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Practical intelligent diagnostic algorithm for
wearable 12-lead ECG via self-supervised
learning on large-scale dataset

Jiewei Lai 1,2,3, Huixin Tan1,2,3, Jinliang Wang4, Lei Ji5, Jun Guo6, Baoshi Han6,
Yajun Shi6, Qianjin Feng 1,2,3 & Wei Yang 1,2,3

Cardiovascular disease is a major global public health problem, and intelligent
diagnostic approaches play an increasingly important role in the analysis of
electrocardiograms (ECGs). Convenient wearable ECG devices enable the
detection of transient arrhythmias and improve patient health by making it
possible to seek intervention during continuous monitoring. We collected
658,486wearable 12-lead ECGs, amongwhich 164,538were annotated, and the
remaining 493,948 were without diagnostic. We present four data augmen-
tation operations and a self-supervised learning classification framework that
can recognize 60 ECG diagnostic terms. Our model achieves an average area
under the receiver-operating characteristic curve (AUROC) and average F1
score on the offline test of 0.975 and 0.575. The average sensitivity, specificity
and F1-score during the 2-month online test are 0.736, 0.954 and 0.468,
respectively. This approach offers real-time intelligent diagnosis, and detects
abnormal segments in long-term ECG monitoring in the clinical setting for
further diagnosis by cardiologists.

The electrocardiogram (ECG) is a noninvasive method that uses an
electrocardiograph to record changes in electrical activity of the heart
during each cardiac cycle, detected from the skin surface. It reflects the
physiological state of different parts of the heart from multiple per-
spectives, and it is the most important means for cardiologists to
diagnose abnormal cardiac rhythms. According to statistics1, deaths
from cardiovascular diseases (17.9 million) overwhelmingly surpass
those from cancer (9.3 million), and cardiovascular disease seriously
threatens the lives of countless people around the world. The middle-
to-old-age population is at high risk of cardiovascular disease, and the
increased population aging in modern society means that the medical
burden is gradually increasing. The early detection and medical
intervention of arrhythmia are of great significance to a patient’s
excellent prognosis. It is easier to detect transient and valuable
arrhythmia fragments for the first time using long-term continuously

wearable ECGmonitors, which can improve patients’ health status and
prevent more serious complications. The large number of users and
prolonged monitoring periods have greatly increased the burden for
cardiologists to make diagnoses, aggravating the shortage of medical
resources and making the demand for intelligent ECG diagnosis sys-
tems more urgent.

The standard 12-lead ECG used in hospitals is the Wilson lead
system, which usually takes <1min to collect, with the patient in a
resting state.Wearable ECGs for homemonitoring use theMason-Likar
lead system, which requires users to wear electrodes or sensors inde-
pendently (Fig. 1a). Wearable ECGs are far more prone to artifacts than
standard ECGs due to daily human activity; these artifacts include
myoelectric artifacts, motion artifacts and electrode shedding. As
shown in Fig. 1d, the signals from high-quality wearable ECGs are clear
and smooth. In Fig. 1f, the myoelectric artifact appears as irregular
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high-frequency noise; the motion artifact, also known as the baseline
wander, appears as an unusual shift with large numerical amplitudes,
and the electrode shedding signal is a straight line. The type of ECG
studied by most of the current research is usually the standard 12-lead
ECG used in hospitals, which is collected with the patient in a resting
state and with little artifacts in signals. Cardiologists can make a
diagnosis based on the clear part of an artifact-polluted ECG, however,
the presence of artifacts in ECGs poses a challenge to computer-
intelligent analysis. To improve the robustness of our model, we pro-
pose four data augmentation operations for 1D digital wearable mul-
tilead ECG signals, as shown in Fig. 1e, by simulating the interference
that ECG faces indifferent scenes: random frequencydropout, random
cycle mask, random crop resize and random channel mask.

Users upload large amounts of ECGs due to prolonged wearing of
the device, and cardiologists usually diagnose a fraction of these data
in combination with the patient’s complaints, symptoms and time of
onset, which generates a large amount of unannotated data. As shown
in Fig. 1b, the distribution of unannotated ECGs completely includes
the distribution of annotated ECGs, and there is no domain gap
between them. Therefore, the reasonable utilization of these large-
scale ECGs is expected to improve the classification performance of
our model2. It is our motivation to use self-supervised learning to
obtain knowledge valuable for the classification task by mining infor-
mation about the data itself from large-scale ECGs. The method is to
pre-train a network first, and then train the classification network

initialized by pretrained weights, rather than initialized randomly. The
most common pretraining method is contrastive learning, which is
generally based on the Siamese network architecture, to construct a
pair of positive and negative samples to calculate the contrastive
loss3–5. There are alsomethods based on image restoration, which train
an encoder-decoder network to reconstruct pixel values of masked
input data6. In general, when the amount of annotated data is small, a
network initialized with pretrained weights can achieve better classi-
fication performance than a randomly initialized network7.

Many research studies have achieved remarkable results in the
field of automatic ECG analysis, including the detection and classifi-
cation of arrhythmias8–11, myocardial infarction12,13, heart failure14,
hypertension15 and sleep apnea16. These classification methods essen-
tially consist of feature extraction and classification, and features
before the era of deep learning mainly included physiological wave-
form features and statistical features. Physiological waveform features
are used to describe the morphology attribute of heartbeats, such as
the width, amplitude, slope, area and time interval of waveforms17–19.
Statistical features are used to describe the quantitative and char-
acteristic attributes of heartbeats, such as correlation20, spectrum
power21, wavelet features22,23 and high-order statistics24. Current
recognition approaches often use deep features that are learnable and
adaptive to the research object, describing ECG data more sufficiently
compared with human-crafted features, and deep neural network in
the field of intelligent ECGdiagnosis has reached a level comparable to
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Fig. 1 | Information for the large-scale ECGdataset. aWearable ECGdevice and its
standard attachment method. Artifacts are formed in ECG due to electrode dis-
placement and poor coupling to the skin in daily life. b Frequency distribution
histogramof unannotated ECGs and annotatedECGson relative averagepower. For
ECGs of various power, unannotated data is always more than annotated data, and
fully mining the knowledge of large-scale ECGs is expected to improve the

classification performance of our model. c A typical long-tail distribution of 60
diagnostic terms for ECG, and the specific number of each class is shown in Table 1.
d Example I lead of good-quality ECG signal with clear and smooth physiological
waveform. e Four ECG augmentation operations based on above good-quality ECG.
f Two most common artifacts in wearable ECG signals: myoelectric artifact (I lead)
and motion artifact (V2 lead).
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human cardiologists25. Convolutional networks26, recurrent networks27

and Transformer28,29 architectures are favored by many studies and
widely used for arrhythmia classification. Themostpopular and largest
open-sourceECGdataset is PhysioNet/CINC202030,which includesfive
data sources with 6,877, 74, 516, 10,344 and 10,000 ECG recordings,
respectively. The significant domain gap between the various sources
is due to equipment and geography; many studies based on this
dataset remain in the experimental research stage and lack the vali-
dation on large-scale ECGs from the real world31–34.

In this study, we collected a total of 658,486 ECG recordings,
amongwhich 164,538were annotated and the remaining 493,948were
unannotated. Each ECG in this study was annotated by two cardiolo-
gists and reviewed by three senior cardiologists to improve labeling
consistency. To obtain a multiscale receptive field, we used multiscale
convolution to improve the deep neural network25 as backbone while
reducingnetworkparameters by half.Weused self-supervised learning
to mine the information contained in the massive ECGs, and trans-
ferred the learned knowledge to a classification task to better gen-
eralize unseen signals. We used data augmentation operations on the
fly to improve the robustness of ourmodel when training the network.
Here, we report an approach to detect and recognize 60 diagnostic
terms for ECG, including normal rhythm, sinus rhythm, 8 heartbeat
waveform changes and 50 common arrhythmias, and our model
maintained a high sensitivity and specificity in the additional 2-month
online clinical test of 12,521 ECGs.

Results
Dataset
We established a large-scale, wearable 12-lead ECG dataset of 164,538
annotated ECGs and 493,948 unannotated ECGs from 76,482 indivi-
duals from 2016 to 2022. The duration of each recording was 15 s, and
the digital sampling frequency was 500Hz. The wearable device
records the ECG according to the Mason-Likar 12-lead system, with a
total of 10 electrodes, as can be seen in Fig. 1a. Four limb lead elec-
trodes are placed on the upper-right shoulder, upper-left shoulder,
lower-right chest, and lower-left chest to form leads I, II, III, AVR, AVL
and AVF. Six chest lead electrodes are placed on the chest to form
leads V1–V6.

The gold standard annotation procedure of the ECG dataset is as
follows: each ECGwas independently diagnosed and annotated by two
cardiologists and subsequently reviewed by three other senior cardi-
ologists who compared inconsistent annotations and submitted the
final diagnosis. Difficult ECGs that are disputedor forwhich a definitive
diagnosis cannot be given were submitted to an arbitrator for final
review and determination. Among the 164,538 annotated ECGs,
annotations made on 93,365 ECGs by senior cardiologists and the two
cardiologists were identical and passed the review directly, while
annotations of the remaining 71,173 ECGs, making up 43.26% of the
total ECGs, were changed. This annotation process is complex and
cumbersome, it was conducted only in this research project with the
aim to make the model to be more reliable and the evaluation more
objective and accurate. In the actual clinical setting, only one cardiol-
ogist provides the diagnosis.

Our ECGs were collected across China and cover all provinces,
autonomous regions, andmunicipalities. A total of 67.3%of the dataset
was comprised from male participants, and the remaining 32.8% were
female. The ages of these 76,482 individuals ranged from8 to 94 years,
with an average age of 51 years. Because the anomalies in cardiac
rhythms were not significantly associated with age or sex, we did not
make additional considerations and designs for these factors. Of the
total 164,538 ECGs, ~31,686 samples constituted healthy normal ECGs,
with the remaining 132,852 ECGs exhibiting varying arrhythmia.

The task of recognizing and detecting these 60 diagnostic terms35

for ECG are multi-labeled, and these cardiac rhythms are: normal ECG
(NECG), sinus rhythm (SR), Q wave abnormal (QAb), q wave abnormal

(qAb), poor R wave progression (PRP), ST elevation (STE), ST depres-
sion (STD), T wave abnormal (TAb), peaked T waves (PT), elevated U
wave (EU), Brugada Syndrome (BS), sinus tachycardia (ST), sinus bra-
dycardia (SB), significant sinus bradycardia (SSB), sinus arrhythmia
(SA), premature atrial contraction (PAC), atrial bigeminy (AB), atrial
premature beat not transmitted (APNT), atrial premature beats with
aberrations (APA), paired atrial premature beats (PAP), atrial escape
beat (AEB), accelerated atrial escape rhythm (AAER), atrial fibrillation
(AF), rapid atrial fibrillation (RAF), atrial fibrillation with intraven-
tricular aberrant conduction (AFIVBC), atrial flutter (AFL), junctional
escape (JE), junctional rhythm (JR), supraventricular tachycardia (SVT),
atrial tachycardia (AT), premature ventricular contractions (PVC),
paired ventricular premature beats (PVPB), ventricular bigeminy (VB),
ventricular arrhythmia (VA), ventricular fusion beat (VFB), ventricular
escape beat (VEB), ventricular tachycardia (VT), pre-excitation syn-
drome (PES), low limb lead voltage (LLLV), low chest lead voltage
(LCLV), early repolarization (ER), first-degree atrioventricular block
(IAVB), second-degree atrioventricular block-1 (IIAVB1), 3rd degree
atrioventricularblock (IIIAVB), bundle branchblock (BBB), left anterior
fascicular block (LAFB), complete right bundle branch block (CRBBB),
incomplete right bundle branch block (IRBBB), complete left bundle
branch block (CLBBB), partial right bundle branch block (PRBBB),
nonspecific intraventricular conduction disturbance(NICD), 2nd
sinoatrial block (IISAB), heart enlargement and hypertrophy (HEH),
high left ventricular voltage (HLVV), high right ventricular voltage
(HRVV), paced rhythm (PR), atrial paced rhythm (APR), ventricular
paced rhythm (VPR), atrial-ventricular paced rhythm (AVPR), and atrial
sensed ventricular paced rhythm (ASVPR). These classes obey a typical
long-tail distribution as in Fig. 1c. These labels are two-level catalogs
that parent catalog contains a certain number of secondary catalogs,
and we placed the subordination in the Supplementary Data 1.

We have two test sets: the offline dataset36 and the additional
online dataset. Eachuserwas assigned an identity document (ID) inour
database, and the same user often uploaded several ECGs. We ran-
domly divided the 164,538 ECGs into a training set with 157,538 sam-
ples and the offline test set with 7000 samples according to ID to
ensure that the ECGs of the same individual corresponds to a single
dataset. In addition, we deployed the network to the server and pro-
vided real-time artificial intelligence diagnosis for 12,521 ECGs uploa-
ded by users who use the same wearable ECG device from January to
February 2023. These recordings were also diagnosed by the cardiol-
ogist committee and all used for online testing. These ECGs conform to
the distribution of patients in the real world, and positive samples of
some classes are very rare, which allows more objective evaluation of
the detection and classification performance of our approach.

Metrics
We utilized two sets of evaluation indicators to evaluate the classifi-
cation performance: label-based metrics and example-based metrics.
Label-based metrics evaluating the classification performance of a
model for each class separately in label or class wise: area under the
receiver-operating characteristic curve (AUROC), area under the
precision-recall curve (AUPRC), Senlabel , Spelabel and F1label . Example-
based metrics evaluating the classification performance for each ECG
in sample wise due to a single ECG may have multiple labels:Senexam,
Speexam, F1exam and Accexam. AUROC measures the ability of the clas-
sifier to predict the sample correctly, and AUPRC comprehensive
measures the precision and recall of positive samples. Sensitivity (Sen),
also named recall, is the ratio of detected positive samples to all
positive samples, and it is inversely proportional to the missed diag-
nosis rate of patients. Specificity (Spe) is the ratio of detected negative
samples to all negative samples. F1 score is the harmonic average of
recall and precision, and the accuracy (Acc) is the rate at which the
model correctly classifies a sample. The value range of the above
metrics is 0 to 1, and higher values indicate better performance.
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Experiment
We employed the improved multiscale ResNet1825 as the backbone,
using a total of 639,708 ECGs of all unannotated ECGs and the training
set to pretrain a Siamese convolutional network via momentum con-
trastive learning, and thenused the learnedweights as the initialization
weights of the downstream classification network. We used the com-
bination of binary cross-entropy and pairwise ranking as the loss
function for the multilabel classification task.

We conducted ablation experiments to analyze the respective
contribution of pretrainedweights, data augmentation operations and
the multiscale convolutional layer to the classification performance in
the proposed approach. Furthermore, we verified whether the pre-
trained weights outperformed the random weights using 10% to 100%
of the training set, respectively, and found that the pretrained weights
greatly improve the classification performance of our model when the
data size is small. We implemented data augmentation on the fly using
different hyperparameters to explore the contribution of different
augmentationmethods to the classificationperformanceof themodel.
The offline test set was divided into a good-quality set and inferior-
quality set according to ECG quality to analyze the impact of data
augmentation on the robustness of the model. In addition, we analyze
how the 12-lead basedmodel can be extended to the common 1–3 lead
ECG devices available on the market and the benefits that would be
derived from doing so. We used the class activation map (CAM) to
analyze the network’s attention to the input ECG and to analyze whe-
ther the network has learned the knowledge of related arrhythmias.
Finally, we tested our system on the China physiological signal chal-
lenge 201837 (http://2018.icbeb.org/Challenge.html, CPSC2018), and
our F1 score was 0.839, which exceeded the best score published on
their challenge website38.

Diagnostic performance
Our model achieved the average AUROC, average AUPRC and average
F1 score of 0.975, 0.646 and 0.575, respectively, on the offline test set
(Table 1). For the online test set, the average sensitivity, average spe-
cificity and average F1 score are 0.736, 0.954 and 0.468, respectively
(Table 1). The automatic diagnosis result is visible to cardiologists only
as a reference, and the final diagnosis has to be signed off by human
experts. The distribution of ECG diagnostic terms in the online test set
ismore in linewith the real-world distribution, and its positive samples
are far rarer than those in the offline test set. In addition, ECGs in the
online test set contains various artifacts due to daily use of the wear-
able device, while the data in the training set and offline test set are
manually reviewed and choired for better data quality than the online
test set, both of which result in some degradation in the model’s
performance when practical applied in real life, but still retain an
acceptable level of sensitivity and specificity.

Intelligent diagnosis of ECGs in real clinical setting is a multi-label
classification task, where a cardiologistmayannotatemultiple labels to
a single ECG. Therefore, we evaluate the classification performance of
the model in example wise. Our model was able to detect and classify
60 ECG diagnostic terms. As shown in Table 2, in the large-scale online
test, each ECG had an average of 3.3 labels, and the intelligent diag-
nostic model was able to detect 2.7 of them, missing 0.6, while
bringing in 2.5 false positives that were acceptable. This demonstrates
that our model is able to diagnose most of the labels correctly, trans-
forming the diagnostic task of cardiologists from a fill-in-the-blank to a
multiple-choice and review, and can effectively reduce their workload.

The diagnosis of ECG is essentially the screening of possible car-
diac diseases, and we are committed to detecting as many arrhythmic
ECGs from the huge amount of data as possible to be diagnosed for
further diagnosis by cardiologists. Although misdiagnosing negative
recording as a false positive increases the time cost and workload of
the cardiologist, a missed diagnosis of positive data wastes the
opportunity for early treatment of patients, with very serious

consequences. For each cardiac rhythm, a threshold is required for the
model to definewhether the intelligent diagnostic result is positive. As
shown in Fig. 2g, take the atrial fibrillation for example, the common
recommended operating point on PR curve is the break even point or
the optimal F1 point, but our senior cardiologists chose the fine-tuned
point after considering recall and precision, where the recall is
superior and the precision and F1-score are also acceptable. The F1
scores for both test sets are modest due to the large number of false
positives generated by the severe data imbalance, but this is actually
acceptable. As in the Table 3, even if the number of false positive cases
is two, three or more times the number of true positive cases, this
order of magnitude is insignificant compared to the large number of
negative cases, and the specificity of 0.900 indicates that a large
number of true negative ECGs are not misdiagnosed. In terms of sen-
sitivity, the value of 0.795 indicates that most of the positive samples
were detected. Therefore, our model can actually reduce the burden
on cardiologists and has a great role and potential for real-time diag-
nosis and remote diagnosis.

Ablation study
The combination of three strategies: pretraining weights (PW), multi-
scale convolution and data augmentation operations (Aug) work
together inmodeling. To study their effects,we carried out ablation on
the offline test set. AUROC and AUPRC were calculated directly using
the predicted values from the output of network and the ground truth,
whereas sensitivity, specificity, and F1 score had to be calculated after
the predicted values were binarized based on the preselected thresh-
old. Among the two AUCs, AUPRC is more sensitive to data imbalance,
so we used AUPRC as the major evaluation indicator for ablation
analysis.

We designed five experiments to implement the multilabel clas-
sification task for 60 diagnostic terms for ECG: (i) DNN22: the 34-layer
deep neural network (DNN) with random initialization, which is also
our baseline; (ii)MSDNN: the improved 18-layermultiscale deep neural
network (MSDNN) with random initialization; (iii) MSDNN with PW:
fine-tuning the MSDNN initialized with the pretrained weights; (iv)
MSDNN with Aug: using on-the-fly data augmentation operations,
training the MSDNN with random initialization; (v) MSDNN with
Aug&PW: usingdata augmentationoperations,fine-tuning theMSDNN
initialized with the pretrained weights.

The average AUPRC of these five experiments are 0.578, 0.582,
0.593, 0.637 and0.646, respectively. As can be seen in Fig. 2a,whenwe
usedMSDNN insteadofDNNas thebackbone, theAUPRC improvedby
0.4%. The lengths of the four parallel convolutional kernels in the
multiscale convolutional layer are 3, 5, 9 and 17 instead of the fixed
value of 17. This has two advantages: one is to obtain a multiscale
receptive field, which is helpful for the analysis of subtle electro-
physiological waveforms; the other is halving the number of para-
meters of each convolutional layer. With the network layers reduced
from 34 to 18, the parameters of MSDNN are only 1/4 of DNN. The
improvement in performance is not the main thing; the small-scale
network provides technical support for future deployment to mobile
terminals and canmeet the demand of real-time monitoring and small
computational resources. The AUPRC was improved by 1.1% using
pretrained weights instead of random weight initialization. The fea-
tures obtained from contrastive learning are derived from a very large
ECG database, and using the knowledge contained in the ECGs them-
selves helps the network to generalize unseen data. The AUPRCof data
augmentation was improved by 5.5%. We designed four data aug-
mentation operations, two of which simulated the possible myo-
electric artifact and lead-fail of wearable ECGs, and the remaining two
operations randomly masked a fixed segment of each heartbeat and
scaled ECG, respectively, which greatly improved the detection per-
formance of the wearable ECG. When both data augmentation and
pretrained weights are used, the classification performance is better
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Table 1 | Diagnosis performance of our model for 60 diagnostic terms for ECG using the offline test set and online test set

ECG Samples Offline test set (n = 7000) Online test set (n = 12521)

Terms (n = 164538) AUROC AUPRC F1label TPlabel TNlabel FPlabel FNlabel Senlabel Spelabel F1label
NECG 31686 0.952 0.753 0.649 2134 9111 764 512 0.807 0.923 0.770

SR 142486 0.984 0.994 0.965 9200 2046 310 965 0.905 0.868 0.935

QAb 12437 0.953 0.746 0.774 347 11607 434 133 0.723 0.964 0.550

qAb 6705 0.935 0.509 0.528 51 11990 405 75 0.405 0.967 0.175

PRP 11947 0.906 0.510 0.460 446 11139 842 94 0.826 0.930 0.488

STE 7548 0.937 0.651 0.605 209 11233 867 212 0.496 0.928 0.279

STD 27266 0.934 0.799 0.722 917 10324 842 438 0.677 0.925 0.589

TAb 49719 0.960 0.908 0.828 2953 7700 1558 310 0.905 0.832 0.760

PT 1878 0.956 0.427 0.395 49 12339 106 27 0.645 0.991 0.424

EU 625 0.949 0.289 0.246 38 12263 131 89 0.299 0.989 0.257

BS 305 0.994 0.311 0.325 147 12037 251 86 0.631 0.980 0.466

ST 8086 0.990 0.896 0.790 325 11851 262 83 0.797 0.978 0.653

SB 18247 0.981 0.856 0.814 959 10530 853 179 0.843 0.925 0.650

SSB 405 0.990 0.517 0.523 86 12221 149 65 0.570 0.988 0.446

SA 16394 0.952 0.747 0.681 563 9591 2188 179 0.759 0.814 0.322

PAC 10042 0.985 0.896 0.840 1769 9815 681 256 0.874 0.935 0.791

AB 273 0.997 0.800 0.593 149 11573 746 53 0.738 0.939 0.272

APNT 946 0.967 0.420 0.446 152 11701 553 115 0.569 0.955 0.313

APA 1959 0.995 0.820 0.744 249 11855 333 84 0.748 0.973 0.544

PAP 936 0.987 0.553 0.419 329 10723 1420 49 0.870 0.883 0.309

AEB 1126 0.987 0.422 0.388 647 11107 434 333 0.660 0.962 0.628

AAER 623 0.995 0.646 0.508 440 11404 579 98 0.818 0.952 0.565

AF 8463 0.988 0.878 0.787 690 11368 379 84 0.891 0.968 0.749

RAF 1941 0.994 0.699 0.545 178 12093 230 20 0.899 0.981 0.587

AFIVBC 1103 0.991 0.679 0.652 68 12343 89 21 0.764 0.993 0.553

AFL 3961 0.996 0.977 0.928 30 12255 211 25 0.545 0.983 0.203

JE 873 0.985 0.712 0.617 518 10946 819 238 0.685 0.930 0.495

JR 360 0.991 0.494 0.352 140 11759 486 136 0.507 0.960 0.310

SVT 3225 0.989 0.789 0.675 205 11562 692 62 0.768 0.944 0.352

AT 2197 0.986 0.702 0.700 25 11733 753 10 0.714 0.940 0.062

PVC 8240 0.977 0.905 0.836 1490 10392 573 66 0.958 0.948 0.823

PVPB 172 1.000 0.830 0.232 78 11781 645 17 0.821 0.948 0.191

VB 221 0.995 0.376 0.282 224 11770 508 19 0.922 0.959 0.459

VA 434 0.892 0.178 0.102 215 10957 998 351 0.380 0.917 0.242

VFB 402 0.882 0.167 0.244 45 12024 357 95 0.321 0.971 0.166

VEB 128 0.982 0.350 0.142 86 11070 1349 16 0.843 0.891 0.112

VT 91 0.984 0.506 0.233 48 12239 223 11 0.814 0.982 0.291

PES 593 0.986 0.824 0.667 110 12199 162 50 0.688 0.987 0.509

LLLV 841 0.995 0.555 0.510 83 12181 210 47 0.638 0.983 0.392

LCLV 1474 0.990 0.598 0.547 22 12336 145 18 0.550 0.988 0.213

ER 2925 0.957 0.454 0.449 34 12204 236 47 0.420 0.981 0.194

IAVB 11633 0.973 0.747 0.715 418 11414 499 190 0.688 0.958 0.548

IIAVB1 321 0.996 0.712 0.600 73 12012 416 20 0.785 0.967 0.251

IIIAVB 177 0.998 0.781 0.539 83 11652 753 33 0.716 0.939 0.174

BBB 26093 0.965 0.891 0.849 1610 9485 1108 318 0.835 0.895 0.693

LAFB 1319 0.994 0.539 0.571 515 11531 425 50 0.912 0.964 0.684

CRBBB 4844 0.985 0.831 0.729 629 11612 225 55 0.920 0.981 0.818

IRBBB 11294 0.961 0.744 0.745 358 11509 529 125 0.741 0.956 0.523

CLBBB 1224 1.000 0.955 0.839 85 12366 45 25 0.773 0.996 0.708

PRBBB 7388 0.910 0.442 0.469 17 11830 654 20 0.459 0.948 0.048

NICD 332 0.979 0.281 0.281 118 11871 499 33 0.781 0.960 0.307

IISAB 266 0.995 0.217 0.192 63 11952 486 20 0.759 0.961 0.199

HEH 16865 0.935 0.728 0.671 777 10908 538 298 0.723 0.953 0.650

HLVV 10231 0.975 0.829 0.752 727 11279 432 83 0.898 0.963 0.738
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than using pretrained weights alone, but not significantly improved
compared to using data augmentation alone.

Comparison of initialization by pretrained weights and random
weights
For deep learning approaches, the larger the amount of ECGs, the
more reliable the classification performance of the model. Cardiolo-
gists are also concerned about howmuch ECG data is needed to make
the model practical. In order to analyze the advantages of pretraining
weights, we randomly selected 10–100% of training ECGs as sub-
training sets in turn, and initialized the classification network with
pretraining weights and random weights, respectively, to observe
whether the self-supervised learning method could improve the clas-
sification performance of the model. As the amount of ECG increased,
the two curves in Fig. 2b converged to 0.582 and 0.593, respectively.
Based on the trend, the classification performance of our model is
limited primarily by the difficulty of the classification task itself rather
than by a lack of data, and it is unlikely that there will be a significant
improvement in intelligent diagnostic performance even with addi-
tional ECGs. The improvement in classification performance from
pretraining was most significant at 10% of the annotated ECGs, with
AUPRC improving by 3.1%. The benefits of pretraining diminish as the
amount of data rises, decaying to 1.1% when using all annotated ECGs.
This suggests that our current amount of ECGs is sufficient tomake the
model practical and that the self-supervised approach contributes to
improvement of the model generalizability.

ECG augmentation and model robustness
We trained models using four different sets of ECG augmentation
hyperparameters and compared the results with their combination. As
shown in Fig. 2c, each data augmentation operation is effective in
improving the AUPRC, and their combination has the most significant
improvement in classification performance, a 5.5% improvement in
AUPRC compared to the baseline. In addition, to investigate whether
data augmentation improves the robustness of the model, we divided
the offline test set into a good-quality set and an inferior-quality set
according to the signal quality with 5,209 and 1,791 ECGs, respectively.
As can see in Fig. 1d and Fig. 1f, the ECG signal in the good-quality set is
clear and smooth, while most ECGs of the inferior-quality set have
severe myoelectric artifacts, motion artifacts and lead electrode dis-
lodgement, which can even affect the cardiologist’s diagnosis. Overall,
the AUPRC is highest for the good-quality set, intermediate for the
offline test set, andworst for the inferior- quality set as in Fig. 2d, which
indicates that the presence of interference or artifacts in the signal

does affect the classification performance of the model. The
improvement in AUPRC using data augmentation is 5.5% on the offline
test set, 4.9% on the good-quality set, but 7.1% on the inferior-quality
set, which indicates that ECG augmentation is effective in improving
the robustness of the model, making it quite resistant to the presence
of artifacts in the input signal.

Extending the model based on 12-lead ECG to 1–3 lead ECG
devices
Most of the widely used wearable ECG devices on the market are 1–3
leads, while the object of our study is 12-lead wearable ECG signals. In
order to extend the applied range of our model to these 1–3 lead ECG
devices, we propose a feasible solution: using data generation meth-
ods such as generative adversarial networks (GAN) to transform 1–3
leads ECG into the currently used 12 leads ECG, which then can be
straightforward to use our model. However, we currently do not have
mature 1–3 leads ECGs dataset and corresponding annotation
for study.

To explore possible benefits of such behavior, we used 1–3 of the
12 leads to simulate the signals acquired from 1 to 3 wearable ECG
devices: using lead I to simulate the single-leaddevice; using II, V1 and
V5 to simulate the 3-lead Holter ECG device used in the hospital;
using I, AVF and V2 to simulate the 3-lead Frank orthogonal lead ECG
device. Notably, in these three simulation scenarios really 1–3 leads
are only similar to the listed sub-leads in waveforms, albeit they are
not part of any of the 12 leads. We compared the classification per-
formances of these three cases with the 12-lead ECG as Fig. 2e,
yielding the average AUPRC are 0.464, 0.586, 0.584 and 0.646,
respectively. The single-lead signal is significantly less informative
than the 3-lead and 12-lead, and the 3-lead ECG also not as informa-
tive as the 12-lead ECG. We consider that the higher the number of
leads would yield to the observation of richer information and yield
more accurate the diagnostic results. This approach obtains the
intelligent diagnostic results on the level of the 12-lead ECG device
with a lower cost and more convenient device.

Model attention visualization
We used the class activation map (CAM) to analyze our model’s
attention to the input ECGs and whether the network has learned the
knowledge of related ECG diagnostic terms. We observed that the
parts of the model that focused on were consistent with those of
human cardiologists. As shown in Fig. 3c, the part circled in purple
dashed line is the heartbeat related to arrhythmia defined by human
experts, and the model paid the highest attention to this part.

Table 1 (continued) | Diagnosis performance of our model for 60 diagnostic terms for ECG using the offline test set and online
test set

ECG Samples Offline test set (n = 7000) Online test set (n = 12521)

Terms (n = 164538) AUROC AUPRC F1label TPlabel TNlabel FPlabel FNlabel Senlabel Spelabel F1label
HRVV 421 0.995 0.430 0.444 87 11961 459 14 0.861 0.963 0.269

PR 2170 0.994 0.916 0.901 561 11874 55 31 0.948 0.995 0.929

APR 435 0.982 0.769 0.783 26 12465 23 7 0.788 0.998 0.634

VPR 572 0.998 0.693 0.681 267 12076 159 19 0.934 0.987 0.750

AVPR 475 1.000 0.971 0.898 85 12251 182 3 0.966 0.985 0.479

ASVPR 386 0.991 0.155 0.103 136 12211 171 3 0.978 0.986 0.610

Average 8095.5 0.975 0.646 0.575 551.4 11327.2 523.9 118.6 0.736 0.954 0.468

Table 2 | Diagnosis performance of our model in example wise using the offline test set and online test set

Test set TPexam TNexam FPexam FNexam Senexam Speexam F1exam Accexam
Offline (n = 7000) 3.0 56.1 1.4 0.5 0.873 0.975 0.756 0.969

Online (n = 12521) 2.7 55.3 2.5 0.6 0.857 0.956 0.653 0.950
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Open-source dataset evaluation
To validate the effectiveness and generalization of the proposed
approach to external data, we conducted the experiment on the China
physiological signal challenge 2018 dataset37 (http://2018.icbeb.org/
Challenge.html, CPSC2018). The challenge ECG recordings are 12-lead
standard ECG with time length from 6 s to 60 s collected from 11
hospitals. Its training set includes 6,877 ECGs available to the public,

and its unavailable test set includes 2,954 ECGs. The dataset contains
nine cardiac rhythms or annotations: normal, atrial fibrillation (AF),
first-degree atrioventricular block (I-AVB), left bundle branch block
(LBBB), right bundle branch block (RBBB), premature atrial contrac-
tion (PAC), premature ventricular contraction (PVC), ST-segment
depression (STD) and ST-segment elevation (STE), and uses average F1
as the evaluation indicator. We employed 10-fold cross-validation to

a

c

b

f

ed

g

DNN MSDNN MSDNN
with PW

MSDNN
with Aug

MSDNN
with PW&Aug

0.0

0.2

0.4

0.6

0.8

1.0

AU
P

R
C

0 20000 40000 60000 80000 100000 120000 140000 160000

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Number  of ECGs

AU
PR

C

MSDNN

MSDNN with PW

Frequency 
Drop Out

Crop 
Resize

Cycle 
Mask

Channel 
Mask

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

ECG Augmentation Methods

AU
P

R
C

MSDNN without Aug

MSDNN with combined Aug

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity(Recall)

0.0

0.2

0.4

0.6

0.8

1.0

PP
V(

Pr
ec

is
io

n)

Class PRBBB

DNN: 0.3084
MSDNN: 0.3917
MSDNN with PW: 0.4131
MSDNN with Aug: 0.4407
MSDNN with PW&Aug: 0.4418

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity(Recall)

0.0

0.2

0.4

0.6

0.8

1.0

PP
V(

Pr
ec

is
io

n)

Class STD

DNN: 0.7846
MSDNN: 0.7674
MSDNN with PW: 0.7679
MSDNN with Aug: 0.7854
MSDNN with PW&Aug: 0.7992

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity(Recall)

0.0

0.2

0.4

0.6

0.8

1.0

PP
V(

Pr
ec

is
io

n)

Class PVC

DNN: 0.8442
MSDNN: 0.8212
MSDNN with PW: 0.8467
MSDNN with Aug: 0.8613
MSDNN with PW&Aug: 0.9054

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity(Recall)

0.0

0.2

0.4

0.6

0.8

1.0

PP
V(

Pr
ec

is
io

n)

Three operating points
on the PR curve of class AF.

Break even point
Optimal F1 point
Fine-tuned point

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Br
ea

k 
ev

en
 p

oi
nt

O
pt

im
al

 F
1 

po
in

t

Fi
ne

-tu
ne

d 
po

in
t

Precision, Recall and F1
versus threshold from 0 to 1.

Precision
Recall
F1

Offline 
test set

Good
quality set

Inferior
quality set

Offline 
test set

Good
quality set

Inferior
quality set

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C

MSDNN with AugMSDNN

1 3 (Hol ter) 3 (Frank ) 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Number  of Lead

AU
PR

C

Article https://doi.org/10.1038/s41467-023-39472-8

Nature Communications |         (2023) 14:3741 7

http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html


train networks and used simple voting for ensemble, and our F1 score
is 0.839, which exceeded the best score published on the challenge
website 0.83738. This shows that our approach is not only suitable for
the ECG signals collected by the proximal limb leads of a wearable
device; it also can generalize the analysis tasks to the standard 12-lead
ECG signals collected in hospital by the distal limb leads.

Discussion
This study used large-scale ECGs to learn the physiological waveform
knowledge contained in the data itself via contrastive learning,
embedding these recordings into a low-dimensional manifold to
obtain mutually exclusive distribution as the initialization state for
related classification tasks. For stronger induction ability, we used
multiscale convolution to improve the baseline deep neural network.
Our four data augmentation operations designed for 1D digital ECG
signals effectively improved the classification performance and
robustness of the model. The parameter of our network is only 2.13M,
and the predict time cost for one ECG recording iswithin 0.08 s, which
means that our model can be easily deployed to mobile devices and
servers, and it can serve the public in real time, with small computing
resource requirements. In addition, our model has achieved the con-
firmation of cardiologists in online testing and can provide users with
real-time intelligent diagnosis and long-term continuous online auto-
matic monitoring, which can practically reduce the workload of
cardiologists.

In the 2-month online test, the average sensitivity of our model
was 0.736, which means that 26.4% of positive ECGs were missed,
which could lead to patientsmissing the precious immediate access to
a cardiologist. While the average specificity is good at 0.954, which
means that 4.6% of the ECGs were false alarms. Falsely alerted ECGs
may cause psychological burden to the collector and increase the
workload of the cardiologist. The performance of model is limited by
the inherent difficulty of the task itself and the power of algorithm and

computer, we must weigh the sensitivity and specificity by choose a
suitable operating point in the context of allowing the model to make
mistakes. Sensitivity and specificity are highly correlated with the
choice of the operating point, with sensitivity increasing and specifi-
city decreasing as the threshold decreases. In this regard, we will
design specific strategies and methods to the characteristics of the
wearable 12-lead ECG and the problems faced in clinical using to
improve the classification performance of themodel. The average F1 is
modest at 0.468,mainly because the optimal F1 point was not selected
as the operating point and there is a severe data imbalance in our
dataset. The selection of operating points is manually fine-tuned by
senior cardiologists, and we will study the automatic threshold selec-
tion method. Data imbalance is also a common difficulty in medical
data analysis, our current approach to mitigating it is class weighting,
and we will use more refined methods to cope with this hindrance in
future work.

At the algorithm level, even if we simulate several kinds of inter-
ference that wearable ECGs may encounter in certain scenes, our
efforts are far from enough due to more complicated predicaments in
the real environment encountered by wearable ECG devices. During
the online test, we found that our model was mainly missing and
misdiagnosing the ECG data that were contaminated by interference,
and we will study the decoupling of signal and artifacts in ECG with
interference in the future, and coupling the ECG with artifacts
decomposed from other ECG as a data augmentation operation to
further improve the classification performance of the model. In addi-
tion, the classification performance of the self-supervised learning
framework can be further improved, and we will combine semi-
supervised learningmethods to furthermine the knowledge contained
in the ECG signal itself and improve the generalization performance of
the model. Finally, there are symbiotic and mutually exclusive rela-
tionships between multiple fine-grained labels, which is the advantage
and also the challenge of our large-scale dataset, and we should apply

Fig. 2 | The performance analysis, threshold selection and extension of appli-
cation of the model. a Ablation study of three strategies: pre-training weights
(PW), multi-scale (MS) convolution and data augmentation operations (Aug).
b Improvement of classification performance initialized by pre-trained weights
compared to randomweights on different number of training sets. c Improvement
of classificationperformanceby ECG augmentationoperations. Each augmentation
operation has a different degree of improvement, and the combination of themhas
the most significant improvement in classification performance. d Effect of

classification performance from ECGaugmentation on offline test set, good-quality
set and inferior-quality set. The offline test set is divided into good-quality set and
inferior-quality set according to the data quality, and the improvement of classifi-
cationperformance fromdata augmentationwasmost pronounced on the inferior-
quality set, indicating that our model is robust to the artifacts in ECGs.
e Classification performance when only partial leads are used. f Precision-recall
curves of IAVB, AF and STE. g The operating point selection of class AF on the PR
curve. Source data are provided as a Source Data file.

Table 3 | Confusion matrix, F1, sensitivity, precision and specificity at different thresholds of atrial fibrillation

Threshold TP TN FP FN F1 Sensitivity Precision Specificity

0.004 380 4592 2028 0 0.273 1.000 0.158 0.694

0.100 364 5984 636 16 0.528 0.958 0.364 0.904

0.201 352 6373 247 28 0.719 0.926 0.588 0.963

0.300 342 6482 138 38 0.795 0.900 0.713 0.979

0.400 328 6531 89 52 0.823 0.863 0.787 0.987

0.528 318 6558 62 62 0.837 0.837 0.837 0.991

0.603 313 6574 46 67 0.847 0.824 0.872 0.993

0.704 293 6587 33 87 0.830 0.771 0.899 0.995

0.802 277 6595 25 103 0.812 0.729 0.917 0.996

0.900 225 6608 12 155 0.729 0.592 0.949 0.998

0.971 109 6612 8 271 0.439 0.287 0.932 0.999

0.998 1 6620 0 379 0.005 0.003 1.000 1.000

The three bold lines from top to bottom are the thresholds, confusion matrixs and classification performance when selecting the fine-tuned point, the break even point and the optimal F1 point
respectively. Our principle in selecting the operating point is higher sensitivity and fewer false negative samples, but at the same time itwill lead to an increase in false positive samples. Even though
the false positives of the fine-tuned threshold (138) are double or more than the false positives of the default threshold (62), which will increase the workload of cardiologists, but it is worth it for the
access it gives patients.
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this a priori knowledge to the method to obtain more reasonable and
natural diagnostic results.

Although deep learning has been successfully applied to physio-
logical signal processing, our model can be initially applied to clinical
diagnostic settings. However, there is significant variation in ECGs due
to collected from different devices, geographic areas, skin tones and
muscle mass etc., our model is currently only applicable to the
population using the specific wearable ECG devices within China. In
addition, the number of classes in our database close to 300, many of
which only haves few samples such as ventricular tachycardia (VT)
whose sample size is <100. Currently, the lack of samples is the main
factor limiting the classification performance of the model to rare
classes. In futurework, wewill expand our data sources to collect ECGs
from different ethnic groups, populations and devices, and try to

bridge the domain gap between the distribution of ECGs from differ-
ent sources, try our best to recognizemorediagnostic terms for ECG at
a fine-grained level and extend this work to a wider range of applica-
tions. In conclusion, we have established a baseline as far as the
practicability of deep learning approach, which can provide a refer-
ence and feasible report for other researchers. The difficulties
encountered by the model in real-world settings are more complex
and there is much more work we can study, which provides more
opportunities and challenges for the analysis and processing of ECG.

Methods
Data access and ethical statement
Samples for this study were obtained from three sources including
home users wearing the wearable devices to collect ECG at home,
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Fig. 3 | Neural network architectures and visualization of model’s attention.
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model pays more attention. The purple circle indicates the human expert’s defi-
nition of this arrhythmia.
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patients in hospitals who used wearable devices, and companies and
the hospital organizing free ECG diagnostic events to collect ECGdata.
It is noteworthy that the ownership of the data belongs to Cardiocloud
Medical Technology (Beijing) Co., Ltd. This study was approved by the
Medical Ethics Committee of Chinese PLA General Hospital with the
number of S2019-318-03, and informed consent was obtained from the
participants.

Pre-filtration of ECGs
Two factors may affect the quality of ECG signal in wearable ECGs,
namely lead reversal and artifacts. Lead reversal occurs due to lead
electrodes ofwearable ECGdevices beingmisplaced on the skin due to
unfamiliarity during use by non-medical professionals, such as home
users. Artifacts are caused by bad contact or even shedding between
the lead electrodes and the skin. These two factors can lead to sig-
nificant distribution differences between the data collection and nor-
mal wearing situations, which severely decreases the classification
performance of the model. Our solution is to use the deep learning
model to correct the wearing situation of users before uploading ECG,
and to exclude the ECG data acquired in an inappropriate wearing
situation.

There are six types of device wearing situations: upper limb left
and right lead reversal, upper and lower limb lead reversal, left upper
and lower limb lead reversal, right upper and lower limb lead reversal,
chest lead reversal, andnormalwear connection. There are total of 230
lead reversal ECGs in our annotated 164,538 ECGs, all of which are
diagnosed by experienced human cardiologists. A domain gap exists
between the distribution of lead reversal ECGs and normal wearing
ECGs; however, due to the small amount of data, we are currently
unable to accurately analyze the impactof this difference on themodel
classification performance. We used the MSDNN as the backbone to
train a six-class network to identify the six wearing situations using
cross-entropy as the loss function, anddeployed it tomobiledevices as
a startupdetection.We recruited 95 volunteers and collected 575 ECGs
with a length of 15 s. The training set consisted of 482 ECGs from 80 of
these individuals, and the test set consisted of 93 ECGs from the
remaining 15 individuals. Of the 93 data tested, only one case of left
upper and lower limb lead reversal was misdiagnosed as upper and
lower limb lead reversal, while the rest of the data were detected
correctly.

To evaluate artifacts, it is necessary to determinewhether the ECG
is acceptable via quality assessment We use the deep learning
approach to assess the signal quality of each lead, andfilter out ECGsof
badquality that do not have diagnostic value before inputting the data
into the classification model. This method is described in detail in our
previous study39.

These two works have three directions of future improvement:
recruiting more volunteers to collect richer data; reducing the detec-
tion time from 15 s to shorter such as ideally 1 s, correcting the wear
status instantly when the user starts collecting signal; and light-
weighting the model for deployment on mobile devices.

Data preprocessing
More than 90% of the energy in ECGs is concentrated between
0.5–35Hz, and this frequency band contains most of the diagnostic
information from the signal. There are three main types of ECG inter-
ference: power frequency interference, generally at 50Hz or 60Hz;
myoelectric interference, generally at 30 to 300Hz; and baseline
wander, generally <0.5 Hz. Benefiting from the electromagnetic safety
design of the wearable device hardware, there is basically no power
frequency interference in our dataset. Overall, low-frequency baseline
wander is detrimental to model training, while middle- and high-
frequency components should be preserved. Therefore, we pre-
processed the data with a 5th order Butterworth high-pass filter, with
the lower cutoff frequency of 0.5Hz.

Data augmentation
Data augmentation in the field of computer vision4,40 mainly includes
color transformation, scaling, affine transformation and masking,
which can significantly improve the accuracy of the model, but there
are relatively few studies involving data augmentation in the field of
electrocardiogram analysis41–43. Our data augmentation operations not
only simulate the various interferences faced by the ECG in the real
world and improve the robustness of the model, but also direct more
attention to the key features of the input signal through randomness
and play a regularization role to suppress model overfitting. Accord-
ingly, we proposed four data augmentation operations for wearable
ECG signals: (1) Frequency dropout: transform the ECG signal to fre-
quency domain via discrete cosine transform (DCT), then a certain
number of frequency components are randomly set to zero; finally, the
signal is transformed to the time domain by inverse discrete cosine
transform (IDCT). (2) Crop resize: randomly crop a segment of the
signal in the ECG data and resample it to the original length, and the
crop position is randomly selected. (3) Cyclemask: detect the position
of the R wave peak in ECG and set a segment of signal at the same
position in each heartbeat to zero. (4)ChannelMask: randomly select a
few channels to reset their signal value to zero. Figure 1d, e compare
the original signal and the four data augmentation operations.

Algorithm development
The annotation of ECGs is diagnosed bymultiple cardiologists, and it is
expensive and time-consuming because of the medical knowledge
involved. Due to the relative scarcity of medical resources, unan-
notated ECG signals are easier to obtain than annotated ECG signals.
The self-supervised learning can significantly improve the classifica-
tion accuracy of themodel in the field of computer vision, and it is our
motivation to mine the information in the large-scale ECG data to
improve the generalization of the classification model.

Momentum Contrast (MoCo)3 is mainly composed of an encoder
and a momentum encoder, and there is a projection head at the bot-
tom of each encoder to increase the nonlinearity of hidden repre-
sentationprojected into the low-dimensionalmanifold. It stores a fixed
number of representations or keys as the dictionary and calculates the
contrast loss between the query and keys. MoCo updates the encoder
by the gradient of contrast loss, and then uses the encoder weights to
update the momentum encoder weights using momentum moving
average, tomaintain the consistencybetween thequery andkeys in the
dictionary. This Siamese network embeds all recordings into a low-
dimensional manifold of a specified dimension like 128, treats each
ECG recording as a separate class, and uses the contrastive loss to
maximize the interclass divergence. In this low-dimensional manifold,
the distribution of different augmented representations of the same
anchor ECG should be similar. Therefore, we improvedMoCo with the
distribution divergence loss4 to minimize the intraclass divergence.

Formally, as shown in Fig. 3a, for an anchor ECG recording x, we
randomly applied ECG data augmentation T to get N + 1 different
views: TðxqÞ, Tðx1

qÞ, Tðx2
qÞ until TðxnqÞ, and their encoded repre-

sentations are q, q1, q2, … and qn, respectively. The dictionary k� is
defined as a buffer tensor including K representations, and all of them
are negative keys. We denote q as k + and concatenate with k� to get a
tensor k with K + 1 representations, and then use a (K+ 1)-way softmax-
based classifier to calculate the contrastive loss LC as Eq. (2). We can
obtain a joint probability distribution Pðq,kÞ as Eq. (1) of q and k, and
these distributions of Pðq1,kÞ, Pðq2,kÞ,… and Pðqn,kÞ should be similar
to Pðq,kÞ, then we calculate the Kullback–Leibler divergence as dis-
tribution divergence loss LD as Eq. (3). The contrastive loss LC , dis-
tribution divergence loss LD and the total loss L are defined as:

Pðq,kÞ= expðq:k +
=τÞ

expðq:k +
=τÞ+PK

i= 1expðq:k�
=τÞ

ð1Þ
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LC = � log½Pðq,kÞ� ð2Þ

LD =
XN

i = 1

Pðq,kÞ log P q,kð Þ=P qi,k
� �� � ð3Þ

L= LC +βLD ð4Þ

where β is the weight coefficient of distribution divergence loss with
typical valueof 0.15, andN is the number of augmentation views,with a
typical value of 3.

Network architecture
We reproduced the 34-layer convolutional network25 for comparison
and employed it as our baseline. There are two slight changes: For
convenience of padding computation, we used the convolution kernel
with a width of 17 instead of 16; we also added the squeeze-and-
excitation block to each convolutional module to implement the
channel attention mechanism. The loss function of the multilabel
classification task is the combination of binary cross entropy and
pairwise ranking loss44, weighted by the inverse of the number of
positive recordings for each class.

As shown in Fig. 3b, convolution, batch normalization andpooling
are all 1-D operations. “Conv” represents a convolutional layer, “k” is
the width of the convolution kernel, and “s” is the stride of the con-
volution. “MSConv” is a multiscale convolution block, which uses four
parallel convolution kernels with kernel widths of 3, 5, 9 and 17 to
replace the common convolution kernel of width 17, finally con-
catenating featuremaps channelwise.When the number of channels of
MSConv is N, the number of channels of each parallel group con-
volution is N/4. Each residualmodule includes twoMSConv blocks as a
down-sampling module, and there are eight such residual modules in
total. The number of channels of the convolution kernel in each resi-
dual layer is 64 + 16k, where k is a hyperparameter, starting from0 and
incrementing by 1 for each residual block, with a dropout rate of 0.2.
MSDNN is a multiscale ResNet18 whose input is a 1-D 12-channel ECG
signal with a length of 15 seconds, and the output is a predicted
probability vector activated by the sigmoid function. The parameters
of DNN and MSDNN are 2.03M and 8.03M, respectively.

Our experiment was implemented on Pytorch 1.1045. We pre-
trained the Siamese network on all ECGswith 100 epochs and used the
Adam optimizer with the default parameters at the learning rate of
0.001,β1 of 0.9 and β2 of 0.999. The improvedMoCohas amomentum
of 0.9, a feature dimension of 128, a softmax temperature of 0.07, a
queue size of 72,000 and a batch size set to 360. When training clas-
sification tasks, we used the SGD optimizer with momentum of 0.9 to
minimize the loss function and set the mini-batch size to 128 and
weight decay to 5e−4. When the networkwas initialized randomly46, the
learning rate schedule is one cycle with 100 epochs. The learning rate
starts from 0.001 and increases to 0.01 at the 45th epoch (this part is
called warm-up); then decays to 0.001 at the 90th epoch and to 1e−6

during the last 10 epochs.When the network is initialized as pretrained
weights, the learning rate schedule only uses the latter half of the one
cyclewithoutwarm-up.We saved themodelwith the lowest losson the
test set.

Operating point selection
Our model currently detects and recognizes 55 cardiac rhythms. A
single ECG may have more than one label and is classified by multi-
label classification task. The activation function of network’s final layer
is sigmoid and the loss function is a combination of binary cross-
entropy and pairwise ranking loss. The model has 55 prediction values
ranging between 0 and 1 for each ECG to be diagnosed. To obtain the
final result 55 thresholds are required to binarize these prediction

values, with those greater than or equal to the threshold being 1 and
those less than the threshold being 0. The thresholds vary for each
cardiac rhythm and are fine-tuned by our senior cardiologists from the
default thresholds after taking into account the sensitivity and speci-
ficity of each class.

Figure 2g and Table 3 show that for the current cardiac rhythm
(AF), upon selecting the operating point on the PR curve of offline test
set, the threshold of recommended operating point is the break even
point of 0.389, where the precision, recall and F1 score are all equal to
0.746. Break even point is not the optimal F1 point, and the F1 score
peaks at 0.748 corresponding to a threshold of 0.282. However, both
sensitivities at these two operating points are below 0.8, and a lower
threshold and higher sensitivity are preferred to reduce the number of
missedpositives. Nevertheless, thiswouldmultiply the number of false
positives and increase the workload of cardiologists. Our senior car-
diologists finally selected a threshold of 0.1 after systematic con-
sideration, yielding a sensitivity and F1-score of 0.887 and 0.718
respectively. At the same time the false positives of the fine-tuned
threshold (767) are double or more than the false positives of the
default threshold (334). A single ECG review takes the cardiologist
3–5min generally, but the added expense and cost is well worth it
compared to the cost of a missed diagnosis.

Statistical analysis
Among the all evaluation indicators we used, AUPRC comprehensively
considers recall and precision, which canmost objectively evaluate the
classification performance of different models. Therefore, we per-
formedpaired-sample t-tests on the following sets of results to identify
whether different strategies have a significant effect on the improve-
ment of classification performance: DNN vs MSDNN, MSDNN vs
MSDNNwith PW,MSDNN vsMSDNNwith Aug, andMSDNN vsMSDNN
with PW when only 10% training set ECGs was used; the p-values were
0.749, 0.202, 0.000 and 0.015, respectively. In terms of network
architecture, there is no significant difference in classification perfor-
mance between DNN and MSDNN, but the number of parameters of
MSDNN is only 1/4 of that of DNN. The ECG augmentation strategy
improves the model classification performance significantly. The
strategy of pretrained weights showed a significant improvement in
classification performance when the data scale was small, but its sig-
nificance gradually decreased with the gradual increase of the ECG
scale. Statistical analysis was performed based on SciPy using Python
3.7 with a designated significance level of 95%.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ownership of the raw ECGs belongs to Cardiocloud Medical
Technology (Beijing) Co., Ltd. To obtain all raw ECGs, please contact
Mr. Wang Jinliang via email at wangjl@cardiocloud.cn, the third con-
tributing author of this paper and head of data at the company. Due to
the nature of commercial competition, raw ECGs does not support
paid access. It canonly beobtained by the demander and the company
jointly negotiating and entering into a data sharing agreement or fur-
ther scientific collaboration agreement. In case of no response from
the company within 1week, the corresponding author of this paper,
Mr. Yang Wei with email of weiyanggm@gmail.com, can be contacted
to assist in establishing a communication channel. The offline test set
total of 7000ECGs generated in this study for academic purposes have
been deposited in the ScienceDB database under accession code
https://doi.org/10.57760/sciencedb.07677. Other raw data can be
obtained from the corresponding author upon request. The Supple-
mentary Information files accompanying this paper contain all addi-
tional relevant data supporting the key findings of this study and can
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also be obtained by contacting the corresponding authors upon
request. Source data are provided with this paper.

Code availability
The source code is available at GitHub: https://github.com/SMU-
MedicalVision/ECG-Classfication and Zenodo: https://doi.org/10.5281/
zenodo.7964774.
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