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Hidden modes of DNA binding by human
nuclear receptors

Devesh Bhimsaria 1,8 , José A. Rodríguez-Martínez 2,8,
Jacqui L. Mendez-Johnson3, Debostuti Ghoshdastidar4, Ashwin Varadarajan5,
Manju Bansal4, Danette L. Daniels3,7, Parameswaran Ramanathan 5 &
Aseem Z. Ansari 6

Human nuclear receptors (NRs) are a superfamily of ligand-responsive tran-
scription factors that have central roles in cellular function. Their malfunction
is linked to numerous diseases, and the ability to modulate their activity with
synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate
distinct gene networks, however they often function from genomic sites that
lack known binding motifs. Here, to annotate genomic binding sites of known
and unexamined NRs more accurately, we use high-throughput SELEX to
comprehensively map DNA binding site preferences of all full-length human
NRs, in complex with their ligands. Furthermore, to identify non-obvious
binding sites buried in DNA–protein interactomes, we developMinSeq Find, a
search algorithm based on the MinTerm concept from electrical engineering
and digital systems design. The resulting MinTerm sequence set (MinSeqs)
reveal a constellation of binding sites that more effectively annotate NR-
binding profiles in cells. MinSeqs also unmask binding sites created or dis-
rupted by 52,106 single-nucleotide polymorphisms associated with human
diseases. By implicating druggable NRs as hidden drivers of multiple human
diseases, our results not only reveal new biological roles of NRs, but they also
provide a resource for drug-repurposing and precision medicine.

Nuclear receptors (NRs) are a unique superfamily of 48 transcription
factors that bind cell-permeable small-molecule ligands and trigger
distinct gene circuits in different cell types. In humans, members of this
superfamily have been shown to regulate a wide range of processes,
including inflammation, infection, development, behavior, circadian
rhythms, hormonal and metabolic fluxes, and xenobiotic stress1. Mal-
functioningNRs cause awide array of diseases and inherited disorders2.
Their ligand-responsive nature renders NRs susceptible to modulation
by synthetic ligands, resulting in nearly 16% of all FDA-approved drugs3.

Natural or synthetic ligands of NRs trigger non-identical tran-
scriptional programs indifferent cell types. Evenwithin a specific cell, a
ligand can instruct its target NR to stimulate the transcription of one
set of genes while silencing another1. This complex and nuanced reg-
ulatory response integrates many signals, including the allosteric
transmission of ligand-induced conformational changes in the ligand-
binding domain (LBD) to the closely juxtaposed DNA-binding domain
(DBD). Reciprocally, binding to different DNA sites can subtly alter the
quaternary conformation of a given NR impacting its ligand affinity
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and co-factor engagement, thereby eliciting different regulatory out-
comes at different genes within the same cell4,5. Although the impor-
tance of physical and functional communication between the LBD and
DBD was recognized in the earliest studies of NRs, drug development,
and DNA-binding studies have relied on isolated LBDs and DBDs.
Recent high-resolution co-crystal structures of four different NRs
comprising both the DBD and LBD are refocusing attention on the role
of interdomain interfaces in integrating signals from DNA sequences
and small-molecule ligands4,6–12. In each case, the DBD–LBD interface
has emerged as a “convergence zone” through which allosteric signals
between the domains are transmitted anddistinct regulatorydecisions
defined.

Reaffirming the importance of ligand- and protein-interfacial
interactions in influencing DNA binding site preferences, a recent
study with a dozen full-length NRs and a well-crafted set of binding
sites uncoveredunexpectedmodesofDNA recognition13.The results of
this focused study alluded to the existence of a wider range of binding
modes beyond canonical motifs that were obtained with isolated DBD
modules in a ligand- and partner-agnostic manner. Moreover, the
limited ability of current motifs to annotate in vivo binding profiles of
NRs, motivated us to investigate DNA-recognition properties of all 48
full-length humanNRs alongwith their obligate partners and key small
molecule ligands or drugs (Fig. 1a). Furthermore, to comprehensively
capture the spectrum of binding sites embedded in the DNA–protein
interactomes (DPI), we developed “MinSeq Find,” an algorithm based
on Boolean algebra and principles of digital systems design
optimization.

In this work, we present a compendium of MinSeqs containing
previously unknown NR-binding sites. The biological relevance of
herein identified sites is evident from their ability to annotate NR-
bound genomic loci more effectively, especially at many sites where
NRs were assumed to be indirectly tethered by other proteins due to
the absenceof knownmotifs14. Furthermore,MinSeqs not only capture
known NR-linked SNPs (single nucleotide polymorphisms) in multiple
large public databases but more importantly, identify 8–14% of the
unassigned “orphan” SNPs as masked NR-binding sites. Identifying
such disease-associated orphan SNPs as NR binding sites enables the
repurposing of FDA-approveddrugs for diseases not previously known
to be regulated by this druggable class of transcription factors. In
essence, our compendium of NR binding sites may serve as a resource
for genome-guided precision medicine.

Results
DNA Interactome of human NRs
To investigate the full spectrum of sequences bound by full-length
human NRs, we were successful in expressing 45 of the 48members of
this transcription factor family as Halo-Tag fusions in HEK293T cells
(Fig. 1, Supplementary Table 1 and Supplementary Data 8). To deter-
mine the effects of ligand-binding on binding site preferences, 21
cognate ligands, including drugs such as dexamethasone (#3), and
physiological ligands, such as β-estradiol (#5), were incubated with
their cognate NRs (Fig. 1b—specific drugs/ligands with their corre-
sponding numbers in green boxes). In parallel, 18 NRs known to
dimerize with Retinoid X Receptors (RXRs) were incubated with RXRα
to probe the impact of heterodimerization on DNA-sequence pre-
ferences. To obtain comprehensive DNA-recognition landscapes, we
utilized a high throughput SELEX (HT-SELEX) approach and incubated
cell lysates expressing each NR with a DNA library comprising every
sequence permutation spanning a 20mer binding site (~1012 unique
sequence permutations)15,16. The entire set of oligonucleotide
sequences boundby eachNRwas capturedusingHaloTagbeads; these
sequences were amplified by PCR and subjected to two additional
cycles of selection and enrichment (Supplementary Figs. 1 and 3 and
Supplementary Table 2). Massively parallel sequencing of each round
resulted in high-quality DPIs of 38 full-length NRs. DAX1, a receptor

that lacks a DNA binding domain, failed to enrich DNA, thereby vali-
dating the fidelity of our approach. Importantly, 28 interactomes of
ligand-bound NRs and 18 interactomes of RXRα–NR heterodimers
yielded 83 high-quality DPI datasets from 214 individual HT-SELEX
experiments. In addition, using our herein-described search algorithm,
we reexamined and integrated all publicly available NR interactomes
that were obtained through high throughput sequencing16–19. Thus, to
our knowledge, this study provides the most comprehensive com-
pendium of all human NR-binding sites, especially in complex with
ligands and RXRα (Supplementary Data 2).

MinSeq Find algorithm
To identify novel NR binding sites, we mined the DPIs of each NR with
current motif-finding algorithms (Online Methods). The motifs that
emerged displayed recognizable elements of classic NR-binding sites,
including direct repeats (DR), inverted repeats (IR), everted repeats
(ER), and monomeric “half” sites, but failed to identify previously
reported non-canonical binding sites (schematic representation in
Fig. 2d)14,20,21. To capture biologically relevant binding sites missed
even by sophisticated deep learning-based motif finding algorithms,
we adapted fundamental concepts from the field of a digital system
design of electrical engineering to create MinSeq Find, an algorithm
that identifies a subset of k-mers that effectively encapsulates DNA-
binding preferences buried in a comprehensive DPI dataset (Fig. 1c,
Supplementary Fig. 2 and Supplementary Data 1). Our approach is
based on the concept ofMinTerms in Boolean algebra, where any logic
function can be expressed as a sum of MinTerms. MinTerms with
Karnaugh map (K-map) reduction is used in digital circuit minimiza-
tion to reduce the number of electronic gates needed to implement
any given logic function22. Analogously, a defined set of sequences that
comprehensively capture the complex spectrum of binding pre-
ferences embedded within a DPI can be expressed as a set of weighted
“MinTerm Sequences” or MinSeqs. However, unlike MinTerms, Min-
Seqs are multivalued due to the different levels of enrichment of dis-
tinct DNA sequences.MinSeq Find algorithm starts by considering a set
of all possible composite k-mer patterns in the given dataset. Because
NR dimers are known to bind monomeric half-sites separated by
varying number of “gap” nucleotides,MinSeq Find next calculates fold
enrichment by normalizing reads in a NR–DNA interactome against
PAGLO, a Position-Associated Gapped Location–specific inhomoge-
neous Markov model of the DNA library (Supplementary Data 1).
PAGLO is tailored to address sequences comprising nucleotide gaps in
a 20mer-binding site. MinSeqs are ranked by their ability to capture
different binding affinities (for algorithmic details see Supplementary
Data 1). Similar to K-map reduction in digital systems design, further
pruning and optimization of the initial set of MinSeqs is achieved by
iterative multivalued reduction via the Orthogonal Matching Pursuit
algorithm (OMP) used for sparse approximation and compressive
sensing in the signal processing subfield of electrical engineering
(Fig. 1c). This multi-tiered approach yields the final weighted MinSeq
set from the comprehensive DPI dataset. It is important to note that
adaptation of the OMP sparse approximation method permitsMinSeq
Find to identify a sparse, yet comprehensive, binding site profile of any
given NR within the vast ~1012 sequence search space (Fig. 1c). These
sparse k-mer sets (MinSeqs) facilitate more ready and robust com-
parisons of different DPI.

To identify converging patterns, sequence logos based on posi-
tion weightmatrices (PWM) are then constructed from the fullMinSeq
set iteratively. The first PWM is constructed from enrichment values
calculated for sequences with zero or one mismatch to MinSeq with
the highest weighted enrichment (Online Methods, Supplementary
Fig. 2f). Next best PWM is chosen from the residual enriched MinSeqs
retained after subtracting out MinSeqs that contribute to the earlier
PWMs. This is repeated until a maximum number of iterations is
reached, or minimum residual enrichment is achieved.
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MinSeq Find reveals distinct DNA binding modes
In our 83 high-resolution DPI datasets, MinSeq Find unmasked a con-
stellation of binding sites in addition to readily identifying known NR-
binding modes (Fig. 2, tabulated in Supplementary Data 2–4). For
example, in the case of the glucocorticoid receptor (GR),MinSeq Find
identified the classic inverted repeats of GnACAhalf-sites separated by
a 3-bp spacer (IR3), the exceedingly infrequent everted repeats (ER1),

as well as the nonobvious tetramer sites that permit two GR dimers to
simultaneously co-occupy overlapping IR3 sites on the opposite faces
of the DNA helix (Figs. 2a and 3c)5,23. More unusual are the super-
imposed AGGTCA monomeric sites in the DNA interactome of the
estrogen-related receptor (ESRRG) (Fig. 2a). In this arrangement, the
steric clash would permit only one of the two overlapping sites to be
occupied at any given time, raising the specter that overlapping sites

Fig. 1 | Strategy to map the full compendium of human nuclear receptor-
binding sites. aAMinSeq set is extracted from theDNA–protein interactome (DPI)
of full-length human nuclear receptors (NRs) using theMinSeq Find algorithm. The
PeakAssign analysis uses the extractedMinSeq set to score and annotate chromatin
immunoprecipitation (ChIP-seq)–derived genomic loci bound by NRs in vivo. In
parallel, the SNP Align analysis evaluates the impact of single nucleotide poly-
morphisms (SNPs) on creating or disrupting NR-binding sites. b Phylogenetic tree
(neighbor-end joining) of NRs and corresponding small-molecule ligands (num-
bered in greenboxes) used in this study. (Source data are provided as a SourceData

file). c A schema of theMinSeq Find algorithm. DNA-sequencing reads obtained via
high throughput-SELEX are counted as patterns of nucleotide sequences of dif-
ferent lengths separated by linkers of varying sizes, referred to here as MinSeq
(Online Methods).MinSeq Find can capture multiple patterns of binding, including
a variable spacer sequence and length andNR-bindingorientation. Fold enrichment
for MinSeqs is calculated by normalization of the read count against a PAGLO
library model. The iterative algorithm Orthogonal Matching Pursuit (OMP) then
furtherminimizes and optimizes theMinSeq set. (Designed by Laura Vanderploeg).
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may function as a kinetic trap24. In principle, such arrangements may
increase the probability that upon dissociation from one monomeric
site, the protein maymore readily reassociate with an overlapping site
and thus increase its cumulative dwell time at a given locus. Such

increased engagement would be consistent with the intradomain
association-dissociation feature of the classic “Facilitated Diffusion”
model postulated by von Hippel and Berg25. However, further experi-
ments are needed to determine the mechanistic basis for the
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Fig. 2 | MinSeqs unmask distinct binding sites while capturing known motifs.
a Representative examples of MinSeq-derived LOGOs of a subset of NRs. Different
arrows represent distinct half-site sequences, and the spacing between half-sites is
denoted by n (red). Small-molecule ligands (numbered in green boxes) are from
Fig. 1b. b Interactome data for a total of 45 out of 46 DNA-binding human NRs is
presented in this study, 7 of which were included from publicly available datasets.
This includes a systematic study of DNA-interactomes of 30 ligand-bound NRs.
c Clustergram of Pearson correlations of each NR–DNA interactome pair (row and
column), with shades of white to red as 0 to 1 correlation and white 0 to −1. A total
of 91 DPIs (7 publicly available NR interactomes labeled in blue letters) were cal-
culated from the binding enrichment of the union of the top 100MinSeqs from the
Orthogonal Matching Pursuit. NRs are phylogenetically clustered as in Fig. 1b and

the sub-families are further delineated with vertical black lines that extend to the
diagonal color-coded bar. MinSeq Find analysis of all DNA-binding human NRs is
included in SupplementaryData 2–4.dHeatmap summarizing binding preferences
of NRs in the context of knowing half-site arrangements. Columns represent dif-
ferent NRs, and rows correspond to different monomer orientations (DR, direct
repeat; IR, inverted repeat; ER, everted repeat), with spacer length (n) ranging from
0 to 8 nucleotides. Enrichment of different categories is colored from minima
(white) to maxima (blue). Half-site sequences for different NRs are as follows:
steroid hormone receptor—5ʹGNACR3ʹ; TLX/PNR—5ʹRRGTCR3ʹ; ERR/THR/RAR/PPAR
and RXR—5ʹRGGTCR3ʹ; and rest of the NR members—5ʹRGKTCR3ʹ (R = A/G, K =G/T,
N = A/C/G/T). (Source data are provided as a Source Data file. Designed by Laura
Vanderploeg).
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enrichment of overlapping sites that sterically occlude co-occupancy
by two ESRR monomers.

The enrichedMinSeqs fromour 83DPI sets correlates exceedingly
well within their phylogenetic subfamily clusters (Fig. 2c). Intriguingly,
the cross-correlation of top 100 OMP enriched MinSeqs between sub-
families suggest possible heterodimer formations or shared binding
sites that might enable co-regulation of a common set of genes
(Fig. 2c). The ability of the RXR subfamily to heterodimerize pro-
miscuously with type II NRs is reflected in the number of binding sites
shared by RXRs with multiple other NRs. However, the cross-
correlation between MinSeqs of COUP-TFs or HNF4 with NRs other

than RXR was surprising because these proteins are not known to
share binding sites or heterodimerize with other NRs. Unexpected
counterexamples of differences in binding site preferences between
members of a sub-family are also evident. For example, two members
of the THR sub-family prefer starkly different monomeric site
arrangements: THRA prefers binding to Inverted and Everted Repeats
(IR0 and ER4), whereas THRB prefers binding to DR (DR4). To our
knowledge, these differences between THRA and THRB have not been
described before. Another unexpected observation is that PPARD
displays greater dependence on sequence fidelity of the downstream
monomeric half-site whereas, in co-crystal structures of PPARD–RXRA,
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Fig. 3 | Unconventional binding modes and impact of the spacer and flanking
sequences. a–dMultiple modes of DNA binding of Glucocorticoid receptor (GR)—
a canonical homo-dimer bound to IR3 site (spacer in red), b trimer (overlaid half
site in purple), c two tetramers (overlaid IR3 half sites in purple), and dmonomers
bound to non-canonical everted repeats of GR (n-GRE1 motif). The left panel pre-
sents motif representations of binding. Black and purple arrows represent GR
binding to monomers G-AC- and -GT-C. The right panel presents corresponding
structural representations—the crystal structure of the dimer (PDBid: 3g6q), and
energy-minimized models of the trimer, tetramer-1, and n-GRE1 complexes.
e Steroid hormone receptors GR and androgen receptor (AR) bind similar motifs
but exhibit unique preferences for spacer (in red) and flanking DNA (in yellow)
sequences. fGR binding affinity is correlated with the electrostatic potential (EP) of
the spacer region in the canonical GR binding site. Left panel: binding affinity of GR
to DNA sequences matching known motif 5ʹGNACANNNTGTNC3ʹ plotted as a
function of EP reveals a strong correlation at the spacer region (center). The color
of lines from minima (white) to maxima (blue) indicates enrichment. Right panel:

scatter plot of enrichment at nucleotide position 5 (central N of the spacer) plotted
as a function of EP. g DNA counterpart of two GR-DNA co-crystal structures
demonstrates GR binding site with more negative EP (red, PDBid: 3g9i) harbors an
ordered spine of hydration while one with a less negative EP (blue, PDBid: 3g6q)
does not. The ordered hydration spine in the minor groove alters GR-DNA binding
dynamics, thereby impacting binding affinity. h PPARG+ligand #15 and COUP-
TF2+ligand #17 appear to display identical preferences for a direct repeat of
5ʹRGGTCR3ʹ half-sites separated by a 1-nucleotide spacer (DR1). However, each
ligand-bound heterodimer displays different preferences for the DNA shape in the
spacer and the second half site. Base step Roll values of different DNA sequences
withinDR1 are plotted andcoloredwhite (minima) to blue (maxima) corresponding
to the enrichment values. Roll (ρ, inset) describes the rotational relationship
between two stacked base pairs, with a positive role indicating that the base pairs
are opened towards the minor groove. (Source data are provided as a Source Data
file. Designed by Laura Vanderploeg).
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the 3′ half-site is bound by the promiscuous RXRΑ partner6. One
explanation for such binding site dependence is that PPARD-DNA
binding is enhanced by RXRA–DNA interaction. In the case of homo-
dimeric HNF4A, the co-crystal structure shows the DNA binding
domain of only onemonomer to the central CAAAG sequence of a DR1
site8, whereas MinSeqs reveal distinct half-site sequences that are
obscured within a consensus motif provided by traditional search
algorithms26.

A comprehensive compendium of all human NRs
Having demonstrated the power of MinSeq Find to identify known
motifs and unmask additional modes of DNA binding in our 83 DPI
datasets, we next mined publicly available NR–DNA interactomes that
were obtained via high throughput sequencing16–19. Our approach
yielded a comprehensive compendium of binding sites for all human
NRs that bind DNA (Supplementary Fig. 4). This comprehensive NR
MinSeq set contains, (i) binding sites identified herein, (ii) 28 pre-
viously known modes of interaction (monomeric “half-site” binding
mode combined with dimeric binding to DR, IR, or ER half-sites with 0-
to 8-bp spacers (n =0–8) (Fig. 2d), (iii) specificity contributions of non-
contacted internal spacer and external flanking sequences, (iv) con-
tribution of DNA shape to selective binding by different NRs (Fig. 2d),
and (v) shared binding modes between different sub-families of NRs
(Supplementary Fig. 4 and Supplementary Data 2–5).

MinSeqs encapsulating the canonical half-site arrangements con-
firm expected adherence to the “3-4-5 rule” for VDR, THR, and RAR
which bind DRs separated by 3, 4, or 5 base pairs, respectively1 (Fig. 2c).
The data also suggest a “0-1-2 rule” for several NRs, for example, LRH/
SF1 (DR0), COUP-TF/EAR (DR1), and Rev-ErbA (DR2) respectively. The
latter observation is validated by a co-crystal structure of Rev-ErbA
binding in DR2 fashion27,28. In agreement with a recent report of 12 NRs
binding toa singlemonomeric half-site13,28,29,MinSeqsdemonstrate that
this recognition mode is utilized by most NRs (Supplementary Data 4).
An unusual mode ofmonomeric binding to overlapping half-sites, as in
the case of the ESRR subfamily is also identified by our approach.

Structural evaluation of unconventional binding modes
To evaluate atypical binding modes we focused on GR, a highly scru-
tinized steroid hormone receptor that binds corticosteroids to upre-
gulate anti-inflammatory genes and down-regulate inflammatory
genes. The MinSeq compendium of GR included an unusual set of
superimposed IR3 binding sites (Fig. 2a). Moreover, heat plots in
Fig. 2d suggested binding to DRs DR0 and DR4 (Fig. 2d, rows 1 and 5,
columns 6 and 7). To determine if GR could structurally occupy these
unusual half-site arrangements, we used high-resolution GR-IR3 co-
crystal structures (Fig. 3a) to generate energy-minimized models of
DNA-boundGR trimers (Fig. 3b), tetramers (Fig. 3c), andmonomers on
everted half-sites (Fig. 3d and Supplementary Fig. 5) (OnlineMethods).
All-atom molecular dynamics simulations were performed for the
DNA-bound GR tetramer model for 500ns in an explicit solvent under
constant pressure and temperature conditions. The stability of the
complexwas tested by calculating rootmean square deviation (RMSD)
and the local stability using rootmean squarefluctuation (RMSF) of the
backbone Cα atoms compared to the Protein Data Bank (PDB)-derived
initial model (Supplementary Fig. 6). Despite overall high flexibility of
the DBD, high stability was exhibited by conserved GR residues that
make base-specific hydrogen-bonds with the canonical GnACA
monomeric half-site (circled in Supplementary Fig. 6)30. On the other
hand, binding in a DR0 orientation is disfavored. On closer examina-
tion of the DR0 and DR4 binding sites31, the misleading DR arrange-
ment of monomeric sites appears to be a consequence of the
degeneration of an external half-site of two superimposed IR3 motifs
(PWM in Fig. 3b). While uncommon, such unconventional oligomeric
arrangements are biologically functional23 and even the low affinity
everted repeats reflect an arrangement observed in known negative-

GRE or n-GRE sequence CTCC-n0–2-GGAGA
32, however, binding to a

diverse set of sequences in the everted arrangement was not pre-
viously reported.

Shape selectivity conferred by the spacer and flanking
sequences
Ensembles of related sequences bound by a family of NRs are often
grouped into a single “shared motif.” For example, IR3 emerges as the
commonmotif for all steroid hormone receptors (Fig. 2c, d). However,
deconvoluting motifs into MinSeqs reveals that intervening spacers
between half-sites and sequences flanking the core binding site
diversify local microstructure and guide selective NR association.
Among steroid hormone receptors, GR preferentially binds sites with a
CGA spacer, whereas the androgen receptor (AR) favors T-stretches
flanking the 3′ ends of the core IR3 motif (Fig. 3e). The preference for
the CGA spacer correlates well with the electrostatic potential (EP) of
the DNA minor groove (Fig. 3f). Inspection of GR-DNA co-crystal
structures revealed thatbinding sites containing ahighlynegative EP in
the spacer region (e.g., AAA) harbor an ordered spine of water within a
narrowminor groove (Fig. 3g). The absence of similar hydration spine
and decrease in EP in spacer sequences with a wider minor groove
(e.g., GGG/CGA) enhances GR binding. These sequence preferences
amongst members of a given family are also evident in ChIP-seq data33

in Supplementary Table 3.
The contribution of the seemingly non-descript spacer and

flanking sequences on overall binding site conformation is broadly
used to confer NR selectivity amongst “shared motifs.” In two con-
trasting examples, PPARG is exquisitely sensitive toDNA shape (roll) at
the interface of a DR1-binding site, whereas COUP-TF2 tolerates a
broad range of shape variations imparted by the spacer (Fig. 3h)34.
Similarly, ligand-bound RARB and RORC prefer distinct DNA shapes in
both the spacer and flanking sequence of otherwise identical DR2
motifs (Supplementary Fig. 7). Thus, the oft-neglected, non-conserved
spacer and flanking sequences, in conjunction with nondescript var-
iations in monomeric half-site composition, drive shape-selective NR
binding amongst sequences that are represented as a single motif35,36.
Because they are not compressed into consensus motifs, MinSeqs
identify contributions of sequence context and underlying DNA
microstructure to selective binding preferences of different NRs.

Ligands and partners transform the sequence selectivity of
certain NRs
Different small-molecule ligands and DNA-binding sites can alter the
regulatory function of a given NR31,32,37–42. We, therefore, examined the
impact of 21 natural or synthetic ligands on DNA binding sites pre-
ferred by their cognate NRs. Of these, 18 ligands targeting 25 cognate
NRs yielded 30 DPI (Figs. 1b and 2d—individual ligands numbered in
green boxes). Across NRs, ligand-binding subtly modulated site pre-
ferences of most NRs, counterintuitively over half of the interactomes
displayed lower enrichment for sites bound by NRs in the unliganded
state (Supplementary Data 3). Reassuringly, ligand-responsive reduc-
tion in affinity has been observed for the RXRA–RARB heterodimer4.
To illustrate the contribution of ligand binding on DNA selectivity, we
focused on RXRA because it displayed a marked change in its MinSeq
set upon binding its ligand 9-cis-retinoic acid (#17). However, RXRA
has multiple known partners along with co-crystal structures with
three distinct partners, a wealth of genome-wide binding and gene
regulation data, and diverse biological and pathological roles1,4,6,7,20.

RXRA in its unliganded state enriches IR0 followed byDR1 class of
binding sites. The binding of 9-cis-retinoic acid (#17) flips this pre-
ference and greatly expands the range of RXRA-preferred binding-site
arrangements (Fig. 4a). To display the multidimensional changes in
sequence preferences of liganded-RXRA, we reconfigured our original
concentric specificity and binding energy landscape (SEL) plots
(Fig. 4b, Supplementary Fig. 8). In SEL plots, a binding motif is used to
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organize k-mers across all binding affinities or enrichment scores in
concentric rings15,35,43. Sequences with the perfect match to the core
motif are placed in the innermost ring, and those with increasing
mismatches are placed in successive outer rings in an alpha-numeric
order (Fig. 4b, second panel). Even in the innermost ring, with
identical5’GGTC3’ monomeric half-sites, the spacer and flanking

sequences can dramatically alter affinity for the core motif (Fig. 4b,
sequences within the red and blue boxes). To compare the global shift
in specificity we focused on the innermost ring and displayed it in a
linear format along the y-axis (Fig. 4b, k-mer dotted arrow, bottom
panel). Next, along the x-axis, we aligned SELs with increasing spacer
lengths (n0-8) separating the DR 5’RGGTCR3’ half-sites (Fig. 4b, bottom
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panel). The enrichment score of each k-mer is displayed along the z-
axis (Fig. 4b and Supplementary Data 6, for detailed description, see
Supplementary Fig. 8). To compare between different half-site
arrangements, in each panel of Fig. 4c, MinSeqs are organized in one
of three canonical half-site arrangements (DR on the left, Inverted
Repeats in the middle, and Everted Repeats on the right), with each
unit “n” representing a spacer spanning 0–8 nucleotides. The com-
posite landscapes unambiguously reveal that ligand-binding and het-
erodimerizationwith different partnering NRs, such as RARAor COUP-
TF2, dramatically alter the specificity and affinity profile of RXRA
(Fig. 4c and Supplementary Data 7).

MinSeqs effectively annotate genome-wide binding sites
To determine the biological relevance of MinSeq discovered binding
modes, we examined genome-wide binding profiles of RXRA in the
human hepatocyte cell line (HEPG2) and human embryonic stem cells
(H1-hESCs)44 (Fig. 5a). To benchmark the ability ofMinSeqs to annotate
in vivo binding sites (identified by ChIP-seq methods), we compared
our RXRA-binding MinSeq sites to those obtained by the automated
deep-learning algorithm DeepBind45. DeepBind annotated fewer than
half the RXRA ChIP peaks at the false-positive rate of 0.1 (Fig. 5a). In
contrast, MinSeqs were far more effective in annotating RXRA-binding
sites in two different cell lines. To ensure that the publicly available
RXRA interactome used by DeepBind was not inherently limited, we
performed MinSeq Find analysis of the published RXRA–DNA inter-
actome used by DeepBind motif search algorithm. MinSeqs from that
public DPI dataset also better predicted RXRA binding in the two cell
lines thanmotifs obtained by DeepBind (Fig. 5a). DistributingMinSeqs
into discrete canonical binding-site categories, such as DR1–7, clearly
delineated distinct binding sites preferred by RXRA in different ChIP-
seq peaks (Heat maps in Fig. 5b). These deconvoluted binding modes
underscore the challenge of annotating varied genome-wide binding
using consensus motifs provided by prevalent algorithms.

A comparison of binding arrangements reveals cell line-specific
differences, for example, DR5-containing sites are preferred over the
DR1-containing sites in H1-hESCs, whereas the converse is true in the
HEPG2 cells. Interestingly, even where DR1 or DR5 binding sites are
utilized, they occur in largely non-overlapping regions of the genome
in the two cell lines (Fig. 5c). While multiple overlaying factors,
including chromatin accessibility and cell-type specific complement of
transcription factors and co-regulators, contribute to differential
genomic access, yet MinSeqs identify conventionally as well as non-
obviousNRbinding sites within annotatedChIP peaks. Thus, improved
annotation of genome-wide binding profiles by MinSeqs affords
greater precision in ascribing a regulatory function todifferent binding
modes at distinct genomic loci. As a resource for the community, we
now provide the MinSeq analysis of all NR ChIP-seq data from
ENCODE46 and the LoVo cell line47 (Supplementary Data 9). When
applied to publishedNR-DNA interactomedata,MinSeq analysis better

predicted ChIP-seq peaks compared to automated algorithms
DeepBind45 and gkmSVM48, and semi-automated Autoseed17 (Supple-
mentary Data 10).

Disease-associated SNPs create or disrupt masked NR sites
Armed with the MinSeq collection for all human NRs, we examined
both the 675,077 clinically relevant SNPs from the NCBI-supported
ClinVar database as well as the 53,039 disease-associated SNPs from
NHGRI-supported GWAS Catalog49 (Fig. 6a, b). While disease-
associated SNPs may not be causal, MinSeqs readily mapped 52,106
ClinVar SNPs (~8%) and 5192 GWAS SNPs ( ~ 10%) as potential NR-
binding sites (Fig. 6c and Supplementary Fig. 9). To further probe the
nature of NR-binding sites identified by MinSeqs, we examined a
manually curated set of 5592 SNPs more stringently associated with
specific diseases50. Of these, we identified 771 (~14%) that lead to the
creation or disruption of an NR-binding site (Fig. 6c). Remarkably,
among these 771 SNPs, we captured 93 that were previously mapped
using known NR motifs and 28 that were identified by ChIP-seq stu-
dies. Although the common perception is that SNPs primarily disrupt
binding sites, statistically a sequence variant can just as readily create
a new binding site that may contribute to the diseased state51. Con-
sistent with this expectation, wemapped a SNP (rs7578035) linked to
Bipolar disorder that creates a de novo TLX-binding site (Fig. 6d).
Our success in mapping known disease-causing SNPs that affect NR
binding, lends support to the hypothesis that SNPs identified by
MinSeqs, such as rs7138803 reveal masked NR sites that were missed
by traditional motif mapping algorithms (Fig. 6e). Incidentally,
rs7138803 is particularly interesting because it implicates the unu-
sual ESRR binding site with overlapping monomeric sites (high-
lighted in Fig. 2a) as a functional site with a role in predisposition to
the metabolic syndrome. Consistent with our analysis, a functional
role for such overlapping ESSR sites is supported by allelic imbalance
analysis52 that identifies an atypical ESSRA binding site created by a C
to T conversion in rs521991 (Supplementary Fig. 10). Conservatively,
the impact of the 771 manually curated SNPs on NR binding (gain or
loss) is displayed as a heat map of differing enrichment and grouped
by disease class or trait (Fig. 6f and Supplementary Data 11). When
compared to the richly annotated RegulomeDB database53, where
only 120 of the 771 SNPs were annotated, 53we now implicate SNP-
induced alteration of masked NR binding sites in a far wider set of
diseases. More broadly, a table encapsulating similar disease asso-
ciations of the 5192 SNPs in the GWAS Catalog that create or disrupt
potential NR sites is presented in Supplementary Data 12 and Sup-
plementary Fig. 11.

Discussion
NRs play vital roles in all aspects of human biology and are among the
most successfully drugged class of transcription factors encoded by
the human genome. Yet, DNA sequence preferences of a substantial

Fig. 4 | Contribution of ligand- and partner proteins on RXRA binding site
preferences. a LOGO representationofDNA-binding preferences of RXRAwith and
without its ligand (#17) for different orientations of 5ʹRGKTCR3ʹ half site separated
by different spacer lengths (n1–n7). b Specificity and binding-energy landscapes
(SELs) of an example case with 5ʹNRGGTCR-n1-RGGTCRN

3ʹ direct repeat as a seed to
organize (where R =A/G, N =A/C/G/T, n = spacer). The top panel displays a histo-
gram of enriched k-mers, with the highest affinity k-mers used to derive a position
weight matrix-based motif (DR1). The color scale represents the extent of enrich-
ment/affinity. In circular SELs, (second panel), the PWM motif is used as a seed to
organize the rest of the k-mers in concentric circles. The central ring contains all
k-mers thatmatch the seed 5’NRGGTCR-n-RGGTCRN3’motif butmaydiffer in spacer
and flanking sequences. Sequences with a hamming distancem from thismotif are
represented in corresponding mth (0,1, 2,…) mismatch rings. Color-coded
enrichment values are proportional to the binding affinities of individual k-mers
and variations in intensity reflect the contribution of the spacer and flanking

sequences on binding to the core motif (third panel from the top). In the bottom
panel, central rings (no mismatch to the motif) of SELs are linearized along the
y-axis in thedirectionof thedotted arrowand arrayedalong the x-axisby increasing
increments in the intervening spacer length (n0–8). c Linear-SELs depict the effects
of ligand and partnering RXRA on the binding preference of selected NRs. Along
the x-axis in the left panel, the half-site is presented as a direct repeat (DR) with
spacer n spanning 0–8 base pairs. The middle and right panels display the same
half-site in an inverted (IR 0-8) or everted (ER 0-8) arrangement. Half-site is
5ʹRGKTCR3ʹ for COUP-TF2 andCOUP-TF2:RXRAand 5ʹRGGTCR3ʹ for the rest. On the y-
axis, k-mers belonging to specific groups (DR, IR, or ER) but bearing different
spacer and flanking sequences are plotted in positional and alphabetical order. The
z-axis displays the enrichment values of each k-mer as color-coded peaks. For
additional details on SELs, see Supplementary Fig. 8. (Source data are provided as a
Source Data file. Designed by Laura Vanderploeg).
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Fig. 5 | MinSeqs annotate genome-wide and cell-specific binding. a Receiver
operating characteristic (ROC) curves obtained by scoring the top 500RXRAChIP-
seq peaks inHEPG2 andH1-hESCs cells usingDeepBind andMinSeqFind algorithms
on published RXRA DNA–protein interactome data (RXRA*—dark brown and tan
curves, respectively). The red curve displays ChIP-seq classification using MinSeqs
from our new RXRA + 17 DNA–protein interactome data. b The heatmaps decon-
volute the contributionof binding sites bearingdifferenthalf-site arrangements for

each of the 500 genomic loci identified by ChIP (scaled from high (red) to low
(white) using normalized precision values TPR/(TPR + FPR)). c Venn diagram for
ChIP peaks bearing direct repeat of 5ʹRGKTCR3ʹ half site with a 1- or 5-nucleotide
spacer. These peaks (HG38) have normalized precision greater than 0.9 in the two
cell lines. ChIP profiles aligned with the correspondingMinSeq scores of RXRA+ 17
for representative ChIP peaks in the Venn Diagram. (Source data are provided as a
Source Data file. Designed by Laura Vanderploeg).

Article https://doi.org/10.1038/s41467-023-39577-0

Nature Communications |         (2023) 14:4179 9



fraction of the human NR superfamily have not been determined nor
have the impacts of interfacial protein interactions or small molecule
ligands explored in a systematic manner. Moreover, current algo-
rithms overlook unconventional binding sites and therefore poorly
annotate biologically functional binding sites in vivo. To address these
limitations, we first obtained high-resolution DNA–NR interactomes,
using full-lengthNRs, by themselves and in complexwith their cognate
ligands and obligate partner RXRA. Next, to identify hidden binding
sites, we developed a new algorithm,MinSeq Find, that is based on the
principles of digital systems design optimization.

The MinSeq Find algorithm, (i) unmasked a large constellation of
distinct binding sites in our newly determined NR-DNA Interactomes,
(ii) unmasked such sites in published NR–DNA Interactomes, (iii)
revealed the contribution of small molecule ligands and an obligate
dimer partner, (iv) defined the role of DNA shape in selective binding
amongst different members of the NR subfamilies, (v) annotated
substantive fraction of cell-type specific genomic-binding sites in vivo,
and (vi) revealed druggable NRs as potential regulators of disease-
causing SNPs whose mode of action had thus far remained hidden.

This study provides fundamental new insights into the non-
canonical modes of DNA recognition by NRs and as such it serves as a
valuable resource for accurately mapping cell type/tissue-specific
genomic binding profiles of human NRs. Moreover, we assign NR
binding properties to 8–14% disease-associated non-coding SNPs
whosemode of action thus far was completely opaque. Our collection
of MinSeqs of all human NRs is also an invaluable resource for the
clinical community and sets the stage for hypothesis-driven repur-
posing of NR drugs for a plethora of diseases that are linked to over
52,106 non-coding SNPs in the ClinVar database.

In essence, MinSeqs provide means to capture the full spec-
trum of TF-DNA binding modes, bypassing the limitations of tradi-
tional compressed PWM-based motifs on one hand and the
comprehensive collections of k-mers from an entire DPI on the
other. MinSeqs readily distinguish between closely related motifs
while accommodating binding sites of variable length and type.
They also capture the contributions of non-contacted sequences,
including spacer and flanking sequences, on shape and affinity for
the core binding site (Figs. 2a, 3a–e and Fig. 4a). The current version
of MinSeq Find algorithm was developed for high throughput DPI
datasets. We are currently working on optimizing it to extract hid-
den binding modes from low- to medium-throughput DPI data.
More globally, MinSeq Find algorithm provides a tool to compre-
hensively mine the publicly available high throughput DPIs of over
1000 transcription factors54,55. Just as we demonstrated here for the
NR superfamily, MinSeqs extracted from the publicly available TF-
DNA datasets will reveal new binding modes and help annotate a
substantial fraction of the non-canonical binding sites across the
genome. Moreover, MinSeqs will enable the annotation of currently
unassigned orphan SNPs as potential TF binding sites, thereby
identifying TFs that contribute to regulatory dysfunction and the
onset of numerous human diseases. Thus, extending beyond the NR
superfamily, we define a path to annotate hidden regulatory ele-
ments in genomes and elucidate the biological functions of tran-
scription factors while simultaneously laying the foundations for
the new era of precision medicine.

Methods
Cloning and expression
Plasmids containing N-terminus HaloTag fusions of human NRs
were obtained from Promega, as part of their Kazusa collection.
Plasmid details can be found in Supplementary Table 1. HEK293T-
cells were grown in DMEM media supplemented with 10% FBS at
37 °C in an atmosphere of 5% CO2. Cells were transiently transfected
using FuGENE HD Transfection Reagent (Promega, Madison, WI,
USA) following the manufacturer’s protocol. After 24–48 h at 37 °C

and 5% CO2, cells were washed with ice-cold PBS, scraped, and
collected in a conical centrifuge tube. Cells were lysed in Mamma-
lian Lysis Buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 1% Triton X-
100, 0.1% sodium deoxycholate) supplemented with protease inhi-
bitors. Cell lysates were centrifuged, the clear supernatant was
transferred to a clean microcentrifuge tube, flash frozen in N2(l),
and stored at −80 °C. Expression of the HaloTag fusions was con-
firmed by SDS-PAGE.

Cognate site identification (CSI) by high-throughput-SELEX
(HT-SELEX)
Cognate binding sites for HaloTag-human NR transcription factors
were determined by HT-SELEX. A DNA library with a 20bp random
region flanked by constant sequences to allow PCR amplification was
used (Supplementary Fig. 1). In vitro selections were performed by
incubating the DNA library (100 nM in 20μL) with cell lysate over-
expressing a HaloTag-NR in binding buffer (25mM HEPES (pH 7.4),
80mM KCl, 0.2mM EDTA, 1mM MgCl2, 0.1mM ZnSO4, 2.5mM DTT,
50 ng/μl poly dI-dC, 0.1% BSA) for 1 h at room temperature. When
included, NR ligands were added to a final 100 nM concentration.
HaloTag-NR-bound DNA was enriched using Magne® HaloTag® beads
(Promega) following the manufacturer’s specifications. After covalent
immobilization on themagnetic beads, three quickwashes with 100 µL
of ice-cold binding buffer were performed to remove unbound DNA.
The magnetic beads were resuspended in a PCR master mix (Econo-
Taq® PLUS 2X Master Mix, Lucigen) and the DNA was amplified for 18
cycles. Amplified DNA was purified with QIAquick PCR Purification Kit
(QIAGEN), quantified by UV absorbance at 260nm, and used for sub-
sequent binding rounds. A total of 3 rounds of selection were per-
formed. After selection, an additional PCR was done to incorporate a
6 bp ‘barcode’ and Illumina sequencing adapters. The starting library
(Round 0) was also barcoded. Samples were combined and sequenced
in an Illumina HiSeq 2000 instrument.

Sequencing data
Reads obtained from Illumina sequencing were de-multiplexed by
matching the corresponding 6-bp barcode and truncated to obtain
20 bp derived from the random region (Supplementary Fig. 1). On
average, we obtained more than 800K reads per barcode. We use the
Illumina sequencing reads for (a) just the library, (b) the enriched
library with pulldowns done just with Halo beads, and (c) the enriched
library with pulldowns done with the TF with Halo bead with/without
the ligand with/without partner protein (RXRA). Three rounds of
enrichmentweredone for (b) and (c) and each roundwas followedby a
PCR step for exponential enrichment.

Defining MinSeqs
A k,g,lð Þ-MinSeq is a k-mer DNA sequence followed by a spacer of the
lengthof g ≥0, followed an l-mer sequence. Forexample, the sequence
AACGNNNGCTTA is a 4, 3, 5ð Þ-MinSeq with a 4-mer AACG is followed
by spacer NNN (where N can take any value A, C, G, or T) which is in
turn followed by a 5-mer GCTTA.

Protein–DNA binding data can be captured by MinSeqs into a
sequence enrichment or affinity format using MinSeq Find algorithm,
where sequences are of different lengths and exhibit gaps as well.
Check Supplementary Data 1 for sequencing data analysis using Min-
Seq Find algorithm.

MinSeq Find algorithm outline
Given: Raw N-mer bound data and PAGLO model probabilities of
library or Halo-bead, against which we normalize our bound data.

Find: MinSeqs ðk,g,lÞ above threshold CT counts and corre-
sponding enrichment.
1. Bin and count each sub-sequence x of each raw sequence in

MinSeq k,g,lð Þ format as Cb xð Þ.
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2. Discard MinSeqs with less than CT count threshold (refer to sec-
tion “Poisson distributed reads and threshold cutoff for sequen-
ces” Supplementary Data 1).

3. Get the estimated counts of each MinSeq above CT threshold in
the library using PAGLO model C* xð Þ.

4. Then calculate estimated enrichment (refer to “PAGLOmodel for
MinSeqs” Supplementary Data 1) from the following formula:

E* xð Þ= Cb xð Þ=Tb

C* xð Þ=T ð1Þ
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Where Tb and T are the total number of sequence reads in the bound
samples and the library samples, respectively. E* xð Þ serves as a full or
uncompressed set of MinSeqs.
5. These enrichment values are weighted based on their length

(refer to “Weighted Enrichment of MinSeqs” Supplementary
Data 1). They are then rank-orderedby their weighted enrichment.

6. Further to reduce redundancy theMinSeqs are compressed using
modified OMP (Supplementary Data 1).

7. The MinSeq set (compressed or full) can be used to obtain
PWM sequence logos as well as to display binding (Online
methods).

MinSeqs to score sequences
Consider a sequence v-mer of length v nucleotides to be scoredusing a
set ofMinSeqswith given enrichments.MinSeqs are of type k,g,lð Þwith
amaximum length n= k + g + l. A moving window of length n is used to
score the v-mer sequence, resulting in v� n + 1 sub-sequences of
length n (v≥n). One of themethods is assign the score to the n-mer as
maximum enrichment among all theMinSeqs contained in thatn-mer.
Amaximumof scores for all those v� n+ 1ð Þ n-mers is used as the final
MinSeq score. Different methods can then be used to score these
v� n+ 1ð Þ n-mers from the v-mer sequence explained in detail in
Supplementary Data 1.

Molecular dynamics simulations
The starting structure for DNA-bound GR tetramer simulation was
prepared from existing crystal data of GR dimer:DNA complex
(PDBid:3g6q). All-atomMD simulations were performed for 500 ns in
an explicit solvent under constant pressure and temperature condi-
tions. The solvent box dimensions were chosen such that any DNA/
protein atom was at least 15 Å away from the box surface, preventing
unwanted interactions with its image in translated unit cells. A
required number of Na+ and Cl− counterions were added to first
neutralize the systems and then attain a physiological salt con-
centration of 150mM. The solvated DNA-bound GR tetramer com-
plex was equilibrated using an alternating heating and cooling
protocol to enable optimal intermixing of the solvent and ions
around the biomolecular complex. Following equilibration, a pro-
duction MD run was performed using the pmemd CUDA version of
the Amber14 MD suite56. The Amber OL15 force field for DNA, which
incorporates parmbsc0 along with dihedral (beta, epsilon, zeta, chi)
corrections, and the ff14SB force field for protein were adopted.
Simulations were performed using a 2 fs time step, and snapshots
were saved from the simulation for analysis every 2 ps. To enable
volume variation, simulations were performed in an NPT ensemble
using the Berendsen thermostat and barostat. SHAKE was used to
constrain bond lengths between heavy atoms and hydrogens. Ana-
lyses of MD trajectories were carried out using in-house codes,
NUPARM software suite57, and the cpptraj module in Amber 1856. The
stability of the DNA-bound GR tetramer complex was tested by cal-
culating the RMSF of the backbone Cα atoms compared to the PDB-
derived initial model.

Sequence specificity landscape (SSL) or specificity and energy
landscape (SELs)
Sequence specificity landscapes (SSLs) or specificity and energy
landscapes (SELs) provide a three-dimensional display of high-
throughput protein–DNA (or protein–RNA) binding data through a
series of concentric rings15,43,58. The height of each color-coded peak
corresponds to the binding intensity, which can be measured by dif-
ferent experimental platforms. SEL for binding of all k-mers is built
around a seed sequence/motif as a reference, relative to which
sequences are arranged on SEL. The seed sequence is derived from the
top-scoredMinSeq or PWMandwhose length has to be smaller than k.
In SEL, the innermost ring (0 mismatch or 0 hamming distance ring)
contains sequences that contain a perfect match to the given seed
sequence and the next ring out (1 mismatch or 1 hamming distance
ring) contains sequences that differ from the seed sequence at a single
position. The subsequent rings, going outward, represent increasing
mismatches from the seed sequence. The sequences are arranged
clockwise on each ring. The sequences in the center ring are sorted by
the nucleotides flanking the seed, and then by the position of the seed
in the original sequence. In mismatch rings sequences are arranged
first by the positions of the mismatches, and then by the alphabetical
order of substituted nucleotide (A, C,G, or T) at themismatch and then
by flanking bases and position of seed. Sequences are arranged in such
a way that similar sequences appear together and no sequence is
repeated. The binding intensity for all k-mer sequences for SEL is
obtained using MinSeqs in this paper.

Gapped sequence specificity and energy landscapes (gap-
ped-SELs)
We developed gapped SELs to display binding enrichment/intensity
for DNA binding proteins which prefer sequences with multiple gaps
or spaces in the form of Ns (i.e., any nucleotide) like NRs in this study-
1. First, a seed sequence is chosen as a combination of two mono-

mers. Monomers are chosen from top-ranked MinSeqs or PWMs.
The monomers are combined with multiple orientations, and
different gaps are placed between monomers to construct
multiple seeds. For example, we take RGGTCR as our starting
monomer for RXRA, since RXRA likes to bind RGGTCR with
multiple gaps and orientation, by adding multiple gaps between
two such monomers in an inverted repeat fashion (Supplemen-
tary Fig. 8) with Ns surrounding those we get - NRGGTCR-
YGACCYN, NRGGTCR-n-YGACCYN, NRGGTCR-nn-YGACCYN, and
so on as seed for inverted repeats of GGTCA with gap 0, 1, 2, and
so on. Similarly, seeds for direct repeats and everted repeats are
also obtained.

2. All the sequences matching the seeds are then obtained by
replacing capital Ns (or other degenerate nucleotides like R =A/G,
etc.) with A, C, G, and T. In the above example there are total
44 = 256 different sequences matching each seed.

3. A 3D plot for sequences for an exact match or zero mismatch
sequences is plotted here. Sequences matching the original seeds
are plotted, and all the sequences corresponding to gap= g are

Fig. 6 | NR MinSeqs map to disease-associated single-nucleotide polymorph-
isms. a Mining the non-coding SNPs in ClinVar, the NCBI-run public archive with
MinSeqs revealed ~8% of SNPs as creating or disrupting NR binding sites. bMining
the NHGRI-supported database of SNPs from genome-wide association studies
annotated ~10% as potential NR-binding sites. c Mining a manually curated set of
SNPs that are closely associated with diseases and other quantitative traits, iden-
tified ~14% as hiddenNR sites, of these 771 SNPs, 120werepreviouslymapped asNR
sites by known NR motifs (93) or empirically via ChIP studies (27). d, e MinSeqs
enrichment scores across 5 kbpwindows centered at the curatedSNP (in red) or the
reference allele (blue).dThe SNP rs7578035 reveals a gain of function that creates a
potential binding site forTLX. eThe SNP rs7138803disrupts the uncommonESSRB-

binding site. f Heat map of 771 highly curated SNPs predicted to create or disrupt
NR-binding sites mapped onto associated diseases and quantitative traits. MinSeq
scores derived from different NRs are presented in columns, and the rows display
individual SNPs categorized by disease class (‡ Hematological parameters, # Kid-
ney, lung and liver-related, ◊ Parasitic bacterial disease, and ≠ Radiographic para-
meters). The impact of SNPs on potential NR binding is plotted as the fold change
(FC) on a log2 scale (Online Methods). In this plot, Red indicates gain of function—
i.e., the creation of a potential binding site, whereas Blue indicates loss of function
or disruption of the binding site that was present on the reference allele. (Source
data are provided as a Source Data file. Designed by Laura Vanderploeg).
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arranged along the x-axis with Y coordinate = g. The sequences
along the x-axis are plotted in order as in Supplementary Fig. 8.
The same order of sequences is followed for all gaps along the x-
axis, example AAGGTCA-CGACCCA and AAGGTCA-n-CGACCCA
will have same X-coordinate, but have y =0 and y = 1 Y-coordinate
respectively. After deciding X and Y coordinates, the enrichment
or binding intensity is plotted at that coordinate with height and
color representative of it. The binding intensity of all the
sequences for Gapped-SEL is obtained using MinSeqs for
this paper.

DiSEL and gapped-DiSEL
Differential sequence specificity and energy Landscapes or DiSEL are
SEL landscapes that are plotted to compare the DNA binding of two
different proteins or the sameprotein in two different conditions. First
scales for the enrichment/binding data for two samples are normalized
by setting maximum binding intensity equal to 1 for both and then
subtracting one from the other to get the final difference in binding,
which is then plotted as a gapped SEL or SEL called as gapped-DiSEL or
DiSEL. DiSEL of A over B displays binding preferred by A in
comparison to B.

Receiver operating characteristic (ROC) analysis using peak
assign
The genomic sequence underlying ChIP-Seq peaks were used to
generate ROC curves. In this analysis, ChIP-Seq peaks were taken as
positives, and two random permutations (moving positions of DNA
bases) of each peak were used as known negatives. Each peak (all
positives and negatives) was scored usingMinSeqs (or PWMs). A ROC
curve between the false-positive rate (FPR) and true-positive rate
(TPR) was plotted by varying a moving threshold, positive peaks
scored above that threshold (true positives) are used to get TPR (true
positives over total positives) and negative peaks scored above
threshold (false positives) were used to get FPR (false positives over
total negatives). The area under ROC (AUROC) curve is used to
analyze how well in-vitro data predict a set of ChIP-Seq peaks. Where
AUROC= 1 means complete prediction and AUROC= 0.5 means
random prediction. AUROC is used to do a first level of comparison
between two different sets of data in predicting a set of ChIP-Seq
peaks. For deeper peak-by-peak comparison (which peak can be
predicted by whom), we assigned a score S to each peak. S for a peak
is defined as the maximum value of TPR/ (TPR + FPR) at which a true
positive peakwas detected as a positive peak (similar to precision TP/
(TP + FP)). Score S represents the predictability of each peak using a
given DNA binding data as opposed to the randomized region
when considering all the ChIP-Seq peaks. The scale varies from
the 1 (highest predictability i.e., peaks detected as positive at FPR = 0)
to 0.5 (lowest predictability, peaks detected as positive at FPR = TPR).
The S score for a given set of ChIP-Seq peaks is represented
as a heatmap. In the case of random prediction i.e., a diagonal ROC
curve (AUC–ROC= 0.5), there will not be a single peak that
will be assigned as positive detected even at 0.6 S score (marginally
better than random), had we chosen FPR cutoff as our metric we
would get 10% peaks detected positive at FPR cutoff 0.1 (which is
considered as good prediction). Thus, we used the S score instead of
FPR cutoff here (which is similar to positive predictive value or
precision).

Clustering analysis
A union of 100 top-ranked MinSeqs (chosen by OMP) for each pair of
protein–DNA binding data was used to get Pearson’s correlation
coefficient r, which is used as a measure of similarity between the two.
Dendrograms and heatmap are then plotted by unsupervised hier-
archical clustering of such pair-wise binding profile (correlation coef-
ficient r) using function heatmap.2 in the R-package gplots with

Euclidean distance function. Note, the MinSeqs which existed in the
first DNA–protein binding set but not in the second set to which it is
compared, then their scores are calculated for the secondprotein from
the rest of the MinSeq set.

Sequence Logos
Sequence Logos are constructed from the MinSeq set using the fol-
lowing iterative steps:

Step 1: MinSeqs are first sorted by their weighted enrichment
(refer to “Weighted Enrichment of MinSeqs” Supplementary Data 1).

Step 2: Rank 1MinSeq from the table is used as a seed to derive the
first PWM (Supplementary Fig. 2f).

Step 3: Different algorithms can be used to derive PWM from the
seedMinSeq.Weextended the seedby adding 6 bpofN’s onboth ends
(N corresponds to any nucleotide). One at a time, at each position, an
existing nucleotide is swapped with A, C, G, and T nucleotides. These
sequences were then counted in the raw data and normalized to the
library model to obtain enrichment. These enrichment values corre-
sponding to each A, C, G, and T nucleotide at each position are used to
obtain the position frequency matrix, which is used here as a position
weight matrix (PWM).

Step 4: Enrichment estimates weremade for all theMinSeqs using
all PWMs obtained till this iteration. Residual enrichment was obtained
after subtracting out the maximum estimated enrichment from the
score of each MinSeqs (refer to “MinSeqs to score sequences” Sup-
plementary Data 1).

Step 5: Resort and go to step 2 until maximum iterations are
reached or minimum residual enrichment is achieved.

All the PWM logoswere built using ceqlogo command fromMEME
suite59. NR PWMs from other computational methods were also used
to compare to those obtained by MinSeqs45,60–62.

ChIP-seq data overlap
Overlapping genomic regions of ChIP-Seq peaks were determined
using bedops tool63.

Single nucleotide polymorphism (SNP) scoring using SNP Align
Curated 5592 human SNPs associated with a disease or quantitative
traits by GWAS were obtained from Maurano et al.50. Effect of each
SNP on DNA binding of NR is estimated as log fold change in the
enrichment due to SNP. First, MinSeqs were utilized to get enrich-
ment of the sequence flanking (±20 bp) the SNP—for both, the
reference allele (hg19) as well as the alternate allele (SNP). Next,
log fold change in enrichment is calculated using log2

E alt:alleleð Þ+η
E Ref:alleleð Þ+η

� �
,

where E(alt.allele) and E(Ref.allele) are enrichment values as esti-
mated by MinSeqs for the reference allele and the alternate
allele, respectively. η is added to address the unintended issues
that arise as a consequence of division by small numbers. (η = least of
the two, absolute enrichment 10 and 10% of maximum enrichment).
Overall, a total of 771 SNPs crossed the threshold of 2-fold change
for at least one NR53. Similarly, in Supplementary Fig. 11, 5192 SNPs
were predicted to be associated with DNA binding of NR data from a
set of 53,039 non-coding GWAS SNPs and clustered using heatmap.2
in R and ordered SNPs on the basis of Euclidean distance function in
R. ClinVar SNPs were downloaded on 2022-04-16 from
ftp.ncbi.nlm.nih.gov/pub/clinvar/, we removed missense or non-
sense mutations and used SNPs with 2 alleles only. GWAS SNPs were
downloaded on 2018-10-29 from https://www.ebi.ac.uk/gwas/docs/
file-downloads, we removedmissense or nonsensemutations to get a
set of 82,733 SNPs, and from that we used 53,039 SNPs with 2
alleles only.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The Sequencing data generated in this study are available in the
National Center for Biotechnology Information (NCBI) database under
BioProject PRJNA729962. The HT-SELEX data used in this study from
Jolma et al. 2013 and Yin et al. 2017 are available in the European
Nucleotide Archive (ENA) under accession code ERP001824,
ERP001826, and PRJEB979716,17. The SelexGLM data used in this study
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