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Demonstrationofquantum-digital payments

Peter Schiansky 1,4, Julia Kalb1,4, Esther Sztatecsny1,
Marie-Christine Roehsner 1,3, Tobias Guggemos1, Alessandro Trenti1,3,
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Digital payments have replaced physical banknotes in many aspects of our
daily lives. Similarly to banknotes, they should be easy to use, unique, tamper-
resistant and untraceable, but additionally withstand digital attackers and data
breaches. Current technology substitutes customers’ sensitive data by ran-
domized tokens, and secures the payment’s uniqueness with a cryptographic
function, called a cryptogram. However, computationally powerful attacks
violate the security of these functions. Quantum technology comes with the
potential to protect even against infinite computational power. Here, we show
how quantum light can secure daily digital payments by generating inherently
unforgeable quantum cryptograms. We implement the scheme over an urban
optical fiber link, and show its robustness to noise and loss-dependent attacks.
Unlike previously proposed protocols, our solution does not depend on long-
term quantum storage or trusted agents and authenticated channels. It is
practical with near-term technology and may herald an era of quantum-
enabled security.

The development of quantum algorithms compromising modern
cryptography has triggered global research for stronger security
levels1–3: the security of current cryptographic schemes relies on
computationally hard mathematical problems (known as computa-
tional security), which should be replaced by quantum-resistant
schemes. While research and standardization for such quantum-
resistant solutions are blossoming, some of them have already been
broken by computational attacks4–6.

Quantum-mechanical laws, on the other hand, can provide
security against adversaries with unlimited computational power for
some tasks7,8. This type of security, known as information-theoretic
security (i.t.-security), is one of the motivations towards a quantum
internet9. So far, Quantum Key Distribution (QKD) is the most mature
and widely implemented quantum technology: it allows two mutually
trusted parties to communicate securely over a public channel. QKD
can already establish i.t.-secure connections over 500 km of optical
fiber10,11 and 1000 km of free space using satellites12,13.

In the modern era of digital payments ranging from contactless
purchases to online banking, a plethora of new security threats arise.

One significant threat occurs when customers interact with untrusted
merchants, who may not have sufficient means to protect against
external hackers, or may be malicious themselves14. In that case, a
binding commitment between the customer, the merchant, and
the bank or payment-network is required to guarantee the validity of a
transaction. Such a bondusually comes in the formof a cryptogram15,16,
which is the output of a hash function that guarantees the one-time
nature of eachpurchase. Sincenot all parties involved are trusted,QKD
is not suitable to provide i.t.-security here, and other quantum solu-
tions need to be established. Device-independent versions of QKD17–19,
which do not assume trusted quantum sources or detectors, are also
inadequate, since the final classical output (i.e., the cryptogram) is
handled by the untrusted parties themselves.

Motivated by the no-cloning property of quantum mechanics,
previous works have investigated the potentials and drawbacks of
using quantum light in the prevention of banknote counterfeiting20–22

and double-spending with tokens or credit cards23–27. Introducing this
fundamentally new type of money to everyday scenarios is, however,
technologically challenging: quantum states must be stored over days
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or months to ensure flexible spending. This is far beyond state-of-the-
art quantum storage times, which range from a fewmicroseconds to a
few minutes28–30. Recently, an interesting alternative was proposed,
replacing quantum storage by a network of trusted agents and
authenticated channels, positioned at precise spatial locations with
respect to the spending points31,32. From a practical standpoint, this
approach presents new drawbacks, as customers and online shoppers
do not have the means to securely set up complex trust networks for
everyday transactions. Furthermore, accurately monitoring the spatial
and temporal coordinates of verifiers requires a trusted Global Posi-
tioning System (GPS), which opens the door to undesired spoofing-
type attacks33.

In this work, we show how quantum light can provide practical
security advantages over classical methods in everyday digital
payments. As shown in Fig. 1, we generate and verify i.t.-secure quan-
tum cryptograms, in such a way that the unforgeability and user
privacy properties from previous experimental works holds32, but all
intermediate channels, networks, and parties are untrusted, thus sig-
nificantly loosening the security assumptions. Only one authenticated
communication (between the client and their payment provider) has
to take place at an arbitrary prior point in time. The concealment of the
customers’ sensitive information is guaranteed by an i.t.-secure func-
tion, and the commitment to the purchase is guaranteed by the laws of
quantum mechanics. Additionally, no cross-communication is
required to validate the transaction in the case of multiple verifier
branches. Our implementation is performed over a 641 m urban fiber
link, and can withstand the full spectrum of noise and loss-dependent
attacks, including those exploiting reporting strategies34.

Results
Digital payments
We first describe the main security concepts of today’s online and
contactless purchases15,16 (actual implementationmay vary). Following

Fig. 2, each Client initially sets up an account with a Trusted Token
Provider (TTP) via a secure communication channel. The TTP is usually
the Client’s bank, credit card provider, or a trusted external company.
Through this initial step, the Client is assigned a unique identification
token C, which is stored securely on both the Client’s and TTP’s devi-
ces. The Client’s stored data can be, e.g., an electronic wallet or a
virtual credit card stored on a smartphone, watch, etc.

When the Client wishes to purchase goods or services from a
given Merchant Mi, it has to be ensured that malicious parties,
including untrusted Merchants, cannot spend in the Client’s name at
another place or time. That is why the Client receives a one-time
payment token P from theMerchant or TTP, which is used to compute
a cryptogram, an output of a function of their secret token C, the
Merchant’s public ID Mi, and the one-time payment token P. We note
here that the Merchant IDMi must be valid and honest (e.g., provided
by a Public Key Infrastructure or a securely pre-shared locally stored
database). This cryptogram,whichwe call κ C,Mi,P

� �
, is communicated

to theMerchant, who then sends it to the TTP for verification. The TTP
can verify the signature and uniqueness of the cryptogram, since they
have knowledge of all three inputs C, Mi, and P.

In real-world applications, the cryptogram is the output of a
cryptographic hash- or encryption function16,35 that is computationally
secure. However, this would allow a malicious party with sufficient
computational power to run through all input combinations of C, P,
and Mi until they recover the one combination that matches the ori-
ginal cryptogram. In that case, the Client’s ID and payment data are
completely compromised.

Quantum advantage
Considering these attacks only, previous quantum-digital signature
schemes can provide i.t.-security36,37. However, they typically require
QKD channels and classical authentication between all three parties.

In this work, we propose a quantum solution that requires only
one QKD for the initial step between Client and TTP (Step 1 in Fig. 2).

Fig. 1 | Simplified representation of quantum-digital payments. As in classical
payments, we consider three parties: a Client, a Merchant, and a Bank/Creditcard
institute. In contrast to ref. 32, we do not assume any quantum or classical com-
munication channel to be trusted (i.e., CH 1, CH 2, andCH3 are insecure), except an
initial prior step between the Bank and Client for an account creation. All parties
involved apart from the Bank can also act maliciously. During a payment, the Bank
sends a set of quantum states to the Client’s device (e.g., phone, computer, etc.),
whichmeasures themand transforms them into aquantum-securedpayment token
—cryptogram—which we display here as a one-time credit card. The Client uses this
classical token for paying the Merchant, who then contacts the Bank for payment
verification. If the payment is accepted, the bank transfers the money from the
Client’s account to the Merchant’s.

Fig. 2 | Classical digital payments. Step 0: The Client sets up an account at the
Trusted Token Provider (TTP), providing their secret ID and sensitive credit card
information through an authenticated and encrypted channel. Step 1: The Client
authenticateswith theTTP, and requests a cardholder tokenC, which theTTP sends
through a secure channel. Step 2: The TTP randomly generates a one-time token P
and sends it to the Client through a secure channel. Step 3: The Client’s device uses
the stored secret token C, the public merchant ID Mi, and the payment token P to
compute a cryptogram κ C,Mi, P

� �
. Step 4: The Client spends the cryptogramat the

chosen Merchant. Step 5: The Merchant verifies the cryptogram with the TTP, and
accepts or rejects the transaction.
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It is similar to classical digital payments, but replaces the one-time
payment token P by a sequence ∣Pi of quantum states. That is to say,
κ C,Mi, P
� �

becomes κ C,Mi, ∣Pi
� �

and steps 2–5 from Fig. 2 are mod-
ified as follows:
2. The TTP generates a random bitstring b and a random conjugate

basis-string B of length λ. Each bit bj is encoded onto a quantum
state prepared in Bj , where j∈ {1; . . . ; λ}. This constitutes the
classical description ðb,BÞ of the quantum token ∣Pi, which the
TTP stores under the Client’s ID CID (e.g., let λ =4 with the basis
Bj 2 f+ =�;0=1g such that ðb,BÞ= ð0101, 0011Þ would result in
∣Pi= “ ∣+i∣�i∣0i∣1i”). The length λ depends on the tolerated success
probability of an attack and the number of available merchants.

3. Upon receiving ∣Pi, the Client chooses the Merchant Mi out of a
database that was securely pre-shared with the TTP. Next, they
calculatemi =MAC(C,Mi), which is the output tag of an i.t.-secure
Message Authentication Code (MAC)38–42 that takes the secret
token C and the chosen Merchant’s public ID Mi as input (see
Methods). The Client interprets mi as a basis-string and privately
measures the whole sequence ∣Pi according to mi. The resulting
string of measurement outcomes κi 

mi ∣Pi constitutes the
cryptogram.

4. The Client sends κi along with their ID CID to the Merchant, who
forwards this together with its Mi as {κi, Mi, CID} to the TTP for
verification.

5. To authorize the purchase, the TTP looks up C and ðb,BÞ, and
calculatesmi =MAC(C,Mi) for the Client’s ID . The TTP accepts the
transaction if and only if ðκiÞj =bj when ðmiÞj =Bj . The TTP rejects
otherwise.

Theprotocol’s securitydependson theupperboundof the success
probability to produce two valid, distinct cryptograms κi and κj for two
distinctMerchantsMi andMj; we call thispd (c.f. following two sections).
Another possible attack is to forge an output tag, such that MAC(C,
Mi) =MAC(C,Mj)⇔mi =mj⇔ κi = κj; we call the respective probabilitypt.

In an i.t.-secure MAC, pt = 1=∣m∣= ∣M∣=∣C∣= 1=
ffiffiffiffiffiffi
∣C∣

p
, where ∣m∣,∣M∣

and ∣C∣ refer to the cardinality of the MAC, the Merchant ID and the
Client’s secret token respectively. Herewe assume that ∣m∣= ∣M∣=

ffiffiffiffiffiffi
∣C∣

p
.

Since pd and pt should be of the same order of magnitude we choose
pd ≈pt = 1=

ffiffiffiffiffiffi
∣C∣

p
. This will yield the number N of quantum states

necessary to verify one bit of the cryptogram. As the bit length of any
MAC is defined as log2ð∣m∣Þ, the entire length of the quantum token will
be given by λ=N � log2ð∣m∣Þ=N � log2ð

ffiffiffiffiffiffi
∣C∣

p
Þ. Any additional parameter

that should be committed to during the transaction (e.g., payment
amount) can be added as an input to the MAC function.

Just like QKD provides i.t.-security for key exchanges such as
Diffie-Hellman43, our scheme provides i.t.-security for the one-time
property of cryptograms: while the concealment of C is guaranteed by
the i.t.-secure MAC, the commitment to Mi is ensured by the irrever-
sible nature of quantum measurements (see Methods). Notably, our
quantum commitment is not limited by the impossibility theorem of
quantumbit commitment44,45, inwhichoneof the twoparties candelay
their quantum measurements in time. This is because in our protocol
one of the interacting parties is assumed to be honest (the TTP).

We note that our implementation contrasts with those of QKD
schemes in two ways. First, the choice of measurement basis is
deterministic as opposed to random. This effectively commits the
purchase to a given Client token and Merchant. Second, the mea-
surement bases are never publicly revealed, which has the interesting
benefit of hiding the Merchant that was chosen by the Client until
verification is required32.

Loss-dependent security
Although the security of commitment is guaranteed by the laws of
quantummechanics in theory, certain considerations have to be taken
into account in a practical setting.

Due to imperfections of real devices (inaccurate state prepara-
tion, lossy quantum channels, non-unit detection efficiency), some
quantum stateswill divert from their ideal classical descriptions, or get
lost along the way. In fact, some bits in step 5 will be unequal, although
measured in the same basis (i.e., ðκiÞj ≠bj when ðmiÞj =Bj) and the
protocolwould abort even though itwas followedhonestly. This iswhy
we have to allow for errors and losses during the verification proce-
dure. In turn, a malicious party can exploit this new allowance to cir-
cumvent the commitment or double-spend the cryptogram.

Fig. 3 | Experimental quantum-digital payments. a The Trusted Token Provider
(TTP) creates entangled photon pairs using a Spontaneous Parametric Down
Conversion (SPDC) source.One photon’s polarization is randomlymeasured by the
TTP in either a linear or diagonal basis, creating the classical description ðb,BÞ,
which remotely prepares the quantum token ∣Pi on the second photon. The latter is
sent to the Client through a 641 m long optical fiber link, who measures its polar-
ization in a basis mi =MAC(C, Mi) specified by a Message Authentication Code

(MAC) of theMerchant’s IDMi and the Client’s private token C, and thereby obtains
the cryptogram that is κi 

mi ∣Pi. Classical communication between the TTP, Client
andMerchant is used to verify the compatibility of κ,Mi andCwith ðb,BÞ. Red (blue)
lines indicate quantum (classical) channels. The arrow numbering indicates the
steps fromFig. 2.b Satellite image of the twobuildings housing the TTP, Client, and
Merchant. A 641 m optical fiber link connects the parties.
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As an example, assume that the TTP tolerates as many as 50%
losses. A malicious Client could then measure half of the quantum
token ∣Pi in the basis for M0 and the other half in the basis for M1,
effectively creating two successfully committed tokens. While double-
spending is certainly possible with a tolerated loss rate of 50%, we use
semidefinite programming to identify combinations of error and
loss rates for which an attack can still be detected. Intuitively, the
derivation involves searching for the cheating strategy that minimizes
the malicious party’s introduction of excess errors and losses in the
protocol (see Methods). We note that, to the best of our knowledge,
suchpowerful loss-dependent attacks were not considered inprevious
quantum token implementations24,32.

Experimental demonstration
We implement our quantum-digital payment schemeover the deployed
optical fiber link depicted in Fig. 3. The TTP employs a Spontaneous
Parametric Down Conversion (SPDC) source to create a pair of
polarization-entangled photons in the state ∣Ψ�i= ∣HV i � ∣VHið Þ=

ffiffiffi
2
p

.
The TTP keeps one of these photons and employs a 50/50 beamsplitter
to probabilistically direct it to one of twopolarization projection stages,
measuring its polarization in either the linear H/V ( ) or diagonal D/A
( ) basis. This creates the random classical description ðb,BÞ and
remotely imprints the payment token ∣Pi onto the second photon.

The payment token is sent to the Client, located in another
building, through a 641moptical fiber link. Using a half-wave plate, the
Client commits to exactly one Merchant from the set {M0, M1} by
measuring either in the H/V basis for m0 =MAC C,M0

� �
or in the D/A

basis form1 =MAC C,M1

� �
. In this way, the Client retrieves the classical

cryptogram κ C,Mi, ∣Pi
� �

, and forwards it to the Merchant, who is, for
convenience, located in the same laboratory. Note that in the case of
more than two merchants, the token is split into several sub-tokens
that are each measured either in H/V or D/A. We discuss how to adapt
the token length in the following section.

At any later time, theMerchant transmits the cryptogram received
by the Client back to the TTP, using a classical channel that links the

two buildings. The TTP finally checks the compatibility of ðb,BÞ with
Mi, C and κi, and accepts or rejects the requested transaction.

We repeatably execute the experiment for both commitments in
H/V and D/A. The average measured error rate is 1.45 ± 0.01% for H/V
and 3.28 ±0.01% for D/A. The overall losses, combining the deployed
fiber link and the Client’s setup (including detection efficiency),
are estimated at 22.40 ± 1.50%, while the multiphoton emission prob-
ability, measured through a correlation measurement, is 6.76 ± 0.12%.
The detail of such values are presented in the Supplementary
Information.

With a maximum measured error rate of em = 3.28 ±0.01% (D/A)
and losses of lm = 22.40± 1.50%, we lie within the calculated secure
region as depicted in Fig. 4a. In fact, according to our semidefinite
programs (see Methods), a cheating party will introduce errors larger
than e= 3.79 ±0.22% when double-spending with the same amount of
claimed losses l= lm. With em < e and lm < l by two standard deviations,
we therefore demonstrate that a TTP can allow for honest experimental
imperfections while ensuring protection against malicious parties.

The i.t.-secure implementation of our protocol depends only on
statistical fluctuations arising from the finite number of generated
quantum states: a malicious party may indeed successfully cheat by
introducing fewer losses or errors than theexpected asymptotic values
displayed in Fig. 4a.

We use the Chernoff bounds from Fig. 4b to estimate the dis-
honest success probability pd associated with the number N of quan-
tum states required to verify one bit of the cryptogram. We also
determine the probability ph that the protocol does not abort when
followed honestly, which tends to ph ~ 1 as N is increased.

Discussion
We propose and demonstrate a form of quantum payment that guar-
antees the one-time nature of purchases with i.t.-security. By increas-
ing the length of the quantum token, the cheating probability becomes
arbitrarily low in the presence of experimental imperfections such as
noise and losses.The implementationdoes not require any challenging
technology on the Client’s side, besides single-photon detection.

While typical contactless payment delays are of the order
of seconds, our quantum communication and verification scheme pro-
vides i.t.-security within a few tens of minutes. These limitations are,
however, only technological: quantum communication rates can be
improved by using brighter quantum sources, while the verification
delay originates from the correction of time-tagging drifts between the
two buildings (see Methods). Indeed, brighter sources of entangled
photon pairs have already been demonstrated, which could decrease
the quantum token transmission time to under a second46.

We finally note that practical digital payment schemes must allow
for rejected payments without compromising the Client’s sensitive
data. In our scheme, the adversary can compromise the payment token
∣Pi sent over the quantum channel, the cryptogram sent over the
classical channel, or the Client’s choice of Mi.

In the first two cases, quantummechanics will ensure that the TTP
recognizes the malformed cryptogram and rejects the payment with
arbitrarily high probability. The transaction may then be restarted.
However, an i.t.-secure MAC must not re-use the key C (see Methods),
which is why we propose the use of an n-time-secureMAC to overcome
this obstacle. This allows re-using C as an input for the following pay-
ments, which imposes a finite, arbitrary bound on the number of
purchases39,40.WhenC is consumed, a newC, sharedbetweenClient and
TTP,must then be generated.We can amend our protocol such that the
number of purchases is not bounded by the MAC function, by growing
C during the payment process: when the Client receives a new quantum
token ∣Pi, we append additional quantum states for QKD, and use the
cryptogram κ for authentication. To protect against the third case, it
must be ensured that the Client’s choice of Mi is independent of any
external bias. This can for examplebeguaranteed if a securedatabaseof

Fig. 4 | Security for experimental quantum cryptograms. a The semidefinite
programming framework extracts a secure region of operation (turquoise) as a
function of errors and losses. Our measured experimental performance
(em =0.0328 ±0.0001; lm =0.2239 ±0.0150) is indicated by the blue dot, and lies
within the secure region. Error bars propagate Poisson errors on coincidence
counts. b The dishonest success probability pd (green, upper bound) and honest
success probability ph (red, lower bound) are displayed as a function of the number
of quantum statesN required to verify one bit of the cryptogram. These are derived
using a Chernoff bound argument (see Supplementary Information)54. As an
example, an experimental token containing λ =N = 4.2 × 106 quantum states (ver-
tical bluedashed line) achieves anhonest success probability very close toph ~ 1 and
a dishonest success probability pd = 5.9 × 10−45.
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Merchants is initially distributed along with C and the Client chooses
freely without any prior communication with the Merchant. Alter-
natively, the Merchant may send their ID to the Client, who uses the
local database as a 2nd factor authentication.

Our protocol’s relaxed implementation requirements with
respect to previous proposals, together with its error-tolerance, facil-
itate its deployment in mid-term quantum networks. Classical net-
works host applications beyond mere communication tasks. Similarly,
a future quantum internet will necessitate the maturation of various
quantum primitives and applications beyond QKD9,47. Our scheme
advances the field of quantum payment schemes towards mid-term
practical relevancy.

Methods
Cryptogram
A cryptogram is a cryptographic function that secures tokenized pay-
ments (e.g., online, contactless, and in-app-payments) against double-
spending15,16. The actual cryptographic mechanism varies per payment-
network, but a typical procedure is challenge-response. Here, the Client
is not only in possession of a payment token, but also shares a secret key
with the TTP35. During the payment, the Merchant generates a pseudo-
random value (called a nonce), and sends it to the Client who encrypts it
with this key (typically, symmetric encryptionwith ≥128-bit key strength
is used). The resulting cryptogram is sent alongside the payment meta-
data (e.g., merchant ID, amount, etc.) to the Merchant, who forwards it
to the TTP. As the TTP is in possession of the key, they are able to
decrypt andprove the correctnessof thenonce for thegivenpayment at
the Merchant. Spending the token for another transaction is impossible
under the assumptions of computationally secure encryption.

i.t.-secure MAC
AMessage Authentication Code (MAC) is a function f(H, k,m)↦ y. Based
on a pseudo-randomized function H – typically a hash function –, it
takes a secret key k and message m as inputs, and outputs some
authentication tag. A hash function is defined as a function thatmaps a
set of arbitrary length to a finite set H : f0, 1g* 7!f0, 1gn;n 2N. Hence,
hash functions are non-injective by definition, and thus collisions, such
that f ðH, k,mÞ= f ðH, k,m0Þ;m≠m0 can occur (given that k remains
secret). In an i.t.-secure MAC, the probability of such a collision is
bound to 1=

ffiffiffiffiffiffi
∣k∣

p
; k = f0, 1gl , where l 2N is some security parameter.

This is similar to the probability of finding the decryption key for a
given one-time pad. Different such schemes exist, in which a key k can
either only be used once37,38,41, a finite amount of times39,40, or out-
putted tag length is variable41,42.

Semidefinite programming
Our quantum-cryptographic security proof involves optimizing over
semidefinite positive objects to find an adversary’s optimal cheating
strategy. Semidefinite programming provides a suitable framework
for this, as it allows to optimize over semidefinite positive variables,
given linear constraints48. Most of the time, these variables are density
matrices, measurement operators, or more general completely-
positive trace-preserving maps49. Semidefinite programs present an
elegant dual structure, which associates a dual maximization problem
to each primal minimization problem. The optimal value of the primal
problem then upper bounds the optimal value of the dual problem,
allowing to prove tight bounds on the adversarial cheating probability
(see ref. 26 for instance).

Optimal cheating strategy
Using semidefinite programs, we search for the optimal completely-
positive trace-preserving quantum map which minimizes the intro-
duction of noise and losses for an adversary attempting to double-
spend the cryptogram. The security analysis takes into account mul-
tiphoton emission, and assumes the absence of coherence between

photon number states. The latter is justified by the fact that SPDC
produces states of the form

P1
n=0

ffiffiffiffiffi
cn
p ∣ni1∣ni2 in the f∣nig photon

number basis50, which leaves the individual subsystems in states of the
form

P1
n=0 cn∣ni nh ∣. The resulting cheating strategy is fairly intuitive

when considering two extreme cases: when the tolerated error rate is
zero, the malicious party splits the quantum token into two equal
parts, and measures each half in a different basis. This leads to two
tokens that are committed to different merchants with zero error, but
with 50% losses on each. On the other hand, when the tolerated losses
are zero, the malicious party measures all states in a basis that is
rotated by 22.5∘ with respect to the H/V basis. Such ameasurement will
identify the correct encodedbitwith aprobability of ~85.4%. The actual
optimal cheating strategy corresponding to our experimental para-
meters is a combination of these two extreme strategies.

State generation
An SPDC process in a periodically-poled KTP crystal is pumped with a
continuous-wave 515 nm laser, yielding apair of polarization-entangled
and color-entangled photons. One photon is emitted at around
1500 nm, while its orthogonally polarized counterpart is emitted
around 785 nm. Experimental demonstrations using a similar entan-
glement design were demonstrated in refs. 51,52. Since the spectral
bandwidths of the two SPDC processes are not equal, a tunable EXFO
bandpass filter is inserted into the 1500nm arm to equalize them and
enhance the entanglement visibility. In order to render the two pho-
tons temporally indistinguishable, an unpoled KTP crystal of half the
length of the ppKTP crystal, with axes rotated by 90∘ with respect to
the ppKTP axes, is inserted.

Single-photon detection
After the optical fiber link, the 1500 nm photons are detected with
PhotonSpot superconducting nanowire single-photon detectors, with
efficiencies around 93% (see Supplementary Information for detail),
while the 785 nm photons are locally detected in the TTP’s laboratory
using Roithner avalanche single-photon detectors, with efficiencies
around 50%. A set of paddles, inserted before the polarization mea-
surement, are used to compensate for polarization drifts over the
fiber link.

Data post-processing
The TTP’s and Client’s single-photon detectors are connected to two
different Time-Tagging Modules (TTM). In order to recover coin-
cidences between the two buildings, careful synchronization of the
two modules is required: first, the internal clocks of the respective
modules bear an offset with respect to one another, due to the photon
travel time through the optical fiber link. Second, the cycles of the
internal clocks of the two TTMs drift with slightly different rates,
resulting in an offset drift over time. Finally, there is an electronicdelay
due to different detector response times, and the TTMs only record
time tags relative to the time theywereactivated. All these factorswere
corrected with our post-processing code.

Heralded second-order correlation function measurement
Tomeasure the heralded second-order correlation function gð2Þh ðτÞ, the
1500 nm (telecom) photons created by our SPDC source are sent
directly to an InGaAs detector (idler detector labeled Di), while the
785 nm photons are routed to a 50/50 fiber beamsplitter, with both
outputs connected to one detector each (labeledD1 andD2). g

ð2Þ
h ðτÞ can

be written as53

gð2Þh ðτÞ=
Ni � Ni12ðτÞ

Ni1ð0Þ � Ni2ðτÞ
, ð1Þ

whereNi is the total number of events detected in the telecomdetector
during the measurement integration time; Ni1(0) are the twofold
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coincidence events between the telecom detector and D1 at 0 delay;
Ni2(τ) are the 2-fold coincidence events between the telecom detector
and D2 at delay τ; and Ni12(τ) are the 3-fold coincidences between all 3
detectors with at delay τ =0 between the telcom detector and D1, and
delay τ toD2. Pumping the SPDCsourcewith 35mW,datawas acquired
for about 60 min. gð2Þh ðτÞ, with coincidence time windows of 0.33 ns,
0.99 ns, 1.98 ns, 2.96 ns as shown in Fig. 5. A source dominated by
single-photons has a gð2Þh ð0Þ<0:5, with gð2Þh ð0Þ=0 for a true single-
photon source. Fromourmeasurements with a coincidencewindowof
2.96 ns, which is close to the combined jitter of the SPADs and
coincidence logic and therefore the most meaningful value, we
determined gð2Þh ð0Þ=0:030 10ð14Þ.

Data availability
The data generated in this study have been deposited in the Zenodo
database under the accession code https://doi.org/10.5281/zenodo.
7979319.

Code availability
The codeused in this study hasbeendeposited in theZenododatabase
under the accession code https://doi.org/10.5281/zenodo.8020667.
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