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Behavioral decomposition reveals rich
encoding structure employed across
neocortex in rats

Bartul Mimica 1,4 , Tuçe Tombaz2,4, Claudia Battistin 2,3,
Jingyi Guo Fuglstad2, Benjamin A. Dunn 2,3 & Jonathan R. Whitlock 2

The cortical population code is pervaded by activity patterns evoked by
movement, but it remains largely unknown how such signals relate to natural
behavior or how theymight support processing in sensory cortices where they
have been observed. To address this we compared high-density neural
recordings across four cortical regions (visual, auditory, somatosensory,
motor) in relation to sensorymodulation, posture, movement, and ethograms
of freely foraging male rats. Momentary actions, such as rearing or turning,
were represented ubiquitously and could be decoded from all sampled
structures. However, more elementary and continuous features, such as pose
and movement, followed region-specific organization, with neurons in visual
and auditory cortices preferentially encodingmutually distinct head-orienting
features in world-referenced coordinates, and somatosensory and motor
cortices principally encoding the trunk and head in egocentric coordinates.
The tuning properties of synaptically coupled cells also exhibited connection
patterns suggestive of area-specific uses of pose and movement signals, par-
ticularly in visual and auditory regions. Together, our results indicate that
ongoing behavior is encoded at multiple levels throughout the dorsal cortex,
and that low-level features are differentially utilized by different regions to
serve locally relevant computations.

Our knowledge of sensory and motor cortical processing is founded
largely on approaches in which neural systems are studied in
isolation1–5, using laboratory tasks where animals perform a priori
defined subsets of behaviors in response to experimenter-defined
stimuli6. While such approaches bring essential reliability and control,
they also restrict the scope of actions animals can express, which limits
understanding of the broader array of features to which these systems
respond when animals engage in natural behaviors7–9. This knowledge
gap is underscored by observations in head-fixed animals showing
that self-generated movements, independent of behavioral tasks,

profoundly affect cortical activity patterns10,11, including in primary
visual cortex, with animals in darkness and under no explicit cognitive
burden12. Great strides have been made in the last decade linking self-
generated movements with gain modulation and predictive proces-
sing in sensory cortices13–20, but sensory systems are rarely studied in
tandem, and most systematic progress has been achieved by exploit-
ing the advantages of head-fixed preparations. Consequently, it is not
well understood howmovement-associated signals reflect the animals’
natural behavioral repertoire or if the features encoded vary by region
to support local forms of processing.
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It is becoming possible to address such questions in freely
behaving animals owing to advances in quantitative pose
estimation21–24, as well as unsupervised machine learning
approaches25–28 for classifying unique actions based on underlying
structure in tracking data. When paired with neural recordings, such
techniques have afforded a range of recent discoveries, including how
subcortical circuits generate sub-second patterns of behavior29 or
encode action space30, the characterization of escape behaviors31, or
how different pharmacochemical substances leave tractable traces on
the behavioral landscape32. Furthermore, machine learning has also
enabled researchers to infer rodents’ emotional states from facial
videos33 or control virtual rodent behavior34, demonstrating the full
promise in carefully quantifying animal actions.

Here, we sought to leverage such advances to determine the
extent to which momentary behavior was represented across four
major sensory andmotor cortical regions, andwhether the codingwas
uniform or varied depending on the region in which it occurred.
Whereasnaturalistic actionswereencodedubiquitously in sensory and
motor areas alike, finer-grained features of pose andmovement varied
from one region to the next, following extended topographies that
overlaid neighboring areas. In relation to sensory processing, pose and
movement signals were integrated to similar degrees among sound-
and light-sensitive cell populations in auditory and visual cortices, but
closer analyses of putative synaptically connected pairs of neurons
suggested different uses of pose andmovement signals in each region.
Thus, by considering neural tuning at different levels of behavioral
complexity and among functionally connected neurons, we show that
action representation may be a global feature of sensory and motor
cortical systems, but that different regions preferentially encode dif-
ferent physical aspects of posture andmotion, presumably to support
locally unique computations during active sensing and movement.

Results
Naturalistic actions are represented across sensory and motor
cortices in freely foraging rats
We combined 3Dmotion capture with chronic Neuropixels recordings
to track the heads and backs of freely moving rats while recording
large ensembles of single units from primary motor and somatosen-
sory cortices (Fig. 1a, top; 4 animals, 1532 and 792 cells, respectively;
“Methods”) or visual and auditory cortices (Fig. 1a, bottom right; 3
animals, 1633 and 526 cells, respectively). Recording sites were loca-
lized to different cortical regions using a custom pipeline (Supple-
mentary Fig. 1a–e and “Methods”), which allowed us to triangulate the
anatomical position of individual channels along each probe (Supple-
mentary Fig. 1f, g). Single units were classified as regular- or fast-
spiking (RS or FS) by their spiking profiles (Supplementary Fig. 2 and
“Methods”) andwere assigned to cortical sub-regions (e.g., S1 hindlimb
region, S1 trunk, primary or secondary auditory, etc.)35 in four over-
arching areas (motor, somatosensory, visual, auditory). Due to probe
implantation angles, single units across visual and auditory cortices
were sampled unequally across layers (V1 (L2/3 to L6), V2L (L6), A2D
(L5 and 6) and A1 (L5 and 6; L4 in one animal); Supplementary Fig. 3).
Somatosensory and motor cortical recordings included both super-
ficial and deep layers (L2/3 and L5), but only superficial layers in
somatosensory cortex (S1Tr; S1HL) were sampled sufficiently for
analysis.

Animal behavior can be assessed at different levels of complexity,
ranging frommomentary poses to species-typical actions like rearing,
and over longer time scales to capture hierarchical structure following
shifts in internal states such as arousal or hunger27,36,37. We focused
here on individual actions expressed over 20 minute sessions while
rats were actively engaged in open field foraging. Actions were iden-
tified using existing approaches27,38 to transform raw tracking data
pooled across rats into sets of postural and movement features, and
ultimately into a time-resolved ethogram (Fig. 1b and “Methods”). The

animals’ combined ethogram consisted of 44 independent modular
actions (Fig. 1c and Supplementary Figs. 4 and 5) comprised of unique
composites of rudimentary pose and movement features (Supple-
mentary Fig. 6a, b), that followed characteristic transition probabilities
which were conserved across light and dark recording conditions
(Supplementary Fig. 4b). The action “running, head up”, for example,
was most often followed by “running, head level, scanning”, whereas
“still, back hunched, head down” was followed by “still, curled right,
head down”, such as during grooming. As expected with freely
behaving rodents26,27, actions comprising the ethogram were not
sampled equally (Fig. 1c, center) and varied from one session to the
next (Supplementary Fig. 7a, top), though with greater commonality
within individuals than between them (Supplementary Fig. 7b, top).
The behavioral dynamics observed were also likely influenced by the
foraging task, differing from purely exploratory behavioral patterns
expressed in novel environments39.

With the behavioral phenotype of the rats profiled, we char-
acterized how neural responses in different cortical regions mapped
onto the spectrum of identified actions, with analyses limited to
recordings in darkness tominimize visual confounds. We found stable
encoding of nearly every considered action by individual neurons in
each cortical region (51% of neurons in visual cortex, 55% in auditory,
58% in motor and 56% in somatosensory; Fig. 1c), with most cells
responding to multiple actions and fewer to single actions (Supple-
mentary Fig. 7c, Supplementary Movies 1–6, and “Methods”). This
was observed in all animals, irrespective of the specific placement of
the recording probe, and the distributions of encoded actions were
similar across regions (Fig. 1d and Supplementary Fig. 7b, bottom).
Since sensory and motor coding properties can vary between FS and
RS neurons17,40,41, and between superficial and deep cortical
layers16,40,42, we further examined whether action encoding varied by
cell type or lamination. We found that FS and RS neurons encoded
similar ranges of actions within regions (Supplementary Fig. 8a), and
that comparable fractions of cells encoded actions in superficial and
deep layers in motor cortex, whereas action encoding in visual and
auditory cortices was more common in layers 5 and 6 (Supplemen-
tary Fig. 8b). Crucially, decoding analyses at the ensemble level
revealed that nearly any of the 44 independent actionswith sufficient
sampling could be predicted beyond chance in any of the four
overarching areas (Fig. 1e and see Supplementary Fig. 9 for confusion
matrices). Overall decoder accuracy was lower in visual cortex rela-
tive to other regions, but increased in all areas with larger numbers of
simultaneously recorded cells (Supplementary Fig. 10). Moreover,
decoding accuracies from sessions withmore than 100 neurons were
positively correlated (Spearman’s ρ = 0.39 ± 0.11 (mean ± std),
p = 0.007; permutation test), underscoring cross-regional similarities
in action modulation.

Expression and statistical modeling of elementary pose and
movement features
Although action representation was widespread in sensory and motor
cortices alike, the uniformity of encoding gave few clues as to how
such signals might influence processing in one region versus another.
To gain traction on this question we more closely inspected neural
tuning to finer grained behavioral features in each area, including
posture and movement of the head, neck and trunk (along Euler axes
of pitch, azimuth and roll), as well as whole-body movements such as
self-motion and running speed. Head posture and movement were
further divided into egocentric (relative to the trunk) or allocentric
(relative to the world) reference frames, for a total of 23 features
(“Methods”). Subsets of neurons in superficial, granular or deep layers
of each region exhibited stable tuning curves for at least one of the
considered features (Fig. 2 and Supplementary Fig. 11), similar to tun-
ing reported previously in posterior parietal and motor cortices43,44.
Coding properties of the cells were established by a statistical model
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selection framework (Supplementary Fig. 12a and “Methods”), again
using recordings conducted in the dark. For each region we quantified
(i) the fraction of neuronswith selected covariates providing the single
best out-of-sample fit relative to the intercept-only model (Fig. 3, inset
pie charts), (ii) the proportion to which each covariate was selected
among all selected covariates (Fig. 3, polar plot wedge widths), (iii)
meancross-validated relative log-likelihood ratio (rLLR, “Methods”) for

each selected feature (Fig. 3, polar plot wedge heights), and (iv) the
distribution of covariate counts, i.e., model sparsity (Fig. 3, gray his-
tograms). The rLLR values in the polar charts illustrate how much the
predictive power of the GLM suffered when a given feature was
removed, i.e., the “importance” of that feature to the model. A gra-
phical breakdown of the framework is provided on data pooled across
regions (Supplementary Fig. 12b), as is the distribution of mean cross-
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validated pseudo-R2 (“Methods”) values across selected models for
each area (Supplementary Fig. 13).

Visual and auditory cortices encode the head in world-
referenced coordinates
Themajority of cells in visual cortex (62%) were selected as coding for
one or more behavioral covariates (Fig. 3a, pie and polar charts), the
strongest of which was for combinations of features capturing allo-
centric head movement along the horizontal plane (specifically, azi-
muthal head movement and planar body motion; Fig. 3a and
Supplementary Table 1, bottom), as well as egocentric head posture.
The same features were represented in superficial and deep layers, but
by larger fractions of cells in layers 5 and 6 (Supplementary Fig. 14),
consistent with laminar trends for encoded actions. Regular- and fast-
spiking neurons also encoded the same covariates, though among a
slightly larger proportion of FS than RS neurons (72% vs. 60%,
respectively; Supplementary Fig. 15).

Behavioral tuning in auditory cortex was similarly widespread,
with63%of cellsbeing explainedby at leastone covariate.Unlike visual
regions, auditory neurons principally encoded features conveying
gravity-relative head orientation (Fig. 3b, pie chart), with spiking
activity best fit by models for allocentric head roll and pitch, followed
by egocentric head posture (Fig. 3b, polar chart and Supplementary
Table 1, bottom). Cells in different layers encoded the same features,
but again in larger proportions in deep layers (Supplementary Fig. 14),
and coding was expressed evenly across RS and FS neurons (Supple-
mentary Fig. 15). In both visual and auditory regions, the proportion of
selected covariates and their contribution to model performance
depended little on whether the cells had high pseudo-R2 values
(Supplementary Figs. 16 and 17). The overall number of tuned cells and
their tuning properties were also largely similar across primary and
secondary subareas, but neurons in primary areas consistently exhib-
ited higher rLLRs (Supplementary Fig. 18a), and were better fit by
sparser models, which was clearly contrasted by more complex
behavioralmodulation in secondary cortices (Supplementary Fig. 18b).

Somatomotor regions encode the trunk and head in largely
egocentric coordinates
Primary motor cortex had the largest fraction of cells encoding low-
level features (79%), which principally included planar body motion,
back movement and egocentric head posture (Fig. 3c, pie chart and
Supplementary Table 1). This corresponded well with back movement
and self-motion being among best represented features among clas-
sified cells (Fig. 3c, polar chart). Mean cross-validated rLLRs were
moderate and strikingly similar across the most prominent features
(Fig. 3c, polar plot), in agreement with complex models best
accounting for motor cortex spiking activity (Fig. 3c, gray histogram).
These models also generally exhibited higher explanatory power
compared to those selected in other areas (Supplementary Fig. 13,

median cross-validated pseudo-R2 for auditory (0.02), visual (0.01),
motor (0.03) and somatosensory (0.02) areas), as could be expected
from a cortical region involved primarily in generating movement.

Our recordings also uncovered dense representation of head
kinematics, particularly in the deep layers of motor cortex (Supple-
mentary Fig. 14), which presented the opportunity to determine if
neural encoding of spatial kinematics changed with an added load on
the head45,46. We therefore performed additional recordings with a 15 g
weight added to the animals’ implants (Supplementary Fig. 19a) to
determine if this changed the shape or stability of tuning curves for
head posture in motor cortex or, for comparison, visual cortex. The
added weight caused the animals’ heads to roll slightly towards one
side (Supplementary Fig. 19a), but had little effect on behavior or
tuning in either motor or visual areas (Supplementary Fig. 19b,c),
except for higherfiring rates and stability of azimuthal egocentrichead
posture tuning across weight-free sessions (Supplementary Fig. 19d
and Supplementary Table 2). Likewise, similar proportions of beha-
vioral covariates were selected by GLMs trained on recordings from
the first weight-free session and cross-validated separately on
recordings with or without the head weight (Supplementary Fig. 20).

Somatosensory cortex primarily responded to planar bodymotion,
back movement and posture (Fig. 3d). It had the largest overall pro-
portion of unclassified units (51%; Fig. 3d, pie chart), though a notably
larger fraction of FS neurons were tuned than RS neurons (69% vs. 46%,
respectively), particularly for back movement and planar body motion
(Supplementary Fig. 15). Compared to other areas, somatosensory
neurons were better fit by sparser models containing either one or two
covariates (Fig. 3d, gray histograms). Lastly, having also captured head
kinematics with head-mounted accelerometers, we comparedmodeling
results based on accelerometer-generated covariates to those based on
optical tracking. Although both approaches revealed encoding of allo-
centric head features in auditory and visual cortices, only optical
tracking, which included tracking of the back, was suited to distinguish
thedominant egocentric head andback-related receptivity inmotor and
somatosensory areas (Fig. 3a–d and Supplementary Fig. 21).

Topographical mapping of behavioral features across cortical
regions
Up to this point in the study we found that discrete, naturalistic
behaviors were represented throughout the cortical areas recorded,
and were composed of simpler posture and movement primitives
whose expression appeared to vary regionally. We therefore
next sought to establish (i) how the neural coding of pose and move-
ment was organized within and between regions, (ii) the extent to
which pose and movement signals were integrated with sensory input
in visual and auditory cortices, and (iii) how pose and movement sig-
naling might be utilized in different areas.

For the first question, we assessed whether region-specific dif-
ferences revealed by the GLM analysis emerged abruptly between

Fig. 1 | Encoding and decoding of natural actions is robust in visual, auditory,
motor and somatosensory cortices. a (Top) Neuropixels probes implanted in the
left hemisphere were tilted 60-70° in the sagittal plane, traveling anteriorly from S1
to M1. (Bottom) Separate animals were implanted with probes in the right hemi-
sphere tilted 45--50∘ in the coronal plane, progressing laterally through primary and
secondary visual and auditory cortices. b (Left) To extract discernible actions, time
series were generated for each postural feature of the head (pitch, azimuth, roll)
and back (pitch, azimuth), together with running speed and neck elevation. (Mid-
dle) Data were then detrended and decomposed spectrally using a Morlet wavelet
transform. (Right) Features fromall animalswere sub-sampled and co-embedded in
two dimensions using t-SNE, followed by watershed segmentation, producing a
map in which distinct actions separated into discrete categories. c (Middle) A map
of identified actions, color-coded for occupancy, shows cumulative sampling of the
44 actions. d The fraction of cells encoding each action, arranged by numerical
labels (1 to 44), in each overarching region; all regions encoded both still and active

behaviors. In visual cortex, themost common actions included #5, “still, headdown
left, curl left” and #22, “running, head level, scanning''. Action #5 was also most
common in auditory cortex, followed by #26, “walk, clockwise head roll''. Motor
cortical neurons most commonly encoded action #24, “still, CW head roll, slight
up” and action #22, “running, head level, scanning'', while somatosensory neurons
most frequently encoded action #23, “running, head up''. Dots indicate encoding
rates for each animal in each session, bars and error bars denote the mean and ±
standarddeviation (stdv), respectively. eDecoding accuracy for each action in each
cortical area, with analyses restricted to 60 cells to match sampling across regions.
Dots denote decoder performance in each session for each rat, bars denote the
mean, error bars denote ± stdv; gray bars show decoder performance consisting
only of a prior distribution; actions with insufficient sampling shown as striped
bars. Rat illustrations by Falconieri Visuals. ⓒ All Rights Reserved. Source data are
provided as a Source data file.
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areas, or followed continuous topographies that spanned cortical
boundaries. The first covariates we considered were allocentric head
posture and movement in visual and auditory areas, since they were
represented most prominently and had previously only been studied
within V116,17,40. This revealed a graded increase in allocentric head
posture coding that progressed laterally from V1 to V2L and peaked in
A2D, (χ2(7) = 29.5, p = 4.8e−5), as well as a peak in allocentric head

movement tuning nearby in V2L (χ2(7) = 13.09, p = 0.04; Fig. 4a and
“Methods”; data from individual animals shown in Fig. 4b). The
representation of planar body motion features (e.g. self-motion and
turning direction) also increased laterally across V1 and reached a
maximum in deeper cortical layers at the border of V1 and V2L (χ2(7) =
18.2, p = 0.006; Fig. 4a, b and Supplementary Fig. 14). Together, these
covariates largely accounted for the apex of coding cells around the
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Fig. 2 | Tuning curves for posture and movement in superficial or granular
layers in each overarching cortical area. a (Top left) Tuning curves froma layer 2/
3 visual cortical neuron (Cell 1) preferring upward pitch of the head in allocentric
coordinates (all examples recorded in darkness). Data from even and oddminutes
of a 20 min recording session are shown adjacently (left and middle), and full-
session data are shown to the right; the 99% CI of shuffled data are shown in gray. A
total of 30% of visual cortical neurons had even-odd minute tuning curve stability
higher than the 95th quantile of shuffled data (“Methods”). In relation to the sub-
sequent GLM analyses (in Fig. 3 and Supplementary Figs. 12 and 13), the pseudo-R2

value for allocentric head pitch for Cell 1 was 0.003. (Top right) A layer 2/3 visual
cortical neuron tuned to right head azimuth velocity in allocentric coordinates;

pseudo-R2 value of 0.01. (Lower left) A layer 4 auditory cortical neuron preferring
rightward head roll (pseudo-R2, 0.004), and (lower right) a L4 auditory neuron
tuned to upward pitch of the head in allocentric coordinates (pseudo-R2 of 0.001).
37% of auditory cortical neurons had tuning curves exceeding the shuffled dis-
tribution (as described above).b Somatosensory cortical neurons in layer 2/3 tuned
to leftward flexion velocity of the back (top left; pseudo-R2 of 0.03), and upward
pitchof the back (top right; pseudo-R2, 0.02). 43%of S1neuronswere stablebeyond
the shuffled data. (Lower left) Tuning curves from layer 2/3motor cortical neurons
preferring upward pitch of the back (pseudo-R2 of 0.06), and (lower right) left and
right head roll relative to the trunk (pseudo-R2 of 0.01). Tuning curves from 66% of
M1 neurons were stable beyond the 95th quantile of shuffled data.
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visual-auditory cortical border (Fig. 4a, pie charts). Across S1 and M1,
on the other hand, we found continual gradients for egocentric head
features and the back (Fig. 4c). Specifically, neurons encoding ego-
centric head posture and movement were more frequent in anterior
than posterior M1 or S1 (posture: χ2(7) = 37.7, p = 1.3e−6; movement:
χ2(7) = 106.9, p = 8.8e−21), whereas back representations dominated in
posterior motor areas and S1HL (posture: χ2(7)=18.8, p = 0.004;
movement: χ2(7) = 41.02, p = 2.9e−7) (Fig. 4c, d). The total fraction of

classified cells was higher in anterior locations, (Fig. 4c, pie charts)
peaking in M1.

Sensory and behavioral tuning overlap to similar extents in
visual and auditory populations
We next sought to characterize the degree to which sensory and
behavioral signals overlapped in sensory cortices, focusing on visual
and auditory modalities since these could be manipulated without

movement

Head 

Neck 

mvt. postureposturemovement pos. space

     Allocentric

head
          Egocentric   

           head

Planar body motion

Back

Planar

body
motion

Back

        Allocentric

head

          Egocentic    

      head

Planar body motion

Back

          Egocentric head

Planar 

       body
                   motion

Back

         Allocentric
head

          Egocentric   
               head

Head 
BackEgocentric Planar 

motion
Allocentric

NN

S

EW

movement

Visual

Contribution to model 
performanceProportion of 

n = 1633 cells

Proportion of 

n = 792 cells

0.1
0.2

0.3

0.4
0.5

0.6

Contribution to model 
performanceProportion of 

n = 526 cells

Motor

Proportion of 

n = 1532 cells

0.1
0.2

0.3

0.4

0.5

0.6

Sel
f m

ot
io
n

un
cl
as

si
fie

d

Spe
ed

Bod
y 
di
re

ct
io
n

Tr
un

k 
ro

ta
tio

n 

Pos
iti
on

a b

# covariates in 
selected model

%
 c

e
lls

35

0
1 10 # covariates in 

selected model

%
 c

e
lls

30

0 1 >10

10# covariates in 

  selected model

0

25

1

%
 c

e
lls

c d

Pitc
h

Azi
m

ut
h

R
ol
l

posture

Pitc
h

Azi
m

ut
h

H
ei
gh

t

0.1
0.2

0.3

0.4
0.5

0.6

0.1
0.2

0.3

0.4
0.5

0.6
rLLR

# covariates in 

selected model

0

40

1 10

%
 c

e
lls

Article https://doi.org/10.1038/s41467-023-39520-3

Nature Communications |         (2023) 14:3947 6



disrupting the animals’ movement. Visual and auditory receptivity
were first assessed across subsequent recording sessions with the
room lights on or off and, separately, with intermittent presentation of
5s white noise sequences (Fig. 5a, b and Supplementary Fig. 22a, top).
Sound and luminance modulation indices (Supplementary Fig. 22b, c
and “Methods”) were used to identify sound-suppressed and sound-
activated neurons (35.3%, Fig. 5a, b), whichwere concentrated near the
tip of the probe (i.e., in auditory areas), and luminance-suppressed and
-activated neurons further up the shank in visual areas (26.9%, Fig. 5c
and Supplementary Fig. 22c). Decoding analyses confirmed that
auditory, but not visual, units predicted sound stimulus presentation
(Supplementary Fig. 22b, bottom). In contrast, population vectors of
visual neurons occupied distinct locations in a non-linear UMAP
embedding (Supplementary Fig. 22a, bottom) and could be used to
reliably decode the luminance condition of different sessions, whereas
A1 neurons could not (Supplementary Fig. 22c, bottom). Seventy-five
percent of auditory cortical neurons were modulated by behavior or
white noise, of which >3-fold more were exclusively modulated by
behavior (40%) than sound (12%), and 23% were tuned to both (Fig. 5d,
left). Nearly identical proportions were observed in visual cortices
(though using luminance, a coarser measure of sensory receptivity),
with 42% of neurons tuned exclusively to behavior, 12% exclusively
luminance-sensitive, and 20% tuned to both (Fig. 5d, right). The pro-
portion of behaviorally- and sensory-modulated RS and FS neurons
was nearly uniform across visual and auditory areas. We next com-
pared the stability of behavioral representation across light and dark
conditions, and found that GLM-selected features in visual regions
were more stable between light sessions than between light and dark
sessions (Supplementary Fig. 23). Planar bodymotion, allocentric head
movement, and allo- and egocentric head posturewere the least stable
covariates, but were still maintained in darkness, presumably by ves-
tibular, proprioceptive or efference copy signals16,17,40,47. Tuning in
auditory cortex, on the other hand, was stable across light and dark
conditions (Supplementary Fig. 23; p > 0.05, two sample Z-test for
proportions).

Functional coupling suggests different uses of behavioral sig-
nals in different regions
The overlap of sensory and behavioral tuning, while substantial, was
not informative as to how behavior-related signals were utilized within
the networks, so we sought to characterize which behavioral signals
were expressed between putative synaptically-connected cells. This
allowed us to discern whether feedforward excitatory and inhibitory
signaling differed in relation to specific types of perceptual processing
or motor behavior, and to test whether the likelihood of synaptic
connections was higher between similarly tuned cells, as reported
amongorientation-selective neurons in visual cortex48–50.We identified
a limited, but informative number of putative excitatory connections
(driven by RS units) and inhibitory connections (driven by FS units) of
varying strength within auditory (n = 107 total connections) and visual
cortices (n = 247) (Fig. 6a, b and “Methods”) as well as somatosensory
(n = 35) and motor cortices (n = 181) (Supplementary Fig. 24a, b). Cells
were classified as encoding posture ("Po”) or movement ("Mo”) based
on best-fit single covariate models from a dark recording session

(“Methods”), and visual and auditory neurons were identified as
luminance- ("LM”) or sound-modulated ("SM”). Since the firing rates of
neurons tuned to multiple features varied in higher dimensions, low
dimensional embeddings were generated with UMAP (Supplementary
Fig. 24c) to visualize the functional similarity between neuron pairs.

Different functional connection subtypes were uncovered in each
area (Fig. 6c and Supplementary Fig. 24c–f), with the strongest con-
nections in motor and somatosensory cortices being feed-forward
excitation between movement-responsive neurons (movement→
movement), and excitatory (posture→movement) connections in
somatosensory cortex (Supplementary Fig. 24f). Relative tomotor and
somatosensory areas, visual pairs tended to be more homogeneous,
and both visual and auditory synapses were weaker (Supplementary
Fig. 24e, top). Furthermore, in visual areas, aside from excitatory
(movement→movement, posture→ posture) and inhibitory (move-
ment⤏movement) communication between functionally homo-
geneous units, we found excitatory (posture→ luminance modulated,
posture→movement) and inhibitory (movement⤏posture) drive in
functionally heterogeneous units (Fig. 6c, top). A large majority of
connections between heterogeneous units appeared in V2L (106/122
units, 86.8%), which was significantly larger than in V1 (χ2(1) = 66.39,
p = 3.7e−16). Auditory areas, in contrast, exhibited completely differ-
ent patterns of connectivity (Fig. 6c, bottom). On onehand,we found a
significant amount of movement-inhibited posture-encoding units
(i.e., movement⤏posture), and this connection subtype occurred
most prominently in A2D (14/18 units, 77.8%), as opposed to A1
(p = 0.015; one-sided binomial test). On the other, pairs of movement-
inhibited sound-modulated units (i.e., movement⤏ sound modu-
lated), featured more frequently in A1 (8/13 units, 61.5%), though the
low total number of units precluded the difference with A2D to reach
statistical significance (p = 0.29; one-sided binomial test). We also
noted that results obtained on synaptically connected pairs stood in
stark contrast to those obtained on pairs receiving common input,
which consisted almost exclusively of functionally homogeneous units
(Supplementary Fig. 24g). Lastly, we assessed whether functionally
similar neurons were more likely to exhibit stronger synaptic con-
nections, but found no correlation between synaptic strength and
functional distance in any of the four cortical areas (Supplementary
Fig. 24e, bottom). Similarly tunedneurons did not form functional sub-
classes, and strong connections were found between all functional cell
types, indicating that communication between both functionally
similar and dissimilar cells was important.

Discussion
In this study, we strove to address one of the core challenges in
understanding ethologically relevant neural computations, namely,
how cortical networks differentially represent freely-composed beha-
vior. Visual and auditory areas were of particular interest because of
their pervasivemodulation by behavioral state13,51–53,movement during
sensorimotor tasks10,11,14,16,40,54–63, or while animals cognitively idle in the
dark12. To gain a clearer grasp on which actions were encoded by
cortical activity, we focused onwhat rats dowhen allowed to explore a
familiar space without constraints. We converted tracked head and
back points into series of postural and movement features, quantified

Fig. 3 | Distinct cortices show differential tuning to posture, movement and
self-motion. a (Top left) Pie charts showing the fraction of single units in visual
cortices (V1, V2L andV2M) that incorporated specific behavioral features as the first
covariate (largest mean cross-validated log-likelihood among single covariates
models) in model selection (see color-coded legend at bottom for feature identi-
fication). (Lower left) Bar graph indicating the percentages of single units statisti-
cally linked to one or any larger number of behavioral covariates. (Right) Polar
charts denoting the relative importance of individual covariates included in the full
model, after model selection, with “unclassified” cells excluded. Wedge length
denotes themean cross-validated rLLR (“Methods”) of each covariate across the set

of models it was included in. The width of each wedge reflects the fraction of times
that feature was selected among the other covariates. Wedge length and width are
independent (i.e. the areadoes not reflect effect size).b Sameas (a) but for auditory
cortices (A1 and A2D). c Same as (a) but for the primary motor cortex (M1). d Same
as (a) but for the primary somatosensory cortex (S1HL and S1Tr). (Bottom) Two
color gradients were used to convey GLM results: one in pie charts (denoted by
elongated lines) with related features grouped together, and one in polar plots
(denoted by clear and striped rectangles) with each representing an individual
feature. Rat illustrations by Falconieri Visuals. ⓒ All Rights Reserved. Source data
are provided as a Source data file.
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the joint rat ethogram and characterized how recognizable modular
actions were represented across cortical regions. The four overarching
areas differed considerably in their connections, cytoarchitecture, and
layers sampled, but our finding that every region carried sufficient
information to decode nearly any action suggests that ongoing beha-
vior continually modulates computations throughout dorsal cortical
systems. This could provide a foundation both for contextualizing
environmental inputs64 and informing sensory predictions generated
by internal models18,65–69, since an animal’s behavior at any moment

profoundly affects the spatiotemporal statistics of ongoing and
impending sensory signals.

However, ethograms are descriptive of only one level of beha-
vioral organization. When we “zoomed in” and modeled spiking
responses on continuous elementary features, like rotational move-
ments or angular positioning of the head, we encountered a wealth of
encoding variety across cortical structures. The response variance of
motor and somatosensory units was best captured by kinematic
parameters and included both egocentric head and back movements
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body motion along the mediolateral axis. (Right) The fraction of cells showing any
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behavioral features along their length. c (Left) Same as in (a) only for left hemi-
sphere implanted animals, with the dotted line marking the border between pri-
mary somatosensory and motor cortices. (Middle) percentage of all recorded cells
responsive to egocentric head posture and movement, and back posture and
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andposes, respectively.Motor neuronsmost frequently encoded head
rotations around two or three axes, and spiking activity was accounted
for better than any other area, as could be expected of a population
generating signals that control movement. The robust encoding of
posture and kinematics of the head allowed us to test whether the
addition of weight affected how neurons encoded these features, a
question approached previously in relation to hand and arm move-
ments in primates45,46,70,71. The added weight had only minor effects on
the tuning properties of M1 neurons (Supplementary Figs. 19 and 20),
though signals related to sensory feedback, planning or dynamic pat-
tern generation could also have contributed since the animals were
moving freely72,73.

Somatosensory neurons, on the other hand, were better char-
acterized by sparser models related to the trunk, and tuning wasmore
common among FS than RS cells. Fast spiking neurons in particular
encoded dynamic features such as trunk movement and self-motion,
which fits broadly with known circuitry for movement-driven disin-
hibition of parvalbumin interneurons in S1, described in barrel cortex
during active whisking41. Overall, however, model performance in S1

was the lowest of all regions, whichcouldbe traced todifferent factors.
It was not likely due to the recordings being confined to layer 2/3, since
only 22% of layer 2/3 neurons in adjacent motor regions were unclas-
sified. In this case, unclassified neurons could have been driven by
features we did not track, such as the whiskers, face, limbs or tail. The
hindlimbs may have been more influential due to the probes being
placed in the hindlimb and trunk regions of S1, medial to barrel cortex,
and the fact that trunk kinematics in quadrupeds are steadily affected
by gross dynamics of the hindlimbs and hips74. This interpretation also
fits the somatotopic organization of the trunk and limbs in rats (Hall
and Lindholm75; Neafsey et al.76), as well as the anatomical gradients we
found for trunk and head features, and the higher overall fraction of
classified cells anteriorly in motor cortex (Fig. 4c, right).

In visual and auditory cortices, by contrast, the common
denominator was encoding of the head inworld-centered coordinates,
consistent with a role in processing sensory signals from the envir-
onment via sense organs embedded in the head. The activity of visual
ensembles was best described by allocentric horizontal motion of the
head and movement of the body over the surface of the arena, which
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Fig. 5 | Auditory and visual cortices show similar prevalence and overlap of
sensory and behavioral signals. a (Top) White noise stimulation paradigm sche-
matic. (Bottom)Trial averaged activity for single cells (arrangedbyunitnumber, left
axis) and ensemble averaged activity (overlaid trace) of all significantly suppressed
(left) and sound-excited (right) singleunits in auditory cortices during sequences of
sound stimulation. Colorimetric axis denoting activity relative tomax are shown to
the right. b (Top) Recording paradigm for light/dark sessions. 2 s segments of trial
averaged and ensemble averaged activity of all significantly dark-suppressed (left)
and dark-excited (right) single units in visual cortices. Axis labels are the same as in
(a). c Distribution of recording sites of single units modulated significantly by
sound (blue) or luminance (red) across sensory cortices (opacity represents con-
centrations of units). Sound- and light-modulation within auditory and visual

cortices, respectively, were highest in layer 4 (L4). In A1, 48% of L4 neurons had
significant sound modulation indices (SMIs), followed by layers 5 and 6, with 26%
and 25%, respectively. In V1, 30% of layer 4 neurons had significant luminance
modulation indices (LMIs); layer 5 had 27%, layer 6 had 24%, and layer 2/3 had 23%.
d (Left) Venn diagrams and pie charts summarizing the overlap between and
breakdown of spiking profile, sound modulation and behavioral tuning (as deter-
mined by the GLM analysis; n.c. non coding) in auditory cortices (A1 and A2D); the
fraction of fast spiking (FS) and regular spiking (RS) cells in each category are
indicated on either side of each pie chart. (Right) Same as (left) but for luminance
modulation and visual cortices (V1, V2L and V2M). Source data are provided as a
Source data file.
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confirms and extends earlier observations that features like angular
head velocity16,17,40, head direction77, and running54 each modulate
spiking activity in V1. The combination of these signals could support
computations for stabilizing and predicting motion of the visual field,
as well as optimizing visual processing during active movement55,78.
The preferential expression of dynamic lower-level behavioral features
in layers 5 and 6 is also supported by earlier work demonstrating head-
motion signaling in deeper visual cortical layers during head rotations
in darkness16,40. Those and our findings point to the deeper layers as a

potential site of integration for movement and vestibular cues con-
veyed by midline motor79 and retrosplenial16 cortices, respectively.

Unlike visual cortical neurons, neurons in auditory cortex were
most robustly triggered by gravity-relative head orientations. Such
differences were made more prominent when we quantified con-
nectivity differences between subregions within each area (Fig. 6d).
The lateral part of the secondary visual cortex (V2L), specialized for
processing visual motion80–82, exhibited extensive cross-talk between
movement-modulated cells, where putative feedforward excitation
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example temporal spiking cross-correlograms from visual (a–c) and auditory cor-
tices (d–f). Significance threshold was set at the 99.9999% or 0.0001% of the
cumulative Poisson distribution for excitatory or inhibitory connections, respec-
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localized in anatomical space, with the width of each connection weighted by
synaptic strength (SS). b (Top) The log-log relationship of anatomical distance and
synaptic strength (SS) revealed weak effects of anatomical distance on SS (two-
sided r = −0.13, p = 0.03); (inset) distribution and median (colored circle) of cross-
correlogrampeaks/troughs. (Bottom) Same as above, only for auditory cortices; SS
didnot vary as a functionof anatomical distance (two-sided r=−0.15,p=0.11). Lines

in the scatter plots denote the least squares regression fit, shaded areas denote the
95% confidence intervals; the circle in inset histograms denotes the median of the
distribution. c (Left) Shuffled connection distributions (horizontal line with carets)
and experimentally observed excitatory and inhibitory connections (circles) for
various functional subtypes in visual (above) and auditory (below) cortices. d (Top)
TheV2L network utilizes excitation and inhibitionbetween postural andmovement
ensembles (connections 1 and 2, respectively; dashed boxes in (c)) which could
serve to coordinate impending movements with visual flow. (Middle) A1 FS
ensembles inherit movement information, which could enable gain-modulation of
local sound modulated RS units (connection 3) in response to self-generated
sounds. (Bottom) A2D FSmovement modulated ensembles inhibit gravity-relative,
posture-responsive units (connection 4), which could facilitate sound localization.
Source data are provided as a Source data file.
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happened between similarly tuned cells, and apparent feedforward
inhibition occurred between units encoding movements in opposite
directions. More importantly, such fast spiking movement-responsive
cells also inhibited posture-encoding units (Mo⤏ Po; e.g., a left turn
cell inhibiting a cell encoding rightward posture), and posture-
modulated neurons were shown to excite luminance-modulated and
movement-responsive cells (Po→ Lm; e.g., a rightward pose cell
exciting a leftward-rotation neuron). This might assist visual networks
in distinguishing whether optic flow is likely generated by self-
movement83: if postural cells convey static head position, their direct
inhibition would indicate that visual scene changes are likely self-
generated. Furthermore, when the animal’s head is fully extended in
one direction, it can only really move in the opposite way; in this case,
postural cells exciting oppositemovement cells (Po→Mo) could aid in
predicting the direction the visual scene will drift next84,85.

The dissimilar connectivity patterns across primary and second-
ary auditory cortices may also indicate regional specializations in how
behavioral information is employed. Fast spiking cells encoding hor-
izontal movements (i.e., turning clockwise and counterclockwise) and
inhibiting soundmodulated units (Mo⤏ Sm) weremainly found in A1,
which is strongly reminiscent of gainmechanisms for suppressing self-
generated sounds identified in head-fixed animals60. Many such cells
also showed evidence of receiving common input, consistent with
efference copy circuits described in A179,86,87, but here demonstrated in
freely moving and sensing subjects. The finding that homogeneously
and heterogeneously tuned pairs showed different connectivity
motifs, and that the analysis was agnostic to the functional properties
of the cells, suggests that functional groupings were not an artifact of
the analysis. Movement-encoding fast spiking cells were also shown to
inhibit allocentric posture-encoding cells (Mo⤏ Po), which mostly
occurred in A2D (e.g., a cell encoding leftward rolling of the head
inhibiting a cell for right head roll posture). Circuitswith this pattern of
connectivity would report minute changes in posture whenever the
animal moved and, conversely, maintain a strong readout of the cur-
rent postural state when the rat was still. The roll and pitch of the head
could be heavily represented because these features influence the
detection of interaural loudness differences (ILDs) in a 3D environ-
ment. That is, if a rat’s head is perfectly level, any ILD corresponds to a
change in horizontal location, and the animal is ‘blind’ to changes in
vertical localization. Once the head rolls, this changes, and strong roll-
and pitch-modulation would facilitate detection of ILDs in vertical
space, allowing for 3D sampling (Lauer et al.88). Further work is needed
to test if this is the case in rodents, but the interpretation is supported
by observations in different species of owl that have vertically offset
ear openings in the head which facilitate sound localization using
vertical ILDs89,90. Additional work is also required to define how pos-
tural signals contribute to sound localization at the level of cortex,
though auditory cortical neurons in many mammalian species encode
sound source locations uniformly and over broad ranges of spatial
locations91,92, so addedmodulation by posture andmotion of the head
would help discriminate the location and direction of a sound relative
to the individual93.

Lastly, the most abundant connection types in motor and soma-
tosensory cortices supported excitatory cross-talk between
movement-modulatedneurons, thoughdefining the functions of these
connections here is difficult given the lack of a more elaborate task
structure for the former, and the lack of additional sensory manip-
ulations for the latter. Previous work in motor areas has shown that
weak feedforward connections, in conjunction with synaptic noise,
help sustain behavioral variability, as demonstrated in simpler organ-
isms (e.g., ref. 94), but the strengthening of such connections with
sustained repetition leads to motor outputs being less variable (e.g.,
refs. 95,96). In that sense, the occurrence of feedforward excitation of
similarly tuned cells may be a feature of a network mechanism which
ensures kinematic stability during different iterations of the same

actions. Furthermore, excitatory posture→movement connections
between somatosensory neurons, particularly those representing the
trunk or limbs, could assist in predicting expected movements fol-
lowing a given starting posture or gait, and signal postural instability
when those expectations are violated97,98.

In summary, we found that momentary actions are encoded
broadly across dorsal sensorimotor cortices, and that coding of
underlying pose and movement primitives appears regionally opti-
mized for different types of sensory processing. The widespread
expression of such features speaks to the importance and computa-
tional demand of keeping sensory systems oriented during unrest-
rained movement, and may reflect a general property of sensory
coding in cortex. Althoughwedid not test how behavioral and sensory
information are combined here, our observations could guide future
work investigating how pose andmovement signals inform perceptual
operations like visual self-motion subtraction or sound localization.
Pinpointing exactly how this integration happens at the circuit level
may prove challenging in freely-behaving subjects, requiring suffi-
ciently resolved techniques, such as miniature 2-photon imaging99,100

and holographic stimulation101, to identify and manipulate
behaviorally-classified neurons in vivo. Other outstanding questions
are how internal states, such as hunger or thirst102, or how the hier-
archical organization of behavior27,37 influence the way in which rele-
vant actions are encoded over longer time scales. For now, defining
how sensory cortices encode behavioral states and precise kinematics
is a criticalfirst step toward understanding how these systems respond
in more naturalistically engaging environments, and establishing how
behavioral modulation is implemented to solve locally relevant
problems.

Methods
Subjects and electrode implantation
Experiments were performed in accordance with the Norwegian
Animal Welfare Act and the European Convention for the Protection
of Vertebrate Animals used for Experimental and Other Scientific
Purposes. The study contained no randomization to experimental
treatments and no blinding. Sample size (number of animals) was set a
priori to at least three per recorded brain area, given the expected cell
yield necessary to perform unbiased statistical analyses. A total of 7
male Long-Evans rats (age: 3–4months, weight: 350–450g) were used
in this study. The rats were housed with their male littermates prior to
surgery, and single housed in cages (45 × 44 × 30 cm) after surgery to
avoid potential damage to the implants. All animals were kept on a
reversed 12 h light–dark cycle and recordings were performed during
their light cycle.

All 7 rats were implanted with silicon probes (Neuropixels version
1.0, IMEC, Belgium) developed for high-density extracellular
recordings103, targeting primary sensory and motor cortices. At sur-
gery, animals were anesthetized in a ventilated Plexiglas box with 5%
isoflurane vapor, and maintained on 1.0–2.5% isofluorane for the
duration of surgery. Body temperature was maintained at 37 °C with a
heating pad. Once unconscious, animals received s.c. injections of
analgesic (Metacam 2.5mg/kg weight, Temgesic (buprenorphine)
0.05mg/kg). Local anesthetic (Marcain 0.5%) was injected under the
scalp before making the incision. The skull was then exposed, rinsed
and sterilized using 0.9% saline and 3% hydrogen peroxide. A high-
speed dental drill with 0.8mm burr was used to drill holes for skull
screws and craniotomies over sensory andmotorcortices (coordinates
below). A single bone-tapping stainless steel screw was inserted
securely into the skull, serving as the ground and reference for the
recording probe.

Eachprobewas coatedwithCM-DiI (VybrantDiI, catalog#V22888,
Thermo Fisher Scientific, USA) by repeatedly drawing a 2 μL droplet of
CM-DiI solution at the tip of a micropipette up and down the length of
the probe until the liquid dried, slightly changing the coloration of the
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shank. Subsequently, probes were, with electrical contacts facing up,
stereotactically inserted into either the left hemisphere with a ~65�

backward tilt in the sagittal plane to penetrate tissue from the pos-
terior parietal cortex to primary motor cortex (n = 4, AP: − 3.5 to − 4.5
mm, ML: 1.9 to 2.7 mm) or, in the right hemisphere, with a~50� lateral
tilt in the coronal plane to target secondary and primary visual and
auditory cortices (n = 3, AP: − 5.52 to − 6.5 mm, ML: 2.1 to 2.5 mm; see
Supplementary Fig. 1 for bregma-relative insertion coordinates of each
probe). Probe insertions ranged from 3.9 to 7.2 mm in length across
animals (Supplementary Fig. 1). External reference and ground wires
weremechanically attached to a single skull screw (positioned atAP: +7
mm, ML: +2 mm) and sealed with a drop of SCP03B (i.e., silver con-
ductive paint). The remaining probe outside the brain was air sealed
with a silicone elastomer (DOWSIL 3–4680 Silicone Gel Kit) and bead-
sterilized Vaseline, and shielded by custom-designed black plastic
housing to accommodate probes positioned at intended angles.
Finally, the implant was statically secured with black-dyed dental
cement to minimize light-induced electrical interference during
recordings. Following surgery, rats were subcutaneously administered
fluids and postoperative analgesics and placed in a 37 °C heated
chamber to recover for 1–2 h prior to recordings.

In vivo electrophysiology and behavior
Electrophysiological recordingswere performedusingNeuropixels 1.0
acquisition hardware, namely the National Instruments PXIe-1071
chassis and PXI-6133 I/O module for recording analog and digital
inputs103. Implanted probes were operationally connected via a head-
stage circuit board and interface cable above the head. Excess cable
was counterbalanced with elastic string which allowed animals to
move freely through the entire arena during recordings. Data were
acquired with SpikeGLX software (SpikeGLX, Janelia Research Cam-
pus), with the amplifier gain for AP channels set to 500×, 250× for LFP
channels, an external reference and AP filter cut at 300 Hz. In every
session, signal was collected from all channels in the brain, typically
from themost distal 384 recording sites (bank 0) first, followed by the
next 384 recording sites (bank 1), consecutively.

Behavioral recordings were performed as individual rats foraged
for food crumbs (chocolate cereal or vanilla cookies) scattered ran-
domly into an octagonal, black open-field arena (2 × 2 ×0.8 m), with
abundant visual orienting cues above and around the arena. All rats
underwent a habituation phase prior to surgery during which they
were placed on food restriction (to aminimumof 90% pre-deprivation
body weight) to stimulate foraging behavior and were allowed to
explore the arena daily. They were also acquainted and accustomed to
the white noise presentations explained below. Food restriction was
halted one day prior to surgery and recordings, by which time the
animals were familiar with the environment. The entire data set for
each animalwas collectedduring 7–8 recording sessions (~20min each)
within the first 12 h (n = 5) or 72 h (n = 2) after recovery from surgery.
The experiments were divided into two 4-session schedules in which
recordings were made from bank 0 and bank 1, respectively. Each
schedule consisted of the same ordering of conditions (light, dark,
weight, and light/sound session). Each schedule started with a “light”
session, where animals were run in dim lighting, followed by a “dark”
session, in which all sources of light were either turned off or covered
with fully opaquematerials. Then, at the start of the “weight” session, a
small copperweight (15 g)was attached to the animals’ implants before
neural datawas acquired. The last sessionof each schedulewas either a
“light” session or, when recording from auditory cortices, a “sound”
session. During the latter, room lights were dimmed and white noise
(5s duration) was played throughout the session at a pseudo-random
inter stimulus interval (>10 s ISI) by a Teensy 4.0 Development Board
controlled miniaturized Keyestudio SC8002B Audio Power Amplifier
Speaker Module, running on custom-developed code. Between each
schedule animals were returned to their home cage to rest.

Perfusion and magnetic resonance imaging (MRI)
After recordings were completed rats received an overdose of Iso-
flurane and were perfused intracardially with saline and 4% paraf-
ormaldehyde. The probe shanks remained in the brains to give
enhanced contrast and visibility during subsequent MRI acquisition.
MRI scanning was performed on a 7T MRI with a 200 mm bore size
(Biospec 70/20Avance III, Bruker BiospinMRI, Ettlingen, Germany); an
86mmdiameter volume resonatorwasused for RF transmission, and a
phased array rat head surface coil was used for reception. Brains were
submerged influorinert (FC-77, 3M,USA) to removebackground signal
on the MRI. A 3D T1 weighted FLASH sequence was acquired at 0.06
mm3 resolution (TE: 10 ms, TR: 40 ms, NA: 4, matrix size:
360 × 256 × 180, FOV: 21.6 mm× 15.4 mm× 10.8 mm, acquisition time:
2 h 20 min).

Histology and immunohistochemistry
AfterMRI scanning the shanks were carefully removed and brains were
transferred to 2% dimethyl sulfoxide (DMSO, VWR, USA) for cryopro-
tection for 1–2 days prior to cryosectioning. All brains were frozen and
sectioned coronally in 3 series of 40 μm on a freezing sliding micro-
tome (Microm HM-430, Thermo Scientific, Waltham, MA). The first
series was mounted directly onto Superfrost slides (Fisher Scientific,
Göteborg, Sweden) and stained with Cresyl Violet. The second series
was used to visualize Neuropixel tracks, labeled with CM-DiI, against
neuronal nuclear antigen (NeuN) immunostaining, which provided
ubiquitous labeling that enabled delineation of cortical layers. For
immunostaining, tissue sections were incubated with primary anti-
NeuN antibody (1:1000 dilution; catalog no. ABN90P, Sigma-Aldrich,
USA), followed by secondary antibody-staining with Alexa 647-tagged
goat anti-guinea pig antibody (1:300 dilution; catalog no. A21450,
Thermo Fisher Scientific, USA), after which the sections were rinsed,
mounted, coverslipped and stored at 4 °C. A more detailed immu-
nostaining protocol is available per request. The third series of sec-
tions were collected and kept for long-term storage in vials containing
2%DMSO and 20%glycerol in phosphate buffer (PB) at− 20 °C. Using a
digital scanner and scanning software (Carl Zeiss AS, Oslo, Norway), all
brain sections were digitized using appropriate illumination wave-
lengths. The images were visualized with ZEN (blue edition) software
and used subsequently along with MRI scans to locate recording
probes in each brain.

Probe placement
MRI scans were taken to locate the probes in 3D and to calculate the
angle of each probe in the dorsal-ventral (DV) and medial-lateral (ML)
axes. Since MRI scanning and histological staining were performed
after perfusionwith PFA, which cause a non-uniform reduction in brain
volume, we reasoned the probe terminus would appear to have
penetrated further in the tissue than was actually implanted. We
therefore estimated the length of the implanted probe using the
number of recording channels in the brain during the experiments. To
locate the channel at which the probe exited the brain, we Fourier-
transformed themedian subtracted localfield potential (LFP) signals at
each channel along the probe and calculated power differentials
between adjacent channels in the lower range frequencies ( < 10 Hz).
We then located the largest shift in power between successive chan-
nels, which we identified as the point of exit from the brain (this ana-
lysis was adapted from the Allen Institute’s Modules for processing
extracellular electrophysiology data from Neuropixels probes). The
final length estimate for eachprobewasbasedon the identified surface
channel and the physical geometry of the probe.

Probe placement was reconstructed in 3D (Supplementary Fig. 1)
by first locating the entry point of the probe in the brain in CM-DiI-
stained histological sections and their correspondingMRI scans. Given
the probe length (calculated as elaborated above) and angles of the
inserted probe relative to the tissue in different planes, we used
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trigonometry to calculate the rostral terminus of the probe (Supple-
mentary Fig. 1). Anatomical coordinates were obtained by overlaying
images of histological sections on corresponding sections from the
rat brain atlas35. Probe tracks in the left and right hemisphere were
followed from one coronal section to the next until the expected tip
of the probe was reached, and area boundaries from the atlas were
applied to determine the span of the probe in each brain region (gray
line, Supplementary Fig. 1d). Using the within-region span and angle
of each probe, we calculated the length, in micrometers, of each
probe in each brain region in 3D, which allowed us to determine the
number of channels in each region (with two channels spaced
every 20 μm).

Spike sorting and determining the spiking profile of single units
Given that the sessionswere recorded in close temporal proximity, raw
signals from recording files in each schedule (4 sessions) were con-
catenated in a unitary binary file, in order to keep the identity of each
cluster across sessions. Spike sorting was performed with Kilosort 2.0
software using default parameters, followed bymanual curation in Phy
2.0, where noise clusters were additionally separated from good units
and multiunit activity based on inter-spike interval distributions,
waveform features and the value of the Kilosort contamination para-
meter. Furthermore, good units were split into fast-spiking (FS) and
regular-spiking (RS) subtypes by performing K-means clustering
(where k = 2) on spike width, peak-to-trough ratio, full width at half
maximum and hyperpolarization (or end) slope data (Supplemen-
tary Fig. 2).

3D tracking, head-mounted accelerometer, and animal model
assignment
The rats were tracked with seven retroreflective markers: four 9.5 mm
spheres were affixed to a rigid body attached to the head (OptiTrack,
catalog no. MKR095M3-10; Natural Point Inc., Corvallis, OR, USA), and
three 9 mm circular cut outs of 3M retroreflective tape (OptiTrack,
catalog no. MSC 1040) which were affixed to cleanly shaved locations
on the trunk43. Their precise positioning was optimized to minimize
interference in picking up signals from individual markers. 3D marker
positions were recorded at 120 fps with an eight camera (seven infra-
red and one B/W) 3D motion capture system (OptiTrack, Flex13 cam-
eras & Motive v2.0 software). Additionally, a 9-DOF Absolute
Orientation IMU [Inertial Measurement Unit] Fusion Sensor (Ada-
fruit,BNO055) was affixed to the implant chamber, such that angular
velocities could be sampleddirectly and compared to tracking-derived
features. The IMU (accelerometer) data was acquired via custom-
developed code through serial port terminal freeware (CoolTerm 1.7)
at 100 Hz via another Teensy 4.0 Development Board, upsampled to
120 Hz post hoc, and rotated to match the reference axes defined by
the tracking system. For precise alignment of acquired data streams,
three additional infrared LED light sources were captured by the
motion capture system. LED flashes (250ms duration; random 250ms
≤ IPI ≤ 1.5 s) were controlled by an Arduino Microcontroller C++ code
which generated unique sequences of digital pulses transmitted to
different acquisition systems throughout the recording and save the
IPIs via serial port terminal freeware (CoolTerm 1.7). The detailed
model assignment procedure has been described previously43. Briefly,
all seven individual markers associated with the animal were labeled in
a semi-supervised way using built-in functions in Motive. A rigid body
was created using 4 markers on the head, and three markers on the
body were labeled as separate markers. In addition to the markers on
the animal, the three synchronizing LEDs were labeled as a separate
rigid body (only marker sets with fixed distance over time can be
labeled as a rigid body). After each sessionwas fully labeled, remaining
unlabeled markers were deleted and data were exported as a CSV file.
The CSV file was converted to a format (pickle) compatible with our in-
house graphical user interface43 for reconstruction of the coordinate

systemof the head from tracked points. Finally, tracking data was then
merged with spiking data for further processing.

Extracting postural variables from tracking data
Following the recordings, we labeled tracked points within the Motive
(OptiTrack) interface, and imported labeled data into a custom script
in Fiji. Using the four tracked points on the animal’s head, the geo-
metry of the rigid body was estimated using the average pairwise
distances between markers. We found the time point at which this
geometry was closest to the average and used that time point as the
template. We then assigned an XYZ coordinate system to the template
with the origin located at the centroid of the four points, and con-
structed coordinate systems at each time point of the experiment by
finding the optimal rigid body transformation of the template to the
location of the headmarkers. To find the likely axis of rotation for the
head (i.e. the base of the head), we found the translation of the coor-
dinate system that minimized the Euclidean distance between the
origin at time point t−20 and t+20, where t is measured in frames from
the tracking system (120 fps). Next, the coordinate systemwas rotated
tomost closely match the Z-direction with the vertical direction of the
room, and X-direction with that of the running direction, which was
defined by horizontalmovements of the origin from t-50 to t+50. Time
points where the speed exceeded 10 cm/s were used to center the
coordinate systems for the animals’ head direction and running
direction. The two objectives were combined by considering the sum
of squared differences of the two sets of angles. This definition of
running direction was used only to rotate the head direction, and was
not used in subsequent analyses. Hyperparameters were chosen such
that head placement using the resulting coordinate system visibly
matched experiments.

To compute the postural variables for relating tracking to neural
activity, we first denoted the allocentric angles of the head (pitch,
azimuth and roll) relative to room coordinates, computed assuming
the XYZ Euler angle method. The XYZ Euler anglemethod indicates the
three elemental rotations are intrinsic rotations about the axes of the
rotating coordinate system XYZ, solidly with the moving body, which
changes its orientation after each elemental rotation.We next denoted
body direction as the vector from themarker above the root of the tail
to the neck point. The egocentric angles of the head (pitch, azimuth
and roll) relative to body direction were then computed assuming the
XYZ Euler angle method. The back angles (pitch and azimuth) were
determined relative to the horizontal component of body direction
using standard 2D rotations, which were optimally rotated such that
the average peak of occupancy was close to zero. The point on the
neckwas then used to determine neck elevation relative to the floor, as
well as the horizontal position of the animal in the environment.
Movement variables were estimated from the tracked angles using a
central difference derivative with a time offset of 10 bins. Running
speed was then estimated using a moving window of radius 250 ms.
The values for self-motion were computed as the speed of the animal
multiplied by the X and Y component of the difference in angles
between the body direction at t–15 and t+15.

Tuning curves to posture, movement and navigational variables
Angular behavioral variables were binned in 5°, with the exception of
back angles, which were lowered to 2.5°. Movement variables were
binned in 36 equally spaced bins, spanning the range of recorded
variables such that therewas aminimumoccupancy of 400ms in both
the first and last bins. Neck elevation bins were 1 cm, while position in
the environmentwas estimatedusing 6.67 cmbins. Finally, self-motion
used a bin size of 3 cm/s. For all ratemaps, the average firing rate (spk/
s) per bin was calculated as the total number of spikes per bin, divided
by total time spent in the bin. All smoothed rate maps were con-
structed with a Gaussian filter with a standard deviations of 1 bin. Only
bins with a minimum occupancy of 400 ms were used for subsequent
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analysis. To shuffle receptive field distributions, we shifted the neural
activity 1000 timeson the interval of ±[15,60] s and recomputed tuning
curves for each variable. For each cell, tuning curve stability was cal-
culated for the feature which had the highest mutual information104

with that cell’s spiking activity. Tuning curves for which the Pearson
correlation across even and odd minutes of the recording was higher
than the 95th percentile of the shuffled distribution were considered
stable.

Defining composite actions
The behavioral clustering pipeline is sketched in Fig. 1b and adapted
from prior work25. The starting point is the time series of postural
parameters and the running speed of the animal, Fig. 1b (panel 1).
Running speed, neck elevation and back Euler angles (pitch and azi-
muth) were defined as explained above (see “Extracting postural
variables from tracking data”), while 3D head direction relative to the
body direction was parameterized using the exponential map105. The
time series of each of the 7 variables (6 postural parameters plus
running speed) was detrended using third degree splines with equally
spaced knots at 0.5 Hz, Fig. 1b (panel 2). Time frequency analysis was
then performed on the detrended time-series for each of the original
variables using Morlet wavelets, at 18 Fourier frequencies dyadically
spaced between 0.5 and 20Hz, Fig. 1b (panel 3). The square root of the
power spectral density was centered and rescaled dividing it by the
variance of the smoothed signal (fit resulting from the spline inter-
polation). The smoothed signal was z-scored and concatenated with
the rescaled spectrogram yielding a 133D feature vector for each
tracked time point (120 Hz). Feature vectors were downsampled to 1
Hz, and data were pooled across animals and conditions. Down-
sampling was performed only for embedding, and did not affect
behavioral analyses or correlations with neural activity (e.g. encoding,
decoding), which used 120Hz tracking data. Redundant dimensions
were removed using Principal Component Analysis (PCA), which
indicated that the first 22 principal components explained 97.2% of the
variance. Only these 22 principal eigenmodes were retained and the
dimensionality was further reduced to 2 via tSNE106 embedding
(Euclidean metric, perplexity=200), Fig. 1b (panel 4). The embedding
was then used to estimate a probability mass function (PMF) on a
60x60 lattice in the 2 tSNE dimensions by convolving the raw histo-
gram with a two-dimensional Gaussian (width=1). We segmented the
60x60 lattice by applying a watershed transform107 to the additive
inverse of the PMF, Fig. 1c. All data points falling within a watershed-
identified region were assigned the same action label. Timepoints not
belonging to the dataset used for PCA were classified by minimizing
the Euclidean distance of the feature vector in the 22-dimensional PC
space from the datapoints used for training. Names were attributed to
the action labels after post-hoc visual inspection of individual time-
stamps in one sessionper animal in a graphical user interface (GUI) and
by comparison to the postural decomposition of the behavior (Sup-
plementary Fig. 6a, b and Supplementary Videos S1–S6).

Encoding and decoding of actions
The average firing rate (spk/s) of each cell per attributed label was
calculated as the total number of spikes emitted during the action,
divided by total time spent in it. Additionally, the average firing rate of
the cell was computed separately in two halves of the dataset: the odd
vs. even time bins within each action. To compare with shuffled data,
we shifted the neural activity 1000 times on an interval of ±[15,60] s.
Shuffled distributions were also constructed for each of the two halves
of the dataset. A cell was classified as encoding a behavior if these 2
criteriaweremet: [i] its average firing rate at the behavior on thewhole
dataset was either (a) below the 0.01th percentile, or (b) above the
99.99th percentile of the shuffle distribution [ii] if (a), its average firing
rate for the action in both halves of the dataset was below the 2.5th
percentile of the shuffle distribution of each half respectively, while if

(b), its average firing rate for the behavior in both halves of the dataset
was above the 97.5th percentile of the shuffle distribution of each half
respectively. For [i], the 99% significance level was Bonferroni-
corrected for multiple comparison.

Spike counts time series were constructed by counting the num-
ber of spikes fired by a cell in each 8.33 ms time bin. Behavioral
decoding from spike count data was performed on every session for
whichmore than 10 cells were simultaneously recorded. A naive Bayes
classifier was trained on all the actions with an occupancy larger than
16 s, resulting in 34 ± 3 (mean± SEM) actions per session to be deco-
ded. Decodingwas performed on 20 samples of 400ms each (50 bins)
per action, while the rest of the dataset was used for training. The
classifier consisted of a binomial likelihood and a categorical prior
determined by the occupancy of actions in two different randomly
selected sessions of the same animal. We defined the decoding accu-
racy for an action as the fraction of samples whose label was correctly
classified. For comparison we also classified actions using only the
prior distribution.

GLM and model selection
We binned the spike train of all neurons with 8.33 ms time bins to
match the tracking frequency of 120 Hz. Let yt, t = 1,⋯ , T be the
binarized spike count of a neuron in time bin t of a total of T in the
whole recording session; yt = 1 indicates that the neuron emits one or
more spikes in bin t, whereas yt = 0 indicates that the neuron does not
fire in bin t. The probability of yt is given by a Bernoulli distribution,

yt ∼ f ðyt ∣ptÞ=pyt
t ð1� ptÞ1�yt , yt =0 or 1 ð1Þ

where pt is the probability that yt = 1. Let X t = fx1ðtÞ, � � � ,xmðtÞg repre-
sent the m tracked and factorized features at time t: nine postural
features (pitch, azimuth and roll of the head in allocentric and ego-
centric reference frames, back pitch and azimuth, neck elevation),
their first derivative values, body direction, speed, position and self-
motion. For each feature i, let xi(t) be a binary vector of length Ni

(number of bins used to factorize covariate i: 15 for 1D features; bin size
of 5 cm/s for self-motion and 10 cm for position), whose components
are all 0, but the one corresponding to the bin in which the features
falls at time t. To study how well a neuron can be explained by one or
more features, we fit the activities of a single neuron using generalized
linear models M108 with logit link function,

pt = logit ðXT
t βÞ ð2Þ

where β are the parameters of the model and
Xt = ð1,xM1

ðtÞ,xM2
ðtÞ,:::,xMn

ðtÞÞ is the vector of n features included in
model M. Thus the log-likelihood of the model is,

lðM∣yÞ=
XT

t = 1

ðytXT
t βÞ � logð1 + expðXT

t βÞÞ: ð3Þ

We estimated all models with an additional L1 regularization with
the learning rate λ = 10\−4.

To determine which subset of these features best explain the
neural activity, we performed a forward selection procedure109 com-
bined with a 10-fold cross-validation scheme. For each neuron, we first
partition the data into 10 approximately equally sized blocks
a = 1, . . , 10, where each block {ya, Xa} consists of consecutive time bins.
We then computed the average held-out scores across folds. The initial
simple model consisted only of an intercept and features were added
sequentially through three-steps:
1. For each feature not included in the model, and each fold a, we

fitted the GLM with the feature added, M, on 9 data blocks and
computed the log-likelihood l(M∣ya) for the test data. After
iterating over folds we took the average over folds of
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LLRa = ðlðM∣yaÞ � lðM0∣yaÞÞ=na
spikes

, where na
spikes

is the number

of spikes in the test data of fold a, while l(M0∣ya) is the out-of-
sample log-likelihood of the intercept model in fold a. We
determinedwhich featurehad the largest value of the average LLR
and selected it as a candidate feature to be included in themodel.

2. For the given candidate feature, we employed a one-sided
Wilcoxon signed rank test on the out-of-sample log-likelihood
across folds l(M∣ya) of the more complex model and the current
model. The null hypothesis is that themore complexmodel yields
smaller or equal values of l(β∣ya) with respect to the less
complex model.

3. If the null hypothesis was rejected (α = .01), the new feature was
added to the model and the forward selection procedure con-
tinued. The selection process stopped when the null hypothesis
was not rejected or no more features were available.

After a final model is selected for each cell, we calculated the
contribution of each feature belonging to the final model via 10-fold
cross-validation. Assuming that the final model Mfull includes n cov-
ariates, for each selected covariate xi, i = 1,…, n, we considered the
partial model Mxi

which includes all the covariates except xi, and the
intercept model M0. Then for each partition a of the data we trained
the three models and computed the out-of-sample log-likelihoods
lðMxfull

∣yaÞ, lðMxi
∣yaÞ, l(M0∣ya). Finally wedefine the contribution of each

covariate to the final model as the relative log-likelihood ratio

rLLRðxiÞ=
lðMfull∣yÞ � lðMxi

∣yÞ
lðMfull∣yÞ � lðM0∣yÞ

: ð4Þ

where l(M∣y) is the average across folds a of l(M∣ya).
We measure the prediction accuracy of a modelM relative to the

intercept model M0 as the average across folds a of McFadden’s
pseudo-R2110

pseudo-R2ðMÞa = 1� lðM∣yaÞ
lðM0∣yaÞ

: ð5Þ

Anatomical topography of tuning features
Data from the three left hemisphere-implanted animals were used to
compute anatomical gradients of behavioral tuning across adjacent
brain regions (the fourth rat, #26148, was excluded due to limited
anatomical coverage). Since the exact anterior-posterior (AP) place-
ment of the probes differed across animals, the overall extent of the
three probes was calculated using the most posterior and the most
anterior anatomical locations. This physical distance comprised the
rows of a matrix with 3 columns, in which each column represented
data from individual animals. Based onwhere the probe was located in
this physical space and howmany cells of a particular tuning type (e.g.,
allocentric head roll) were recorded, multiple matrices were created
for each feature. These matrices were then divided into 7 equal seg-
ments, each corresponding to 1mmof tissue, and the numbers of cells
tuned to particular features were summed. Since the absolute number
of cells varied across animals, the data were presented as a proportion
of the total number of cells recorded in a given 1 mm segment. We
applied a χ2 test to determine if the observeddistributionof cells tuned
to each feature was significantly different from a uniform distribution
over the cortical surface. The featureswith significant differences were
plotted in Fig. 4.

All three right hemisphere-implanted animals were used for this
analysis. Instead of calculating the absolute spatial extent of the three
probes along the medial - lateral (ML) axis, the probes were aligned
based on the auditory/visual border. The same approach was applied
as above, and the distribution of the proportion of cells tuned to each

feature over the anatomical surface was calculated, and significance
was assessed using the χ2 test. Features showing anatomical differ-
ences were plotted in Fig. 4.

Sensory modulation indices and decoding
To obtain peri-event timehistograms (PETHs) relative to sound stimuli
onset, each spike train was zeroed to tracking start, purged of spikes
that exceed tracking boundaries and binned to match the tracking
resolution. It was further resampled (to 50 ms bins) to encompass a
large window (10 s) before and after every event onset (the start of the
white noise stimulation). Spike counts were converted to firing rates
(spk/s) and smoothed with a Gaussian kernel (sd=3 bins). To identify
sound responsive units, we calculated the sound modulation index
(SMI) for each cell on PETHs averaged across all trials (Supplementary
Fig. 22b, top). SMI is the difference between the “sound” (500-1000ms
post-stimulation) and the “baseline” firing rate (1000-500 ms pre-sti-
mulation) divided by the sum of the two, such that a negative SMI
signifies higher firing before, and a positive SMI signifies higher firing
following sound onset. The statistical significance of each SMI was
determinedwith aWilcoxon signed-rank test (p < .05) performedon all
“sound” and “baseline” trial sequences.

We used a nearest neighbor decoder to query whether we could
predict the sound being “on” or “off” given only auditory or visual
ensemble activity, for each rat separately (Supplementary Fig. 22b,
bottom). The sound event vector ("on” or “off”), together with the
spike train of each single cell, was resampled to 10 Hz resolution and
the latter were convolved with a Gaussian kernel (sd=1 bin). In each
run (for a total of 100 runs per unit number) we pseudorandomly
subsampled either 5, 10, 20, 50 or 100 different cells and divided the
data into 3 folds, where each third of the data once served as the test
and the other two thirds as the training set. We calculated Pearson
correlations between every test set ensemble activity vector and
every ensemble vector in the training set. This enabled us to obtain a
predicted sound stimulus value ("on” or “off”) for each test frame by
assigning it the sound stimulus value of the highest correlated
training set vector. Decoding accuracy was defined as the proportion
of correctly matched stimulus states across the entire recording
session (theoretically varying from 0 to 1). To obtain the null-
distribution of decoded accuracy we shuffled the spike trains of each
subsample in the first run 1000 times (as described above) and fol-
lowed the same described procedure that resulted in shuffled accu-
racy distributions.

Since “light” and “dark” conditions were not varied on a trial, but
on a session basis, we computed PETHs by first searching for all ≤2 s
time windows where the speed of the animal was ≤5 cm/s, effectively
equating to quiescence or epochs of slow movement. We did this in
three sessions: light1, dark and light2 by subsampling the number of
events from the session that had the fewest such events in the other
two sessions. The firing rates (spk/s) in each window bin were calcu-
lated using the same method described above. To identify luminance
responsive units, we calculated the luminancemodulation index (LMI)
for each cell on PETHs averaged across all trials (Supplementary
Fig. 22c, top). LMI is the difference between the “dark” (full 2 s window)
and the “light1” firing rate (full 2 s window) divided by the sum of the
two, such that a negative LMI signifies higher firing in light conditions,
and a positive LMI signifies higher firing in the dark condition. The
statistical significance of each LMI was determined with a Wilcoxon
signed-rank test (p ≤.05) performed on all “dark” and “light1” trial
sequences, provided that the same test yielded no difference in firing
rates (p > 0.05) between “light1” and “light2” conditions. To visualize
these differences, we concatenated the population vectors (all recor-
ded cells in A1 or V) of all three sessions (in one example animal), z-
scored them, and performed the principal component analysis (PCA).
Wedetermined the vertex (or the “knee”) of the scree plot and selected
all components preceding it for non-linear low-dimensional
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embedding of individual timepoints with UMAP (Supplementary
Fig. 22a, bottom).

To determine the relative strength of the sound and luminance
modulation along the recording probe, we counted all significantly
modulated units (both suppressed and excited) at their respective
peak channels, joined all channels of 2 successive rows in one count
(totaling 4 channels every 2 rows), and normalized this count by the
maximal count obtained.

The nearest neighbor decoding was also adjusted to accom-
modate for the lack of a trial based structure. First, due to the fact
that the secondary auditory area (A2D) hadmultisensory properties,
i.e., units which were sensitive to both sound and luminance change,
we focused our analysis on primary auditory (A1), together with all
recorded visual (V1, V2L and V2M) neurons. The data were down-
sampled and smoothed as described above, and synthesized by
taking the last quarter of timepoints in the light1 session, the tem-
porally adjacent first quarter of timepoints in the dark session and
the temporally distant second half of the light2 session. Similarly to
the sound decoder, in each run (for a total of 100 runs per unit
number) we pseudorandomly subsampled either 5, 10, 20, 35 or 50
different cells (adjusting for the lower total number of cells in A1).
For each test set ensemble activity vector (i.e., the second half of
light2) we computed Pearson correlations to every ensemble vector
in the training set (light1 + dark) and obtained a predicted condition
status by assigning it the condition status of the most highly corre-
lated training ensemble vector. Since luminance did not change
within a session, shuffling spike trains would not suffice (because it
would not eliminate the overall lower/higher rate relative to the
other session), we randomly permuted the ensemble vectors across
the training set (i.e., light1 + dark) at each time point 1000 times in
the first run which resulted in the null-distribution of decoded
accuracy.

Weight and behavioral tuning
To ascertain whether weight had a behavioral effect on the measured
variables, we primarily focused on head-related features, neck eleva-
tion and speed, assuming these would be affected the most. For each
feature we computed differences between the total occupancy in
every bin between the weight and light2 sessions, across all rats and
looked whether the 99% CI of these differences overlapped with zero.

To estimatewhether adding theweight on the headhad any affect
on the neural coding or activity, we performed several analyses. Since
our recordings were performed over multiple successive sessions, we
analyzed the change in the overall activity of spiking through time.
Therefore, in each cluster, spikes are allocated to broad 10 s bins and
smoothed with a Gaussian kernel (sd=1 bin). They were then con-
catenated into a single array and a rolling mean (size=50 bins) was
calculated over the wholewindow for display purposes. The “baseline”
firing rate was defined as the total spike count within a session divided
by the total session time. A “stable” baseline rate was the weight ses-
sion rate above .1 spk/s whose difference to the reference session rate
(light2 sessions were picked as reference sessions as overall rates
tended to bemore similar to theweight sessions)was smaller than20%
of its own rate. To obtain the shuffled distribution of rate differences,
we pseudorandomly permuted individual cells’ rate identities across
light1, weight and light2 sessions 1000 times. Our subsequent analyses
focused on the effect of weight on different tuning features, namely
the observed differences in areas under the tuning curve (AUC), the
observed differences in information rate104, the observed differences
in the stability of tuning curves, and the observed differences in tuning
peak positions. To determine whether any of these difference dis-
tributions were significantly different compared to a null-distribution,
we created shuffled distributions of differences by pseudorandomly
permuting session identities of the data 1000 times and recomputing
the differences.

Functional connectivity
Spike trains were binned in .4 ms wide bins and dot products (cross-
correlograms, CCG) were computed between every spike array and
any other jointly recorded spike array with temporal offsets spanning
the [ − 20, 20]ms rangewith 0.4ms steps. To generate a low frequency
baseline cross-correlation histogram for comparison, the observed
CCG was convolved with a “partially hollowed” Gaussian kernel111, with
a standard deviation of 10 ms, and a hollow fraction of 60%. The
observed coincidence count (CCG) is compared to the expected one
(low frequency baseline) which is estimated using a Poisson distribu-
tion with a continuity correction, as previously described112. A putative
connection was considered synaptic if the following conditions were
met: (1) 99.9999/0.0001 (for excitatory/inhibitory connections,
respectively) percentile of the cumulative Poisson distribution (at the
predicted rate) was used as the statistical threshold for significant
detection of outliers frombaseline, (2) two consecutive bins needed to
pass the thresholdwithin the ±1.6–4mswindow113, and (3) there should
be no threshold passing in the ±1.6–0 ms range. Alternatively, if the
peak/trough occurred in the ±1.6–0 ms range, and two consecutive
bins passed the threshold for detecting outliers, the units were con-
sidered as receiving common input. A total of total of 557,620 possible
connections were considered in the right hemisphere (auditory and
visual cortices), and 606,301 possible connections were considered in
the left hemisphere (somatosensory and motor cortices).

The 3D position of each neuron in a connected pair was deter-
mined by first computing its center of mass on the probe surface,
based on peak absolute template waveform amplitudes on the peak
waveform channel and 20 adjacent channels below and above the
peak. The exact DV, ML and AP positions were then computed taking
into account the insertion site, the total length of the probe in thebrain
and its angles in the tissue, as explained above. Synaptic strength was
defined as the absolute difference between the spike coincidence
count at the CCG peak/trough (for excitatory/inhibitory connections,
respectively) and the slow baseline at peak/trough, normalized by the
minimum number of spikes between the two spike trains (i.e., the
theoretical maximum number of coincidences).

All neurons in the dataset were assigned with a variable that best
fit its spiking variability in the dark session, based on the mean cross-
validated relative log-likelihood ratio (rLLR) of single covariatemodels
relative to the null model (23 behavioral features + unclassified cells).
The “functional space” map was obtained for visualization purposes
only by performing PCA on a matrix containing such values for all 23
covariates, in addition to the SMI and LMI estimates and p-values. The
first n components that cumulatively accounted for 90% of the var-
iance were then embedded on a 2D plane by uniform manifold
approximation and projection (UMAP). The 24 feature list was further
simplified by grouping variables in 11 categories: unclassified, position,
speed-related, egocentric head posture, egocentric head movement,
allocentric head posture, allocentric head movement, back posture,
back movement, neck elevation, neck movement. Variables were
plotted on log-log scales for visualization purposes only, but all pre-
sented statistics (Mann–Whitney U test was chosen, as Levene’s test
established groups had unequal variances) were performed on the
original data, and “functional distance” was calculated across the ori-
ginal 28 variables (23 covariates + SM and LM indices and p-values).

Excitatory and inhibitory connection pairs were classified in 6
broad functional categories: (1) movement modulated neuron pre-
ceding a sensory modulated cell (either sound or luminance, for
auditory and visual ensembles, respectively), (2) posture modulated
neuron preceding a sensorymodulated cell, (3) movementmodulated
neuron preceding a movement modulated cell, (4) movement modu-
lated neuron preceding a posture modulated cell, (5) posture modu-
lated neuron preceding a movement modulated cell, and (6) posture
modulated neuron preceding a posturemodulated cell. Assessment of
whether the connection pair numbers in each category could have
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been observed by chance was done by subsampling pseudorandomly
paired units 1000 times, provided that: (1) the anatomical distance
between cells was shorter or equal to themaximal one observed in the
true data, (2) there were equal numbers of excitatory and inhibitory
connections as in the real data in each run, (3) the connection was
physiologicallyplausible (excitatory/inhibitory connections couldonly
be formed in the RS/FS cell was the presynaptic neuron, respectively).
Lastly, we statistically tested whether the observed difference in neu-
ron counts between subregion categories (either A1-A2D, or V1-V2L)
was larger than theoretically expected by an equal split (50–50%),
using the χ2 goodness-of-fit test if the expected frequencies exceeded 5
in each category, or the binomial test otherwise.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are available in a figshare database
under the accession code https://figshare.com/articles/dataset/Rat_
3D_Tracking_E-Phys_KISN_2020_Dataset/17903834. Source data are
provided with this paper.

Code availability
The code pertaining to the experimental pipeline for data acquisition
and preprocessing canbe found at https://github.com/bartulem/KISN-
PyLab121. The codeused to analyze the data andmake thefigures canbe
found at https://github.com/bartulem/KISN-pancortical-kinematics.
All codes are publicly available.
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