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A landscape of response to drug
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Combination of anti-cancer drugs is broadly seen as way to overcome the
often-limited efficacy of single agents. The design and testing of combinations
are however very challenging. Here we present a uniquely large dataset
screening over 5000 targeted agent combinations across 81 non-small cell
lung cancer cell lines. Our analysis reveals a profound heterogeneity of
response across the tumormodels. Notably, combinations very rarely result in
a strong gain in efficacy over the range of response observable with single
agents. Importantly, gain of activity over single agents ismore often seenwhen
co-targeting functionally proximal genes, offering a strategy for designing
more efficient combinations. Because combinatorial effect is strongly context
specific, tumor specificity should be achievable. The resource provided,
together with an additional validation screen sheds light on major challenges
and opportunities in building efficacious combinations against cancer and
provides an opportunity for training computational models for synergy
prediction.

Modern therapeutic approaches to numerous pathologies include the
use of drug combinations to obtain better efficacy and lower systemic
toxicity in patients. Combinations of drugs have been frequently used
to treat microorganisms infections1,2 and most notably, tri-therapy
against HIV infection can yield very long lasting disease control3. Drug
combinations are also frequently part of anti-cancer treatment, based
mainly on empirical clinical discovery for decades4,5. Rationally

designed targeted agents have now been approved across a variety of
cancers but the vast majority of patients are still treated first with
combinations of “classic” genotoxic chemotherapeutic agents such as
DNAdamaging agents or other agents targeting cycling cells (taxanes).
Targeted agents are sometimes combined with traditional cytotoxics:
e.g., the targeted agent trastuzumab (an antibody against HER2) is
combined with taxane to achieve higher benefit in HER2 breast
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cancer6,7. Currently, there are only few combinations involving exclu-
sively rationally designed targeted agents that are used to treat cancer.
There are however notable examples of recent successes: combining
CDK4/6 inhibition with Estrogen Receptor (ER) directed therapy is
beneficial over other therapies in ER positive breast cancer8. In AML,
the BCL2 targeting agent venetoclax combinedwith the demethylating
agent aza-cytidine provides substantial improvement in clinical out-
come compared to either agent alone or chemotherapeutics
regimens9. The use of BRAF and MEK1/2 inhibitors in combination has
led to improved response in melanoma10. Many other targeted com-
binations are now being tested in clinical trials.

While it stands to reason that combining targeted drugs could
improve benefit, the rational development of drug combinations
against cancer is still hampered by the limited understanding of
underlying cellular processes. There is now ample evidence of het-
erogeneous response to targeted anti-cancer therapies even within
molecularly stratified patients. Indeed, response is still highly variable
within the best responsive patient cohorts, with treatment either
inefficient up front (innate resistance) or of limited and unpredictable
duration (acquired resistance)11. Whether combinations of targeted
agents will show such heterogeneity in response or allow for more
encompassing treatment regimen is not known. Another critical
aspect, even for targeted agents, is toxicity. In contrast to drug com-
binations against HIV for example, targeted drugs against cancer
address cellular processes that are almost always shared between
cancer cells and normal cells. Consequently, evenwith targeted agents
of good specificity, increased toxicity is a major hurdle for clinical
development of combinations and is additionally very difficult to
predict. To obtain higher efficacy than single agents and minimize
systemic toxicity, drug combinations that are synergistic specifically in
cancer cells are thus conceptually attractive even if synergy is not
required to obtain effective combinatorial effect on cohorts of
patients12. Yet, the availability of public large scale combination data-
sets is limited, additionally impairing efficient computational model-
ing for combination discovery13.

In this study we aimed to identify combinations of interest that
could help treat non-small cell lung cancer (NSCLC) patients. Through
a very large dataset we generated, together with an additional valida-
tion screen, we provide a robust estimate of the heterogeneity of
response to targeted drug combinations within lung cancers and
analyze genetic as well as cellular network determinants of combina-
torial effect. This dataset will additionally provide a common grounds
resource for the scientific community interested in drug combinations
development against cancer, and in the development of computa-
tional modeling approaches towards the systematic discovery of
synergism in cancer cells.

Results
A large-scale drug combination screen in NSCLC models, its
design and scoring
To systematically study the response of NSCLC models to pairwise
drug combinations, a collection of 81 NSCLC cell lines that are
genetically representative of human tumors14 was assembled. These
models are extensively characterized at the molecular level15. Muta-
tional profiles for major cancer genes in this collection are shown in
Supplementary Fig. 1. Similarly to what is seen in exome sequencing
data of human tumors16 only ahandful of cancer genes17 are recurrently
mutated across the cell line collection (Fig. 1A). Recently, fusion events
were systematically identified for 79 out of 81 cell lines, most of which
identified were not associated with a clear functional role18, and were
thus not studied for their relation to drug combination response here
(except for EML4-ALK).

The response of the cell lines used in the present study to single-
drug treatments was previously studied comprehensively across >400
single agents15. In addition, 49 of the cell lines were also part of a large

chemical screening effort performed across NSCLC lines surveying an
initial set of >200K compounds and an activity based selected subset
of 447 chemical entities19. These single-agent datasets as well as the
results of genetic perturbations using shRNA20, super potent siRNA
pools21 or more recently CRISPR CAS9 mediated loss of function22–24

demonstrated that these NSCLCmodels capture the clinically relevant
aspects of therapeutic response of the disease. Importantly, as
observed in the clinic, these data also demonstrate a prevalent het-
erogeneity of response to a given perturbation even within subsets of
models sharing a common oncogenic driver (heterogeneity of
response within KRAS driven NSCLC models for example ref. 21).

To identify active drug pairs across the 81 cell lines, 21
“anchor” drugs were selected based on their relevance to NSCLC
treatment, approval status, results of preclinical therapeutic stu-
dies and biology. Those were combined with 242 “library” drugs
covering most targeted therapeutic classes currently in use or in
development against cancer. This 21 × 242 testing strategy was
used in an ultra-high throughput screen in 1536 well plates using
one fixed dose of anchor drug and five doses for each library drug
(Fig. 1B, Supplementary Data S1, S2). Figure 1C lists the anchor
drugs used and (Fig. 1D) summarizes the targets and classes of
library drugs. The dosing strategy of anchors and library drugs
was aimed at discovering combinations with strong effect on
viability (determined here using enumeration of nuclei across
treatments). For this, drug dosages achieving complete or near
complete targets suppression was sought. This strategy has pre-
viously been successful in discovering combinations to counter
acquired resistance but is not conceptually restricted to this
case25. The concentrations of the anchor drugs were chosen based
on prior knowledge of on-target potency in cells and profile of
response of these drugs across several hundreds of cell lines
when available from prior studies (GDSC web site). A large-scale
single-agent screen data was used to determine the dose of
anchor drug that yielded very strong viability suppression in only
a few cell lines (typically less than 2% of >500 cell lines tested).
For EGFR inhibitors this would correspond to the highly sensitive
cell lines that are dependent upon EGFR activity. The underlying
assumption is that while the viability outcome of target inhibition
varies across cell lines, a given drug will overall affect its target(s)
equivalently across cell lines (barring drug pumps effects which
in fact do not strongly affect the vast majority of drug responses
in cells15). Indeed, while the complete lack of target expression is
expected to ablate drug effects, previous large scale drug
screening studies in cancer cell lines have shown that apart for a
few exceptions concerning amplified genes, the RNA expression
of the target is not a strong predictor of drug effects15 or siRNA
mediated target depletion20. Thus, the anchor doses correspond
to near complete suppression of target activity, which was for
most targeted drugs ineffective in the majority of cell lines15.
Similarly, for the library drugs, the concentration yielding strong
viability suppression in only a few cell lines was determined based
on single agent data or relevant literature. To further ensure that
library drugs were suppressing their target(s) efficiently, one
higher dose was added above this informed dose. Three addi-
tional lower doses were added to survey a larger breadth of target
suppression. A dilution scheme of √10 was used (tenfold dilution
every other dose). Drugs and concentration used are listed in
Supplementary Data S1. The viability distribution for each single
library drug and anchor across all doses is shown in Supplemen-
tary Fig. 1 demonstrating that the dosing strategy did yield an
appropriately broad range of viability across cell lines.

The screenwas performed in technical duplicates with two sets of
identical plates seeded on a given day: two DMSO anchored plates
corresponding to single agent treatments and two anchor plates cor-
responding to combination treatments. Screening was repeated for

Article https://doi.org/10.1038/s41467-023-39528-9

Nature Communications |         (2023) 14:3830 2



plates that failed quality control based on coefficient of variation
(CV < 25%) of the control wells (DMSOor anchor alone). To collect data
on all anchors, a given cell line had to be seeded repeatedly on dif-
ferent days. With the goal of minimizing noise in the dataset, single
agent testing (DMSO as anchor) was repeated in parallel with each
anchor to allow matched DMSO anchored plates and combination
plates of the samedrugging run to be compared. Thus, throughout the
analyses, combination (anchor plate) and single agent (DMSO plate)

data are compared using only plates matched by cell seeding date.
Prescreening calibration of the cell density allowing for proper pro-
liferation and good cellular enumeration was performed. Failure rate
varied across cell lines but was overall low: in total, 5766 plates (1536
well plates) were used and 4223 passed QC requiring the cell popula-
tion to double at least once in addition to acceptable CV of control
wells. 73 cell lines out of 81 tested had a pass rate above 90% and only
two had a pass rate below 50%. Thus, while a small number of

B

C

D

A

Fig. 1 | Overview of the study screening strategy. A Major cancer drivers cap-
tured by the cell line collection screened. The y-axis in this figure shows the
fraction of cell lines with a driver mutation. Figure also shows the percentage
of KRAS mutated cell lines which also have a P53 and STK11 mutation. B Screen
set-up and key characteristics. C Anchor drugs used. D Library drugs used
grouped by target class. Abbreviations used – DDR DNA Damage Response,

Nuc_Exp Nuclear Export, Necro Necroptosis, Lipid Lipid Synthesis, Neuro_Dev
neuronal development, Histone Acet Histone Acetylation, Histone Met His-
tone Methylation, Prot Homeo Protein Homeostasis, Metabo Metabolism,
Anabo Anabolism, Mitoc Mitochondria, N-RTK Non Receptor Tyrosine Kinase,
RTK Receptor Tyrosine Kinase, Lip K Lipid Kinase, ERK_Path ERK Pathway, ST-
K Serine Threonine Kinase.
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combinations were not captured in the QC passed dataset for a min-
ority of cell lines, the overall data coverage is high, and the vast
majority of tests were performed at least in two technical replicates
(Supplementary Fig. 1).

To evaluate the quality of the data the correlation of viability
values across technical replicates was computed. There was an overall
good correlation across technical replicates with Pearson’s R value
across DMSO plates (single agent library +DMSO) of 0.80 and for
technical replicates across combinations plates (Anchor drug + library
drug) of 0.76. To evaluate the outcome and overall value of the screen
data, a measure of synergy based on statistical independence of effect
of the single agentswasused (Blissmodel): synergywasdeterminedby
considering the outcome of each single agent, taking the product of
the single agent effects as the predicted outcome and comparing it to
the experimentally determined viability outcome of the combination.
The ratio between the expected and the observed outcomes con-
stitutes the primary metric of synergy at each tested dose pair and an
overall synergy score is derived from these five values (five doses of
library drug combined with one dose of anchor drug). A synergy score
<1 implies the drug combination is synergistic, with lower values
indicating higher synergy (Methods, Supplementary Note 1, Supple-
mentary Data S2). To increase the likelihood of true positives we
considered the five-dose pairing individually and extracted the 2nd
highest synergy from the series of five values, denoted as the synergy
score of that combination. This 2nd best from the five synergy values
can therefore correspond to any of the doses tested (not necessarily
the 2nd maximum dose tested). To complement this synergy score an
efficacy gain score was also computed: The Higher than Single Agent
(HSA) score describes the additional viability loss observed with a
combination over the maximum viability loss observed with either of
its components individually. HSA measure does not make any
assumption regarding independence of effect of drugs or other
assumptions built into various models of synergy26. Here, a negative
HSA score implies the drug combination is more effective than the
better of the two drugs (Methods). To confirm the validity of our drug
interaction scores, empirical p values for synergy and HSA scores were
also computed and a very strong correlation was found between those
and the interaction scores (Methods, Supplementary Data S7). Fur-
thermore, the correlation between the second-best and the median
synergy values across all cell lines and drug combinations is reassur-
ingly very strong (Spearman’s ϱ = 0.79, P < 2.2e–16). To obtain a rank-
ing of synergistic drug pairs, two complementary strategies were
initially used, leveraging the synergy score: (i) computing the median
synergy score across all tested cell lines and (ii) the count of cell lines
with a synergy score of 0.8 or less (see below how different synergy
score impact the number of synergies observed across cell lines).
Similarly, for HSA, a global score was obtained by either (i) taking the
median of all HSA scores for that combination across cell lines or (ii)
counting the number of cell lines passing a threshold of 15% HSA (loss
of 15%of cellular viability compared to the viability obtainedwithmost
effective of the two single agents).

Using these metrics, a set of combinations known to yield benefit
over single agents or straightforwardly mechanistically supported
were then scrutinized. For example, let us describe the results
obtained with the anchor AZD7762 an inhibitor of the DNA damage
repair response (DDR) kinases CHK1 and CHK2. Ranking combinations
with AZD7762 based on the number of cell lines where the combina-
tion effect is either superior to single agents’ (HSA 15% or more) or
synergistic (synergy score of 0.8 or less) shows that the inhibitor of
WEE1, a kinase that regulates cell cycle checkpoint, is the top combi-
nation partner for AZD7762. Multiple synergies were also seen when
combining ATR and CHK1/2 inhibitors (Fig. 2). There is published
evidence for synergy between CHK1 andWEE1 inhibition27–29. The DNA
damaging agents cytarabine, gemcitabine as well as the anti-
metabolites pemetrexed and 5-FU also displayed HSA/Synergies in

combination with AZD7762 albeit in fewer cell lines in the later cases
than the former (Fig. 2). Thus, there is clear detection of signal for
combinations that were expected to be synergistic based on pathway
knowledge and previous literature28,30. An overview of the screen
outcome based on counts of synergy events across cell lines is pre-
sented in Supplementary Fig. 2 (see also Supplementary Data S2c).

To systematically identify top combinations for each anchor and
estimate how impactful a given combination might be in the clinic, an
impact score for each drug combination was computed based on the
distribution of synergy scores across cell lines for each combination:
this impact score was computed by comparing the distribution of
synergy scores (or separately HSA scores) across cell lines for a given
drug combination with the distribution of scores for all other drugs
combined with the same anchor, using a Wilcoxon rank sum test. As a
secondary measure, the median of the scores across cell lines for a
given drug was compared to the median of scores of the rest of the
drugs. The top combinations identified represent those with the
highest effect across cell lines and thusperhaps acrossNSCLCpatients.
To further characterize themost promising combinations, the percent
of cell lines with a synergy score within the top 5% of all scores (all
anchors) was also computed (some of the top synergies observed are
described in Fig. 3). This systematic approach readily identified the
combination of WEE1 inhibitor with CHK1/2 inhibitor and other com-
binations described above as themost impactful combinations for the
CHK1/2 anchor (Fig. 3A). Below we describe the top ranked combina-
tions identified in our screens, based on their impact scores (Fig. 3G
shows a summary of the top combinations identified).

Salient combinations across anchor drugs
Here we review and discuss our results for specific combinations of
interest that reaffirm and expand upon previous studies.

We start with combinations involving the parylating enzymes
Poly-ADP-Ribose-Polymerases (PARP), probably the most well-known
examples of synthetic lethal based treatments to date. Somatic
mutations BRCA1/2 are found across several cancer types and can
confer clinical sensitivity to PARP inhibitors31, such as olaparib. Top
HSA partners we identified for olaparib include decitabine and zebu-
larine, two related agents known to induce demethylation of DNA.
Decitabine was also used as an anchor in the present study and ola-
parib was its top ranked synergistic partner with another PARP inhi-
bitor veliparib ranking second (Fig. 3B).

TheMEK inhibitor trametinib (first approved by the FDA for use in
BRAF V600E melanoma) has been studied in combination across a
variety of contexts. Feedback re-activation of the MEK pathway upon
suppression of MEK or ERK impairs the clinical activity of BRAF
inhibitors32–34. Synergistic activity of RAF and MEK inhibitors combi-
nation has indeed been documented35–37. Here, the pan RAF (A, B, C-
RAF) inhibitor AZ628 was the top combination partner for trametinib.
The ERK inhibitor VX11e also yielded frequent synergies with trameti-
nib (Fig. 3G). Consistentwith published reports on treatment benefit in
preclinical models38–40, synergies were also frequently observed
between trametinib and inhibitors of the PI3K/mTORpathway (Fig. 3D,
Supplementary Figs. 2, 5C). Across receptor tyrosine kinase inhibitors,
those targeting insulin receptor / insulin growth factor receptor led to
more synergies than combination with ERBB family members (Sup-
plementary Fig. 3D).

Drugs targeting the PI3K pathway also yielded interesting
outcomes. The PI3K inhibitor alpelisib (BYL719) which targets
selectively the alpha catalytic isoform of PI3K (encoded by
PIK3CA, frequently mutated across multiple cancer types) was
tested as an anchor drug. Combining BYL719 with PI3Kbeta
selective inhibitors yields a strong HSA and synergistic effects
across many cell lines with good consistency seen between the
two PI3Kbeta inhibitors tested (AZD6482 and TGX221, Fig. 3E,
Supplementary Figs. 3–5), in concordance with earlier reports in
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breast cancer41. EGFR family inhibitors also display relatively fre-
quent HSA with BYL719 across cell lines42,43. By contrast, the
inhibition of other non-receptor tyrosine kinases of the SYK
family or inhibition of FGFRs display no combinatorial benefit
with BYL719. The pan-PI3K inhibitor pictilisib (GDC0941) and the
MTORC inhibitor OSI-27 were also used as anchors: Pictilisib was
broadly synergistic with trametinib, the ERK inhibitor VX11E and
the mTOR inhibitor RAD001 (everolimus) (Fig. 3E, Supplementary
Figs. 3B, 4, 5C). Similarly, pathway combinations of OSI-27 with
PI3K and AKT inhibitors were synergistic in many cell lines, and
ERK or MEK inhibitors were also among the top synergizing drugs
with OSI027 (Supplementary Figs. 4, 5, 2). Combining a catalytic
inhibitor of MTORC1/2 and everolimus was previously shown to
yield synergistic inhibition of MTORC144 and this was apparent
here in the viability outcome. The insulin/insulin growth factor
receptors inhibitor BMS754807 was the top RTK inhibitor syner-
gizing with PI3K inhibition. Indeed, the insulin receptor family is a
potent and major (even likely the ancestral) activator of PI3K
amongst RTKs45,46.

CDK4/6 inhibition has been recently reported to be synthetic
lethal with an array of partners. Here, the FDA approved CDK4/6

inhibitor palbociclib displayed strong synergies that match relatively
well the recent data demonstrating the clinical relevance of the inter-
action between the inhibition of the PI3K/mTOR and CDK4/6
inhibition47. MEK and ERK inhibitionwere also seen as producing some
synergies with Palbociclib. Selicicilb (CDKs) and I-BET (BRD) were the
top combination in terms of number of synergies. HSA analysis con-
firmed BRD targeting drugs JQ1 and I-BET as some of the top combi-
nations with palbociclib (Supplementary Figs. 3, 5). Themost cell lines
with HSA were obtained with inhibition of mTOR and a number of
strong HSA scores were seen with trametinib48,49. Overall, however,
relatively few synergies were seen with palbociclib and consequently
their impact scoreswere low (which is why this anchor is not present in
the overview presented in Fig. 3G).

The inhibitors of themitotic kinases AURK and PLK are among the
drugs presenting with the most synergies with vorinostat, the anchor
HDAC inhibitor. The proteasome inhibitor carfilzomib, the NEDD8
activating enzyme (NAE, involved in E3 Cullin family activation) inhi-
bitor MLN4924, the BET inhibitors I-BET and JQ1, the LSD1 inhibitor
LSD1-C76 and the topo-isomerase I inhibitor irinotecan showed many
synergies with vorinostat. These are well supported by literature in
preclinical and for some, clinical studies (leukemia, cutaneous T-cell

Fig. 2 | Capture of expected combinatorial effects. A AZD7762 combinations:
top combinations sorted by median score across cell lines using Higher than
Single Agent metric. B Pattern of HSA events across top combinatorial part-
ners for AZD7762 across cell lines. Each row corresponds to the specified drug
combined with AZD7762 and each column (mark) corresponds to a cell line.

Colored marks correspond to positive HSA events. The cell lines are in the
same order across rows revealing differential pattern of HSA events for dif-
ferent combinations. C Top combinations (with AZD7762) based on median
synergy across cell lines.D Pattern of synergistic events displayed as in (B) but
using synergy rather than HSA.
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lymphoma for which vorinostat is an approved agent, multiple
myeloma50). Synergies with all three AURK inhibitors tested are strong
and numerous suggesting on-target basis for the observed effects.
Synergy between one of the AURK inhibitors tested here, alisertib and
the HDAC inhibitor romidepsin was reported in T-Cell lymphoma51.
Agents targeting metabolic enzymes were also good combinatorial

partners for vorinostat: CPI613 (PDH/aKGH), Bromopyruvate (Hex-
okinase) (Supplementary Fig. 4E).

Numerous growth factor pathway inhibitors synergize with the
tyrosine kinase inhibitor dasatinib, an inhibitor of ABL, SRC family
kinases (SFK) and multiple other tyrosine kinases. Multiple synergies
were seen across inhibitors of the ERK and PI3K/mTOR pathways
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(Supplementary Figs. 3–5). Consistent synergies were seen across
EGFR family inhibitors and combination with INSR/IGF1R inhibitors
yielded numerous HSA (Supplementary Fig. 4). The FAK inhibitor PF-
562271 synergized strongly with dasatinib across multiple cell lines,
the JAK inhibitors TG101348 and ruxolitinib both synergize fre-
quently with dasatinib albeit at a low level. Some synergies with the
BTK family inhibitor ibrutinib (PCI32765, FDA approved for use
against several hematological cancers which also inhibits BMX, a BTK
family member expressed in carcinoma52 are also seen. All of these
are in keeping with known signaling interactions between SFKs and
FAK, BTK, JAK, and RTK family members53. Overall, dasatinib, per-
haps due to its high level of polypharmacology is broadly synergistic
but with top synergistic partners in keeping with known roles of SFKs
in signal transduction.

A variety of other synergistic combinations emerged in the
screen, which, due to space limitations are described in detail in the
Supplementary Note 3. Those include the finding that the BCL2 family
inhibitor navitoclax is frequently synergistic with cell cycle blockers
and strongly synergistic with the approved sphingosine receptor
modulator fingolimod (Fig. 3F), and the discovery of many additional
synergistic combinations for which no previous report exists as far as
we can tell, although in some instances indirect supporting evidence
does exist. For example, the CHK1/2 inhibitor AZD7762 synergizeswith
the ROCK inhibitor GSK269962A (Figs. 2, 3A) and a functional inter-
action between ROCK and DNA damage repair has been reported54.
AZD7762 also synergizes with the METAP2 (Methionine Aminopepti-
dase) Inhibitor, A832234. There is precedent for regulationof cell cycle
and METAP targeting55. Some of the strongest observed synergies are
only found in very few cell lines and are thus not flagged by the impact
score analysis presented in (Figs. 2, 3G). Nevertheless, these highly
context specific synergies might be mechanistically revealing and
could be interesting to explore in other tumor types, where theymight
bemore broadly relevant. The top synergistic combinations (top 5% of
all synergy scores across all anchors) are represented as a network of
Anchor-Library drugs interactions in Supplementary Fig. 8. Interest-
ingly, there is a high number of drugs that are shared between anchors
among the top synergistic pairs. This suggests there may be core
dependencies in the NSCLC lineage and somebiological processes and
regions of the cellular interactome that could be prioritized for further
explorations.

Finally, we note that although the present work focused on
combinations of targeted agents, pemetrexed, a relatively well toler-
ated cytotoxic agent and one frequently used to treat NSCLC, was
chosen as an anchor given that its administration is frequently asso-
ciated with emerging resistance. A systematic screen of cytotoxic
agents has recently been published across the NCI60 collection of cell
lines56. Consistent with its mechanismof action and previous studies57,
the top three synergistic drugs with pemetrexed were all inhibitors of
the DNA damage response (Fig. 3C). Few other strong synergies were
detected across the rest of the library drugs including with motesanib
(RTKs) and nilotinib (ABL, RAF,TKs). Interestingly, different cytotoxic
agents gave distinct patterns of synergy even with drugs of similar
MOA (such as DNA damaging agents). A striking example is the dif-
ferential synergy profiles of vincristine and docetaxel. Both are tar-
geting microtubules albeit through different mechanisms, but

docetaxel displays many more synergies across anchors than vincris-
tine. This doesn’t appear to be simply due to poor dosing choice for
vincristine as there are instances of anchors displayingmore synergies
for vincristine than docetaxel (OSI027, dasatinib, phenformin, see
Fig. 4D). Overall, these results illustrate that there are likely important
drug specific activities that need to be considered to select the most
appropriate pairs of drugs (rather than only targets) (Fig. 3G, Supple-
mentary Fig. 6).

Impact of compound polypharmacology on combination
outcome
Analysis of the characteristic properties of many of the synergistic
combinations discovered reveals a few key emerging insights and
principles, which we describe henceforth.

Because synergism emerges from the functional relation between
targets there is considerable complexity to expect when drugs with
multiple targets are combined. To study how polypharmacology
(engagement of multiple often unrelated targets by a given drug)
affects synergy, the synergypatterns of drugs sharing some targets but
differing in others were compared. First, we begin with some notable
cases. Figure 4A shows the outcome of the comparison between
imatinib and nilotinib. Striking differences can be observed with a
much larger number of strong synergies observedwith nilotinib, which
targets RAF in addition to ABL, which is targeted by both. Similarly,
comparing four drugs targetingAurora kinases (AURK) in combination
with the HDAC inhibitor vorinostat (Fig. 4B) and four different ERBB
family inhibitors combined with the MTORC inhibitor OSI0927
(Fig. 4C) shows that while the number of synergies and strength of
those synergies are qualitatively similar, some synergies are unique to
specific drugs. Figure 4D plots the synergy profile of library drugs
targeting cell cycle entry and progression (see also Supplementary
Fig. 3). As expected, there is an overall similarity of their synergistic
behavior across the majority of anchors. However, while genetic stu-
dies indicate some level of functional redundancy between CDK2,4
and 6, the independent targeting of either CDK2 (dinaciclib) or CDK4/
6 (palbociclib, PD-03329921) can yield numerous different synergies.
There are striking differences between CDKs inhibitors combinations
with dinaciclib58, showing a much more active profile than seliciclib
(roscovitine, CDK1/2/5/9), with only few anchors including OSI-027
(mTORC) and palbociclib (CDK4/6) displaying more synergies with
seliciclib than dinaciclib. Because both dinaciclib and seliciclib inhibit
CDK1/2/5/9 equipotently (at least in vitro59) it appears that secondary
target(s) or perhaps differential mode of target engagement60 might
be underlying the differences observed. Notably, we also find that
AURK inhibitors had a clear tendency to be more broadly synergistic
than CDK inhibitors even though both compound classes target
kinases best understood as cell cycle regulators (Supplemen-
tary Fig. 7).

Validation of selected key findings in an additional screen
The use of 81 cell lines likely allowed us to robustly capture true
synergistic events as well as estimate which combinations could be
most relevant for disease treatment. To further test the robustness of
our results and validate someof the key findings of our original screen,
we carried out an independent screen of selected combinations

Fig. 3 | Top synergistic combination across anchors. A–F The impact score for
each combination is plotted with median synergy score of a given combination
across cell lines compared to the median synergy score of all other pairs for that
anchor represented on the X axis (as the Log10 ratio of median scores) and sta-
tistical enrichment of synergies for the plotted combination over all other tested
combinations (with the same anchor) representedon the Y axis. The size of the dots
represents the percentile of synergy scores for a given combination falling within
the top 5% of all synergy scores for the whole screen (all anchors). Each plot cor-
responds to a different anchor drug: A AZD7762 (CHK1/2) B Olaparib (PARP)

C Pemetrexed (anti-folate); D trametinib (MEK1/2) E alpelisib (PI3Kalpha)
F navitoclax (BCL2). G Overview of the top combinations based on impact score
FDR and percentile of events (cell lines presenting with synergy) in the top 5% of all
synergy scores (across all anchors: strong synergies). Combinations with at least
15% of strong synergistic events are shown (15% of the synergy scores across cell
lines for that drug pair fall in the top 5% synergy scores overall). The size of the dots
corresponds to percentile of events in the top 5% and color shade to the statistical
enrichment (FDR).
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(termed the validation screen). We aimed at confirming some of the
top synergies observed in the original screen (Fig. 3), as well as con-
firming the impact of polypharmacology on the synergistic potential
(Fig. 4). We performed these studies on 15 non-small-cell lung cancer
(NSCLC) cell lines chosen for genomic diversity. We tested 27 combi-
nations that were present in the original screen. We also tested two
combinations that were not present in the original screen to bolster
our results using different compounds than in the original screen:
Farnesyl transferase inhibition synergizing withMTORC inhibition and
CHEK1/2 inhibition synergizing with WEE1 inhibition. Notably, to fur-
ther probe the robustnessof theoriginal screenfindings, the validation
screen experiments were carried out in a different laboratory, using
independently sourced stocks of cells and a different viability assay
(CellTiterGlo) than the one used in the original screen experiments
(imaging of nuclei). Additionally, the validation studies were carried
out using full dose matrices with two ranges of concentrations tested

for each drug, resulting in four independent tests in 10 × 10 dosing
format (Methods; Supplementary Data S8).

We first analyzed how the two screen datasets compared in terms
of best combinations across the tested cell lines. The validation
screened confirmed the observations of the original screen (Fig. 5,
Supplementary Data S8; see Data availability section). Specifically,
AZD7762 (CHK1/2) strongly synergized with the DNA damaging agent
gemcitabine but not with another DNA damaging agent bleomycin, as
seen in theoriginal screen. AZD7762 alsowas confirmed to synergize in
most cell lines testedwith theWEE1 inhibitor adavosertib (MK-1775), as
observed in the original screen. Furthermore, a secondWEE1 inhibitor
(PD-166285) also demonstrated strong and frequent synergies with
AZD7762 and the patterns of synergies across cell lines were well
correlated between the two combinations (Fig. 5). The ROCK inhibitor
GSK-269962A was also confirmed to synergize with AZD7762 in a
subset of cell lines. Confirming that inhibition of METAP2 synergizes
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Fig. 4 | Differential synergistic outcome formechanistically related drugs. A–C
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differential pattern for related library drugs across anchors. Selected library drugs
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portional to percent of the synergy scores that are within the top 5% of all synergy
scores).
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with inhibition of CHK1/2 as observed with A832234 in the original
screen, tosedostat another METAP2 inhibitor was seen to synergize
with AZD7762 in the validation screen. Vorinostat (HDAC inhibitor)
was confirmed to synergize with barasertib (AURKB) and to a lesser
extent with CPI-613 (PDH) MLN-4924 (NAE) and LSD1-C76 (LSD1), as
seen in the original screen. In the original screen, the BCL2 family
inhibitor navitoclax synergized with numerous drugs with diverse
modes of action but often impacting cell cycle processes: Dinaciclib
(CDK), alisertib (AURK), docetaxel (tubulin), oligomycin (ATP syn-
thase), phenformin (ETC). All these results were confirmed in the
validation screen. In addition, in the original screen seliciclib (CDK)
was not as frequently synergistic with navitoclax than dinaciclib (CDK)
and this was confirmed as well. Vincristine (tubulin) was more fre-
quently synergistic with navitoclax in the validation screen than in the
original screenwhere synergies were less frequent thanwith docetaxel
(tubulin). Despite these differences, the synergy patterns across cell
lines for docetaxel and vincristine were well correlated in the valida-
tion screen. Similarly, tozasertib was broadly synergistic with navito-
clax in the validation screen even more so than in the original screen.
We confirmed that olaparib (PARP) could synergize with zebularine
and decitabine, this was less impressive in the validation screen than in
the original screen, perhaps due to a shorter duration of treatment in
the validation screen (2 days) than in the original screen (5 days),
allowing for better capture of DNA damage effects in the original
screen. The differential outcome of combining trametinib (MEK1/2)
with theABL inhibitors imatinib or nilotinibwas confirmedaswell, with
synergies more frequent with nilotinib, likely underlined by nilotinib
activity against RAF kinases absent in imatinib. A notable exception to
theoverall good concordance between the two screens,was the lackof
synergistic activity between navitoclax and fingolimod in the valida-
tion screen. While perhaps this is due to the different readouts
between the screens, the precise reason for this discrepancy remains

unclear at this point. More generally, ranking combinations based on
the percentage of cell lines in which they were highly synergistic
(Methods), demonstrate good correlation between the two screens
outcome (Spearman’s ρ = 0.61, P =0.00069; Supplementary Fig. 9).
We then analyzed how the two screens compared when considering
which cell lines weremost affected. We thus measured the correlation
between the viability scores across all 15 NSCLC cell lines shared
between the two screens for each of the 29 drug combinations.
Compared to the high concordance between the two screens in terms
of best drug combinations (above), here we found a more modest
coherence across screens. We do observe a positive correlation
between the two screens although the concordance is modest (12 and
15 drug combinations had a Spearman’s ρ and Pearson’s correlation
>0.25, respectively, Supplementary Data S10A, see top correlated
examples in Supplementary Fig. 10). Notably, the concordance levels
are quite similar when considering single agent treatment outcome.
Because of specific growth conditions and potential non-genetic drift
across batches of cell lines, we considered thepossibility that somecell
lines might present with less consistent results across the two screens.
If we thus remove those cell lines which are overall less concordant
between the two screens (Methods), the correlation indeed improves,
and overall, 17 and 18 drug combinations had a Spearman’s ρ and
Pearson’s correlation >0.25, respectively; Supplementary Data S10B).
As the two screens use different assays to measure the impact on cell
viability, we would not necessarily expect very high concordance in
this analysis. Nevertheless, these results point-out that while the very
high-throughput screen performedonmany cell lines robustly identify
which drug pairs are most likely to synergize or otherwise more
effectively affect NSCLC cells viability than the single agents, the pat-
tern of drug response across cell lines is less stable.

Overall, the validation screen confirmed the robustness of the
finding in the original screen both in terms of top drug pairs identified

Fig. 5 | Summary of the validation screen results. Eight anchor drugs from the
original screen were combined with a specific set of library drugs as indicated. The
synergy score (Bliss score, green gradient, left section as labeled on the top) and

HSA score (Orange gradient, right section as labelled on the top) is shown for each
combination tested. Each column of colored squares corresponds to one of the 15
cell lines tested.
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as well as polypharmacology and differential synergy patterns
observed between drugs sharing targets with commonmechanisms of
action.

Furthermore, to study how combinations might be broadly toxic
across cellular lineages rather than selectively effective against NSCLC
cells, we also carried out drug combination experiments on two non-
cancerous immortalized cell lines (HUVEC and MDCK; Supplementary
Data S8). We, therefore, tested the 29 drug combinations that we have
studied above in 15 NSCLC cancer cell lines. Out of those, we identified
nine drug combinations that are more effective (less viability) in at
least 80% (n ≥ 12) of the cancer cell lines than they are in the two
immortalized cell lines (Methods; Supplementary Data S11A; eight out
of them were found to be statistically significant (we analyzed the
replicate data to carry out statistical significance tests (there were four
replicates per drug combination in each cell line), using a one-sided
Wilcoxon rank-sum test at FDR <0.1). Repeating the analysis using
synergy scores (instead of viability) showed that there are 11 drug
combinations that are more synergistic in cancer compared to the
immortalized cell lines (Methods; Supplementary Data S11B; 10 out of
them were found to be statistically significant, one-sided Wilcoxon
rank-sum test at FDR <0.1). Notably, three drug combinations were
identified in both the viability and synergy-based screens, including
Adavosertib and AZD7762, Nilotinib and Trametinib, and Imatinib and
Trametinib.

We alsomined drug combination data previously published in the
DrugCombDB database61, and found six NSCLC cell lines and 447 drug
combinations overlapping with our dataset. We ranked all the drug
combinations based on the number of synergistic cell lines in our
cohort and in the DrugCombDB database and found that there is a
marked correlation between the two ranked lists (Spearman’s ρ =0.45,
P = 6.4e–7). In addition, an analogous analysis using the HSA measure
showed good consistency as well (Spearman’s ρ =0.54, P = 7.3e–10).

We next compared the results of our drug combination screens to
those obtained via drug combination experiments in NSCLC patient-
derived tumor xenograft (PDX) models by ref. 62, which have tested
fivedrug combinations across 36NSCLCmousePDXmodels. Although
noneof thesedrugcombinationswere exactly the sameas those tested
in our in vitro original drug combination screens, we were able to
identify three drug combinations in Gao et al. that had similar drug
targets to the drug combinations that we studied. These combinations
showa similarpercentage of high synergies or respondersbetween the
in vitro and in vivo data for PI3K and MEK inhibitors, PI3K and PIM
inhibitors, IGF1R andMEK inhibitors (details in SupplementaryNote 6).
However, we do note that this analysis is quite indirect since we are
onlymapping drugs between the twodatasets based on similar targets
(as different drugs are known to have off-target effects).

Emerging properties of combinatorial outcome
As discussed for specific examples of polypharmacology above, we
find that combinations targeting just two targets (one single estab-
lished target for each drug) are much less likely to be synergistic than
combinations involving more than two targets (P = 3.58 × 10−34 one-
sided Wilcoxon test). There is also a mild but highly significant corre-
lation between the total number of targets involved in a combination
and percentile of cell lines in which it is synergistic (Spearman’s
ρ = 0.21, P = 6.25 × 10−42), (Fig. 6A). Thus, drug specific effects are
clearly seen and polypharmacology appears, as expected, to yield
distinct context specific synergy outcomes, both at the drug and the
cell-line levels. While this is likely to be an important hurdle for the
rational development of combinatorial strategy, both in terms of effi-
cacy and in terms of potential toxicities, it might also allow for the
discovery of specific unexpected benefits (synergism) due to second-
ary target(s) inhibition.

A bird’s eye view of the results of our screen (Supplementary
Fig. 2) reveals that synergism typically occurs in a small number of cell

lines and is thus strongly context dependent. Demonstrating that this
sparsity of synergies is unlikely due to inappropriate dosing strategy,
together with (Supplementary Figs. 1, 6B) shows that excessive dosing
is not a likely broad cause of lack of HSA detection. Furthermore, the
same sparsity property is seen with synergy scores. Because the
synergy score is computed using a ratio of observed versus predicted
outcomes, low viability outcome with single agents should not pre-
clude detection of synergies. Consistent with this, there is only a very
weak correlation between the viability outcome of the combination
and the synergy score (Spearman rho = 0.038). To further study the
sparsity of synergies across cell lines, the percentile of synergistic
events for each anchor drug was computed defining strong synergy as
the top 5% of all synergy scores observed in the screen. The HSP90
inhibitor luminespid has the most synergies (~7% of tests), followed
closely by navitoclax. Pemetrexed and decitabine presented with the
lowest number of synergies (below 2% of tests) (Fig. 6C). The drug-
drug network corresponding to the top 5% synergy scores can be
found in (Supplementary Fig. 8). The coverage of cell lines (proportion
of cell lines presenting with synergy) was computed for different
thresholds of synergy, and remain always sparse (Fig. 6D, E, Methods).
A very similarpattern of distributionwasobservedwhenusing a strong
HSA score defined in an analogous manner (Fig. 6F, Methods).

An important corollary of the high level of sparsity of synergy
events observed is that multiple combinations would likely be needed
to provide potentially effective treatments to a cohort of many dif-
ferent patients. To address this, we computed the number of library
drugs that need to be combined with each anchor drug to obtain
strong synergy in at least 80% of the cell lines. If these results would
carry to the clinic, this would inform how many drugs might be con-
sidered to combine with an established agent in order to improve
outcome for most patients. Notably, this analysis revealed four anchor
drugs for which a coverage of 80% could not be achieved regardless of
the number of combination partners used (see Supplementary Note 2
for details). For the rest, the estimated number of drugs needed to
obtain such coverage varied from 3 (bortezomib) to 18 (foretinib)
(Fig. 6G). Supplementary Data S3a contains results for different cov-
erage thresholds. We note that a 100% coverage was obtained for only
one anchor drug (Navitoclax, 14 drugs needed in combination).

We sought to understand whether adding a second drug tended
to make sensitive cell lines further sensitive or rather make resistant
cell lines sensitive (or both). Analysis of the effect of combinations
(viability) in relation to the sensitivity observed with single agents
revealed that the combination outcome is almost always contained
within the range of sensitivity ever observed with single agents
(Methods, Fig. 7A). We term the rare drug pairs that diverge from this
general pattern and actually yield an effect superior to what is seen
with either agent alone in any cell-line “super-sensitizers” (Fig. 7B,
Supplementary Data S3b, c). We see that a few drug combinations like
OSI-027 (MTOR) andA770041 (LCK), vorinostat (HDAC) and tozasertib
(AURK) show a supersensitive effect in more than 30% of the cell lines
(Supplementary Data S3c). Individual anchor drugs, like dasatinib
(BCR-ABL, SRC), olaparib (PARP), phenformin (Metabo), lapatinib
(EGFR, ERBB2), vorinostat (HDAC) decitabine (DNMT1), show super
sensitive effects in numerous different combinations. Across all library
drugs tested, only a few are involved in supersensitive effects with any
anchor drugs and a few of them are involved in supersensitive effects
with more than one anchor drug (Fig. 7B). Super-sensitizers are highly
enriched in synergistic pairs (P = 1.14 × 10−25, one-sided Wilcoxon rank-
sum test) (Fig. 7C).

Leveraging synthetic lethality has been a major focus of target
discovery and therapeutic strategy development in oncology for some
time63,64. In the context of drug combinations, we define synthetic
lethal (SL) interactions when neither of single agents are markedly
effective, but the combination is (hence, these combinations corre-
spond to a subset of more extreme synergistic interactions). To
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quantify these SL effects in our screen, inactive single agents (and
doses) are designated as those yielding a viability greater than 75% of
control treatment (DMSO), but the combination is strongly effective
(defined as below 40% viability). The number of such instances is very
low, comprising just 1.32% of all possible combinations (at library dose
D4, 2ndmaxdose; Fig. 7D). This result is reminiscent of the outcomeof
leveraging single agent sensitivity data in cell lines and combining
single agent effective in a given set of cell lines to obtain synergy65.
Interestingly, this result is comparable to fraction of synthetic lethal
pairs seen in yeast and human cell line screens66–68. While rare, these
drug combinations are potentially of exceptional interest from a
translational point of view (Supplementary Data S3d). Some combi-
nations like AZD7762 (CHK1/2) and adavosertib (WEE1) show

substantial viability effects even though their individual drug effects
are weak in many of the cell lines (Supplementary Data S3d). This is
seen for a small number of anchors and library drugs, with overall very
few library drugs involved in such an effectwithmore than one anchor
drug (CPI-613, KU-60019, carfilzomib or leptomycin B for example)
(Fig. 7D). We further note that while true synthetic lethality (as strictly
defined above) underlies a small minority of the synergistic combina-
tions, evidently, synergism is essentially equivalent to synthetic
sickness.

To study the impact of the cell-line cancer driver genotype on
drug combination outcome, the percentage of highly synergistic
combinations (top 5% synergy rank) across different genotypes was
analyzed. Overall, across all anchors and drugs, there was no statistical
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Fig. 6 | Sparsity of synergistic and HSA events across models. A The number of
synergistic events for a given combinationdependson the number of targets of the
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combination is plotted against the number of targets addressed by the two drugs
together (number of total targets). Spearman’s correlation (rho) and p values are
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concentration of librarydrug. Thedensity distributionofHSAevents for eachof the
5 doses of library drugs is plotted against the percent of cell lines presenting with

HSA.C Percent of synergistic combination for each anchor drugs as determined by
the percent of cell lines presenting with a synergy score falling within the top 5% of
all synergy scores. D Density plots showing the fraction of synergistic events for
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A low number of synergistic events is consistently observed using several synergy
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number of library drugs needed to observe at least one synergistic event in at least
80% of the cell line collection.
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imbalance for synergism for any of themajor cancer driver genotypes,
including KRAS, PIK3CA, EGFR, STK11. Interestingly, among KRAS
mutant cell lines, STK11 (encoding LKB1) mutant cell lines were seen to
harbor more synergies than STK11WT ones. Although TP53 encodes a
major tumor suppressor and sensor of cellular stress, TP53 mutations
were not associated with synergism (or lack thereof). This is

reminiscent of the results obtained with single agent treatment of very
large cell line collections, where TP53mutational status is not a strong
predictor of drug response14,15. The analysis of the genetics of syner-
gism for each anchor individually revealed that three anchors, crizo-
tinib (MET / RTK), phenformin (ET Complex V) and AZD7762 (CHK1/2)
were statistically more synergistic (number of top 5% synergies) in the

0

25

50

75

100

0 0 to 10 > 10
Super Sensitive Cell Lines (%)

P
e
rc
e
n
ta
g
e
o
f
te
st
e
d
co

m
b
in
a
tio

n
s all cell lines

resistant cell lines
sensitive cell lines

A

H

G

F

E

DC

B

P = 3.06e−16

250

500

750

1000

no−synergy top−synergy

P
P
Is

co
re

(m
ax

)
P = 5.82e−05

0.00

0.25

0.50

0.75

1.00

no−synergy top−synergy

N
o.

of
sh

ar
ed

pa
th
w
ay

s
no

rm
al
iz
ed

by
no

.o
ft
ar
ge

ts

P = 1.14e−25

0

10

20

No Yes

C
el
ll
in
es

w
ith

sy
ne

rg
y
(%

)

Super−sensitizers

Article https://doi.org/10.1038/s41467-023-39528-9

Nature Communications |         (2023) 14:3830 12



KRASmutant than inKRASWT (one-sidedWilcoxon test, FDR <0.2). By
contrast, six anchors promoted less synergies in STK11 mutant cell
lines (KRASWT and mutant) than STK11WT ones: Tozasertib (VX-680,
AURK), linsitinib (OSI-906, IGF1R), luminespid (AUY922, HSP90),
phenformin (ETC), nutlin (MDM2), foretinib (XL-880, MET/ RTK). The
combination of Bortezomib (proteasome) and AZD8055 (MTOR) was
found to be more synergistic (using second-best synergy measure) in
KRAS mutant than wildtype cell lines (one-sided Wilcoxon test, FDR <
0.2). Additional results are presented in SupplementaryData S4.When
considering combination effectiveness rather than synergism, a num-
ber of combinations were seen to be more effective in a given mutant
genotype (library dose D4, the second max dose was used for this
analysis) (Supplementary Data S4): 195 for EGFR, 1128 forKRAS and 158
for PIK3CA mutated drivers (one-sided Wilcoxon test, FDR <0.2). As
expected, most of the combinations showing higher effectiveness in
EGFR mutant vs WT cell lines contained the EGFR inhibitor anchor
lapatinib (144 out of 195). Similarly, for PIK3CA mutants, the PI3Kapha
inhibitor BYL719 is present in all (158 out of 158) combinations showing
higher effectiveness in PIK3CA compared to the WT. Interestingly, for
KRAS, only 35 combinations involving trametinib showed an imbalance
in effectiveness. Olaparib (AZD2281, PARP, 231 out of 1128), linsitinib
(OSI-906, IGF1R, 150 out of 1128), navitoclax (ABT263, BCL2, 118 out of
1128) were anchors showing a high level of differential effectiveness in
KRAS mutant versus WT models. Mutations in TP53 were associated
with lower effectiveness for 199 combinations of which 184 involved
nutlin (one-sided Wilcoxon test, FDR <0.2). This is expected since
nutlin is predicably ineffective in TP53 mutant cell lines14. Contrary to
expectations, we find that KRAS models did not respond to combina-
tions treatment significantly differently from the KRAS WT cell-lines.
This observation is further confirmed by a principal component ana-
lysis of the post-treatment viability values showing that KRAS WT and
KRAS mutant models do not segregate away from each other (Sup-
plementary Fig. 11). We also looked for differentially synergistic and
effective drug combinations between mutant and wild-type cell lines
involving over 400 cancer driver genes (provided in Supplementary
Data S1f). Although we could not find combinations that are differen-
tially synergistic between mutant and wild-type cell lines, we found
several combinations that were less effective in a given mutant in
comparison to the wild-type genotype (FDR <0.2): those include 684
and 217 drug combinations for TERT and MACF1 respectively (Sup-
plementary Data S4). For the mutant vs wildtype comparison for the
TERT gene, the most differential anchors were AZD7762 (CHK) and
pictilisib (PI3K); they appear in 196 and 163 out of 684 combinations,
respectively. For the MACF1 gene, the most differential anchor was
AZD7762 (appears in 196 out of 217 combinations).

Overall, the brunt of the synergistic events is hencenot accounted
for by the mutational state of recurrent cancer driver genes. This is in
keeping with previous studies of drug combinations reporting a rather
idiosyncratic pattern of synergy across models tested when classified
on genotype alone13,35,36,69,70. Additionally, there was little difference in

synergism or efficacy across subtypes of NSCLC (squamous, adeno-
carcinoma). Phenformin was the only anchor showing a subtype
imbalance, with adenocarcinoma models harboring more synergies
than squamous cell carcinoma models (P =0.00845, FDR <0.2, one-
sided Wilcoxon test).

To gain a more general view of the characteristics of the targets
involved in synergistic drug pairs, the protein–protein functional
interaction (PPI) database STRING71 was queried. This revealed that the
targets of highly synergistic drug pairs are closer in the PPI network
than the targets of non-synergistic drugs (P = 3.06 × 10−16, one-sided
Wilcoxon rank-sum test) (Fig. 7E). The same outcome was obtained
using either all evidence or only experimentally validated PPIs in
STRING and using median or maximum PPI score across targets. In an
analogousmanner, analysis of the KEGGpathwaydatabase72,73, showed
that combinations targeting proteins within the same rather than dif-
ferent pathways are more likely to be synergistic (corrected for total
number of targeted pathways to compensate for polypharmacology,
see Methods, P = 5.82 × 10−05, one-sided Wilcoxon rank-sum test)
(Fig. 7F), in accordance with previous findings74–77.

To further evaluate the potential clinical relevance and benefit of
the synergistic drug combinations identified here, a Cox regression
analysis was performed using patient tumor data in TCGA. After con-
trolling for single gene effects, age, sex, race, and cancer type among
the 981TCGANSCLC samples, the concomitant down regulation of the
genes composing 43 drug combinations (6.04%), were associated with
an improved patient survival (P <0.05, Methods, Supplementary
Data S5a). The BCL2-inhibitor navitoclax appears in 14 of these com-
binations. Repeating this analysis using copy-number data, showed
that for 33 drug combinations low copy-number of the corresponding
target pairs lead to improved predicted survival (Supplementary
Data S5b). Here, the BCL2-inhibitor Navitoclax appeared in 17 combi-
nations. We note that this survival analysis only provides limited cor-
relative support andobviously, shouldnot be taken as causal evidence.
We did not find an enrichment of highly ranked synergies for targets
whose downregulation is associated with increased survival benefit in
NSCLC patients (Fisher exact test, odds-ratio = 0.99, P =0.56).

To uncover what fraction of the synergistic combinations identi-
fied in the screen might arise from SL interactions between their tar-
gets (this conceptually differs from the previous analysis presented
above, where we quantified the direct SL-like interactions between the
drugs themselves based on their phenotypic reduction of cell viabi-
lity), we employed the ISLE pipeline75 to analyze the lung cancer
patient cohort of TCGA and identify the SL partners of each of the
targets of the drugs screened in our analysis. Among the 1166 SL pairs
found (Supplementary Data S6a, Methods), 83 drug combinations
were seen to be linked via their targets to any of these SL pairs. (Sup-
plementary Data S6b). Notably, among those, 21 drug combinations
were synergistic (top 25% of synergy scores, Supplementary Data S6c,
Fig. 7G). Some synergistic combinations like AZD7762 (CHK1/2) and
GSK269962A (ROCK), navitoclax (BCL2 family) and JQ1 (BRD) target

Fig. 7 | Relationship between sensitivity to single agents and combinatorial
outcome. A Combinations rarely affect viability beyond effects observable with
single agents. The effect of combination treatment on each cell line was compared
to the overall sensitivity to single agents observed across all cell lines. The per-
centile of cell lines in which the combination effect is superior to the effect of single
agents in any cell lines (super sensitive cell lines) is shown in three categories (0, no
observable supersensitive lines, 0–10% and over 10%). The cell lines are further
broken down based on their response to single agents (color). B Network view of
drug combinations resulting in super-sensitization. Anchors are displayed as
squares and library drugs as circles. Library drugs that are also used as anchor drugs
are represented by squares. C Supersensitive events are enriched in synergies. The
percentile of synergistic events (cell lines) are compared between combinations
that yield super sensitization versus (n = 92) those that do not (n = 4990). One-sided
Wilcoxon rank-sum test p value is shown. D Synthetic lethal drug pairs: Network of

drug combinations for drugs that yield substantial viability effect while single
agents are deemed inactive. E Drugs with targets that are in close interaction with
each other based on previously determined protein–protein interaction network
are more likely to yield synergies than those targeting un-connected proteins
(n = 157 ‘top-synergy’, n = 58 '‘no-synergy”). One-sided Wilcoxon rank-sum test p
value is shown. FDrugs that targetmembers of a given biological pathway aremore
likely to yield synergy than those that target members of different pathways
(n = 635 ‘top-synergy’, n = 784 '‘no-synergy'’). One-sided Wilcoxon rank-sum test p
value is shown. The box plots for figures (C), (E), (F) have median center, 25 and 75
percentiles (Q1 and Q3) as bounds of the box, the minima and maxima being
Q1 – 1.5 x IQR and Q3+ 1.5 x IQR (with IQR being interquartile range). G Synergistic
drug pairs for which targets are encoded by genes engaged in a synthetic lethal
interaction based on TCGA data analysis. H Synergistic drug pairs with experi-
mental evidence for a synthetic lethal relationship.
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genes that are predicted to be synthetic lethal based on the TCGA data
analysis. Anchors like navitoclax, phenformin, pictilisib (PI3K), palbo-
ciclib (CDK4/6) are involved in a few high synergy combinations that
target these synthetic lethal interactions, T0901317 is the only library
drug that is seen to have this relationship with more than one anchor
(Fig. 7G). We did not find an enrichment of top ranked synergistic
combinations among the combinations that have synthetic lethal tar-
gets (Fisher exact test, odds-ratio = 1.2, P =0.27). However, we believe
that these additional down-stream analyses are still of interest, as they
identify the subset that is also associated with survival effects, as
another potential indicator (albeit a very rough one) of their putative
translational value. Beyond that, we note that the lack of enrichment is
not very surprising, given the well-known discord between in vitro and
in vivo studies (e.g., refs. 78–80) and that not all drugs that are bene-
ficial will necessarily show a survival benefit (e.g., ref. 81).

Further, comparing the screened combinations to a published
dataset of SL pairs identified in cell lines82 (Supplementary Data S6d),
showed that for 155 targets, at least one SL pair exists (Supplementary
Data S6e) and that 55 of them are synergistic (Fig. 7H, Supplementary
Data S6f). Multiple synergistic combinations, including AZD7762
(CHK1/2) and Gemcitabine (DNA synthesis antimetabolite), AZD7762
and VE-821 (ATR), target genes that are synthetic lethal based on
experimental evidence. Some anchors like AZD7762, Pictilisib andOSI-
027 are involved in several high synergy combinations that target such
SL interactions and overall, a small number of library drugs are
involved in synthetic lethal relationship with multiple anchors
(Fig. 7H). Five drug combinationswerecommon toboth tumorderived
and experimentally derived SL pairs, of which 2 were synergistic:
Navitoclax + I-BET and navitoclax + JQ1, that are mapping on the same
targets (I-BET and JQ1 are both BRD targeting drugs). Thus, overall, SL
analysis in patient data can explain a relatively small subset of syner-
gistic combinations but might be useful to prioritize combinations
found in the screens, indicating that they may be clinically relevant.

Discussion
In this manuscript, we describe the outcome of a very large combi-
natorial drug screen surveying over 5000 two drug combinations
across 81 NSCLC highly characterized cell lines, some of which are
further tested in an additional validation screen. By mining the litera-
ture on published drug combinations and using prior knowledge of
cellular circuitry, we demonstrate the validity of both the data and the
analytical strategy. Overall, we capture a large number of known or
mechanistically transparent synergistic events that are consistent with
prior knowledge as well as a number of less characterized ones. A
subset of those have support from synthetic lethal analysis of NSCLC
patient tumors data, suggesting potential translational relevance.

To inform the robustness of the screen outcome we performed a
small validation screen using a different viability assay than our mas-
sive primary screen. Furthermore, we performed the validation screen
in a different facility than the primary screen. Consistent with our
findings that each anchor drugs synergizes strongly with the expected
library drugs across 81 cells lines, we observe that most frequently
synergistic combinations are re-captured in the validation screen.
Altogether, these results support robustness of our primary dataset.
However, we also observe that cell lines presenting with synergy in the
primary screen do not always match the cell lines in the validation
screen. This is a limitation of our results and is in keepingwith analyses
performed on robustness of screens across independent studies83 and
likely further exacerbated by the use of different viability assays.

To prioritize drug combinations that are less toxic, we tested the
same 29 drug combinations used in the validation screen on a couple
of immortalized non-cancerous cell lines and identified a subset of
them that are selectively effective or synergistic in cancer cell lines.
However, further in vivo experiments are required to evaluate their
toxicity and further prioritize combinations for translational

investigations, given the obvious limitations of using cell lines for
toxicity studies.

One of the most striking outcomes of our analyses is that syner-
gistic combinations aremostly sparse and thus highly context specific.
This is in line with the findings recently reported studying a large drug
combination screen of breast, colorectal, and pancreatic cancer cell
lines84. Interestingly, some of the top synergistic combinations iden-
tified in the present work were also present in other cancer types
studied in the Jaaks et al. study84. Of note, synergy between CHK1/2
inhibition andWEE1 inhibition is common across models from diverse
tumor types.More generally, wefind that combining drugs that are not
active as a single agent almost never yields synergy. In addition,
combining two drugs tends to render single agent resistant cell lines
responsive rather than further sensitize already sensitive cell lines.
Furthermore, sensitive cell lines rarely become super-sensitive, as
combination effects mostly fall within the minimum viability levels
observed for their individual components across all cell lines. While
this could potentially correspond to limited efficacy of combination of
agents that are not efficacious on their own, exceptionally sensitizing
combinations can be found. In addition, synergism might more
broadly provide benefit by allowing context specific activity of lower
drug doses than used with single agents. The mutational status of
major cancer genes is not highly predictive of synergy, as observed in
other studies. Finally, synergy ismore likely to emerge from targeting a
single pathway or two interacting pathways, than by targeting two
completely distinct pathways or functional modules of the cell. This
finding is aligned with previous reports based on studying genetic
perturbations in lower organisms74. One potential model explaining
these findings is that when two combined drugs target sufficiently
independent cellular functions then the highly evolved and robust
homoeostatic control of the cellular system prevails.

There is still considerable debate over what is synergy. Several
competing models, that nevertheless often yield congruent
conclusions26 are used to qualify and quantify synergy. Here, a synergy
scoring based on statistical independence akin to the broadly used
Bliss model was used. We and others have previously demonstrated
that this model is indeed valid to study viability outcome upon com-
binatorial treatment35,85. Nevertheless, it is often pointed out that this
type of modeling can in some instances assign synergy to cases of self-
additivity. It is important to note that this counter intuitive outcome is
limited to a small number of drugs. Examination of the relationship
between self-synergy paradox and dose response shows that the drugs
concerned have very steep dose response curves. Indeed, as seen here,
vorinostat for example, has a much steeper dose response curve than
most other drugs (see Supplementary Note 4 for details). Our results
indicate that synergy is overall a rare event, thus most drug combi-
nations are explained by the independent action of the two drugs
combined (as explicit in the Bliss hypothesis). This is aligned with
recent modeling of clinical combination effectiveness86 and their his-
torical empirical development in cohorts of molecularly hetero-
geneous patients4.

Supersensitive combinations compose a different entity than
synergistic combinations. The former denotes a specific class, where
the combination achieves a response (in a subset of cell lines) that is
higher than the highest response of any of the two drugs composing it
observed across any of the cell-lines. Synergistic combinations, in
difference, are combinations that achieve better response than the
individual drugs composing them in many cell lines, but not necessa-
rily better than the best individual cell-line response. Our interest in
supersensitive combinations has been specificallymotivated by recent
work presenting the Independent Drug Action (IDA) principle86, which
has claimed that the vast majority of combinations fail to achieve a
response that is higher than the highest response of any of the indi-
vidual drugs composing them. From a translational standpoint, we
would like to identify combinations that are not only synergistic (that
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is, better than the mean additive effect of the individual drugs across
cell-lines), but also supersensitive (that is, better than expected across
all cell-lines). Though the two classes are overlapping to some extent,
we believe that each captures a different and important notion from a
translational standpoint.

In summary, this work presents and analyzes the results of a very
large dataset of drug combinations across lung cancer. The resulting
dataset, that we make fully accessible to the scientific community,
substantially expandsonprevious publicly available resources for drug
combinations mining and modeling. There are many more analyses
that could be performed using the data herein. Beyond that, our hope
is that these data will foster the development of additional analyses
and novel computational approaches advancing the prediction of
drug-drug combinations outcome and our understanding of the rules
underlying beneficial drug interactions in cancer.

Methods
Drug screening and cell viability determination
Cell line sources are listed in (Supplementary Table S3). Drug screen-
ingwasperformedusing automated liquidhandling in a 1536-well plate
format. The drug doses used were chosen based on previous single
agent screening at the Center for Molecular Therapeutics of the Mas-
sachusetts General Hospital Center for Cancer Research. The screen of
twodrugA andBwas performed in a 1 × 5 formatwith onedoseof drug
A (anchor drug) combined to five doses of drug B (library drug) and
compared to the effects of the five doses of drug B alone. The five
doses of drug B followed a √10 dilution series. Screening was per-
formed in replicate (two separate 1536 well plates).

Effect of drug treatment was determined by enumerating cell
nuclei 5 days after the addition of drugs (day 0 designate the seeding
day and day 1 the drug treatment day; no change of culturemediumor
drug re-addition were performed). Cells were seeded at densities
optimized for proliferation based on pre-screen experimental deter-
mination in 1536 well plate format.

Cells were seeded, placed overnight at 37 °C and drugs added the
next day using a pin tool.

After 5 days in drug cells were fixed permeabilized and the cells’
nuclei stained in a single step by adding a PBS Triton X100/For-
maldehyde/Hoechst-33342 solution directly to the culture medium.
Final concentrations: 0.05% TX-100/1% Formaldehyde/1 ug/ml
Hoechst-33342. Plates were covered and placed at 4 °C until imaging.
Imaging was performed on a ImageXpress Micro XL (Molecular Devi-
ces) using a 4 × objective. Cell nuclei enumeration was performed
using the MetaXpress software and count accuracy was routinely
checked visually during acquisition.

No washing of plates was performed at any point post seeding.
Viability was computed as the ratio of number of nuclei in the

drug treated wells over those in the control (DMSO treated) wells. For
the drug combination plates, the anchor drug was added to all wells.
The relative viability (compared to anchor alone treatment) was then
computed by dividing the number of nuclei in treated (drug combi-
nation wells) by the anchor drug alone wells. This viability was then
compared to the viability computed from the single agent wells
(DMSO as an anchor). This allows for direct comparison of drug effect
without using the values of the DMSO only wells (in the DMSO
anchored plate) to compute drug combination effect. While mathe-
matically equivalent to the cross plate comparison, this approach
allows to minimize data noise due to potential plate to plate cell
seeding number variation. Quality control criteria included a CVof less
than 25% of the control wells (either DMSO alone wells for the DMSO
anchored plates or Anchor alone in the Combination plates) and a
cellular proliferation of at least one doubling. We combined replicates
by taking themedian values of the viability scores for each cell line and
drug combination for each library drug dose. Proliferation was com-
puted by comparing Day1 untreated plates (seeded concomitantly

with the assay plates and fixed the day after seeding) to the DMSOonly
wells in the Day 6, DMSO anchor plates (Assay plates).

Highest single agent (HSA) scores and synergy scores
We compute the HSA effect for each drug combination (on a cell line
for a particular dose) by subtracting the combination viability minus
the best (minimum) viability of the corresponding individual drugs. A
negative value implies that the drug combination is more effective
than the better of the two individual drug effects.

Synergy scores are computed using the Bliss model (Goldoni and
Johansson, 2007; see Supplementary Note 1 for details). The lower the
score, the more synergistic the drug-combination is. A drug combi-
nation is synergistic if its score is less thanone. For each anchor-library-
cell-line combination, we also compute the second-best synergy score
among all the five library doses. We defined a drug combination to be
highly synergistic in a cell line, if its synergy score (second-best, i.e.,
second-lowest) is less than a certain percentile (for example, five per-
centile or value of 0.732) of all combinations in all cell-lines. We show
our results using various thresholds for detecting high-synergy com-
binations. We also compute the percentage of cell lines which are
highly synergistic for each combination, and then rank all drug com-
binations based on this measure.

We computed empirical p values for synergy scores for each drug
combination at thefive librarydrugdoses and the second-best synergy
score by converting the log-transformed synergy scores (to make the
synergy ratios more normal distribution like) into z-scores and then
computing empirical p values assuming a normal distribution. Simi-
larly, empirical p values were also computed for HSA values for all cell
lines and combinations (Supplementary Data S7).

To see if the replicates agree on the strength of synergy, we
checked if the synergy scores obtained between the two replicates are
correlated, by computing the Spearman’s correlation between their
synergy scores across all cell lines and doses.We find a very significant
positive correlation between the two replicates for each one of the
21 × 242 drug combinations (Supplementary Data S9).

Super-sensitizers
For eachdrug combination, we score the cell lines based on themaxof
the two drug effects (minimum viability). The ten lowest ranked cell
lines are considered to be resistant cell lines for the combination. The
ten top ranked cell lines are considered to be sensitive cell lines for the
combination (excluding the most sensitive cell line). Now we check if
the combination response (for library dose D4) in the resistant/sensi-
tive cell lines is better than the best individual drug effect in the most
sensitive cell line. If the combination effect is indeedbetter, we say that
the combination makes the cell line super-sensitive. We considered all
combinations which show super-sensitizer effect in at least 10% of the
cell lines, and called them super-sensitizers.

Drug-target mapping
We mapped the drugs to their targets using several resources:
DrugBank87, Selleckchem.com. The mapping is shown in Supplemen-
tary Data S1c, d.

Protein–protein interaction (PPI) scores
We downloaded PPI network scores from the STRING database71

(downloaded on Aug. 8, 2019).We computed the PPI interaction score
between the drug targets of any two drug combinations. If drugs have
multiple targets, we either compute the max or median PPI score
between the respective drug target pairs. We did this analysis using
both the entire PPI network and by considering only drug target pairs
which are bound to each other (called ‘binding’ in STRING).

The PPI score for the drug targets of the top synergistic combi-
nations (based on top 5% synergy score overall) was computed based
on all PPI information types in STRING. The PPI scores for the synergies
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with high scores in at least 10% of the cell lines tested (637 combina-
tions) were compared to those for the non-synergistic pairs (lacking
any strong synergy across cell lines, 743 combinations). For multi
targeted drugs the maximum PPI score across targets was considered.
This is for the analysis in Fig. 7E. The same results were obtained using
only experimental binding evidence for PPI in STRING or using the
median PPI score across targets rather than the maximum across
targets.

Patient survival analysis and synthetic lethal (SL) analysis
To test whether clinical survival benefit could potentially be derived
from treatment with synergistic drug combinations identified, we
mined data from981 TCGANSCLCpatients (lung adenocarcinoma and
lung squamous cell carcinoma patients). Only combinations whose
targets could be mapped to TCGA gene set and with less than four
targets per drug were considered because a search across a large
number of targets might show a survival signal by chance. There were
712 such drug combinations among the top 25% most frequently
synergistic combinations. For these combinations, low expression
(below 33 percentile) of at least one of all potential target pairs yielded
an improved survival benefit after controlling for single gene effect,
age, sex, race, and cancer type among the 981 TCGA NSCLC patients
(both lung adenocarcinoma and lung squamous cell carcinoma
patients88,89). The assumption being that the down-regulation of the
target pair(s) may simulate clinical administration of the combination.

We used a computational method called ISLE75 which mine 981
TCGA NSCLC patients (lung adenocarcinoma and lung squamous cell
carcinoma patients) to identify clinically relevant SL pairs. ISLE uses
four different filters: (a) It firsts mines in vitro shRNA/CRISPR datasets
spanning hundreds of cell lines to identify potential SL candidates; (b)
It then looks for negative selection of co-inactivated gene pairs using
gene expression and copy number analysis in TCGA cancer patients;
(c) ISLE then selects gene pairs whose co-inactivation (low expression
or copy number) is associated with improved survival; (d) It finally
selects SL pairs where the genes have high phylogenetic similarity.
More details of thismethod is explained in ref. 75. FDR thresholdof 0.2
was used for this analysis. We mapped the drug combinations to their
targets andmined for clinically relevant SL interactions between these
target pairs. Only drug combinations where both the individual drugs
have less than four targets are considered for this analysis. We iden-
tified experimentally derived SL gene pairs from various studies. The
compilation of these various studies is provided in ref. 90. There are
27975 experimentally identified SL pairs (Supplementary Data S6d).

In both these analyses, a highly synergistic drug combination in a
given cell line is by considering the top 5 percentile.

Analysis for Fig. 5D–F
For a fixed threshold of synergy or HSA, for each library drug at some
dose, we look at all the anchor and cell line combination and check the
fractionof thembelow thefixed synergy/HSA threshold (percentageof
high HSA or high synergy). This will be our fraction of high synergies/
HSAs for that library drug at some dose. We plot a density of these
values for the fixed synergy/HSA threshold. We repeat the above
procedure for different thresholds of synergy andHSA.We can also do
the above procedure for a particular anchor drug.

Validation screen: quantitively high-throughput and matrix
screening
All cell lines except for H2009 and A549 were purchased from Amer-
ican Type Culture Collection (ATCC, Manassas, VA). H2009 and A549
were obtained from internalNCATS stock. Cell culture conditionswere
as follows:H727, H1437, H1666, H1703, H1734, H1755, H1915,H2347 and
H2405 cells were grown in RPMI1640 medium (ATCC 30-2001); A549
cells were grown in F12K medium (ATCC 30-2004), A427, Calu-6 and
SK-Lu-1 cells were grown in EME medium (ATCC 30-2003); H1651 and

H2009 cells were grown in DMEM: F12 medium (ATCC 30-2006). All
media was supplemented with penicillin/streptomycin and 10% fetal
bovine serum (FBS). All the celllines were maintained at 37 °C in a
humidified CO2 incubator. For pairwise drug-combination assess-
ments inmatrix format, compoundswere acoustically dispensed into a
1536-well white solid bottom tissue culture-treated plate
(EWB041000A, Aurora Microplates, Whitefish, MT, USA) with an Echo
550 acoustic liquid handler (Labcyte, San Jose, CA, USA). A 9-point
custom concentration range with 1:2 dilution between points was used
for each drug-pair tested. Bortezomib (final concentration 20.3 µM)
was used as a positive control for cell cytotoxicity. Cells were seeded
into compound-containing plates at a density of 500 cells/well, in a
final volume 5 µL of growth media by using a Multidrop Combi dis-
penser (Thermo Fisher). Plates were covered by a stainless-steel gas-
keted lid to prevent evaporation and incubated for 48 h in a humidified
CO2 incubator. At the 48-h time point, 3 µL of Cell Titer Glo (Promega)
was added to each well using a Multidrop Combi dispenser and plates
were incubated at room temperature for 15min with the stainless-steel
lid in place. Luminescence readings were taken using a Viewlux reader
(PerkinElmer) with a 2 s exposure time per plate. Viability of com-
pound treated wells was normalized to DMSO and empty well controls
present on each plate, and combination-response plotting was auto-
matically performed for each individual drug+drug combination.

There are 29 drug combinations and 15 NSCLC cell lines in the
validation screen, out of which there are 27 common drug combina-
tions between the original and validation screen. The validation
experiments were done in 10 doses × 10 doses in 4 different dilution
series. high maximum×high maximum, low maximum× low max-
imum; high maximum× low maximum, low maximum×high max-
imum. From this HSA score and synergy score was computed for each.
Because of this, the overall robustness of the outcome on a given
combination is high andwe take the best overall score for each cell line
drug combination. An Excess_HSA score of less than−1000was chosen
as threshold to designate best combinations. The cell-line drug com-
bination in the original screen was chosen to be highly synergistic if its
second-best synergy score was in the top 20 percentile among the
combinations considered for this analysis. Each of the common drug
combinations (in both the original and validation screens, separately),
were rankedbasedon thepercentageof cell lines (15 cell lines) inwhich
they were highly synergistic. Spearman’s correlation between the
ranking of the drug combinations in both the original and validation
screens was then performed.

For the 29 drug combinations (out of which there are 27 common
drug combinations between the original and validation screens, and
the remaining two combinations are matched based on similar drug
targets), we tested for the concordance of drug combination sensi-
tivity between the original screen and validation screen by measuring
the correlation (both Spearman’s and Pearson’s correlation) between
the viability scores across all 15 NSCLC cell lines between the two
screens. In the original screen, as in most of our analysis, we con-
sidered library drug dose D4. For the validation screen, we considered
the closest anchor and library dose concentrations that correspond to
the corresponding doses used in the original screens. A similar analysis
was also done when quantifying and analyzing the individual drug
response. We also repeated the concordance analysis by removing
outlier cell lines and considering only cell lines having a Spearman’s
ρ > 0.25 between the original screen and validation screens (the per-
taining results are reported in the main text).

For the toxicity analysis, we tested the 29 drug combinations on
two non-cancerous cell lines in addition to the 15 cancer cell lines. We
have four block IDs that map to each drug combinations. For each
block ID, we took themedian viability score by considering all (10 × 10)
doses. Then for each combination, out of four block IDs, we took the
best (minimum) viability for every cell line. This forms the viability
score for each drug combination in each cell line. We then identified
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drug combinations that are more effective (using viability scores) in at
least 80% (n ≥ 12) of the 15 NSCLC cell lines in comparison to their
effectiveness in the non-cancerous cell lines. A similar analysis was
done for synergy (ExcessHSA score). For computing statistical sig-
nificance of either more effective or synergistic drug combinations in
cancer cell lines in comparison to non-cancerous cell lines, we con-
sidered all the four replicates (block IDs) and computed one-sided
Wilcoxon rank-sum test between viability or synergy scores between
cancer and normal cell lines (FDR <0.1).

DrugCombDB analysis
Matching the drug names and cell line names in our cohort with the
DrugCombDB database61, we find 6 NSCLC cell lines and 447 drug
combinations that match. Whenever there were any replicates in the
DrugCombDB database we took the median synergy or HSA score
across replicates. For each drug combination, we ranked the combi-
nations by the number of cell lines which are synergistic for that
combination (median synergy score >0was considered as a synergistic
event in the DrugCombDB data, whereas second-best synergy ratio <0
in our cohort). Spearman’s correlationwas computed between the two
ranked lists.

Statistics and reproducibility
We used statistical methods like Wilcoxon rank-sum test91 to analyze
differences in synergy or viability between two groups of cell lines.
Multiple hypothesis correction (FDR correction) was done. Fisher
exact test was used to test for enrichment. The code and data for main
analysis has been made available for reproducibility. No data was
excluded from the analyses. No statistical method was used to pre-
determine sample size. The experiments were not randomized. The
investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed drug combination screen data are provided in Sup-
plementary Data S1, S2, S8. The raworiginal screen data are available in
Supplementary Data S12. Protein–protein interaction network scores
from the publicly available STRING database71 (downloaded on Aug. 8,
2019) were used.

Code availability
R software was used the analysis. Code and data for the key analysis of
this work is provided here: https://github.com/nishanth83/NSCLC.git
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