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Joint analysis of phenotype-effect-generation
identifies loci associated with grain quality
traits in rice hybrids

Lanzhi Li 1,8, Xingfei Zheng2,3,8, Jiabo Wang4,8, Xueli Zhang1, Xiaogang He1,
Liwen Xiong1, Shufeng Song 5, Jing Su1, Ying Diao6, Zheming Yuan1,
Zhiwu Zhang 7 & Zhongli Hu 3,6

Genetic improvement of grain quality ismore challenging in hybrid rice than in
inbred rice due to additional nonadditive effects such as dominance. Here, we
describe a pipeline developed for joint analysis of phenotypes, effects, and
generations (JPEG). As a demonstration, we analyze 12 grain quality traits of 113
inbred lines (male parents),five tester lines (female parents), and 565 (113×5) of
their hybrids. We sequence the parents for single nucleotide polymorphisms
calling and infer the genotypes of the hybrids. Genome-wide association stu-
dies with JPEG identify 128 loci associated with at least one of the 12 traits,
including 44, 97, and 13 loci with additive effects, dominant effects, and both
additive and dominant effects, respectively. These loci together explain more
than 30% of the genetic variation in hybrid performance for each of the traits.
The JEPG statistical pipeline can help to identify superior crosses for breeding
rice hybrids with improved grain quality.

More than half of the world’s population consumes rice (Oryza sativa
L.) as their staple food. With the improvements in living standards,
consumers are payingmore attention to rice end-use cooking quality1.
Many rice quality traits, including protein content and chalkiness
degree, are correlated with yield1. The yields of many rice hybrids are
higher than those of conventional inbred varieties, but the grain
quality of hybrids often needs improvement. To obtain both high-
quality and high-yield rice hybrids, the quality traits of hybrids need to
be thoroughly genetically dissected in order to identify superior
crosses2,3.

Rice grain quality has been classified into milling, appearance,
cooking and eating, and nutritional categories1,4. The rice milling
quality determines the yield and appearance of rice after the milling

process. Milling quality comprises the brown rice ratio, milled rice
ratio, and head rice ratio (BRR, MRR, and HRR, respectively). A large
HRR is one of the most important criteria for measuring milled rice
quality. Appearancequality refers to how rice appears aftermilling and
is associated with grain length (GL), grain width (GW), the grain
length–width ratio (GLWR), and translucency/chalkiness of the endo-
sperm. Most consumers prefer translucent rice as opposed to chalky
rice. Cooking and eating quality include the easiness of cooking aswell
as the texture, springiness, stickiness, and chewiness of cooked rice,
factors that are controlled by starch’s physical and chemical properties
and involve amylose content and alkali spreading value. The amylose
content (AC) of rice is known to play a crucial role in determining its
cooked texture. The alkali spreading value (ASV) is a standard assay

Received: 17 April 2022

Accepted: 16 June 2023

Check for updates

1Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-making, College of Plant Protection, Hunan Agricultural
University, 410128Changsha, Hunan, China. 2Hubei Key Laboratory of FoodCropGermplasmandGenetic Improvement, FoodCrop Institute, Hubei Academy
of Agricultural Sciences, 430064 Wuhan, Hubei, China. 3State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, 430072 Wuhan,
Hubei, China. 4Key Laboratory of Qinghai-Tibetan Plateau AnimalGenetic Resource Reservation andUtilization ofMinistry of Education and Sichuan province,
SouthwestMinzu University, 610041Chengdu, Sichuan, China. 5State Key Laboratory of Hybrid Rice, HunanHybrid Rice ResearchCenter, Hunan Academy of
Agricultural Sciences, 410125 Changsha, Hunan, China. 6School of Life Science and Technology, Wuhan Polytechnic University, 430023 Wuhan, Hubei,
China. 7Department of Crop and Soil Sciences, Washington State University, Pullman,WA 99164, USA. 8These authors contributed equally: Lanzhi Li, Xingfei
Zheng, Jiabo Wang. e-mail: Zhiwu.Zhang@WSU.edu; huzhongli@whu.edu.cn

Nature Communications |         (2023) 14:3930 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1531-8500
http://orcid.org/0000-0002-1531-8500
http://orcid.org/0000-0002-1531-8500
http://orcid.org/0000-0002-1531-8500
http://orcid.org/0000-0002-1531-8500
http://orcid.org/0000-0002-9068-9512
http://orcid.org/0000-0002-9068-9512
http://orcid.org/0000-0002-9068-9512
http://orcid.org/0000-0002-9068-9512
http://orcid.org/0000-0002-9068-9512
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-7258-3829
http://orcid.org/0000-0002-7258-3829
http://orcid.org/0000-0002-7258-3829
http://orcid.org/0000-0002-7258-3829
http://orcid.org/0000-0002-7258-3829
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39534-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39534-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39534-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39534-x&domain=pdf
mailto:Zhiwu.Zhang@WSU.edu
mailto:huzhongli@whu.edu.cn


used to classify processing and cooking quality; it provides a simple
means of classifying rice into high, intermediate, and low gelatiniza-
tion temperature types. Protein content (PC) is a major index of rice
grain nutritional quality. Since storage protein affects rice texture and
processing quality, an intermediate PC is generally preferred4.

Many rice grain quality traits in inbred varieties have been well
studied. Multiple genes have been cloned and localized, and their
mechanisms and functions have been investigated. Grain size is closely
related to yield4,5. At present, dozens of grain size-related genes have
been isolated from multiple rice germplasm resources, including the
genes GS3, GL3.1, and GW7/GL7 that control grain length6–8, the genes
GW2, GW5/qSW5, and GS5 that control grain width9–11, and the genes
GS6, GS9, TGW6, and GW8/SPL16 that control grain size5,12–14. Chalky
grains are considered low quality because of their poor appearance
and undesirable cooking andmilling qualities15. The rice geneOsRab5a
regulates endomembrane organization and storage protein trafficking
in rice endosperm cells, factors that affect the formation of
amyloplasts16. Chalk5 encodes a vacuolar H + -translocating pyropho-
sphatase that influences grain chalkiness in rice17.

The amylose content (AC) has the greatest influence on the
cooking and consumption qualities. The synthesis of rice amylose is
catalysed by a granule-bound starch synthase protein encoded by the
genes Waxy and Wx18. There are several alleles of the Wx gene,
includingWxa,Wxb,wx,Wxmp,Wxop,Wxin, andWxmq. Zhou et al.19 cloned
a defective soluble starch synthase gene (SSIIIa) responsible for resis-
tant starch production and further showed that production depends
onhigh expression of theWxa allele. Rice varietieswith an intermediate
gel temperature, which is predominantly determined by the amylo-
pectin structure, are generally preferred by consumers. The gene
(chr06:6748398_6753302 (+ strand)), starch synthase II (OsSSIIa), is the
major determinant of gel temperature4.

In breeding programs, the selection of parental inbred lines for
the development of superior hybrids is challenging20. Genetic dissec-
tion of hybrids is more difficult than for inbred lines, as nonadditive
genetic effects such as dominance are involved in addition to additive
genetic effects. Furthermore, the joint analysis of these genetic effects
requires the integration of both inbred and hybrid populations. In
many analyses, heterosis is estimated as the difference between the
hybrid and mid-parent values from parent–child trios to map loci
associated with dominant effects. The dominant effects should be
treated in both directions according to the reference allele. For
example, heterozygous genotypes are coded to be homozygous gen-
otypes of the reference allele in the dominantmodel and homozygous
genotypes of the alternative allele in the recessive model21.

Joint additive and dominant effect models have demonstrated
superiority over models with separate effects. A genome-wide asso-
ciation study (GWAS) of 130,725 cattle using a joint additive and
nonadditive model identified six dominant loci with impacts exceed-
ing the largest effect variant identified by the corresponding additive
effect model22. When both hybrid and inbred parent populations are
available, the differences and similarities among parental inbred phe-
notypes, hybrid phenotypes, general combining ability, and hybrid
heterosis can be used to infer genetic effects. In maize, 1428 maternal
inbred varieties were crossed with 30 paternal inbred varieties to
generate 42,840 (1428 × 30) hybrids. There were 166 quantitative trait
loci (QTLs) identified for three agronomic traits: days to tasselling,
plant height, and ear weight. These QTLs were categorized into three
classes (additive, dominant, or epistatic effects)23 using comparisons
to models with a single effect in a single population. Ideally, both
additive and dominant genetic effects should be analysed simulta-
neouslywith both parental inbred and hybridpopulations tomaximize
statistical power.

In this study, we cross 113 male inbred varieties with five female
inbred parents and generated 565 (113×5) hybrid test crosses. Both
parental inbred varieties (V) andhybrid test crosses (T) were scored for

phenotype for 12 quality traits. The parental inbred varieties are gen-
otyped usingwhole-genomesequencing. The genotypes of hybrids are
inferred from the genotypes of their parents. General combining
ability (G) and heterosis (H) are derived for maternal inbred progeny
and hybrids, respectively. We develop a statistical model and a com-
puting pipeline to simultaneously analyse additive and dominant
genetic effects using both original phenotypes (V and T) and derived
phenotypes (G and H) from parental inbreds and hybrids, and identify
128 genetic loci associated with additive and/or dominant genetic
effects on the 12 grain quality traits. These loci together explain more
than 30%of the genetic variation in hybrid performance for each of the
traits.

Results
Rice grain quality traits in inbred lines and hybrids
Most of the 12 rice quality traits had normal distributions in inbred
varieties, including PC, GW, MRR, and BRR (Supplementary Fig. 1).
There were two traits that showed skewed distributions (ASV towards
the lower end and percentage of grains with chalkiness (PGWC)
towards the upper end). High ASV and low PGWC are preferred by
customers. There were also traits with a bimodal distribution, includ-
ing chalkiness degree (CD) and AC. Low CD and AC are preferred by
customers1. The deviation from normality revealed the selection for
quality improvement. Test crosses had similar distributions with peaks
at different locations for all traits except transparent degree (TD). The
three peaks were more pronounced in test crosses than the peaks in
inbred lines. High TD is preferred by customers; unfortunately, the five
female parent inbred varieties were below average compared to the
male parent inbred varieties. Consequently, hybrids had undesirable
TD values compared to their male parent inbred varieties.

In general, the values of the hybrids were between those of their
male and female parents, suggesting an additive genetic effect and the
critical role of selecting inbred varieties to improve hybrids. For
example, all of the female parent inbred varieties were more desirable
than the average male parent inbred varieties in terms of CD and
PGWC. Consequently, the hybrids weremore desirable than their male
parents for these two traits. Similar phenomenawere alsoobserved for
other traits. The higher the performance of the female parent, the
higher the performance in the hybrids and the greater the differences
between the hybrids and their male parent inbred varieties. However,
the order of female parents did not remain constant in the hybrids,
suggesting the complexity of hybrid quality traits (Supplementary
Fig. 2). Taking PGWC as an example, the value of Y58S was higher than
the value of 3 A. The median PGWC of hybrids parented by Y58S was
lower than that of the hybrids parented by 3 A. HRR presented another
example. The HRR of inbred 3 A was higher than that of GZ63. The
median HRR of hybrids parented by 3 A was lower than that of the
hybrids parented by GZ63.

Relationships among quality traits
There were strong positive correlations between CD and PGWC for
four phenotypes: V (0.93), T (0.92), G (0.93), and H (0.84) (Supple-
mentary Fig. 3). There were no other traits that had such strong cor-
relations with CD and PGWC. TD only had strong positive correlations
with CD and PGWC in datasets T and G. PC and ASV were barely cor-
related with any other traits. These relationships suggest the possibi-
lity of improving PC and ASV simultaneously without affecting other
traits.

Similar to studies reported in the literature11,16, there were mod-
erate negative correlations between GL and GW for four datasets, V
(−0.5), T (−0.5), G (−0.57), and H (−0.42). GL had moderate negative
correlations with CD and PGWC, while GW had moderate positive
correlationswithCDandPGWC. As a function of GL andGW, their ratio
GLWR (GL/GW) had a strong positive correlation with GL and a strong
negative correlation with GW. GL, GW, and GLWR had very weak
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correlations with the remaining traits, especially AC, ASV, BRR, HRR,
and MRR. These relationships should be considered during rice
breeding for high yield and grain quality.

Properties of single nucleotide polymorphisms
A total of 7,734,465 raw SNPs were obtained from 120 parental vari-
eties genotyped by whole-genome sequencing with the Illumina
HiSeq2500 platform. Among all the raw SNPs, 1,619,588 SNPs passed
the quality control criteria of missing rate <20% and minor allele fre-
quency (MAF) > 5%. Marker distributions were displayed as a heatmap
for 12 chromosomes based on MAF (Supplementary Fig. 4A). Most
(95%) intervals of adjacent SNPs were less than 200 kb. The average
distance between markers was 196.8bp. Approximately 58.88% of the
distances between pairs of adjacent SNPs were less than 50bp (Sup-
plementary Fig. 4B). The MAF distribution was skewed to the low end,
reflecting new genetic variants (Supplementary Fig. 4C). As a strict
inbreeding species, rice has a low linkage disequilibrium (LD) decay
rate. In our population, the rate of LD decay was not below an r2 value
of 0.3 on average within ~200 kb in the parent inbred varieties (Sup-
plementary Fig. 4D).

Population structure analyses
Most of the female parents (four out offive) were located at one end of
the phylogenetic tree developed from the 1,619,588 filtered SNPs
(Supplementary Fig. 5A). The others were in the middle of the tree,
with the other end of the phylogenetic tree free of female parents; this
creates the potential for heterosis. In general, the five female parents
were genetically diverse. However, female parents PA64 and Y58Swere
closely related. Similarly,GZ63 andASwere very closely related. Similar
phenomena were revealed by the principal component analysis (PCA)
based on the 1,619,588 filtered SNPs. The first three principal compo-
nents (PCs) explained 43.4% of the total variation in hybrid test
crosses, compared to 27.6% in inbred varieties (Supplementary Fig. 6).
The population structure in hybrid test crosses was stronger than in

inbred varieties. All of the female parents were near the midpoint of
PC1 and the lower half of PC2 (Supplementary Fig. 6A–D). Theprincipal
component plots demonstrated the same findings as the phylogenetic
tree. Female parents AS and GZ63 were genetically similar, and the
female parent Y56S was similar to PA64. Consequently, the hybrids of
Y56S and the hybrids of PA64 were closely related. The hybrids of AS
and GZ63 were completely scattered in the principal component plots
(Supplementary Fig. 6E–H).

Four outliers were identified for test crosses within female par-
ents. Theirmale parentsweredifferentiated from the rest of the inbred
varieties. These four inbred varieties had the lowest PC3 scores.
Nanjing11 had the lowest PC3 value, and IRAT109 was almost identical
to Varylava for all PCs, appearing as one heavy point. Varylava had the
third lowest value of PC3. This variety is a type of early-season rice.N22
had the fourth lowest value of PC3, with partial japonica components.
All four outliers had foreign origins. The remaining 111 male parents
were medium- or late-season indica rice varieties. The subpopulation
structure was investigated using ADMIXTURE software (Supplemen-
tary Fig. 5B and C). The proportions belonging to subpopulations are
displayed for inbred varieties sorted according to the proportion of
the first subpopulation. The cross-validation demonstrated that K = 5
produced the minimum error, suggesting that five subpopulations
should be recognized.

Gene mapping with joint analysis of phenotypes, effects, and
generations
We developed a pipeline of genome wide association study for a joint
analysis of phenotypes, effects, and generations (JPEG) (Fig. 1). The
pipeline can analyse both additive and dominant genetic effects and
address different combinations of data sources, including parents,
hybrids, and their combination. The phenotype data are vertically
combined into a single vector. Both additive and dominant genotypes
are required, whether the corresponding phenotype contains the
genetic effect or not, to fit the computational requirements using

Fig. 1 | Analysis pipeline of joint phenotypes, effects, and generations (JPEG).
The pipeline is summarized for phenotype source in the Data panel, phenotype
derivation and the corresponding genotype in the Relationship panel, and
decomposition of phenotypes into additive and dominant genetic effects in the
Model panel. Original observations are measured for inbred varieties (V) and test
crosses (T). The general combinability (G) of a variety was defined as the average
performance of its testcross (the solid line in the relationship panel). Heterosis (H)
of a test cross was defined as its difference between testcrosses and the middle
parents, which uses both testcrosses and parents (the dashed lines in the rela-
tionship panel). Standardization is performed within each of V, T, G, and H to form
the joint observations (Y). Additive genotypes (A) and dominant genotypes (D) are
recorded or derived for the inbred variety (V) and test crosses (T), respectively (the
data panel at the top). For an SNP, the additive genetic effect (a) is the regression

performed on additive genotypes (A) and is coded as 0 and 2 for the two homo-
zygotes and 1 for the heterozygotes. The dominant genetic effect (d) is the
regression performed on dominant genotypes (D), which is coded as 0 for the two
homozygotes and 1 for the heterozygotes. The JPEGpipeline canbe conductedwith
multiple loci models for GWAS such as BLINK to iteratively add associated additive
effects and dominant effects as covariates (the black arrows in the model panel at
the bottom). At the end of each iteration, the associated A or D was added to the
covariates (B) to control the population structure and cryptic association among
individuals (the dashed lines from A/D to B). The initial covariates include the first
three principal components derived from all markers and the dummy variables of
female parents for the testcross. The iterations stopped when no additive or
dominant effect could be added to covariates. At end of iteration, genomic pre-
diction can be conducted by summing the additive and dominant genetic effects.
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Bayesian information and Linkage-disequilibrium Iteratively Nested
Keyway (BLINK). When the phenotypes do not have a genetic effect
(e.g., dominance), the corresponding genotype data has all zero
elements.

We applied JPEG for gene mapping using three sources of data,
i.e., inbred varieties, hybrid test crosses, and their combination. The
combined analysis performed on the four datasets (V, T, G, and H)
yielded higher power than analyses based on inbred varieties (V andG)
or hybrid testcrosses (T and H). In total, 192 SNPs were identified as
being associated with at least one of the 12 traits (Fig. 2 and Supple-
mentaryFigs. 7–9). Someof the associated SNPshadeffects larger than
one-half of one standard deviation (Supplementary Fig. 10). For
example, the most significant SNP on AC is a known gene (Wx). Its
genotypes had distinct phenotypic distributions in both inbred vari-
eties and test crosses (Supplementary Fig. 11); this partially explained
the bimodal phenotype distribution. After merging SNPs within
200 kb, 128 loci remained. The middle positions of the merged SNPs
wereused as the locations of the loci. The analyseswith inbredparents,
hybrids, and their combination identified 14, 68, and 89 loci, respec-
tively. These loci were associated with at least one of the 12 traits in
formats of additive or dominant effects. Most of the loci indepen-
dently demonstrated additive or dominant effects, while 13 loci
demonstrated both (Figs. 2 and 3 and Supplementary Data 1). There
were 44 and 97 loci with additive and dominant effects, respectively.
Among the 13 loci with both additive and dominant effects, eight were
identified by all three analyses. Four of the eight loci were known
genes, includingGS3 for GL andGW5 for GW. The other two genes (Wx/
SSG6 and AlaAT|OsAlaAT1) are responsible for the AC. Among the 128

associated loci, 42 loci were located in or near (<200 kb) 17 known
genes (Supplementary Data 1).

Many known genes were located within 200 kb of the identified
loci. Three major genes of quality traits were identified: Wx (for AC),
GS3 (for GL and GLWR), and GW5 (for GW and GLWR). Additionally,
BG1 (for GW and GL) was found in the hybrid and combination
datasets24. OsGRF8 was found in the hybrids for GLWR and in the
combined dataset for AC. This gene is a growth-regulating factor that
affects grain length, grainwidth, and grain starchgranule size25. For the
milling quality traits (MRR, BRR, and HRR), one significant locus was
detected in the inbred dataset, compared with 19 in the hybrid dataset
and 24 in the combined dataset. There were 17, 20, and 18 loci iden-
tified for GL, GW, andGLWR, respectively. Among the 18 loci identified
forGLWR, a trait derived26 fromGL andGW, threewere sharedwithGL,
and sixwere sharedwithGW. The three loci thatwere sharedbyGL and
GLWR were also shared with GW.

Genetic effect/locus-based prediction
With the associated loci identified by GWAS, an immediate practical
question was how to identify the new superior test crosses from the
existing phenotypes and genotypes of inbred varieties and inferred
genotypes of the hybrid test crosses. To answer this question, we first
estimated the heritability of each trait to set a target for predictability.
Heritabilities were estimated in inbred varieties for additive genetic
effects only and in hybrid test crosses for additive, dominant, and total
(additive + dominant) genetic effects (Fig. 4). The total heritability was
considered as the target of accuracy to predict hybrid performance
using genetic loci that could be manipulated through breeding.

Fig. 2 | Associations of additive and dominant effects analysed using the JPEG
pipeline among inbred varieties, hybrids, and their combination. The associa-
tions are illustrated as the negative −log10 P values of association tests on the 12
traits plotted against SNPpositions for the 12 rice chromosomes. SNPswith additive
and dominant effects are illustrated as open and filled symbols, respectively. The
association analyses were conducted among inbred, hybrid, and their combined
datasets. The inbred datasets include inbred observations and general combined

ability. The hybrid datasets include hybrid observations and heterosis. The whole-
genome association threshold was set to 1% after Bonferroni correction (the hor-
izontal red lines). Known cloned genes are labelled at the nearest associated SNPs.
Clone genes influencing the same quality trait are labelled in black. Genes reported
to influence related quality traits are labelled in blue. An associated SNP is marked
with a vertical line if it has significant effects in more than one analysis or is asso-
ciated with more than one trait. Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-39534-x

Nature Communications |         (2023) 14:3930 4



As the 192 associated SNPs were identified by using the observa-
tions of the hybrids, the predictions made with these SNPs could not
be used to assess applicability for future selection of superior test-
crosses due to the overfitting problem. Therefore, we divided the
entire population into training and testing populations and conducted
GWAS on the training population only. The training population con-
tained all of the inbred varieties. The hybrids were randomly divided
into two groups. One group was taken as the testing population, and
the other group was combined with inbred varieties as the training
population. The newly detected SNPs were used to predict the phe-
notypes of the testing population. The observed phenotypes of the
testingpopulationwere not used todetermine the associated SNPsbut
instead were used to calculate the correlation coefficient with the
predicted phenotypes. Cross validations were iterated until both
groupswere used as the testing population. This processwas repeated
100 times. The mean of the squared correlation coefficients (R2_CV)
for all iterations and replicates was used as the final assessment. The
ratio of R2_CV to total heritability was used as the proportion of
genetic variance explained by the detected SNPs.

Pyramiding the genetic loci for the 12 traits with additive and/or
dominant effects in GS improved the accuracy of hybrid performance
prediction, especially comparedwith the commonly usedmethod, i.e.,
genomic best linear unbiased prediction (gBLUP). More than 45% of
the total genetic variation was explained by the identified markers for
all traits except one (HRR) with 30% of the variation explained. These
results demonstrated that pyramiding genetically identified additive
and dominant loci can provide substantial power to predict hybrid
performance, presenting opportunities to identify superior crosses
from existing phenotypes and genotypes of inbred varieties and
hybrids (Fig. 4).

Discussion
In hybrid rice production, seeds are commercial products, and their
qualities are important to consumers. Hybrid plants are F1s, while the
seeds they produce are F2s. The genotypes of F1 plants can be inferred
fromparent inbred varieties. The genotypes of F2s are segregating due
to gamete recombination and chromosomal crossover27. Although
hybrid seeds have different genotypes, their phenotypes are sub-
stantially determined by the mother plant F1s. Therefore, this study
investigated the association between F1 genotypes and F1 phenotypes
regarding the performance of the F2 seeds F1s produced.

Reducing false positives and increasing statistical power are both
critical factors in GWAS28. Multiple loci models such as the Multiple
Loci Mixed Model (MLMM), the Fixed And RandomModel Circulating
Probability Unification (FarmCPU), and BLINK have advantages over
single-locus models in both reducing false positives and increasing
statistical power29. In multiple loci models, markers are iteratively
incorporated as covariates if they are determined to be associatedwith
the trait during testingmarkers one at a time. Thismakes it feasible for
multiple loci models to incorporate additive and dominant effects
simultaneously by having both additive and dominant marker geno-
types. Additive and dominant genetic effects can be realized by con-
catenating the additive genotypes and dominant genotypes side by
side into one genotype matrix for testing. We chose BLINK over
FarmCPU and MLMM because both FarmCPU and MLMM involve
kinship relations derived from selected markers or all markers30,31.
When additive and dominant marker genotypes are merged, the
derived kinship loses its original property of being either additive or
dominant kinship.

In this study, the GWAS with BLINK was used to analyse the
genetic bases of 12 rice grain quality traits in 113 parental varieties and
their 565 hybrid test crosses. A total of 192 significant SNPs clustered
into 128 significant lociwere associatedwith at least oneof the 12 traits.
Among these loci, 42were located in or near (<200 kb) 17 knowngenes
(Supplementary Data 1) with potential roles concerning rice grain
quality. Several of the 128 associated loci were detected simulta-
neously inmultiple analyses of the same trait or correlated traits. Some
loci such as Wx18, GW532, GS333, and BG134 were in or near the cloned
quality genes.

In 2018, Liu et al.35 reported that the rice grain yield quantitative
trait locus qLGY3 encodes the MADS-domain transcription factor
OsMADS1 that acts as a key downstream effector of G-protein βγ
dimers. They demonstrated that combining the OsMADS1 lgy3 allele
with high-yield-associated dep1-1 and gs3 alleles represented an
effective strategy for simultaneously improving both the productivity
and end-use quality of rice. This study identified a locus near
OsMADS15, a member of the OsMADS1 gene family, that was sig-
nificantly associated with two yield-related traits, GW and GLWR, in
hybrid and combined datasets. OsMADS15 may be another candidate
gene that simultaneously affects grain yield and quality.

Although a substantial proportion (about one-third) of identified
loci were known genes related to rice quality, this study was unable to
provide insight into the relationship between additive and dominant
loci, especially the occurrence of overdominant loci. Among the 128
identified loci, there were only 13 loci with both additive and dominant
effects on one of the seven traits (Fig. 3). These traits were ASV, GL,
GLWR, GW, MRR, PGWC, and TD (Supplementary Data 1). None of the
traits had a locus with both additive and dominant effects. The results
suggested that the dataset and the analyses did not have enough
power to dissect the genetic architecture of overdominance on a
particular trait.

In the current study, we limited our analyses to additive and
dominant effects. JPEG can be extended to incorporate epistatic
effects. For the additive genetic effects, genotypes are coded as 0 and
2 for the two homozygotes and 1 for the heterozygotes to form addi-
tive genotypes (A). For the dominant effects, genotypes are coded as 0
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for homozygous and 1 for heterozygous to form dominant genotypes
(D). A typical full model codes the haplotypes as dummy variables to
represent the interaction between two loci36. Multiple reducedmodels
can be built on the A and D matrices without specifying haplotypes,
including additive by additive interaction (AA), dominant by dominant
interaction (DD), and additive by dominant interaction (AD and DA)
models. For example, in the DD model only an individual that is het-
erozygous for both loci is coded as 1, and the rest are coded as0. In the
AAmodel, an individual homozygous for the alternative alleles at both
loci is coded as 4. An individual homozygous for the alternative alleles
at one locus and heterozygous at the other locus is coded as 2. An
individual heterozygous for both loci is coded as 1, and the rest are
coded as 0. Even with the reduced models, the computation increases
dramatically for the epistatic terms37. Restriction to loci with additive
or dominant effects can make computation feasible at the cost of
missing loci with epistatic effects.

Dominant genetic effects contribute to many complex human
diseases and to phenotypic variation among animals and plants.
Additive-nonadditive joint analysis is more powerful than additive
effect analysis. When both parent inbred varieties and hybrid test
crosses are available, general combined ability and heterosis can be
derived to further assist in dissecting additive and dominant genetic
effects. However, both methods and computing tools are lacking for
the joint analysis of phenotypes, effects, and generations (JPEG). To
overcome this problem, we developed a JPEG pipeline using BLINK
software and analysed 113 male inbred varieties, five female inbred
varieties, and their 565 (113×5) hybrid test crosses for 12 rice quality
traits and 1,619,588 SNPs. Multiple loci were identified that not only
included many known cloned genes but also demonstrated the feasi-
bility of identifying superior crosses from parent inbred varieties and
their partial hybrid test crosses.

Methods
Materials and field management
Following the diallel mating design, 115 indica rice accessions (Sup-
plementary Data 2) asmale parents were crossed with fivemale sterile
varieties as female parents to produce hybrid test crosses. All seeds of
the 115 male parental varieties were obtained from the China National

Crop GenBank (https://www.cgris.net/cgris_english.html). The seeds
included restorer varieties of 29 three-line wild-deficient hybrid rice
and 86 accessions of microcore germplasm. In 2013, male parental
varieties and hybrid test crosses were planted in Wuhan, China. The
field trials were designed as randomized blocks and replicated twice,
with 20 plants per field planted at a density of 5 × 8 inches. Field
management, including irrigation, fertilizer application, and pest
control, followed normal agricultural practices. The grains were har-
vestedwhen fully ripe. In total, phenotypes of 12 ricequality traits were
obtained from 113 parental varieties and 565 (113 × 5) hybrid test
crosses. Two samples (Dongqiubo and Guangqiuai) with missing phe-
notypes were excluded from the analyses involving phenotypes.

Phenotyping grain quality traits
After the materials had matured, three plants with uniform growth
were selected from the middle eight plants, dried, and stored at room
temperature for three months. The plants were then sent to the Agri-
cultural College of Hunan Agricultural University for rice grain quality
evaluation. A total of 12 rice quality traits ofmale parental varieties and
hybrid test crosses were determined (Supplementary Data 3 and 4)38,
including the grain length (GL, mm); grain width (GW, mm); GL/GW
ratio (GLWR); chalkiness degree (CD, %); percentage of grains with
chalkiness (PGWC, %); transparent degree (TD); amylose content (AC
%), alkali spreading value (ASV); PC (total protein content %); brown
rice ratio (BRR, %);milled rice ratio (MRR, %) andwholemilled rice rate
(head rice ratio, HRR, %).

Resequencing, genotyping, and imputation
For each parental variety, genomic DNA was prepared from a single
plant for sequencing. A sequencing library was established following
the Illumina protocol. The genomes of 118 parental varieties were
sequenced on an Illumina HiSeq2500 platformwith an 11× sequencing
depth on average. Raw reads with an N ratio > 10%, those with more
than 50% of the Q value (<5) ratio, and with average values < 15 were
removed from the raw reads. Nipponbare was used as the reference
genome (IRGSP-1.0, http://rapdb.dna.affrc.go.jp), and BWA software39

was used for all paired-end read mapping using default parameters.
PCR duplicates were removed by “rmdup” in SAMtools version 1.12.

GLWR CD GW HRR PGWC MRR GL AC TD PC ASV BRR
0.0

0.2

0.4

0.6

0.8

1.0
Va
lu
es

H2_Add(V) H2_Add(T) H2_Dom(T) H2_Total(T) R2_gBLUP R2_CV Explained

Fig. 4 | Genomic heritability and predictability using identified additive and
dominant loci. The phenotypes of inbred varieties (V) were analysed to estimate
additive heritability using additive kinship derived from the additive genotypes.
The phenotypes of hybrid testcrosses (T) were analysed to estimate additive her-
itability and dominant heritability using additive kinship derived from the additive
genotypes and dominant kinship derived from the dominant genotypes, respec-
tively. The total heritability (additive + dominant) was calculated as the sum of the
additive heritability and dominant heritability. The predictability of hybrids was
evaluated through twofold cross-validation (CV). The reference population

contained all parents and random sampled half from all offspring. The random
sampling were repeated 100 times. The squared correlation coefficients (R2)
between the observed and predicted values were used to examine predictability
(R2_CV). Similarly, gBLUP was conducted and evaluated by squared correlation
coefficients (R2_gBLUP). The ratio of R2_CV to the total heritability (H2_Total)
indicated the percentages of the genome additive and dominant variances
explained by the associated additive and dominant loci, whichwere over 50% for all
traits except AC(46%), TD(43%), PC(38%) and ASV(32%). Source data are provided
as a Source data file.
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SNP calling was performed using the GATK UnifiedGenotyper set for
diploids using default filtering settings. SNP quality control was con-
ducted by deleting SNPs with a missing rate >20% and minor allele
frequency <5%. In total, 1,619,588 SNPs were obtained (Supplementary
Data 5). Missing genotypes were imputed by NPUTE40 (version 4.0).
Hybrid test cross genotypes were inferred using parental SNP geno-
typic information. The genotypes were coded for both additive and
dominant genotypes. The additive genotypes were coded as 0 and 2
for the two homozygotes and 1 for the heterozygotes. The homo-
zygote with a nucleotide in lower alphabetical order was assigned the
numeric value of 0, and the other homozygote with a nucleotide in
higher alphabetical order was assigned the numerical value of 2. The
dominant genotypes were coded as 0 for the two homozygotes and 1
for the heterozygotes.

Phylogenetic and population structures
Neighbour-joining (NJ) trees and principal component analysis (PCA)
plots were used to infer the structures of the 118 rice parental varieties
and 565 hybrid test crosses. A pairwise distance matrix derived from
the simple matching distance for all the SNP sites was calculated to
construct unweighted NJ trees using the software SNPhylo41 (version
20140116), and phylogenetic trees were drawn by iTOL online (http://
itol.embl.de/). The program Admixture (version 1.3) was used to per-
form optimization of the number of subpopulations (K) in the range 2
to 1042. PCA was conducted using GAPIT43 (version 3.0) and was per-
formed separately for parental varieties and hybrid test crosses.
Genome-wide linkage disequilibrium (LD) was estimated by PLINK44

(version 1.9) as pairwise r2 values among SNPs within a window con-
taining no more than 99999 SNPs. The parameters for the commands
were “--r2 --ld-window 99999 --ld-window-r2 0”. The first “r2” specifies
LD as r2. The second “r2” followed by “0” specifies the output for r2

values of 0 or above, which is everything. The parameter of “99999”
specifies the windows size defined as the number of SNPs.

Phenotypic and heterotic statistics
The phenotypes of a trait weredenotedV for the inbred varieties and T
for the test cross. Two additional types of observations were derived
from V and T, i.e., general combining ability (G) (Supplementary
Data 6) for inbred varieties and heterosis (H) (Supplementary Data 7)
for hybrid testcrosses.

The general combined ability of an inbred variety i was derived
from its test cross using the following formula:

Gi = �yi � �y:: ð1Þ

where Gi represents the G of the ith paternal parent; �yi represents the
meanphenotypic value of test crosses derived from the ith parent, and
�y:: represents the mean phenotypic value of all the hybrid test crosses.

Heterosis was defined as the difference between a testcross and
the average of its parents as indicated by the following formula:

Hij =Tij � ðVi +VjÞ=2 ð2Þ

where Tij represents the phenotypic value of the test cross hybrid
derived from the ith male parent and jth female parent; Vi represents
the phenotype of the ith male parental varieties, and Vj represents the
jth female parent phenotype.

GWAS pipeline across parents and hybrids for both additive and
dominant effects
The four types of observations (V, T, G, and H) were normalized within
each type to eliminate the differences between scales and averages.
Observations were vertically concatenated as a single phenotype vec-
tor (Y) in the combined analysis, and the corresponding genotype
matrixwas generated. V andG shared the same genotypematrix, while

T and H shared the same genotype matrix (Fig. 1). The additive geno-
type matrix and dominant genotype matrix were horizontally con-
catenated (left and right) for GWAS with the BLINK29 multiple loci
model implemented in GAPIT43 (version 3.0). We named this pipeline
the joint analysis of phenotypes, effects, and generations (JPEG). This
JPEG pipeline contains extraction and a combination of phenotypes,
GWAS, andGenomic Prediction. The source code is available at GitHub
(https://github.com/jiabowang/JPEG).

Homozygous genotypes are coded as0 and 2, while heterozygous
genotypes are coded as 1 in the additive genotypematrix (A). Similarly,
both homozygous genotypes are coded as 0, while the heterozygous
genotype is coded as 1 in the dominant genotype matrix (D). The
dominant genotypes are all 0 s forV andG. An association test is based
on whether an SNP has a non-zero additive effect or a non-zero
dominant effect. An SNPwith a non-zero additive effect only is defined
as an additive locus. An SNP with a non-zero dominant effect only is
defined as a dominant locus. An SNP with both a non-zero additive
effect and a non-zero dominant effect is defined as an additive and
dominant locus.

Association tests on additive effects were conducted by using the
general linear model listed in formula (3) and on dominant effects
using the general linear model in formula (4).

Y i =b0 +Bi1b1 +Bi2b2 + . . . +Bitbt +Aijaj + ei ð3Þ

Y i =b0 +Bi1b1 +Bi2b2 + . . . +Bitbt +Dijdj + ei ð4Þ

Here, Yi is ith observation; b0 is the overall population mean; Bi1,
Bi2, …, and Bit are the covariates for the ith observation, including the
first three principal components, dummy variables of female parents
for the testcross, and selected additive anddominant SNPs;b1, b2,…,bt
are the corresponding fixed effects of the covariates; Aij is the additive
genotype of the ith individual on the jth SNP; aj is the corresponding
fixed additive effect of the jth SNP; Dij is the dominant genotype of the
ith individual on the jth SNP; dj is the corresponding fixed dominant
effect of the jth SNP; and ei is the random residual having a distribution
with a mean of zero and a variance of σ2

e .
Association tests were first conducted for each of the marker on

additive effects and afterward for dominant effects. At the end of the
iterations for testing additive and dominant marker effects, the asso-
ciated marker effects, either additive or dominant, were selected as
covariates in themodel. The processwas iterated until no further SNPs
could be selected as covariates. The association was determined with
the threshold of 1% type I error after Bonferroni multiple test correc-
tion on both additive and dominant markers.

Heritability estimation among inbred varieties and hybrids
Additive genotype matrices were used to derive the additive genetic
kinship matrices among inbred varieties and hybrid test crosses.
Similarly, a dominant genetic marker matrix was used to derive
dominant kinship relations among hybrid test crosses. Additive kin-
ship and dominant kinshipmatrices define the covariance structure of
the additive genetic effect and the dominant genetic effect. The kin-
ship matrices were calculated with the VanRaden algorithm45. A mixed
linear model with random additive and dominant genetic effects was
solved by the BGLR46 software package using the Gaussian processes
(RKHS) algorithm to estimate the additive genetic variance, dom-
inance genetic variance, and residual variance. The proportions of the
additive genetic variance, dominance genetic variance, and total
genetic variance (additive + dominant) over the total variance (residual
variance included) were calculated as the corresponding additive
heritability, dominant heritability, and total heritability, respectively.

Article https://doi.org/10.1038/s41467-023-39534-x

Nature Communications |         (2023) 14:3930 7

http://itol.embl.de/
http://itol.embl.de/
https://github.com/jiabowang/JPEG


Genomic best linear unbiased prediction
We conducted cross-validations using the classical genomic Best
Unbiased Linear Prediction (gBLUP) as the reference to evaluate the
capability to select superior test crosses. All the parent inbred varieties
were used as a training population. The hybridswere randomly divided
into two equal groups. One groupwas selected as a testing population,
and the other group was joined with the parent inbred varieties as the
training population. In other words, all V and G belonged to the
training group, while half of T and H belonged to the training group
and the other half belonged to the testing group. Additive kinship was
calculated from the additive genotypes corresponding toV, T,G, andH
using the VanRaden algorithm45 implemented in GAPIT43. The obser-
vations corresponding to testing population were set to “NA” to run
gBLUP in GAPIT for prediction. The correlations between observed
and predicted observations were calculated for the hybrids in the
testing population. The testing of hybrids was iterated until both
groups were tested. All processes were repeated 100 times. The mean
squared correlation coefficient across all groups and replicates was
used to assess the accuracy of the gBLUP.

Genetic effect-locus-based prediction
The most critical goal in hybrid breeding is to identify new superior
crosses with existing genotypes of inbred varieties and phenotypes of
inbred varieties and their hybrids. The predictions for hybrids using
the associated additive and dominant loci identified previously in the
GWAS could not be used to evaluate their predictability due to
potential model overfitting because these loci were derived from the
hybrids. To assess the capability, we repeated the GWAS on the
training population only during the cross-validation analyses. Similar
to the cross-validation for the gBLUP, we randomly divided the
hybrids into two equal groups. One group of hybrids was selected as
a testing population. The remaining hybrid group and the parent
inbred varieties were used as the training population. The GWAS
model with both additive and dominant genetic effects was imple-
mented using BLINK on the training population only. The newly-
detected SNPs with additive effects and SNPs with dominant effects
in the final iteration of BLINK were used as explanatory variables in
GAPIT to predict the phenotypes of the hybrids in the testing
population using the gBLUP model. The kinship was derived from
both additive and dominant genotypes. The correlation coefficients
between observed and predicted observations were calculated for
the hybrids in the testing population. The testing population was
iterated until both groups were tested. All processes were repeated
100 times. The mean squared correlation coefficient across all
groups and replicates was used to assess the capability to identify
new superior crosses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw DNA sequencing data of 120 rice inbred lines analysed in the
current study are available in the NCBI Sequence Read Archive under
accession numbers SRP080763 and SRP080834. Source data are
provided with this paper.

Code availability
JPEG source code is available at GitHub [https://github.com/
jiabowang/JPEG].
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