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Regulating the proximity effect of
heterocycle-containing AIEgens

Jianyu Zhang 1,6, Yujie Tu1,6, Hanchen Shen1, JackyW. Y. Lam 1, Jianwei Sun 1,
Haoke Zhang 2,3 & Ben Zhong Tang 1,4,5

Proximity effect, which refers to the low-lying (n,π*) and (π,π*) states with
close energy levels, usually plays a negative role in the luminescent behaviors
of heterocyclic luminogens. However, no systematic study attempts to reveal
and manipulate proximity effect on luminescent properties. Here, we report a
series of methylquinoxaline derivatives with different electron-donating
groups, which show different photophysical properties and aggregation-
induced emission behaviors. Experimental results and theoretical calculation
reveal the gradually changedenergy levels anddifferent coupling effects of the
closely related (n,π*) and (π,π*) states, which intrinsically regulate proximity
effect and aggregation-induced emission behaviors of these luminogens. With
the intrinsic nature of heterocycle-containing compounds, they are utilized for
sensors and information encryption with dynamic responses to acid/base sti-
muli. This work reveals both positive and negative impacts of proximity effect
in heterocyclic aggregation-induced emission systems and provides a per-
spective to develop functional and responsive luminogens with aggregation-
induced emission properties.

Materials science drives the advancement of the world and matters,
especially for the versatile types of organic luminescent materials
(OLMs), which have been developed and widely applied to optoe-
lectronic devices, energy conversion, biological imaging, chemical
sensors, etc1–6. Based on the well-established theory of through-bond
conjugation (TBC), molecular photophysics has been developed and
utilized to design and construct OLMs by covalently connecting
conjugated units and introducing electron donors and acceptors7–11.
However, most of the traditional OLMs possess planar and rigid
skeletons and suffer from aggregation-caused quenching (ACQ)
effect in the aggregate and solid states because of the strong π-π
stacking, hindering their practical applications as solid devices12–14.

Fortunately, aggregation-induced emission (AIE), an opposite effect
to ACQ, was coined, which referred to the phenomenon that lumi-
nogenswere strongly emissive in the aggregate state but nonemissive
in their dilute solutions15–17. Unlike planar ACQmolecules, luminogens
with AIE effect (AIEgens) show twisted or easily distorted conforma-
tion, and the restriction of intramolecular motion (RIM) is proven as
themechanism forAIE effect18–21. The development and application of
AIEgens have been a hotspot for OLMs during the past two decades,
and many AIEgens are constructed using the star fragments of tet-
raphenylethene or triphenylamine as the fundamental units22–24.
Many TBC-based strategies have been applied to manipulate the
luminescent properties of these π-conjugated systems. For example,
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the introduction of donor−acceptor (D−A) units endows AIEgenswith
twisted intramolecular charge transfer (TICT) properties to realize
polarity- and moisture-responsive luminescence25–28. Hence, the
design strategy and mechanistic understanding of the π-conjugated
AIEgens are well-established and widely utilized for advanced
applications.

Due to the complex electronic structures of heteroatom-
participated compounds, many heteroatom-containing AIEgens from
natural products or synthetic laboratories have attracted much
attention in fabricating OLMs29–33. Meanwhile, the participation of
heteroatoms and lone pairs brings some unique structures and prop-
erties that are absent in pure hydrocarbonicAIEgens, such as hydrogen
bonds, excited-state intramolecular proton transfer, and room-
temperature phosphorescence34–37. Negligently but importantly,
some compounds also show unique properties closely related to the
(n,π*) transition introduced by heteroatoms, such as the proximity
effect (PE). PE refers to the phenomenon that the energy level of the
low-lying (n,π*) state is close to the lowest (π,π*) state in some
nitrogen-heterocyclic and aromatic carbonyl compounds, which was
first proposed by Edward C. Lim et al. in the 1970s38–41. The vibronic
coupling of these two states usually leads to efficient internal con-
version and nonradiative decay, resulting in the quenching of
luminogens42–45. Hence, PE is traditionally regarded as a negative factor
in constructingOLMs. Several studies have reported the solvent effect,
temperature-dependent fluorescence, and substituent effect related
to PE46–48. However, no systematic study attempts to reveal and
manipulate the PEof heterocycle-containingAIEgens. It is believed that
the combination of PE and RIM effect would build new theories to
replenish AIE mechanisms and provide strategies to develop efficient
AIEgens with unique features.

Herein, a series of heterocycle-containing AIEgens with different
electron-donatingunitsweredeveloped and synthesized to investigate
the regulation of PE (Supplementary Figs. 1, 2). All compounds
were satisfactorily characterized, and their photophysical properties
were systematically investigated (Supplementary Figs. 3–12). They all
showed typical AIE properties but different trends of fluorescence
variation towardwater additionduring the aggregation process, which
was modulated by the response of PE and TICT to solvent environ-
ments. The theoretical analysis clearly illustrated the electron-
structure change and different coupling effects of the low-lying
(n,π*) and (π,π*) states on their photophysical properties, suggesting
both positive and negative impacts of PE. In addition, with the intrinsic
nature of heteroatoms and PE, these compounds exhibited sensitive
fluorescence responses to acid/base stimuli, which were rationally
utilized for sensor and information encryption. This work realizes the
regulationof PE in heterocyclic AIE systems andprovides a perspective
to develop functional and responsive AIEgens.

Results
Photophysical properties
The photophysical properties of the heterocycle-containing core, 3-
methylquinoxalin-2(1H)-one (MQ), were first studied (Fig. 1). It showed
amaximumabsorption peak (λabs) at 337 nmwith a shoulder at 355 nm
in different solvents without a noticeable solvent effect (Supplemen-
tary Fig. 13a). The photoluminescence (PL) property was measured in
THF/watermixtures by stepwise adding water. As shown in Fig. 1b, MQ
was almost nonemissive in pure THF solution but gradually became
emissive along with the increased water fractions (fw). At fw = 60%, the
PL intensity (I) was 9-fold higher than that in pure THF solution (I0)
(Fig. 1c). Meanwhile, the maximum emission wavelength (λem) was
redshifted from 393 nm to 410 nm. When fw ≥ 70%, nanoparticles with
a size around 100 nmwere detected using the dynamic light scattering
technique (Supplementary Fig. 14), suggesting the formation of
aggregates. At fw = 90%, the PL intensity was further enhanced to 13-
fold higher than I0, and the λem showed a slight redshift. The absolute

quantumyield (Φ) ofMQ in the crystalline state (2.1%)wasmuchhigher
than the pure solution (0.1%) due to multiple hydrogen-bonding
interactions and RIM effect, which was verified by its single-crystal
structure (Supplementary Figs. 15, 16 and Supplementary Table 1). The
above results clearly supported the AIE-active nature of MQ.

SinceMQ is inherently an electron acceptor, the phenyl group as
a weak electron donor is incorporated into MQ to construct (E)-3-
styrylquinoxalin-2(1H)-one (SQ) with a D−A structure. Accordingly,
its λabs was redshifted to 390 nm and displayed a weak solvent effect
in different solvents (Supplementary Fig. 13b). The PL spectra of SQ
also showed gradually enhanced intensity with the increased fw, but
its PL intensity enhancement at fw = 90% (I90/I0 = 4) wasmuch smaller
than MQ (I90/I0 = 13) (Fig. 1d, e). Besides, the λem exhibited an unob-
vious redshift (from 454 nm to 458 nm) when fw ≤ 70% and rapidly
shifted to 475 nm at fw = 90%. The first stage-redshift was similar to
that of MQ, but the second-stage dramatic redshift showed quite
different properties with MQ, which might be ascribed to the inter-
molecular π−π interactions in the closely packed aggregates, sup-
ported by its crystal packing and solid-state PL spectra with the same
shoulder peak (Supplementary Figs. 15, 17). It is noteworthy that the
redshifted λem was also observed in the crystalline MQ, although
the redshift was absent in the aggregate state at fw = 90%. The above
results suggested that the addition of a weak donor (phenyl ring) not
only changed its physical properties (solubility, packing structure,
etc.) but also significantly altered the electronic structures and
photophysical properties reflected by the redshifted λem and weaker
PL intensity enhancement.

Inspired by the above conclusion, the methoxy group and tri-
phenylamine group with a stronger electron-donating ability were
introduced to construct (E)-3-(4-methoxystyryl)quinoxalin-2(1H)-one
(MeOSQ) and (E)-3-(4-(diphenylamino)styryl)quinoxalin-2(1H)-one
(DPASQ), respectively (Fig. 2a). The λabs of MeOSQ and DPASQ further
shifted bathochromically to 400 nm and 440 nm, respectively (Sup-
plementary Fig. 13). Typically, the absorption spectra of DPASQ
showed an obvious solvent effect without fine structures, indicating its
strong charge transfer (CT) feature. Their PL spectra were investigated
and compared in THF/watermixtures. Similar to SQ,MeOSQdisplayed
enhanced PL intensity and redshifted λem with the increased fw, which
could alsobe divided into two stages by fw = 60% (Fig. 2b, c). These two
stages should be manipulated by the polarity of the solvent environ-
ment and aggregation effects, respectively (Supplementary Fig. 14). In
the first stage, the λem showed a redshift from 463–485 nm, and the PL
intensity was enhanced only two times which was smaller than that of
MQ and SQ. A dramatic redshift of λem (from 485–533 nm) was also
observed for MeOSQ in the second stage, which was caused by the
intermolecular interactions as evidenced by its crystal structure
(Supplementary Fig. 18). As a result,MeOSQshoweda similarAIE effect
(I90/I0 = 7) with SQ.

DPASQ, serving as the strongest D−A structure, exhibited a dif-
ferent trend of PL spectra (Fig. 2d). With the increase of fw, the PL
intensity first decreased with redshifted λem, which should be attrib-
uted to the typical TICT effect (Fig. 2e)28,49,50. When fw > 60%, it showed
typical AIE properties with enhanced intensity due to the formation of
aggregates and RIM, although the PL intensity at fw = 90% was still
lower than that in pure solution. Meanwhile, the blue-shifted λem
should be ascribed to two reasons. The first one is the decreased
polarity inside the formed aggregates51,52, and the other is the twisted
conformationwhich is adverse to the intermolecularπ−π interaction53.
The fluorescent spectra and PL intensity change of DPASQ in MeOH/
water also supported its TICT and AIE features (Supplementary
Fig. 20). In addition, its crystalline samplewith close packing showed a
bright yellow light with a Φ of 10.2%, which was higher than the other
three compounds (Supplementary Figs. 15, 19).

A summary of the photophysical properties of these four AIEgens
was drawn in Table 1. In the first stage, the PL properties were mainly

Article https://doi.org/10.1038/s41467-023-39479-1

Nature Communications |         (2023) 14:3772 2



affected by the solvent polarity. FromMQ to SQ, MeOSQ, and DPASQ,
with the increase of electron-donating ability, the PL intensity
enhancement was gradually weakened, and DPASQ even showed a
decreased emission intensity. However, the redshifted λem was more
obvious in the compounds with a strong donor. For the second stage
of aggregation, all of these fourmolecules exhibited the AIE effect, but
the change of λem and PL intensity was synergistically controlled by
their aggregate structures and environmental polarity, resulting in
complicated photophysical properties. In the crystalline state, they

displayed varying Φ (from 2.1% to 10.2%) but the same nature of
fluorescence as suggested by their nanosecond lifetimes (Supple-
mentary Fig. 21).

According to previous reports, the photophysical properties
of these four heterocycle-containing AIEgens in the first stage
should be closely related to PE30,44,46. In other words, the PE is
successfully regulated by altering the electron-donating group of
AIEgens and solvent environment in this work. To further verify
such a conclusion, the PL spectra of these four compounds were
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Fig. 1 | Photophysical properties ofMQ and SQ. a The chemical structures ofMQ
and SQ. b Photoluminescence (PL) spectra of MQ in THF/water mixtures with
different water fractions (fw). Concentration (c) = 10−5M, excitation wavelength
(λex) = 320 nm. c Plots of relative PL intensity (I/I0) and maximum emission wave-
length versus fw. I0 = PL intensity at fw = 0%. Inset: fluorescent photographs of MQ

in theTHF/watermixtureswith fwof 0% and90%, respectively.dPL spectraof SQ in
THF/water mixtures with different fw. c = 10−5M, λex = 350nm. e Plots of I/I0 and
maximum emission wavelength versus fw. Inset: fluorescent photographs of SQ in
the THF/water mixtures with fw of 0% and 90%, respectively.
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also measured and compared in different solvents with varying
polarities (Fig. 3)54,55. From nonpolar hexane to polar methanol, the
solvation effect was relatively weak in MQ and SQ which possessed
no or a weak donor. However, in strong D−A structures of MeOSQ
and DPASQ, an obvious redshift of λem was observed with the

increased solvent polarity. Especially, the λem of DPASQ shifted
from 480–600 nm (Fig. 3d). More importantly, four compounds
showed different changes in PL intensity along with the increase of
solvent polarity (Fig. 3e–h, Supplementary Fig. 22 and Supple-
mentary Table 2). MQ displayed monotonically increased PL
intensity with a maximum I/Imin of 5, and SQ showed a similar
enhancement with a smaller slope (the maximum I/Imin = 1.9). A
similar phenomenon was also observed in some pyrene aldehyde
systems56–58. However, the change is complex for MeOSQ without a
clear trend. DPASQ even exhibited first increased and rapidly
weakened PL intensity, suggesting its typical TICT effect that sta-
bilized in polar solvents. In addition, although the tautomeric
balance and monomer-dimer equilibrium of pyridines were well
known, the same photophysical properties of methyl-substituted
MQ (MeMQ) and unchanged 13C NMR spectra of MQ in different
solvents strongly ruled out influence from these possibilities
(Supplementary Figs. 23, 24)59–62. Therefore, the above results
proved that PL properties in the first stage are mainly determined
by the polarity and PE.

Table 1 | Comparison of the photophysical properties for MQ,
SQ, MeOSQ, and DPASQ toward water addition in THF/water
mixturesa

AIEgen The first stage (polarity) Thesecond stage (aggregation)

fw (%) λem (nm) I/I0 fw (%) λem (nm) I/I0
MQ 0−70 393−410 9 70−90 410−413 13

SQ 0−70 454−458 4 70−90 458−475 4

MeOSQ 0−60 463−485 2 60−90 485−533 7

DPASQ 0−60 542−592 0.1 60−90 592−570 0.6
afw water fraction, λem maximum emission wavelength in THF/water mixtures, I/I0 relative PL
intensity, I0 PL intensity at fw of 0%.
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and 90%, respectively.
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Theoretical analysis
To investigate the mechanism behind the different photophysical
properties of the four compounds, theoretical analysis based on time-
dependent density functional theory (TD-DFT) was first applied. Gen-
erally, in heteroatom-containing compounds, the (n,π*) state with
small oscillator strength (f) is regarded as the nonradiative decay
channel that may quench the emission. In contrast, the (π,π*) state
with a large value of f is considered an emissive state (Supplementary
Fig. 25)63–66. Therefore, the adiabatic energy levels and corresponding
hole-electron structures of the lowest-lying (n,π*) and (π,π*) states in
different solvents were calculated and analyzed for these four com-
pounds based on their optimized ground- and excited-state geome-
tries (Fig. 4 and Supplementary Tables 3–6). The hole-electron analysis
showed a distinct difference between the two kinds of electron tran-
sition. The heteroatoms of the methylquinoxaline unit mainly domi-
nated the (n,π*) state with an f value close to zero, while π-conjugated
donor and heterocyclic skeleton participated in the emissive (π,π*)
state. The f value of (π,π*) transition gradually became larger with the
increased polarity of solvents and the electron-donating ability of
donors.

ForMQ, the energy level of the nonemissive (n,π*) state was lower
than that of the emissive (π,π*) state. However, with the increase of
solvent polarity, the energy levels of (n,π*) and (π,π*) states were
increased and decreased, respectively. As a result, the energy gap
between these two states became smaller and almost the same in polar
solvents (e.g., MeOH). Meanwhile, the gradually enhanced vibronic
coupling of (n,π*) and (π,π*) states induced the PE and boosted the
radiative decay from (π,π*) state, which was the reason why MQ
showed PL intensity enhancement. The decreased energy level of
(π,π*) state also resulted in the redshift of the enhanced emission.
Interestingly, according to previous work, this should be an anti-
Kasha’s emission from the higher excited state due to the thermal
equilibrium between two coupled states and a much larger f value
(>0.21) of (π,π*) state67–69. However, for SQ, the energy level of (π,π*)
state was lower than (n,π*) state, which changed from a closely

coupled feature to the (π,π*) dominant lowest state with the increased
solvent polarity. Although PE helped MQ boost the PL intensity, it
rendered SQ a small enhancement of PL intensity because the
bright (π,π*) state always showed a lower energy level than the
(n,π*) state.

For MeOSQ and DPASQ with strong donor groups, the energy
level of the bright (π,π*) state was always lower than their corre-
sponding (n,π*) state in all solvents. The energy gaps between these
two states became larger with the increased polarity, and the gap of
DPASQ was bigger than MeOSQ in the same solvent. Due to the neg-
ligible PE on them, theoretically, these two compounds should exhibit
a slight enhancement of PL intensity with the increased solvent
polarity. However, apart from PE, it needs to be emphasized that TICT
is also a dominant effect in strong D−A systems with a rotatable bond,
which always induces decreased PL intensity and redshifted λem with
the increase of solvent polarity. Therefore, PE, TICT, and RIM work
synergistically to affect the photophysical properties of MeOSQ and
DPASQ in the solventmixtures, especially for DPASQ that showed a “V”
shape of PL intensity variation anddramatically redshifted λemwith the
increased water fraction (Fig. 2e).

Regulation of proximity effect
Accordingly, an ideal model of regulating PE and photophysical
properties in these heterocycle-containing AIE systems by introducing
π−conjugated donors was summarized (Fig. 5). From the methylqui-
noxaline core without a donor to three derivatives with donors and
increased electron-donating ability, the energy levels of (n,π*) and
(π,π*) states gradually increased and decreased, respectively (Fig. 5a).
Thereinto, the energy-level crossing of (n,π*) and (π,π*) states occur-
red, and vibronic coupling and PE between these two stateswere firstly
enhanced but further weakened. As a result, these four AIEgens
exhibited different photophysical properties during the first stage of
addingwater to the THF solution (Fig. 5b–e): (1)When the nonemissive
(n,π*) dominated the lowest-lying state, the addition of water would
narrow the gap and enhance the vibronic coupling between (n,π*) and
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Fig. 3 | Photoluminescence (PL) properties of MQ, SQ, MeOSQ, and DPASQ in
different solvents. a–d Normalized PL spectra of a MQ, b SQ, c MeOSQ, and
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(π,π*) states, which led to radiative decay from the emissive (π,π*)
state and enhanced PL intensity (Fig. 5b). Accordingly, this phenom-
enon typically shown by MQ is termed the induction of proximity
effect (IOPE), which indicates that PE is not always a negative influence
as reported before. (2) Introducing a phenyl group resulted in the
closely coupled two states of SQ. Therefore, the (π,π*) state became
the dominant state, and the decoupling of the two close-lying states
happened, resulting in the suppression of proximity effect (SOPE) and
increased PL intensity (Fig. 5c). (3) Further increasing the electron-
donating ability of the donor, a weak TICT effect was introduced into
the system.Meanwhile, since the energy gap between (π,π*) and (n,π*)
became larger, the strength of PE dramatically declined. Hence, these
two opposite effects endow MeOSQ with a net effect of very weak

intensity enhancement (Fig. 5d). (4)When the electron-donating ability
of the π−conjugated donor was further strengthened, the TICT effect
was obvious, and the PE disappeared due to the very large energy gap.
Accordingly, TICT became the key mechanism to influence photo-
physical properties, which endowed DPASQ with gradually decreased
PL intensity and dramatically redshifted λem toward water addition
(Fig. 5e). Nevertheless, in the second stage of adding water to the THF
solution (fw ≥ 60 for MQ and SQ, and fw ≥ 70 for MeOSQ and DPASQ),
four AIEgens displayed similar AIE phenomenon with gradually
enhanced PL intensity after aggregation. The above mechanistic per-
spective suggests the successfulmanipulation of PE andphotophysical
properties for heterocycle-containing AIE systems with close energy
levels of (n,π*) and (π,π*) states.
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Dynamically responsive behavior
The intrinsic feature of heteroatoms always endows heterocycle-
containing compounds with responses to protonation, which could
be utilized as chemical sensors for advanced applications. Therefore,
taking MQ, MeOSQ, and DPASQ as examples, their dynamic respon-
ses to protonation were further investigated (Fig. 6a–c). After adding
trifluoroacetic acid (TFA) liquid into the MQ solution, a new red-
shifted absorption peak at 380 nm was gradually enhanced, which
was supported by theoretical calculation (Supplementary Figs. 26a,
27a). Its PL intensity at 397 nm was first enhanced due to the
increased polarity of the mixture and the resulting IOPE effect
(Fig. 6a). Then, theoriginal emission peak dropped, and a newpeak at
500 nm increased. As a result, protonation gave rise to an enhanced
and redshifted emission. In addition, the original absorption peaks of
MeOSQ and DPASQ gradually decreased together with the rise of a
new redshifted absorption peak (i.e., 518 nm for MeOSQ and 640 nm
for DPASQ, respectively) due to nitrogen protonation of the
methylquinoxaline core (Supplementary Figs. 26, 27). Although the
absorption changes were quite similar, they displayed different PL
properties. The fluorescence of MeOSQ was first raised and red-
shifted due to both the SOPE effect and enhanced CT of the proto-
nated compound (Fig. 6b). However, as the protonation progressed,
its fluorescence was redshifted but weakened because of the man-
ifest self-absorption. Therefore, the protonation of MeOSQ brought
about a redshifted emission with nonmonotonically changed inten-
sity. In contrast, the original emission peak of DPASQ at 582 nm

gradually decreased with the addition of TFA (Fig. 6c). The proto-
nated DPASQH+ showed an enhanced TICT effect and a much lower
transition possibility (f = 0.177) than DPASQ (f = 1.541), supporting its
nonemissive nature and the declined PL intensity (Supplementary
Fig. 28). Besides, no protonation of the electron-donor unit or double
protonated compound was observed due to the poor basic ability of
triphenylamine (Supplementary Fig. 27c)70. As a result, the protona-
tion of DPASQ produced a monotonically weakened emission, which
was an opposite phenomenon to MQ.

For compounds that are responsive to acid stimuli, their pre-
acidified forms are usually responsive to basic stimuli (e.g., NH3) as
well. Taking DPASQ as an example, its protonation and deprotonation
processes were continuously studied, indicating the nature of excel-
lent reversibility and repeatability (Fig. 6d). Therefore, dynamic
responses endow these compounds with smart sensors or information
encryption applications. As a demonstration, a reusable test stripe
based on MQ and DPASQ with different changes was fabricated to
realize the above functions (Fig. 6e). Pattern transformations were
obtained upon repeated NH3 and TFA exposure with the help of their
opposite turn-on and turn-off modes. As a result, onemode of the test
stripe with protonated compounds (MQH+ and DPASQH+) showed a
smiling face which could be translated as “Information I”. Another
mode with deprotonated compounds (MQ and DPASQ) displayed an
angry face regarded as “Information II”. These two pieces of informa-
tion are easily controllable by changing the external acid/base
environment.
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Discussion
PEplays an essential role in controlling the photophysical properties of
heterocycle-containing compounds with close energy levels of the
lowest (π,π*) and (n,π*) states, which is usually regarded as a non-
radiative decay channel for luminescentmaterials. In this work, several
heterocyclic methylquinoxaline derivatives with different electron-
donating groups were synthesized to study the regulation of PE. All
these compoundswere verified as luminogenswith AIE properties, but
they exhibited different photophysical properties and AIE curves
toward water addition during the aggregation process. The parent
core of MQ without a donor showed (n,π*) dominant low-lying state
and IOPE, while SQ with a weak donor displayed strong vibronic cou-
pling between (n,π*) and (π,π*) states and SOPE during water addition.
MeOSQ with a moderate electron donor showed (π,π*) dominant low-
lying state and weak SOPE, but the opposite TICT effect dominated
DPASQ due to its strongest electron donor. The theoretical analysis
provided a mechanistic perspective on energy level change and PE
regulation of these AIEgens, suggesting both the positive and negative
impacts of PE for luminogens with different electronic states, which
overturned our solidified recognition of PE. As a demonstration, these
AIEgens were successfully applied as sensors with dynamic responses
to acid/base stimuli based on the intrinsic nature of heterocycles and
PE. This work provides a strategy to regulate the frequently ignored PE
in the AIE community and also realizes the controllable molecular
design of heterocyclic AIEgens for advanced applications with
dynamic responses.

Methods
Materials
3-methylquinoxalin-2(1H)-one (MQ, 95%), benzaldehyde (> 98.0%),
4-methoxybenzaldehyde (> 99.0%), 4-(diphenylamino)benzaldehyde
(> 98.0%) were purchased from TCI (Shanghai) Development Co., Ltd.
MQ was purified using column chromatography with dichlor-
omethane, and other chemicals were utilized as received without fur-
ther purification. Dimethyl sulfoxide-d6, used for nuclear magnetic
resonance (NMR) measurements, was purchased from Energy Chemi-
cal. Tetrahydrofuran (THF) used in experiments was distilled from
sodium benzophenone ketyl under nitrogen gas.

Instrumentation
NMR measurements of 1H and 13C were conducted on a Bruker AVIII
400MHz NMR spectrometer equipped with a Dual Probe. High-
resolution mass spectra (HRMS) were performed on a CT Premier
CAB048 mass spectrometer using a positive ESI-TOF module.
Ultraviolet-visible (UV-Vis) spectra were recorded on a Varian Cary 50
UV-Visible Spectrophotometer. Photoluminescence (PL) spectra were
carried out on Fluorolog®-3 (HORIBA) spectrofluorometer. Absolute
quantum yields (QY) were collected using an integrating sphere on a
Hamamatsu Quantum Yield Spectrometer C11347 Quantaurus. Fluor-
escence lifetimewas recorded on an Edinburgh FLS980 Spectrometer.
Dynamic light scattering (DLS) of the diameters of aggregates was
measured on Malvern Zetasizer Nano ZS equipment at room tem-
perature. Single-crystal structures of four compounds were confirmed
through single-crystal X-ray diffraction on a Rigaku Oxford Diffraction
(SuperNova) with Atlas diffractometer (Cu Kα (λ = 1.54184 Å) and
solved using Olex2 software. All digital photographs of the solution,
mixture, and crystalline powderwere recordedusing aCanon EOS60D
camera.

Computational details
The geometries of all compounds in the ground state were optimized
using the density functional theory (DFT) method at the PBE0/6-
31 G(d,p) level with Grimme’s DFT-D3 correction, which was widely
utilized to evaluate luminescent materials and their energy levels with
comparatively high accuracy71–74. The excited-state geometries were

optimized using the time-dependent DFT method at the same level of
theory. To investigate the solvent effect on the energy level and elec-
tron transition of these compounds, the solvationmodel based on the
density model of SMD and self-consistent reaction field was con-
sidered in the calculations. The adiabatic and vertical energy levels
were summarized based on their optimized ground- and excited-state
geometries. All the above calculations were carried out using Gaussian
16 program (Revision A.03). The frontier molecular orbitals were dis-
played using the IQmol molecular viewer package (Version 3.0.1).

Data availability
The authors declare that all the data supporting the findings of this
manuscript are available within the manuscript and Supplementary
Information files and available from the corresponding authors upon
request. The X-ray crystallographic coordinates for structures repor-
ted in this study have been deposited at the Cambridge Crystal-
lographic Data Centre (CCDC) under deposition numbers 2213287
(MQ), 2213288 (SQ), 2213289 (MeOSQ), and 2213290 (DPASQ). These
data can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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