative forced choice recognition test or a
recency test on the object stimuli. I used the stimulus-lockedList 2 data
to train a multivariate pattern classifier (see below) to distinguish
encoding and retrieval states.

EEG data acquisition and preprocessing
EEG recordings were collected using a BrainVision system and an
ActiCap equipped with 64 Ag/AgCl active electrodes positioned
according to the extended 10–20 system. All electrodes were digitized
at a sampling rate of 1000Hz and were referenced to electrode FCz.
Offline, electrodes were later converted to an average reference.
Impedances of all electrodes were kept below 50kΩ. Electrodes that
demonstrated high impedance or poor contact with the scalp were
excluded from the average reference. Bad electrodes were determined
by voltage thresholding (see below).

Custom Python codes were used to process the EEG data. I applied
a high pass filter at 0.1Hz, followed by a notch filter at 60Hz and har-
monics of 60Hz to each participant’s raw EEG data. I then performed
three preprocessing steps59 to identify electrodes with severe artifacts.
First, I calculated the mean correlation between each electrode and all
other electrodes as electrodes should be moderately correlated with
other electrodes due to volume conduction. I z-scored these means
across electrodes and rejected electrodes with z-scores <−3. Second, I
calculated the variance for each electrode as electrodes with very high
or low variance across a session are likely dominated by noise or have
poor contact with the scalp. I then z-scored variance across electrodes
and rejected electrodes with a ∣z∣≥ 3. Finally, I expect many electrical
signals to be autocorrelated, but signals generated by the brain versus
noise are likely to have different forms of autocorrelation. Therefore, I
calculated the Hurst exponent, a measure of long-range autocorrela-
tion, for each electrode and rejected electrodes with a ∣z∣≥ 3. Electrodes
marked as bad by this procedure were excluded from the average re-
reference. I then calculated the average voltage across all remaining
electrodes at each time sample and re-referenced the data by sub-
tracting the average voltage from the filtered EEG data. I used wavelet-
enhanced independent component analysis60 to remove artifacts from
eyeblinks and saccades.

EEG data analysis. For the attention task data, I applied the Morlet
wavelet transform (wave number 6) to all electrode EEG signals from
500ms preceding to 2000ms following cue onset, across 46 loga-
rithmically spaced frequencies (2–100Hz61). After log-transforming
the power, I downsampled the data by taking amoving average across
100ms time windows and sliding the window every 25 ms, resulting in
97 time windows (25 non-overlapping). Power values were then
z-transformed by subtracting the mean and dividing by the standard
deviation power. Mean and standard deviation power were calculated

across all trials and across time points for each frequency. I followed
the same procedure for themnemonic state task, with 317 overlapping
(80 non-overlapping) time windows from 4000ms preceding to
4000ms following stimulus onset11.

Pattern classification analyses. Pattern classification analyses were
performed using penalized (L2) logistic regression implemented via the
sklearn module (0.24.2) in Python and custom Python code. For all
classification analyses, classifier features were comprised of spectral
power across 63 electrodes and 46 frequencies. Before pattern classi-
fication analyses were performed, an additional round of z-scoring was
performed across features (electrodes and frequencies) to eliminate
trial-level differences in spectral power11,62,63. Therefore,meanunivariate
activity was matched precisely across all conditions and trial types. I
assess classifier performance via classification accuracy and classifier
evidence. Classification accuracy reflects a binary coding ofwhether the
classifier correctly guessed a condition label (e.g. cue direction, left/
right/neutral). Classifier evidence is a continuous value reflecting the
logit-transformed probability that the classifier assigned the correct
condition label. I used classification accuracy for general assessment of
howwell cue and probe information could be decoded. I used classifier
evidence as a trial-specific, continuous measure of information about
the cue or probe, which I related to trial-level retrieval state evidence.

Cue direction classification. I conducted within participant leave-
one-run-out cross-validated classification (penalty parameter = 1). Each
classifier (one per SOA condition, three in total) was trained to dis-
tinguish left, right, and neutral cue trials based on spectral power
averaged over the delay interval (100–300ms, 100–500ms, or
100–900ms respectively). I used classifier evidence for the neutral cue
as a baseline, and subtracted these values from evidence for either the
left or right cue depending on the actual cue direction.

Probe location and identity classification. I conducted within parti-
cipant leave-one-run-out cross-validated classification (penalty para-
meter = 1). To test the extent to which probe location and identity
could be decoded, I trained a classifier to distinguish either left vs.
right presented probe trials or cross vs. plus probe trials based on
spectral power averaged across the response interval (0–500ms). To
relate probe information to the retrieval state, I performed classifica-
tion across each of the five time windows in the response interval and
correlated trial-level location or identity evidence with retrieval state
evidence.

Cross study memory state classification. To measure retrieval state
engagement in the attention task, I conducted three stages of classi-
fication. First, I conducted within participant leave-one-run-out cross-
validated classification (penalty parameter = 1) on all participants who
completed the mnemonic state task (N = 100, see ref. 12 for details).
The classifier was trained to distinguish encode vs. retrieve states
based on spectral power averaged across the 2000ms stimulus
interval during List 2 trials. I utilized the full stimulus interval as I have
previously found robust within-participant decoding during this
interval9 and did not have a priori predictions regarding which time
interval(s) would have the strongest memory state dissociations. For
each participant, I generated true and null classification accuracy
values. I permuted condition labels (encode, retrieve) for 1000 itera-
tions to generate a null distribution for each participant. Any partici-
pant whose true classification accuracy fell above the 90th percentile
of their respective null distribution was selected for further analysis
(N = 35). The proportion of above threshold participants is in line with
my prior work9. Participants who fall below threshold may not con-
sistently engage encoding and retrieval states throughout the entire
stimulus interval, although this does not necessarilymean that they do
not engage the same neural mechanisms as the above-threshold
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participants. All of the mnemonic state classifier dependent analyses
produce qualitatively similar results when the full dataset of N = 100
participants is used to train the classifier (see Supplementary Infor-
mation). Second, I conducted leave-one-participant-out cross-
validated classification (penalty parameter = 0.0001) on the selected
participants to validate the mnemonic state classifier. I found sig-
nificantly above chance classification accuracy (M = 60%, SD = 9.5%,
t34 = 6.1507, p <0.0001, d = 1.501, CI = [0.069,0.1371]; Fig. 2A), indicat-
ing that the cross participant classifier is able to distinguish encoding
and retrieval states. Of these 35 participants, 13 also completed the
attention task. Finally, I applied the cross participant mnemonic state
classifier to the attention task data, specifically spectral signals in
100ms time windows. I extracted classifier evidence, the logit-
transformed probability that the classifier assigned a given attention
task trial a label of encoding or retrieval. This approach provides a trial-
level estimate of retrieval state evidence during the attention task.

Statistical analyses. To assess the impact of cue type and SOA
on behavior, I performed a repeated measures ANOVA on reaction
times. I used repeated measures ANOVAs (rmANOVAs) to assess the
impact of cue type, SOA, probe type, and time on retrieval state evi-
dence. I followed-up significant interactions with post-hoc paired
t-tests.

I used paired-sample t-tests to compare classification accuracy
across participants to chance decoding accuracy, as determined by
permutation procedures. Namely, for each participant, I shuffled the
condition labels of interest (e.g., left and right for the probe location
classifier) and then calculated classification accuracy. I repeated this
procedure 1000 times for each participant and then averaged the
1000 shuffled accuracy values for each participant. Thesemean values
were used as participant-specific empirically derived measures of
chance accuracy.

I used Pearson correlations to relate trial-level retrieval evidence
to trial-level cue direction evidence, probe location evidence, and
probe identity evidence. I Fisher-Z transformed all resulting rho values.
I used one sample t-tests to compare participant-level zRho values
to zero.

I used a general linear model to predict trial-level reaction times
(RTs) based on retrieval evidence and probe identity evidence. The
only included trials were hits, cross targets to which participants
responded. I used one sample t-tests to compare participant-level beta
values to zero.

I used false discovery rate (FDR) to correct for multiple
comparisons64 for both post-hoc ANOVAs and post-hoc t-tests. I report
effect sizes as partial eta squared (η2

p) and Cohen’s d.
To performBayes Factor analyses, I used the BayesFactor package

(version 0.9.12-4.4) in R (version 4.2.3) with the default prior settings
and specifically the linear model function lmBF to compare models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study have been deposited in the Open
Science Foundation database at https://doi.org/10.17605/OSF.IO/
DU56C. All data necessary to reproduce the results, including all dis-
play items, have been shared in the OSF repository.

Code availability
All experimental codes used for data collection and all analysis codes
used for data analysis have been deposited in the Open Science
Foundation database at https://doi.org/10.17605/OSF.IO/DU56C. All
code necessary to reproduce the results, including all display items,
have been shared in the OSF repository.
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