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Reinforcement learning establishes a
minimal metacognitive process to monitor
and control motor learning performance

Taisei Sugiyama 1, Nicolas Schweighofer2 & Jun Izawa 3

Humans and animals develop learning-to-learn strategies throughout their
lives to accelerate learning. One theory suggests that this is achieved by a
metacognitive process of controlling and monitoring learning. Although such
learning-to-learn is also observed in motor learning, the metacognitive aspect
of learning regulation has not been considered in classical theories of motor
learning. Here, we formulated a minimal mechanism of this process as rein-
forcement learning of motor learning properties, which regulates a policy for
memory update in response to sensory prediction error while monitoring its
performance. This theory was confirmed in human motor learning experi-
ments, in which the subjective sense of learning-outcome association deter-
mined the direction of up- and down-regulation of both learning speed and
memory retention. Thus, it provides a simple, unifying account for variations
in learning speeds, where the reinforcement learning mechanism monitors
and controls the motor learning process.

Learning ability is not fixed but improves through life-long training. A
theory in educational psychology suggests that learning-to-learn is
achieved by metacognitive strategies of monitoring and controlling
learning processes, which develop gradually and are automated over a
long period1–3. This theory has been applied to understand explicit
learning ability, such as the students’ academic performance1–3. On the
other hand, little is known about whether humans can also monitor
and control implicit learning processes, such as motor learning.
Because such recognition of automatic implicit process would appear
to contradict the well-accepted theory of implicit motor adaptation4–6,
the metacognitive aspect of motor learning remains unexplored.
Nevertheless, humans show flexible learning behavior in motor
learning7–12, which can be viewed as a manifestation of learning-to-
learn, or “meta-learning”. How can we monitor and control implicit
motor learning?

Several factors are known to change properties ofmotor learning,
such as learning speed and memory retention8,11,12. For example,
learning accelerates when learners repeatedly experience the same
environments (i.e., low volatility), whereas it decelerates when they

repeatedly experience rapidly changing environments (i.e., high
volatility)8. In addition, motivational signals also influence motor
learning11,12. For instance, rewards and punishments influence learning
speeds, although their effects are variable; some studies show an
increase in learning speed12 while others show no effects11. Since these
various factors are seemingly unrelated to each other, different the-
ories have been proposed to explain these phenomena through dif-
ferent mechanisms8,10,12–15. However, in fact, there is a common
characteristic behind these various factors. Namely, they influence the
outcome of motor learning, in principle, regardless of whether it
affects the outcome directly (e.g., by addingmonetary rewards to task
performance)11,12 or indirectly (e.g., by destabilizing environments to
make learning ineffective)8,10. Thus, if humans value or devalue motor
learning according to these outcomes, such subjective evaluation
could promote or suppress motor learning.

Here, we sought a minimal framework for this possible meta-
cognitive process for learning-to-learn, also called meta-learning, by
theorizing it based on the reinforcement learning of implicit motor
learning. In our theory, the update of the motor learning properties
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follows the learning-outcome structure according to rewards and
punishments. We then derived an experimental paradigm based on
this theory to examine the flexibility of meta-learning ability for motor
learning.

Results
Theory ofmeta-learning as reinforcement learning of amemory
update policy
Instead of assuming a combination of multiple learning rates14,16 or a
varying learning rate8,13, as proposed in previous motor learning stu-
dies, we beginwith a simple assumption that themotormemory x(k) on
trial k is updated by a “memory update action” u(k) over
trials, xðk + 1Þ = xðkÞ +uðkÞ. In this framework, motor learning is a
sequential decision-making process in the state space spanned by
memory x(k) and sensory prediction error e(k) where the action u(k)

determines the nextmemory x(k+1) (Fig. 1A). Thememory update action
u(k) is drawn from a policy function, which is characterized by a meta-

parameter θ composed of a learning rate β that characterizes the
speed of learning and the retention rate α that characterizes the speed
of forgetting, consistent with previous motor learning theories17,
where the memory update is described by xðk + 1Þ =αxðkÞ +βeðkÞ.
Assuming that the ultimate goal of learning is tomaximize rewards and
minimize punishments, instead of simplyminimizing errors, we derive
an update rule of the meta-parameters of motor learning (α,β) by the
policy gradient theorem18 (see methods for derivation): α α + ηα

σ2
x
�

nðkÞx � rðk + 1Þ � xðkÞ and β β+
ηβ

σ2
x
� nðkÞx � rðk + 1Þ � eðkÞ, where ηα,ηβ aremeta-

learning rates, σ2
x is the memory noise variance, nðkÞx is the memory

noise, r(k + 1) is the outcome of memory update. For example, when the
memory update yields a reward outcome rðxðk + 1ÞÞ, the meta-
parameters α and β are updated in the direction of nðkÞx scaled by the
evaluation of the current memory update rðxðk + 1ÞÞ and the contribu-
tions of the current α and β to the memory update (x(k) and e(k),
respectively). Here, memory noise nðkÞx acts as exploration noise. Thus,
reinforcement learning establishes meta-learning by integrating the
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Fig. 1 | Meta-learning theory and paradigm. A Motor learning as a sequential
decision-making process. The action u(k) updates the memory and sensory pre-
diction error states {x(k), e(k)} to the next states {x(k+1), e(k+1)}, and generates a reward
rðxðx + 1ÞÞ in the given environment (p: perturbation). The action u(k) responds to
{x(k), e(k)}, characterized by meta-parameter θ and influenced bymemory noise nðkÞx ,
i.e., drawn from a policy distribution uðkÞ ∼πθðuðkÞ∣xðkÞ,eðkÞÞ42. This aligns with the
previous models of error-based motor learning xðk + 1Þ =αxðkÞ +βeðkÞ +nðkÞx (α: reten-
tion rate, β: learning rate)17,21,23 when the learner has a linear policy function. B The
primary hypothesis of this study is that themeta-parameterθ= ½α,β�T is updatedby
reinforcement learning rule (policy gradient18) to maximize rewards and minimize
punishments:θ θ+∇θ logπθ � rðxðx + 1ÞÞ.CSimulated changeofmeta-parameters
in the two opposite reward functions. Reward is given for learning in “Promote”
(magenta) and for not-learning in “Suppress” (cyan). Reinforcement learning
upregulatesθ= ½α,β�T to learn faster inPromote, whereas it downregulates themto

learn slower in Suppress. a.u. = arbitrary unit. D Meta-learning training. Learners
experience a sensory-error (E) trial where the sensory prediction error e is induced
by cursor rotation pwhile the task error is clamped (TE clamp). Subsequently, they
experience a reward (R) trial in which the updated memory u, manifested as an
aftereffect h = T−x, is evaluated with reward function r. Promote and Suppress
were implemented by linking the aftereffect and reward oppositely. Reward is
delivered as a numerical score associated with monetary reward. E The task sche-
dule. Learners repeat meta-learning training that comprises pairs of E and R trials
and Null trials (in which the veridical cursor feedback was given). After every six
repetitions of training, they perform a probe task, developed from previously
established motor learning paradigms to estimate learning parameters. The simu-
lated reachbehavior and changes inθ are plotted forPromote and Suppress.FThe
task is separated into four blocks, and behavior is analyzed block-by-block. The first
block marked in pink is the baseline condition in which score is absent in R trials.
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internal monitoring of the current motor learning states (memory and
sensory prediction error) with the learning performance (i.e., rewards)
in order to control memory updates and retentions (Fig. 1B).

We simulated this model in a typical perturbation sequence
composed of baseline trials, initial perturbation trials for learning,
washout trials, and subsequent perturbation trials for re-learning
(Fig. 1C). We considered two reward functions with different
learning-reward associations (learning-outcome structure). In one
condition (Promote learning [Promote]), which encouraged fast
motor learning, the reward function was designed to generate larger
rewards following larger motor memory updates. In the other con-
dition (Suppress learning [Suppress]), which encouraged slowmotor
learning, the reward function was designed to generate larger
rewards following smaller motor memory updates. Simulation
results (Fig. 1C) show that reinforcement learning updates the
learning and retention rates α and β in a manner congruent with the
two conditions; in the Promote condition, both α and β increase,
leading to greater memory update. Contrarily, in the Suppress
condition, both α and β decrease, leading to lower memory update.
Therefore, the theory predicts both the acceleration of learning19 and
the deceleration of learning20.

Human motor learning experiments
To examine whether humans show behavior comparable to the
simulated meta-learning agent, we modified previous motor learning
tasks9,21 to a meta-learning training paradigm, in which the motor
memory update induced by sensory prediction error in one trial
(Sensory Error trial [E]) was evaluated by a numerical score associated
with a monetary compensation in the subsequent trial (Reward trial
[R]) (Fig. 1D). Crucially, this dissociation between presentation of the
sensory prediction error and the reward in two adjacent trials enables
us to manipulate the learning-outcome association for meta-learning
independent of the learning-error association for motor learning. For
instance, in a conventional motor learning task, large learning induces
small errors in subsequent trials, which always encourages learning. In
contrast, with this dissociation, we can encourage (Promote) or dis-
courage (Suppress) motor learning.

Eighty healthy participants gave informed consent before parti-
cipating in the experiment, which was approved by the Institutional
Review Board at the University of Tsukuba. A typical apparatus for
visuomotor adaptation tasks was used22. In brief, participants held a
planar robotmanipulandum andmade rapid, horizontal, arm-reaching
movements to hit targets displayed in front of them. A mirror above
the manipulandum occluded the hand. Visual stimuli were presented
on a monitor, reflected in the mirror, such that they appeared at the
same height as the hand.

Participants performed meta-learning training in which pairs of
Sensory Error (E) andReward (R) trialswere repeated (Figs. 1D, E, S1). In
both E and R trials, the target blinked once 10 cm from the start
position, and participants were asked to hit the target with their hand
as accurately as possible. In E trials, unbeknownst to the participants,
online cursor feedback representing the hand position was rotated by
5° from its actual position during movement. This perturbation
induced a sensory prediction error and a memory update in response
to this error21–24. In addition, to remove any task-performance feedback
generated by the error between the target and the cursor (task
error9,23), which could act as a reward/punishment signal andmodulate
learning, we used a task error clamp method (TE clamp) such that E
trials always appeared successful to participants9. Specifically, when
the cursor reached8 cm, the target blinked again at 10 cm,but its angle
was shifted in the direction of the cursormovement9, unbeknownst to
the participants. In R trials, no cursor feedback or second target blink
was provided. Instead, following the movement, participants were
shown a numerical score proportional to the motor memory updated
in the E trial. This update was assessed by the aftereffect, i.e., the

angular error between the target direction and the hand direction.
Participants were informed that positive or negative scores were
associated with monetary gains or losses, respectively. As in the
simulations described above, we compared the effects of two score
functions (Promote and Suppress) that determined the relationship
between the size of the memory update and the score.

Experiment 1: Negative scores. Since human reinforcement learning
has greater sensitivity to negative reward prediction errors25,26, we first
tested the effects of negative scores in Experiment 1 (N = 40). The goal
of reinforcement learning is, therefore, to avoid punishment. The
participants’memory profiles (x), estimated from changes in the reach
angle (see Methods), agreed with those of simulated agents in the last
block of meta-learning training (Fig. 1E, Fig. 2A). Across blocks, the
group difference between Promote and Suppress developed gradu-
ally, both in the initial update (first response to the error before any
reward is delivered) ofmotormemory in the first R trial (p = .02) and in
the accumulated update in the last R trial (p < 10−5) (Fig. 2B). In addi-
tion, both groups increased their scores over blocks (p < 10−14 for
Promote and p < 10−11 for Suppress, Fig. 2C). Thus, participants
learned how to regulate theirmotor learning performance tominimize
punishment, according to the learning-outcome structure
(Promote/Suppress), supporting our hypothesis of meta-learning as
reinforcement learning of motor learning properties.

We then assessed changes in the meta-parameters α and β over
blocks in Probe tasks (Fig. 1E, F). The Probe task comprised con-
secutive E trials, duringwhichwe examined themotormemory update
in response to a 7° rotation to estimate β. These trialswere followed by
consecutive Error-Clamp trials, in which the error was clamped at zero
by fixing the cursor movement to the target direction27,28. Memory
decay during clamp trials allowed us to estimate α. Note that because
we continued to use the TE clamp in E trials, no reward feedback was
given in Probe trials. A 7° perturbation instead of a 5° perturbation
during training allowed us to verify generalization of meta-learning
effects across error sizes.

The profiles over blocks of both memory updates and meta-
parameters α and βwere qualitatively similar to those of the simulated
agent in the two conditions, Promote and Suppress (compare Fig. 1E
to Fig. 2D, F). Changes over blocks were significantly different between
groups in both the initial learning response (the response to the cursor
rotation at the 1st trial measured at the 2nd trial) (p = 0.04) and the
average memory of all Error-Clamp trials (p <0.004, Fig. 2E), con-
sistent with changes in both the initial and the accumulated updates
during meta-learning training. Although this initial learning response
reflects β, it is only a point estimate of it. Similarly, although the
average memory of Error-Clamp trials reflects α, it is influenced by
both the accumulated and the forgetting effects of motor memory.
Thus, we then estimated the learning parameters α and β in both
conditions with a model-based Bayesian estimation method29,30 using
all trials in Probe (Fig. 2F; see Methods for details). Group differences
were significant for both changes in α (95% high density interval
(HDI) = [0.005, 0.020]; p < 10−3) and β (95%HDI = [0.007, 0.120];
p =0.01). See Tables S1–S6 and S13 for a summary of these statistical
analyses.

Experiment 2: Positive scores. Experiment 2 (N = 40) was identical to
Experiment 1 except that negative scores were replaced with positive
scores in R trials. The goal of reinforcement learning is therefore to
acquire rewards. This simple change resulted inmarked differences in
the effects of training (Fig. 3A–C) from Experiment 1 (Fig. 2A–C).
Notably, while the Suppress group showed an improved score
(p < 10−7), the Promote group did not show evidence of increasing
scores during blocks (p =0.43), yielding a significant group difference
(p = 0.002) (Fig. 3C). Because of this weak meta-learning effect in the
Promote group, no significant group differences were found either in
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initial updates (p =0.18) or accumulated updates (p =0.10) (Fig. 3B). In
the Probe task (Fig. 3D), a significant differencewas foundbetween the
groups in the average memory of Error-Clamp trials (p =0.01), but not
in the initial update (p =0.82) (Fig. 3E). The estimated learning para-
meters agreed with these observations; group differences were sig-
nificant in changes in α (95%HDI = [0.002, 0.017]; p = 0.008) but not in
β (95%HDI = [−0.044, 0.019]; p = 0.21) (Fig. 3F). See Tables S7–S12 and
S14 for a summary of these statistical analyses.

Estimation of meta-learning rates in both Experiments. To directly
examine the difference between punishment and rewards in the
effect of meta-learning, the meta-learning rate (η) was estimated for
each learning parameter (α and β) and each experiment using a
Bayesian estimationmethod (Fig. 3G; seeMethods for details). ηαwas
positive in both Experiment 1 (95%HDI = [3.8 × 10−6, 1.3 × 10−4];
p = 0.03) and Experiment 2 (95%HDI = [1.7 × 10−5, 2.0 × 10−4];
p = 0.009), with no evidence of a difference (95%HDI = [−1.5 × 10−4,
7.2 × 10−5]; p = 0.22). On the other hand, ηβwas positive in Experiment
1 (95%HDI = [3.7 × 10−5, 5.5 × 10−4]; p = 0.03), but not in Experiment 2
(95%HDI = [−1.9 × 10−4, 9.1 × 10−5]; p = 0.26), with a significant differ-
ence (95%HDI = [3.2 × 10−5, 6.4 × 10−4]; p = 0.02). See Table S15 for a
summary of these statistical analyses, which predicted the reach
angle change in Probe (Fig. S2).

Unified explanation for previous results in motor learning
research
Overall, our results demonstrate that reinforcement learning affected
the properties of motor learning because participants regulated their
learning and retention rates to increase their scores. The association
between learning and scores (Promote/Suppress) determines the up-
and down-regulation of both learning and retention rates, with a
higher sensitivity to punishments25,26. We re-emphasize that both
Promote and Suppress groups experienced the same sensory stimuli
and perturbation sequence through both the meta-learning training
and the Probe task, and that neither rewards nor task errors were
provided in visuomotor rotation trials (E trials). Thus, no previous
hypothesis regarding the stability of error and environment8,
uncertainty10, reward-based learning21, or learning context31, can pre-
dict the change of learning and retention rates in our meta-learning
training.

In contrast, our meta-learning model provides a unified theory
that accounts for previous results in motor learning research. First, if
we assume that task errors provide punishment information and are
thus aversive23,32–34, our model explains previous results of the change
in learning speed influenced by volatility of the perturbation in the
absence of apparent reward feedback8 (Fig. 4A, B). When the direction
of perturbation is constant throughout learning trials (low volatility),
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updating motor commands in response to observed errors in a parti-
cular trial decreases errors in subsequent trials, which in turn, mini-
mizes the punishment (the task error). Thus, reinforcement learning
trains the learning policy to increase the memory update, minimizing
punishment. In contrast, in volatile environments with rapidly chan-
ging perturbations, the memory update in response to prediction
errors increases the error in the next trial with a different perturbation
(e.g., Learning to compensate for a rightward perturbation increases
the error when the perturbation moves leftward in the subsequent
trial). Thus, reinforcement learning trains the learning policy to
decrease the memory update, again minimizing the punishment.

Second, and for the same reason, our model also explains how
manipulation of the task error modulates learning speed9 (Fig. 4C, D).
In the Standard TE (StdTE) condition9, the learner is trained in a 30°
cursor rotation, generating task error that can be reduced by motor
learning, like in standard motor learning tasks. In the NoTE condition,

the task error was clamped, as with the TE clamp of our experiment
(Fig. 1D), and thereforemotor learning did not affect the task errors. In
the RandomTE condition, the task error was randomized by randomly
shifting the target from the cursor, and therefore motor learning did
not systematically affect the task errors. Only StdTE shows accelerated
learning speed compared toNoTE andRandomTE (Fig. 4C). Ourmodel
accounts for these results; reinforcement learning increases the
learning rate to minimize punishment in StdTE, the only condition in
which motor learning effectively reduces the task errors (Fig. 4D).

Third, if we further assume that the brain encodes punishment
(negative score) and rewards (positive score) differently for reinfor-
cement learning26 such that the sign of the feedback signal biases the
efficacy of reinforcement learning25, our model also accounts for the
puzzling effect of monetary feedback on motor learning, in which
punishment accelerated learning while reward increased retention11

(Fig. 4E, F). In the punishment condition11, a negative score
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in estimated learning parameters. G Meta-learning rates (η) for each experiment
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and whisker represent the 25–75th and 2.5–97.5th percentiles for the posterior
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and Block4: p =0.53, Probe-Block 1: p =0.49 and Block 4: p =0.23).
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proportional to the sizeof the errorwas subtracted from themaximum
payment. In the reward condition, a positive score negatively pro-
portional to the size of error was added to the payment (Fig. 4E). In the
random positive condition, the score was random. Our simulations
replicated the different modulation effects of punishment and reward
on learning speeds and retention. Interestingly, the asymmetry in the
meta-learning rates ηα, ηβ (Fig. 4F, inset, Table S16) adjusted to

replicate these previous results is similar to the asymmetry of the
estimated meta-learning rates in Experiments 1 and 2 (Fig. 3G).

Discussion
The present study demonstrates that, following the presentation of
score feedback as a function of motor learning performance, human
participants both increased anddecreased learning rates and retention
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with permission from AAAS. Panel (C) is adapted with permission from Leow, L.
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rates to gain rewards or avoid punishments. This effect developed
gradually during the training sessions, and the direction of regulation
(Promote or Suppress) was determined by the learning-outcome
structure. These results show that reinforcement learning is employed
to regulate the learning policy. In addition, meta-learning training
differed between positive and negative scores, which can have differ-
ent subjective values26. Thus, our results demonstrate reinforcement
learning mediates the metacognitive process to control motor learn-
ing by monitoring on subjective learning performance.

Machine learning scientists have recently proposed algorithms in
which a high-order reinforcement learning system trains a lower-level
reinforcement learning system by regulating its learning speeds35–37.
Such a reinforcement learning view ofmeta-learning is sensible because
reinforcement learning is a fundamental form of the learning process
for humans and animals38–41. It is believed to enable them to optimize
actions so as to maximize rewards by forming associations between
selected actions and outcomes through trial-and-error42, which med-
iates a broad range of cognitive functions, from pain perception41 to
moral judgement43. Although such a hierarchical learning system is
thought to exist in the brain44–48, direct empirical evidence of its exis-
tence is lacking. This is because, in previous work, both the meta-
learning and the learning processes were driven by rewards, preventing
a clear dissociation between the two44. In contrast, because of the
separation between the update signals for the higher system (rewards)
and lower systems (sensory prediction errors), our approach dis-
sociates the higher meta-learning level from the lower learning level.
Thus, we offer the empirical evidence for the existence of a reinforce-
ment learning mechanism for learning policy in the human brain.

In contrast with our reinforcement learning view of motor learn-
ing, previous theories of motor learning postulate that the goal of
motor learning is to minimize errors17. Thus, these theories of the
regulation of learning speeds are also based on properties of errors8,10.
Thus, each theory can account for only a subset of the dataset. How-
ever, multiple motor learning experiences of unrelated motor skills
also enhance motor learning speeds7, which is not explained by the
experience of errors alone. Here, we have proposed a minimal fra-
meworkof themetacognitive process inmotor learning,which actively
controls both learning and retention to gain rewards and avoid pun-
ishments, explaining previous reports of changes in motor learning
ability by the volatility of errors8, reward feedback on errors11, and
history of the environment9. In addition, our theory and the behavioral
results show that, in Suppress condition, a learner learns not to
minimize errors since less learning decreases punishment. This con-
tradicts the hypothesis that the goal of motor learning is error mini-
mization. In contrast, our theory suggests that the error minimization
principle holds true only when motor learning is associated with
maximizing rewards or minimizing punishments.

Our meta-learning theory postulates that motor learning is
decision-making for memory updates. It differs from a seemingly
parallel theory in motor control, which focuses on the process of
selecting motor commands instead of selecting memory updates49.
The present study proposed that motor learning is a sequential
decision-making process in a space spanned by motor memory and
errors, providing empirical evidence to support our theory.

Four alternative hypotheses are refuted. First, since cursor rota-
tion (5° or 7°) and learning-outcome structure were unnoticeable to
the participants, none reported the use of aiming strategies to change
their reachdirection15, suggesting that they learned and adapted to the
rotation without being aware of it. Note that the participants exhibit
quick learning, on average showing 30–40% of learning in initial
updates (Figs. 2B, D, 3B, D). However, such fast learning does not
necessarily imply explicit learning because the learning rate is faster
for smaller rotation50 and a similar learning rate was reported in a
recent implicit motor learning study51. Although the participants
recognized the score feedbackexplicitly, it washard for them tonotice

the action-outcome association explicitly, since the presented score
appeared random due to natural motor variabilities as in a typical
human reinforcement learning task52,53. Nevertheless, the learning-
outcome structure changed the initial update in response to the initial
visual rotation (Fig. 2B, E). Furthermore, because no cue or task error
was presented before the initial update, the participants could not
infer a context to recall the memory or develop the strategy15. There-
fore, meta-learning was not achieved by the change of the explicit
strategy. Second, since this initial response to the error was generated
before any reward or punishment was delivered, this meta-learning
effect on the initial response was not due to the response to reward
feedback. Instead, the initial update was due to the response to sen-
sory prediction error induced by the visual rotation itself. Third, it
could be argued that the reinforcement learning system recognized
the 5° rotation as a cue and learned how to respond specifically to a 5°
rotation. However, this was not the case because the meta-learning
effect exhibited a generalization ability between two rotation sizes
from 5° to 7°. Fourth, alternatively, it could also be argued that the
reinforcement learning system recognized rotation of any size as a cue
and learned to respond similarly for any rotation size. This was also not
the case because the generalization ability was limited to the error
space that had been experienced (Supplementary Note 1 and Fig. S3).
Fig. S3 also shows that the error experience was generalized between
and beyond 5° and 7°. Thus, themeta-learning effectwas notmediated
by a simple cue-response map but by modulation of the neural policy
function with receptive fields over the representation of sensory pre-
diction error8,54,55. This supports our hypothesis that meta-learning
monitors and controls the motor learning policy function.

Our new framework offers a unified view on variable motor learn-
ing behaviors reported in conventional motor adaptation tasks affected
by three different factors: volatility of environment8, valence11, and task
error9 (Fig. 4). To apply our theory of meta-learning to these three
adaptation tasks, we hypothesized that the task error carries informa-
tion of negative reinforcer, i.e., punishment. This hypothesis has not
been examined in previous motor learning studies. However, a neuroi-
maging study reported that the task error in the reach adaptation task is
correlated with the activity in the striatum23, the main input of the basal
ganglia, which is considered responsible for reinforcement learning38,39.
In addition, it has been shown that the task error could be explicitly
noticeable5, and the noticeable error in the goal-directed behavior is
aversive34, which decreases the dopamine level in the ventral tegmental
area32,33. Thus, this neurophysiological evidence also supports our
hypothesis of the negative reinforcer contained in the task error.

In addition to such information of negative reinforcer, the task
error has been shown to be a driving input to motor adaptation5,6,13. In
one model, the task error and sensory prediction error update two
different memories in parallel, whereas in another theory, these two
are multiplied to update a single memory13. Since the task error is
noticeable, it might update the explicit motor memory while the sen-
sory prediction error updates the implicit motor memory5. In another
model, the task error updates both implicit and explicit memories6.
However, because these models do not assume that the punishment
factor is contained in the task error, they explain only a subset of
previous behaviors (Figs. S4–5, Tables S17-18). In contrast, our meta-
learning theory with this punishment factor outperforms these pre-
vious models (Fig. S5D, Tables S17–18). As a note, we showed that
adding the task error as a driving input of motor memory5,6,13 does not
interfere with our meta-learning model (Figs. S5E, S6). Thus, both our
novel punishment factor and the established driving input factor5,6,13

may coexist in the task error.
Our results, showing that the same punishment information leads

to both promotion and suppression of the learning gain depending on
the learning-outcome structure (Fig. 2), suggest an involvement of a
flexible goal-directed learning mechanism for meta-learning. In
humans and animals, two different neural mechanisms are involved in
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the reinforcement process. One is the Pavlovian system which
responds to valence in a hardwired manner; the other is the instru-
mental learning systemwhich updates the action flexibly tomaximize/
minimize rewards/punishments for goal-directed problems56. The lat-
ter system has been formalized by reinforcement learning rules57 by
machine learning scientists18,42. Thus, our proposed computational
model of meta-learning derived from reinforcement learning theory is
likelymediated by the instrumental learning systemwhere the cortico-
basal ganglia network plays the central role38–40. This contrast with a
previous report on the effect of punishment in enhancing the gain of
motor learning, where the direction of the punishment effect is fixed11.
This effect has been modeled by a hardwired system with the one-to-
one relationshipbetween the punishment and the learning gain13. Such
a fixed Pavlovian model cannot account for our results of both pro-
motion and suppression of the learning gain depending on the
learning-outcome structure.

Finally, the presentmeta-learning system suggests a close interplay
between reward system and sensory prediction error system in the
brain. Updating motor learning policy entails the integration of reward
signals with memory update signals (current memories/sensory pre-
diction errors. See Eq. (9) in the Methods), unlike previous theories,
which hold that meta-learning is driven by either of the signals (error or
reward), but not both8,48. Because previous research suggests an
involvement of the basal ganglia in reinforcement learning38–40 and the
cerebellum in sensory error-based learning24,58, reinforcement learning
on motor learning policy is likely mediated by functional connectivity
between these two learning systems. Thus, anatomical projections
between the basal ganglia and the cerebellum59 could have a compu-
tational role in meta-learning. This possibility is further supported by
recent reports of reward-related signals in cerebellar inputs60 and
outputs61–63 during motor control tasks. We suggest that these inter-
actions between the basal ganglia and the cerebellum forms the mini-
mal mechanism of the metacognitive process to monitor and control
the error minimization process in implicit motor learning.

Methods
Theory: Reinforcement learning of motor learning properties
Typical models of motor adaptation21 assume that when a learner
generates motor commands m(k) on trial k, the perturbation p biases
the hand trajectory yðkÞ =mðkÞ +p. Meanwhile, the learner predicts the
hand position ŷ with the memory of the perturbation x(k) with
ŷðkÞ =mðkÞ + xðkÞ. The perturbation creates a sensory prediction error
eðkÞ = yðkÞ � ŷðkÞ =p� xðkÞ. Following the conventional formulation of
motor adaptation10,11,17, when the perturbation p is given to the learner,
the memory x(k) on trial k is updated by the sensory prediction errors
e(k) with learning rate β and is retained with retention rate α:

xðk + 1Þ =αxðkÞ +βeðkÞ +nðkÞx ,

eðkÞ =p� xðkÞ,

(
ð1Þ

where nðkÞx is a memory update noise with zero mean and variance σ2
x .

This formulation is useful to describe error-based learning in mul-
tiple experimental paradigms and is well established in the motor
learning literature8,11,21. However, in order to consider a meta-learning
process, we adopt amore general framework formemory update, which
leads to Eq. (1) under simple assumptions. We first assume that memory
update is achieved by an action u in the memory space, such that

xðk + 1Þ = xðkÞ +uðkÞ, ð2Þ

where the memory update (action) u(k) is generated from a normal
distribution, spanning the space of x(k) and eðkÞ,

uðkÞ ∼πθ uðkÞ∣xðkÞ,eðkÞ
� �

=N f θ xðkÞ,eðkÞ
� �

,σ2
x

� �
, ð3Þ

which is called an action policy, and is characterized by a parameter
vector θ of a function approximator f θðxðkÞ,eðkÞÞ. In this framework, the
memory update is considered a Markov Decision Problem, where the
memory on the next trial x(k+1) is determined by the memory on the
current trial x(k) and the action u(k). If we consider a policy specific to a
motor learning problem implemented with the linear function
f θ =θ1x

ðkÞ +θ2e
ðkÞ with θ = ½θ1,θ2�T , this formulation becomes equiva-

lent to Eq. (1) when θ1 is replaced with α−1 and θ2 with β.
We next assume that the long-term goal for a learning agent with

policy uðkÞ ∼πθðuðkÞ∣xðkÞ,eðkÞÞ is to maximize expected rewards (and
minimize expected punishment) rðxðk + 1ÞÞ caused by the memory
update. Thus, the learner’s objective function for motor learning
between k and k + 1 is JðθÞ= Eπθ

ðrðxðk + 1ÞÞÞ. We take a gradient of this
objective function along the parameter θ to obtain the direction of its
update,

Δθ∼∇θ JðθÞ, ð4Þ

where ∇θ JðθÞ is approximated by

∇θ logπθ � rðxðk + 1ÞÞ, ð5Þ

in accordance with the policy gradient theorem18.
Since the policy is Gaussian, the log of the policy function is given

by:

logπθðuðkÞ∣xðkÞ,eðkÞÞ= �
1

2σ2
x
ðf θðxðkÞ,eðkÞÞ � uðkÞÞ2 + const: ð6Þ

Then, the partial derivative of this log policy function is

∇θ logπθðuðkÞ∣xðkÞ,eðkÞÞ=
1
σ2
x

uðkÞ � f θ xðkÞ,eðkÞ
� �� �∂f θ

∂θ
� ð7Þ

Rewriting Eq. (3) asuðkÞ = f θ +n
ðkÞ
x , weobtain a gradient descent (or

ascent) rule for the policy uðkÞ ∼πθðuðkÞ∣xðkÞ,eðkÞÞ,

θðk + 1∣kÞ =θðk∣kÞ +
η

σ2
x
� uðkÞ � f θ xðkÞ,eðkÞ

� �� � ∂f θ
∂θ
� r xðk + 1Þ
� �

=θðk∣kÞ +
η
σ2
x
� nðkÞx � r xðk + 1Þ

� �
� ∂f θ
∂θ

,
ð8Þ

whereη is the learning rate of reinforcement learning, that is, themeta-
learning rate. Thus, after the memory update is conducted at trial k in
the lower motor learning layer, the parameter used for the memory
updateθ(k|k) is updated toθ(k+1|k) by themeta-learning rule (Eq. (8)) in the
highermeta-learning layer. This updatedmeta-parameter θ(k+1|k) is used
for motor learning at the next step k + 1 after shifting θ(k+1|k) to θ(k+1|k+1).

For the linear function f θ =θ1x
ðkÞ + θ2e

ðkÞ = ðα � 1ÞxðkÞ +βeðkÞ, we
have ∂f θ

∂α = xðkÞ, ∂f θ∂β = eðkÞ. The meta-learning rules for α and β are there-
fore:

αðk + 1∣kÞ =αðk∣kÞ + ηα

σ2
x
� nðkÞx � rðxðk + 1ÞÞ � xðkÞ

βðk + 1∣kÞ =βðk∣kÞ +
ηβ

σ2
x
� nðkÞx � rðxðk + 1ÞÞ � eðkÞ:

ð9Þ

Thus, themeta-parameters ofmotor learning α and β are updated
by the exploration noise nðkÞx and the reward given by the updated
memory rðxðk + 1ÞÞ with influence by the memory x(k) and the prediction
error e(k), respectively. Therefore, if the reward is externally manipu-
lated such that more motor learning provides larger rewards, rein-
forcement learning increases α and β. In contrast, if it is manipulated
such that less learning provides larger rewards, it decreases those
parameters. Note that the reward function is unbeknown to learners,
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and a goal is to maximize reward through trial-and-error without
knowing the function.

In computer simulations, the samenumber of learnerswasused as
in the actual experiment (N = 20 per group for each experiment) to
calculate the mean and variance of the profiles of α, β, and x in Fig. 1E.
Free parameters were manually set as follows: ½αð1∣1Þ,βð1∣1Þ,ηα ,ηβ,σx � =
[0.97, 0.4, 4.9 × 10−5, 4.0 × 10−4, 0.75] so that they approximately mat-
ched the human participants’ parameters estimated in the section
below. The score function and the sequence of meta-learning training
were as in the experiments (Fig. 1D–F). The range of the parameter
(α,β) was constrained between 0 and 1 by setting ηα =0 when α ≤0 or
α ≥ 1 and ηβ =0 when β ≤0 or β ≥ 1.

We briefly note here that our theory is not limited to the linear
learning policy f θ =θ1x

ðkÞ + θ2e
ðkÞ. If we consider a general nonlinear

network function f θ =θ
TGðe,xÞwith basis functionGðe,xÞ spanning the

space of x(k)and e(k), the meta-learning effect is predicted to generalize
over the space x and e that the learner experienced during the training,
which is characterized by the shape of the basis function Gðe,xÞ8.

Participants
Forty right-handed participants without a history of neurological or
motor disorders volunteered for Experiment 1, and forty participants
for Experiment 2 (in total 44 males; aged 18–30 years, the mean is 21
years old). Participant right-handedness was confirmed using the
Edinburgh Handedness Inventory. They were paid 2,150 JPY for their
participation, with additional performance-based compensation of up
to 1,000 JPY.

Task design
General. Participants performed the task using a robotmanipulandum
that moved only in the horizontal plane64. They sat on a chair and held
the robot handle in their right hands. A horizontal mirror covered the
task space, occluding the hand and forearm. A monitor was placed
above the mirror, and participants looked at visual stimuli presented
on the monitor, which were reflected in the mirror64. The height
between the handle and themirrorwas the sameas the height between
themirror and themonitor, such that the visual stimuli appeared at the
same height as the handle. The manipulandum was self-made and
controlled by Python 3.7.9 and LabView 2019.

Trialflow. Wemodified the flowof trials andmanipulation of feedback
of a previously established task to control both the prediction error
(the error between the predicted hand movement and the cursor
feedback) and the task error (the error between the visual target and
the cursor)9. Participants first positioned their hand cursor (a white
circle 5mm in diameter) at a starting point (a gray circle 9mm in
diameter) at thebottomcenter of the screen. Participantsmade a rapid
shooting movement after a target (a 5-mm blue circle) blinked for
100ms, 10 cm from the starting point (Fig. S1). After initiation of the
shooting movement, the target reappeared again when the hand
reached 8 cm. To avoid use-dependent learning65, the target direction
was pseudo-randomly selected from 1 of 7 directions: −15°, −10°, −5°,
0° (right in front of the participant), 5°, 10°, and 15°. The counter-
clockwise direction was defined as positive in angular coordinates. To
maintain similar kinematics across trials, “Too Fast” or “Too Slow”was
displayed as a warning when movement duration was <150ms or
>250ms, respectively. In addition, to discourage predictivemovement
initiation, the waiting time at the start point was randomized between
800 and 1200ms. To further discourage predictive movement initia-
tion or cognitive strategy, the trial was aborted and retried if partici-
pants failed to initiate movement between 100ms and 450ms after
target presentation.

Trial type and task schedule. Participants experienced four types of
trials: Null, Sensory-Error (E), Reward (R), and Error-Clamp trials.

In Null trials, participants made shooting movements toward the tar-
getswith veridical online cursor feedback. E trialswere identical toNull
trials except that a cursor rotation (a discrepancy between the hand
and the cursor) was imposed as a perturbation to induce sensory
prediction error. The rotation size was manipulated among E trials as
described below. In addition, the target reappeared in the direction of
the cursor at 10 cm, making participants perceive the cursor crossing
at the center of the reappeared visual target, which clamped the task
error to zero (TE clamp). Thus, in E trials, the participant experienced a
sensory prediction error, but not a task error9. In R trials, a numerical
score as a function of the updated memory computed from the
aftereffect, the angle distance from the presented target and the reach
direction, was presented as a reward. Online cursor feedback was
absent to remove feedback related to sensory prediction error, and the
target did not reappear at the crossing. Finally, in Error-Clamp trials,
the cursor direction was constrained to the target direction so that the
cursor moved straight to the target regardless of hand movement,
clamping both sensory error and task error to zero27,28. An illustration
of the flow and manipulation of each trial type is shown in Fig. S1.

The task comprised two phases: meta-learning training and Probe
(Fig. 1E, F). Themeta-learning training phase consisted of 6 cycles of 10
Null trials (Washout) followed by five pairs of E and R trials (20 trials
per cycle, 120 in total). +5° rotation was used in E. Since the learner
received the reward feedback in R for multiple trials in the training
phase, the updated memory after the first R trial is potentially influ-
enced by the accumulation of a reward effect. Thus, we devised the
Probe phase to examine whether prior meta-learning training affects
motor learning ability in a typical visuomotor rotation task where the
visual rotation E is imposed consecutively in a step-perturbation
manner. To measure the speed and retention of learning, the Probe
phase consisted of 5 E trialswith no rotation followedby 10 E trialswith
+7° rotation and by 15 Error-Clamp trials.

The experiments comprised four blocks. Thefirst block contained
a Probe phase followed by a meta-learning training phase and another
Probe phase. The remaining blocks consisted of a meta-learning
trainingphase followedby a Probephase. 30Null trials andone-minute
breaks were inserted before and after each Probe phase. The scorewas
removed in R trials in the first block to measure baseline behavior
without reward feedback.

Instruction. Wemodified the instructions from a previous visuomotor
rotation study9 as follows. “There may be some manipulation of the
cursor and/or the target. Even if younotice anymanipulation, your task
remains the same: to move your hand to the target as best you can.”
Participants were not informed what the exact manipulations, neither
were they informed of the relationship between their hand directions
and the scores. They answered a post-task written questionnaire to
verify that they did not aim in any direction other than toward the
target. In addition, participants were informed about the presence/
absence of cursor feedback and score in the Null, E, and R trials and
practiced each type of trial before the task. They were also explicitly
told that one point was worth 1 JPY and that the task goal was to
maximize their compensation by reaching the target as accurately as
possible (see details below). In Experiment 1, participants were told
that the additional compensation was initially maximum (1000 JPY),
but that negative scoreswoulddecrease this initial amount throughout
the experiment. In Experiment 2, they were told that the additional
compensation was initially zero (0 JPY) and that positive scores would
increase this initial amount to up to 1000 JPY.

Experiment groups and score calculations. Participants were
pseudo-randomly assigned to two groups in each experiment (N = 20
per group),Promote and Suppress (Fig. 1). The groupsdiffered in how
the score was calculated based on themotor memory, asmeasured by
the aftereffect (x =T � h, Fig. 1D) and then computed the score by
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score= S � x + s0 +V (rounding to integers), where S is the slope that
determines the learning-outcome structure of the score feedback, s0
determines the intercept of the score function, and V is the bias of the
score that determines the valence level of the score feedback. In
Promote, S= 1,s0 =0, the score increased from 0 to 5 as the learning
progressed to encourage learning. In Suppress, S= � 1,s0 = 5, and the
score therefore decreased from 5 to 0 as the learning progressed to
discourage learning. In Experiment 1, in order to deliver punishments,
V = −5. The score was biased to the negative (Fig. 1D). In Experiment 2,
in order to deliver rewards, V = 5. The score was biased to the positive.
We set the maximum andminimum score to 0 in Experiments 1 and 2,
respectively, so that the sign did not change during an experiment.
One point corresponded to 1 JPY. Additional monetary compensation
was given to participants at the end of the experiment.

Analysis
Estimating memory update and retention in training trials and
Probe. In meta-learning training, we used the first and last R trials as
indications of initial memory update (learning) and accumulated
memory update, respectively. In the Probe phases, we used both the
secondE trial (as the initial update occurred after experiencing sensory
prediction error in the first E trial) as the indication of initial memory
update and the average of all the Error-Clamp trials to examine the
accumulated updates and their retention.

Specifically, after participants experienced 10 Null trials in each
training cycle and 30 Null trials before Probe, the initial update, the
first response to the given perturbation, reflected the memory update
in response to the prediction error because the memory was
approximately zero, xðk + 1Þ =α0+ βeðkÞ =βeðkÞ; thus, this initial update
captured the change in the learning rate β. Conversely, the last trials of
training captured the accumulated effect of change in both α and β. In
the Error-Clamp trials of Probe, because the errorwas clamped at zero,
eðkÞ =0, xðk + 1Þ =αxðkÞ +β0=αxðkÞ, we measured the change in α.

To minimize the effect of feedback correction during the move-
ment, the hand direction was measured when the reaching distance
exceeded 5 cm from the starting point, which was on average about
100ms after movement initiation. However, because the reaching
movementwasnot perfectly straight, the handdirection 5 cm from the
start point resulted in a small bias compared to the hand direction at
the endpoint. The average biasmeasured in the baseline trials of Block
1 was subtracted from all reach direction data to capture the change of
memory.

Statistical analysis of measured behavior. To evaluate meta-learning
effects, we performed linear mixed-effect model analyses66 for each
experiment to estimate the slope of change over blocks for the mea-
sured initial memory update, the accumulated memory update,
retention, and the score performance. All models included “partici-
pant” as the random intercept effect to represent inter-participant
variability. Inclusion of the random effect was validated by confirming
that it led to smaller Akaike Information Criteria (AIC)67. The random
slope effect was not included, so as to avoid redundancy and failure of
the estimation to converge. For simplicity, random effects were
omitted in the equations below.

To test the effects of the Learning-Outcome Structure on training,
we estimated the interaction between the binary variable LOS (Pro-
mote = 1 and Suppress=0) and the continuous Block number. Thus,
for the initial memory update, the accumulated memory update, and
score, the equation was

d ∼ γ0 + γ1LOS+ γ2Block + γ3LOS � Block, ð10Þ

where d was either the initial memory update, the accumulated
memory update, or the score. γ1 represents an immediate constant
effect of LOS; γ2 represents how the training gradually updates

learning performance in the “reference” group, i.e., Suppress since
LOS =0; γ3represents the interaction between LOS and Block which
indicates how LOS’s influence on d develops over Block, i.e., the meta-
learning effect. We confirmed no significant differences between
Promote and Suppress on the reach direction (T−h) in the baseline
trial before participants responded to the intial pertubation (11th cycle
trial inmeta-learning training and6th trial in Probe) inBlocks 1 and4 for
each experiment, as shown in Figs. 2A, D, 3A, D.

Estimation and statistical analysis of learning parameters from
Probe data. The purpose here was to estimate the evolution of the
retention rateα and learning rate βof themotor learningmodel.Motor
learning was described by a stochastic state-space model (Eq. (1)) and
the memory change was measured via the change of the reach direc-
tion corrupted by observation noises,

xðk + 1Þ =αxðkÞ +βeðkÞ +nðkÞx , ðstate updateÞ
eðkÞ =p� xðkÞ, ðsensory prediction errorÞ

ðT � hÞ= y= xðkÞ +nðkÞy , ðexperimenter’s observationÞ
ð11Þ

where nðkÞx ∼N ð0,σ2
xÞ is the noise in the memory update process with

zero on mean and σ2
x on the variance and where nðkÞy ∼N ð0,σ2

yÞ is the
observation noise due to the motor noise and the experimental setup
noisewith zero onmean and σ2

y on the variance.We estimated α, β and
their meta-learning effects while estimating themagnitude of the state
update noise and the observation noise (σx, σy). We further assumed
that reach direction was influenced by both the within-participant
variance and across-participant variance. Here, we incorporated the
participant random intercept into the model (Eq. (11)) and avoided a
two-step approach where the participant-level estimates of the
parameters were obtained first, and subsequently the follow-up
group-level statistical tests were conducted68. This contributes to
having accurate group-level estimates of the parameters of interest,
similar to the mixed-effect model analysis applied in the analyses
above. Thus, the integrated model was

xðk + 1Þ½s,block� ∼N α½g,block�x
ðkÞ
½s,block� +β½g,block�e

ðkÞ
½s,block�,σ

2
x

� �
,

e½s,block�
ðkÞ =p� xðkÞ½s,block�,

y½s,block�
ðkÞ ∼N xðkÞ½s,block� + rs,σ

2
y

� �
,

ð12Þ

where the subscript s denotes participant, the subscript g denotes
group, rs is a random factor of observation (individual bias of the
reach), and learning parameters α½g,block�,β½g,block� are constant
throughout each block, but differ between groups. The meta-learning
effect, i.e., the block effect of each group (Promote/Suppress) was
modeled by the following linear function of Block,

α½g,block� =α½g,base� + γ
α
g � Block

β½g,block� =β½g,base� + γ
β
g � Block,

ð13Þ

where α½g,base�,β½g,base� are the baseline block’s retention and learning
rates and the slope of the Block effect.

To estimate group level distributions of γαg ,γ
β
g ,α½g,base�, and β½g,base�,

while estimating rs for each participant and σx ,σy common across all
participants, we performed parameter estimation by Bayesian Infer-
ence. We used Markov chain Monte Carlo (MCMC)29,30, as imple-
mented in the cmdstanr package69, which provides the exact posterior
distribution of these parameters of interests (γαg ,γ

β
g ,α½g,base�,β½g,base�) of

each group.
We determined the prior distribution following recommended

procedures70. We avoided non-informative flat priors and adopted
weakly informative priors, which can stabilize the estimation. In
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addition, we incorporated a minimum amount of domain-specific
knowledge of the task design. Because we did not have any informa-
tion about the slopes γαg ,γ

β
g , we set weakly informative priors centered

at zero: γαg ∼N ð0,ð0:5Þ2Þ, γβg ∼N ð0,ð0:5Þ2Þ. According to the task
design, the memory takes between 0° and 7°, and the initial memory
should be zero. Thus, we set weakly informative prior for the initial
value of memory, xð1Þ½s,block� ∼N ð0,ð5Þ2Þ, random factors for
participants, rs ∼N ð0,ð5Þ2Þ, and the size of noise σx ∼ expð1Þ,
σy ∼ expð1Þ. The learning parameters α and β are between 0 and 1,
according to previous motor learning studies8,11,21,23. Thus, we set the
baseline learning parameters as α½g,base� ∼N ð0:5,1Þ, β½g,base� ∼N ð0:5,1Þ.
We also confirmed that comparable estimation results were obtained
when non-informative flat priors were used for α½g,base� and β½g,base�,
which validated the contribution of the likelihood of the measured
data points.

In addition, to determine the profiles of the evolution of α½g,block�
and β½g,block� (Figs. 2F and 3F, left panels), these parameters were esti-
mated for each block and group in a separatemodel without assuming
linear changes. That is, instead of estimating the slopes (γαg ,γ

β
g), each

α½g,block� and β½g,block� were directly estimated like α½g,base� and β½g,base�.
The priors for α½g,block� and β½g,block� were α½g,block� ∼N ð0:5,1Þ,
β½g,block� ∼N ð0:5,1Þ. Comparable results were obtained again when the
non-informative flat priors were used for α½g,block� and β½g,block�

Posterior density distributions were derived from four chains of
8000 sampling per estimation. The initial half of the sampling
(4000 samples) was discarded as warm-up, and the last half of the
samples (4000 samples) was used to compute high-density intervals
(HDI). Convergence criteria for MCMC were set at the Gelman-Rubin
convergence statistics R-hat< 1.0529. A parameter was considered sig-
nificant when the 95% HDI did not included 0. In addition, we calcu-
lated the proportion of samples above/below zero to the total number
of samples (1 - proportion of direction), corresponding to p-values. We
confirmed that thismethod could estimate reasonable means and 95%
HDI for the estimated σx (mean=0.75,HDI = [0.70, 0.80]) and σy (mean
= 2.15, HDI = [2.12, 2.19]). We set the variances in simulations (Fig. 1E)
based on these mean values.

Estimation and statistical analysis of meta-learning rates. Estimat-
ing the meta-learning rates (ηα ,ηβ) provides direct evidence of rein-
forcement learning formeta-learning. However, estimating these rates
for each participant is challenging because, according to Eq. (8), meta-
learning behavior is determined by each participant’s trial-to-trial
series of memory noise nðkÞx , which is latent. A difficulty is that esti-
mation of nðkÞx from thedata is not possible. Indeed, whereas x̂ðkÞ canbe
estimated via Bayesian estimation using Eq. (12), and subtracting x̂ðkÞ

from the measured hand direction (T−h) provides the residual
nðkÞx +nðkÞy , estimating nðkÞx from this residual is not possible because nðkÞy

is also unknown.
Therefore, we estimated these parameters from the averaged

meta-learning effect in the training trials. Equation (9) determines the
size of the update of retention rate:

Δαðk∣kÞ =
ηα

σ2
x
� nðkÞx � rðxðk + 1ÞÞ � xðkÞ: ð14Þ

The expectation of this update is

EðΔαðk∣kÞÞ= E ηα

σ2
x
� nðkÞx � rðxðk + 1ÞÞ � xðkÞ

� �
: ð15Þ

As a reminder, the score is the linear function of memory
rðxðk + 1ÞÞ= S � xðk + 1Þ in the range, 0< xðk + 1Þ < 5, where S = 1 for Promote
condition and S = −1 for Suppress condition, except Block 1 (baseline

block) where S = 0. Thus, we have

EðΔαðk∣kÞÞ= ηα

σ2
x
� S � EðnðkÞx � xðk + 1Þ � xðkÞÞ: ð16Þ

By substituting xðk + 1Þ with αxðkÞ + βeðkÞ +nðkÞx , we obtain

EðΔαðk∣kÞÞ= ηα

σ2
x
� S � EðnðkÞx � ðαxðkÞ +βeðkÞ +nðkÞx Þ � xðkÞÞ

= ηα � S � EðxðkÞÞ:
ð17Þ

Notably, the memory noise nðkÞx is averaged out and variance σ2
x is

canceled; thus, the issue of the dependency of the amount of meta-

learning on the memory noise was solved. Accordingly, EðxðkÞÞ can be
approximated from the observed reach directions during the training

trials without estimating the sequence of nðkÞx . To obtain robust and

population-level estimates, we approximated �xðc,pÞ = Eðxðc,pÞÞ by the
across-participants average of reach behavior (Figs. 2A, 3A),
�xðc,pÞ = 1

N

PN
s = 1 ðT � hÞðs,c,pÞ, where the superscript p is the trial pair

index, c is the cycle index, s is the participant index,N ( = 20) is the total
number of participants in each group. Since each participant experi-
enced six cycles of meta-learning training with the same perturbation
pattern composed of 5 repetitions of SR trial pairs in each training
block, the expectation of the meta-learning effect on memory reten-
tion of each block is

Δ�α½g,block� = ηα � S �
X6
c = 1

X5
p= 1

�xðc,pÞ½g,block�: ð18Þ

Similarly, the expectation of the meta-learning effect on the learning
rate of each block is

Δ�β½g,block� = ηβ � S �
X6
c= 1

X5
p= 1

�eðc,pÞ½g,block�: ð19Þ

This suggests that updates of α, β, on average, are deter-
mined by the meta-learning rates ηα ,ηβ, the score slope S, and the
average of the generated reach �xðc,pÞ½g,block� and error �eðc,pÞ½g,block�. Because
�xðc,pÞ½g,block� and �eðc,pÞ½g,block� can be computed from the measured hand
direction data (T−h), we incorporated Δ�α½g,block� and Δ�β½g,block� into
the MCMC estimation algorithm with Eq. (12) by replacing Eq. (13)
with

α½g,block� =α½g,base� +
Pblock
b= 1

Δ�α½g,b�,

β½g,block� = β½g,base� +
Pblock
b= 1

Δ�β½g,b�:

ð20Þ

Thus,

α½g,block� =α½g,base� +ηα � S �
Pblock
b= 1

P6
c= 1

P5
p= 1

�xðc,pÞ½g,b�,

β½g,block� =β½g,base� + ηβ � S �
Pblock
b= 1

P6
c = 1

P5
p = 1

�eðc,pÞ½g,b�:

ð21Þ

Then, we estimated the posterior distribution of ηα, ηβ for each
experiment (Experiment 1 for negative valence and Experiment 2 for
positive valence). Note that, since ηα and ηβwere expected to bemuch
smaller than other parameters such as α and β, according to our
simulation studies (Fig. 1E), normalization of these parameters was
critical to stabilizing theMCMC search.We therefore inserted a scaling
parameter ke = 100 and estimated the group distribution of keηα ,keηβ

by MCMC and then reported the estimated ηα,ηβ by dividing them by
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ke = 100. The weakly informative priors for these values were
keηα ∼N ð1,1Þ, keηβ, ∼N ð1,1Þ. Other priors were as in the previous sec-
tion. We also confirmed that comparable estimation results were
obtained with less informative priors, keηα ∼N ð0,3Þ, keηβ, ∼N ð0,3Þ.
Again, convergence was checked by R-hat < 1.05.

Statistical package, coding, and other notes. All data processing and
statistical analyses were performed in R version 4.0.2 using the lm,
lme466, lmerTest71, margins72, and cmdstanr69 packages. For the linear
mixed-effectmodel analyses, dummycodingwas used to represent the
categorical variables (Learning-Outcome Structure: Promote as 1 and
Suppress as 0. Valence: Positive as 1 and Negative as 0), and the
numerical variable (Block) was treated as a continuous variable, with
the initial value aligned to 0. All tests were performed as two-sided
tests, and the boundary for the p-value was set to 0.05 to determine
statistical significance.

Simulation of previous studies
We performed a series of simulations to demonstrate that the pro-
posed Meta-learning model can replicate previous reports on changes
inmotor learning speed by the history of sensoryprediction error8, the
reward/punishment on trajectory error11, and manipulation of the task
error9. To do so, we assumed that the task error functions as punishing
performance feedback, as discussed in the main manuscript. This
assumption was based on the evidence that the task error induces
activity in the striatum23, a crucial neural region for reinforcement
learning, which shows reward/value-related activities39.

These three papers used motor learning models similar to Eq. (1).
In the force field adaptation task of Herzfeld et al.8, by using the
simulated motor memories with Eq. (1), we predicted the experimen-
tally measured error sensitivity δex by the probe trial designed in
Herzfeld et al.8, which uses a pair of measured forces before and after
the force perturbation: δex =

μðk + 1Þ�α2μðk�1Þ

eðkÞ where μ(k) [a.u.] is the motor
memory which corresponds to x(k) in Eq. (1) and e(k) is the sensory error
[cm] in the force perturbation trial. For our simulation, since we can
assume that, after enough washout trials, the memory formed in the
training block had decayed to zero before the probe trial, without loss
of generality, we set μðk�1Þ =0 and then δex =μ

ðk + 1Þ=eðkÞ. In the force
field adaptation task, the sensory error is scaled by the biomechanical
property eðkÞ =D � vy � B � ðpðkÞ � μðkÞÞ=C � ðpðkÞ � μðkÞÞ[cm], where D
[cm/N] is the compliance, vy is the movement speed [m/s], and B
[N s/m] is viscosity. InHerzfeld et al.8,Bwas set 13 [N s/m]. According to
the previously estimated value D takes approximately 0.3 [cm/N]54.
The movement speed is typically 0.4–0.5m/s. Thus, we set C =D � vy �
B=2:0 as an approximated value, which roughly matches the size of
the deviation (~2 cm) from the straight path in the reported hand tra-
jectories in Herzfeld et al.8.

Because e(k) represented an error in the physical space, it was
proportional to the task error, except for the RandomTE and NoTE
conditions in Leow et al.9, where the task error was random and
clamped to 0, respectively. Given our assumption that the task error
serves as punishing feedback, we defined reward feedback r for
Herzfeld et al.8 and Leow et al.9 as

r kð Þ = � ∣TaskError kð Þ∣ ð22Þ

InGalea et al.11, a reward/punishment signal was given in addition to
the task error; therefore, we assumed for simplicity that reward feed-
back is a sum of task error and score with scaling constants, as follows:

rðkÞ = � cTE ∣TaskError
ðkÞ∣+ csscore

ðkÞ: ð23Þ

Again, reinforcement learning agents maximize reward through
trial-and-error without knowing the relationship betweenmemory and
reward (i.e., the reward function).

We hypothesized that the effect of reward/punishment on tra-
jectory error found in Galea et al.11 is mediated by the meta-learning
rates, which can be modeled by different ηα, ηβ for reward and
punishment conditions (valence effect). Specifically, in Galea et al.11,
smaller ηα and larger ηβ were used in the punishment condition
compared to the reward conditions (i.e., ηα�pun <ηα�rwd ,
ηβ�pun >ηβ�rwd) to achieve faster learning with punishment and
stronger retention with reward. Free parameters in each condition
and study are manually set and summarized in Table S16. Note that
comparable results are obtained when the free parameters are tuned
through an optimization algorithm (See Fig. S5D and Table S19 in
Supplementary Note 2)

Task schedules in the simulations were matched to those in pre-
vious studies, except Galea et al.11, where one epochwas treated as one
trial. To simulate forgetting, we assumed it was equivalent to 6 epochs
of reaching under No vision (which was omitted in Fig. 4F). Note that
this assumption did not influence learning parameters or subsequent
behavior, because neither task error nor score was presented during
No vision (i.e., r =0). The numbers of simulated agents were 10 per
condition for Herzfeld et al.8, 200 for Galea et al.11, and 100 for
Leow et al.9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper and are available as an Excel
document through Figshare (https://doi.org/10.6084/m9.figshare.
22067054).

Code availability
Stan model text files, R scripts for the simulations, and data files are
available through Figshare (https://doi.org/10.6084/m9.figshare.
22067054). Scripts for the manipulandum are not included because
they are solely for operation of our self-made, non-commercialized
manipulandum. They may be still available upon reasonable requests
to the corresponding author.
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