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Absence of localization in interacting spin
chains with a discrete symmetry

Benedikt Kloss 1 , Jad C. Halimeh2,3, Achilleas Lazarides4 &
Yevgeny Bar Lev 5

Novel paradigms of strong ergodicity breaking have recently attracted sig-
nificant attention in condensed matter physics. Understanding the exact
conditions required for their emergence or breakdown not only sheds more
light on thermalization and its absence in closedquantummany-body systems,
but it also has potential benefits for applications in quantum information
technology. A case of particular interest is many-body localization whose
conditions are not yet fully settled. Here, we prove that spin chains symmetric
under a combination of mirror and spin-flip symmetries and with a non-
degenerate spectrum show finite spin transport at zero total magnetization
and infinite temperature. We demonstrate this numerically using two promi-
nent examples: the Stark many-body localization system (Stark-MBL) and the
symmetrizedmany-body localization system (symmetrized–MBL).Weprovide
evidence of delocalization at all energy densities and show that delocalization
persists when the symmetry is broken. We use our results to construct two
localized systems which, when coupled, delocalize each other. Our work
demonstrates thedramatic effect symmetries canhave ondisordered systems,
proves that the existence of exact resonances is not a sufficient condition for
delocalization, and opens the door to generalization to higher spatial dimen-
sions and different conservation laws.

One of the basic assumptions of classical or quantum statistical
mechanics is that interacting many-body systems thermalize,
approaching local thermodynamic equilibrium under unitary dynam-
ics. This assumption is not satisfied for localized systems, in which
transport is arrested. Two well-known examples are strongly dis-
ordered “many-body localized” (MBL) systems1–5, and clean systems
with a strong tilted potential (‘‘Stark-MBL”)6,7. Significant suppression
of dynamics was experimentally observed in both MBL8,9 and Stark-
MBL systems10,11.

What are the main mechanisms destabilizing such localized
phases? In noninteracting systems, resonances–distinct regions in

space with close energies of the single-particle orbitals12—are the
natural cause of instability towards delocalization. Lowering the
disorder strength increases their density, eventually leading to
delocalization at three or higher dimensions12. The resonances also
give the dominant contribution to ac conductivity in localized
systems13–17 and can induce a non-local response. For interacting
systems and under the assumption that the levels of the many-body
spectrumdonot attract each other, it has been rigorously shown that
many-body resonances (which must now take into account the local
interaction energy) cannot delocalize one-dimensional disordered
systems18,19. The proof does not apply for higher dimensions, and it is
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currently unclear if localization is possible for two and higher-
dimensional interacting systems20,21.

Systems, where the resonances are caused by symmetries, have
attracted special attention. In these systems, the rigorous proof of
localization does not apply18,19. The common lore is that discrete
compact symmetries do not affect localization22–26, however
translation-invariant glassy systems7,27 and also systems with con-
tinuous non-Abelian symmetries can become delocalized due to the
proliferation of resonances28,29. Symmetry-assisted delocalization is
however not stable to the addition of symmetry-breaking perturba-
tions that lift many of the exact resonances30.

A number of studies argue thatMBL is unstable to the existence of
delocalized inclusions, ruling out the existence of a mobility edge31,
and even the MBL transition itself32–34. This delocalization mechanism
was numerically explored by embedding of thermal regions in MBL
systems21,35–37, or by coupling the system to a Markovian bath38,39. It is
not clear if a similar mechanism is present in clean localized systems
such as Stark-MBL. More recent numerical studies argue that a bona
fidemany-body localization does not exist37,38,40–42, but there is a glassy
phase with possibly logarithmic growth of number entropy43,44. Other
studies argue that observed delocalization ismostly amanifestation of
the limitations of numerical studies45–49.

As evidencedby theprecedingdiscussion, the landscape is not yet
clearly mapped, and this to a large extend is because numerical and
approximate analytical studies have trouble distinguishing between
slow and genuinely localized dynamics. It is therefore imperative to
have rigorous results, and this is what motivates our work.

In this article, weprove that localization is absent in a large classof
many-body spin systems with a non-degenerate spectrum. This class
consists of all systems symmetric under the combination of spatial
mirroring and spin flipping. By numerically verifying that the non-
degeneracy assumption is fulfilled for interacting Stark-MBL and
appropriately symmetrized disordered problems, we thus rule out
localization in these systems and then explore the stability of these
results to symmetry-breaking perturbations. Finally, we utilize our
result to construct two localized systems that delocalize each other
(see Fig. 1 for an illustration).

Results
General argument
Weconsider a spin chain of length Ldescribed by aHamiltonian Ĥ, and
assume the following:

Assumption 1. Ĥ has a non-degenerate spectrum.

Assumption 2. Total magnetization is conserved, Ĥ,
P

iŜ
z
i

h i
=0.

Assumption 3. The Hamiltonian is symmetric under a combination of
a mirror symmetry and a spin-flip symmetry defined as

P̂Ŝ
z
i P̂ = � Ŝ

z
L�i+ 1,

P̂Ŝ
±
i P̂ = Ŝ

∓

L�i+ 1,
ð1Þ

where Ŝ
z
i are spin operators of arbitrary spin size at site i, and Ŝ

±
i are

their corresponding raising (lowering) operators.
Since P̂

2
= 1̂ its eigenvalues are ±1. The commutator P̂,

P
iŜ

z
i

h i
≠0

unless the total magnetization vanishes, and therefore we project the
Hamiltonian onto the zero total magnetization sector, namely, we
work in the zero-magnetization sector.

We study spin transport by creating a spin excitation at site j on
top of some equilibrium state ρ̂, such that ρ̂,Ĥ

h i
=0, and assess its

spreading using the connected spin-spin correlation function,

Gρ
ij tð Þ= Ŝ

z
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z
i

D E
Ŝ
z
j
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, ð2Þ
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. Taking the infinite-time average,

Gρ
i j = limT!1

1
T

R T
0 d�tGρ

i j
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� �

, and using Assumption 1 we obtain,

Gρ
ij =

X
α

pα αh ∣Ŝ
z
i ∣αi αh ∣Ŝ

z
j ∣αi � Ŝ

z
i

D E
Ŝ
z
j
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where 0 ≤ pα ≤ 1 are the eigenvalues of ρ̂. For systems without spin
transport, the spin excitation is expected to be localized in the vicinity
of site j at infinite times,Gρ

ij � Gρ
ij t =0ð Þ∼ exp �∣i� j∣=ξ

� �
, where ξ is the

localization length. Note that, since Ĥ is symmetric with respect to P̂,
we have that Gρ

ij = � Gρ
~ij
where ~i= L� i+ 1 is the mirrored coordinate.

Therefore, localization of the excitation around j implies also locali-
zation around ~j, which can be arbitrarily distant from j. This however
does notmean that the system is delocalized.While the spin excitation
can move for arbitrary distances ∣j �~j∣, this is similar to resonant
transfer between site j and site ~j, which leaves the rest of the system
localized. There is no transport in general. A similar situation occurs in
the Anderson insulator13 and MBL systems50. For systems that relax to
equilibrium Gρ

ij ! 0 such that the excitation is uniformly spread over
the lattice. Here the process is inherently many-body since it is not
present for systemswhich can bemapped to noninteracting fermions,
see Supplementary Note 1. To quantify the spreading of the excitation
we use the mean-squared displacement (MSD),

σ2
ρ tð Þ=

XL

i= 1

i� jð Þ2 Gρ
ij tð Þ � Gρ

ij 0ð Þ
h i

, ð4Þ

and its corresponding infinite-time average σ2
ρ. For delocalized states,

the infinite-time averaged MSD scales as σ2
ρ ∼ L2, while for localized

states σ2
ρ ∼ ξ2. We now prove that for systems satisfying the

assumptions above, σ2
ρ ∼ L2, implying that at least a finite fraction of

eigenstates are delocalized. For brevity, we only provide the sketch of
the proof here; see Supplementary Note 3 for details.

We take ρ̂= 1̂=N where N =
� L
L=2

�
is the Hilbert space dimension.

This corresponds to setting pα = 1=N in Eq. (3), such that the infinite-
time average of (4) becomes,

σ21 =
1
N
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We first note that N �1P
α αh ∣Ŝ

z
i Ŝ

z
j ∣αi= 1

4 L�1ð Þ and therefore the second
term in (5) isO

�
L2
�
, see Supplementary Note 3. To bound the first term

we use the symmetry P̂ and the identity,

XL

i = 1

i� jð Þ2 αh ∣Ŝ
z
i ∣αi= ~j � j

� �
αh ∣D̂∣αi, ð6Þ

where D̂=
P

iiŜ
z
i is the dipole operator and ~i= L� i+ 1 the mirrored

coordinate. Inserting this identity into the first term in (5) and using a

Fig. 1 | Illustration of a symmetrized Hamiltonian. Here Ĥ conserves the total
magnetization and V̂ represents the coupling between Ĥ and P̂ĤP̂, such that
P̂V̂ P̂ = V̂ : The symmetry generator P̂ mirrors and flips the spin-pattern on the left.
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combination of triangle and Hölder inequalities, we bound

1
N ∣

PL
i= 1

i� jð Þ2 P
α

αh ∣Ŝ
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z
j ∣αi∣ ≤ ∣~j�j∣

2
1
N TrD̂

2� �1=2
: ð7Þ

Since the second term in (5) can be exactly evaluated and scales as L2

and it can be shown that D̂
2D E1=2

=O L3=2
� �

, then for all ∣j �~j∣<O L1=2
� �

the second term is dominating in the thermodynamic limit which

yieldsσ21 ∼ L2. It is important tonote that this is not an upper boundon

σ21 but an asymptotic result, which implies delocalization of a finite

fraction of eigenstates. Ideally we would like to prove that σ21 ∼ L2 for

all excitation sites 1 ≤ j ≤ L and not only sites found at distanceO L1=2
� �

from the center of the lattice. For the models we have considered
numerically delocalization holds for all j.

The proof does not rule out localization in noninteracting Stark or
Anderson problems, since due to the P̂ symmetry there are degen-
eracies in themany-body spectrum invalidating Assumption 1, see also
Supplementary Note 1.

In what follows, we numerically demonstrate that Assumption 1 is
satisfied for two cornerstone models of localization in interacting
systems and provide evidence of delocalization for all energy
densities.

Applications
We consider the Hamiltonian of a spin-1/2 chain of length L,

Ĥ =
PL�1

n= 1

J
2 Ŝ

+
n Ŝ

�
n+ 1 + Ŝ

�
n Ŝ

+
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� �
+ΔŜ

z
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+

PL
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z
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where Ŝ
±
n , Ŝ

z
n are spin-1/2 operators, J is the strength of the flip-flop

term,Δ is the strength of the Ising term and hn is an arbitrarymagnetic
field. For hn = � h~n theHamiltonian clearly satisfies Assumptions 2 and
3. In what follows we numerically verify that Assumption 1 is also
satisfied for our choices of hn. We consider two cases of ostensibly
localized interacting systems: (a)hn = γ n� L+ 1

2

� �
, such that all the

single-particle states of the fermionic model are known to be localized
for any γ and for sufficiently large γ the model is expected to be Stark
many-body localized (Stark-MBL)6,7. (b)hn = � h~n, but otherwise
randomly and uniformly distributed in the interval �W ,W½ �. We have
verified numerically that all the single-particle states are strongly
localized, and have only rare single-particle resonances, so that the
model might be expected to be many-body localized (MBL) for
sufficiently large W, by analogy with the standard MBL case1. We shall
call case (b) symmetrized–MBL, as it obeys the symmetry embodied in
Assumption 3.

We begin by verifying assumption 1 for both models, by numeri-
cally diagonalizing the Hamiltonian for systems sizes L = 11 − 19 setting
J = 2 and Δ = 1. We work in the zero (1/2) total magnetization sector for
even (odd) system sizes. For the Stark-MBL case we take γ = 2.75 and
for the symmetrized-MBL case W = 9. We use 10,000 disorder reali-
zations for averaging. Figure 2 shows a histogram of the logarithm of
the eigenvalue spacings, log10δE. Both models have a wide range of
eigenvalue pairs that lie very close to each other compared to the
average spacings, but are not degenerate. These quasi-degenerate
pairs of states are found across the symmetry sectors of P̂, as we show
by restricting the eigenvalues to the even sector and calculating its
distribution (see also Supplementary Note 2). The restricted distribu-
tion is centered around the average spacing anddoes not have a fat tail
stretching to zero, which characterizes the unrestricted distribution.
Since (8) satisfies all the assumptions of our proof, we expect that a
finite fraction of its eigenstates are delocalized. To confirm this, we
calculate σ2

ρ in Eq. (5) within the microcanonical ensemble,

ρ̂ Eð Þ=N �1
E
P

α2I ∣αi αh ∣, where I = E � ΔE,E +ΔE½ � we take
ΔE = maxðEÞ�minðEÞ

20 , andN E is the number of states in I. We also set j = L/2.
Figure 3 shows thatσ2

E=L
2 plotted vs rescaled energy for bothmodels is

nicely collapsed such that the states at all energies are deloca-
lized, σ2

E ∼ L2.
We have established both analytically and numerically that both

models have a delocalized excitation profile at all energy densities and
infinite times. While this result is universal as long as Assumptions 1–3
are satisfied, the temporal and spatial dependence of the excitation
profile (2) are model specific and are therefore left for the Supple-
mentary Information. It is worthwhile to mention that both models
exhibit subdiffusive transportwhich is better described by logarithmic
subdiffusive transport, t ∼ lnL43,44, and not power-law subdiffusive
transport, t ~ Lz (z > 2)51,52, see Supplementary Note 5. For finite systems
the spin-spin correlation function (2) decays to zero at all sites except j
and itsmirror~j, which suggests a residualmemoryof initial conditions.
The memory, however, fades away with increasing system size, see
Supplementary Note 4.

Symmetry breaking
The proof of finite spin transport crucially depends on the existence of
the symmetry P̂. It is interesting to see if finite transport persists also
when the symmetry is broken. We have numerically examined a
number of ways to break the symmetry in models described by (8):
taking a finitemagnetization, using an odd system size, or breaking the
symmetry of the magnetic field hn. All produce qualitatively similar
behavior of dramatically suppressed dynamics (see for example
Refs. 6,7). Here we only present results for odd system sizes and total
magnetization 1/2. To examine the localization of the excitation profile
(2), we compute a positive version of theMSDby taking ∣Gρ

ij tð Þ � Gρ
ij 0ð Þ∣

Fig. 2 | (Color online) Distribution of level spacings L = 18 on a log–log scale for
the Stark-MBL Hamiltonian, γ = 2.75 (left panel) and the symmetrized–MBL
Hamiltonian,W = 9 (right panel). Spacings restricted to the even parity symmetry
sector (solid lines) and within the entire zero-magnetization sector (dashed lines).
Statistical errors are denoted by line width.

Fig. 3 | (Color online) Rescaled infinite-time average of the microcanonical
mean-square displacement σ2

E=L
2 in the zero-magnetization sector as a func-

tion of rescaled energy for system size L = 12, 14, 16, and 18 (darker shades
correspond to larger systems). The left panel corresponds to the Stark-MBL
Hamiltonian with γ = 2.75 and the energy rescaled as E/L2, and the right panel cor-
responds to the symmetrized—MBL Hamiltonian with W = 9, where the energy is
rescaled as E/L.
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in Eq. (4) and taking an infinite-time average, σ2
sgn. This is done to avoid

the quasi-conservation of the MSD in Stark-MBL systems53,54. While it
implies the absence of diffusion, it does not exclude subdiffusive
transport51,54. Figure 4 shows that σ2

sgn grows with system size for both
models. It is hard to extract a reliable dependence on the system size
from the accessible system sizes, but the growth is consistent with L0.35

for the Stark-MBL system and L1.35 for the symmetrized–MBL system. If
the growth persists in the thermodynamic limit it implies asymptotic
delocalization. Instead of breaking the symmetry of the Hamiltonian,
we canuse a nonequilibrium initial condition ρ̂which either satisfies or
breaks the symmetry. For initial conditions that are odd or even with
respect to P̂ (such as the Neél state), we observe some memory of the
initial state, however, there is no asymptotic memory retention of
initial conditions that break the symmetry, see Supplementary Note 6.

Discussion
We have proved that any spin chain with the symmetry given in
Assumption 3 and a non-degenerate spectrum exhibits spin transport
for a finitemeasure of its eigenstates in the zero-magnetization sector.
The proof does not apply to noninteracting systems that have
degeneracies due to the symmetry, and thus can remain localized. We
have numerically demonstrated delocalization of the asymptotic
excitation profile for two cornerstone models of localization in many-
body systems: the Stark-MBL model with either purely linear potential
or with any additional potential respecting hi = � h~i, and the
symmetrized–MBL model. Our results suggest that for these models
delocalization happens at all energy densities and spin transport is
subdiffusive, and most probably logarithmic, see Supplementary
Note 5.Moreover, our numerical results are consistentwith asymptotic
delocalization of the excitation profile also in the case of weak sym-
metry breaking, even though the dynamics is strongly suppressed for
numerically accessible system sizes. Since some symmetry-breaking
perturbation always exists in any experiment, and the time of running
the experiment is inherently bounded, it might be extremely hard, if
not impossible, to differentiate betweenglassydynamics andbonafide
localization.

Constructing a localized delocalizing bath
A localized system is typically a closed system with no transport.
Coupling a localized system to a Markovian heat bath induces slow
transport for local coupling55,56 or diffusive transport for global
coupling57–61. A similar effect is expected to occur if aMarkovian bath is
replaced by a sufficiently large thermalizing system. But what if we
couple two localized systems? Is it possible to induce transport in such
a configuration? Since by definition there is transport in neither sys-
tem, as a result of the coupling only resonant transfer between the two
systems is possible. A possible guess could be coupling Ĥ to itself, that
we will call the “Ĥ to Ĥ” composite system. When the two systems are
uncoupled all the spectrum is doubly degenerate and therefore

resonant. Under such conditions, any small coupling between the
systems lifts the degeneracies and presumably results in weak trans-
port. However numerical results suggest that this configuration does
not result in delocalization for noninteracting systems, see Supple-
mentary Note 7. We conclude that the existence of exact resonances is
not a sufficient condition of delocalization.

We now use our results to construct a localized system which,
when attached to the edge of a given localized system, described by a
localized Hamiltonian Ĥ, delocalizes it. Since Ĥ is localized, the uni-
tarily transformed system P̂ĤP̂ is also localized. For noninteracting
systems the symmetry P̂ implies that the single-particle spectrum of
P̂ĤP̂ is a reflection around zero of the single-particle spectrum of Ĥ,
such that there are no exact single-particle resonances, see Supple-
mentary Note 1 (See Supplemental Information for a detailed proof
and discussion of noninteracting systems and spatial and temporal
dependence of the excitation profile). On the other hand, the many-
body spectrum of Ĥ is identical to P̂ĤP̂ and therefore has exact many-
body resonances, similar to the Ĥ to Ĥ system. Nevertheless, by cou-
pling Ĥ and P̂ĤP̂ at the edge using a symmetric coupling P̂V̂ P̂ = V̂
results in a composite Hamiltonian that is symmetric under P̂:
Ĥ

0
= Ĥ + P̂ĤP̂ + V̂ (see Fig. 1).Wewill call this coupling “Ĥ to P̂ĤP̂”. Since

Ĥ
0
satisfies Assumptions 1–3 for a coupling V̂ which breaks all degen-

eracies, it follows from the delocalization proof that Ĥ
0
is delocalized.

The most dramatic demonstration of symmetry-induced delocaliza-
tion can be obtained by coupling two Anderson insulators Ĥ and P̂ĤP̂:
A noninteracting coupling of the form V̂ = Ŝ

+
L=2Ŝ

�
L=2 + 1 + Ŝ

�
L=2Ŝ

+
L=2 + 1 can-

not lift the degeneracies and the system is localized. On the other
hand, modifying V̂ to include an interacting term, such as Ŝ

z
L=2Ŝ

z
L=2 + 1

lifts the degeneracies and results in delocalization via the delocaliza-
tion proof. Thus, the Ĥ to Ĥ coupled system has resonances but
appears to be localized, while the Ĥ to P̂ĤP̂ coupling also has reso-
nances, yet is delocalized. Studying the difference between these
systems may provide insight into the role of resonances in
delocalization.

Outlook
In this work, we have considered the limit of infinite time for a finite
system. For a finite time, the system might exhibit slow transport, see
Supplementary Note 5, or appear to be localized62. It is an open and
interesting question whether localization is possible also in the
thermodynamic limit.

Other open questions are whether the delocalization mechanism
carries over to other spatial symmetries. What is the fastest possible
transport between two coupled localized systems? Is it always loga-
rithmic? It would be also interesting to see if our delocalization proof
can be generalized to higher dimensions, the microcanonical ensem-
ble, other conserved quantities, such as the energy, and unbounded
local Hilbert space dimensions. Moreover, implications on thermali-
zation in systems respecting symmetry and the degree of stability of
delocalization to symmetry-breaking perturbations should be also
explored.

Methods
Numerical data is obtained from a full eigendecomposition of the
Hamiltonian in the appropriate symmetry sector in double floating
point precision. We make use of the QUSPIN library63 to generate
Hamiltonians. For disordered systems, averaging is performed over
10,000 disorder realizations, and the standard deviation is estimated
via the standard deviation of bootstrap samples. For small system
sizes, the results have been compared to eigendecomposition with
quadruple floating point precision via ADVANPIX64.

Data availability
All data is available upon reasonable request.

Fig. 4 | (Color online) A log–log plot of σ2
sgn as a function of L for odd system

sizes and total magnetization 1/2. The left panel corresponds to the Stark-MBL
Hamiltonian with γ = 2.75, and the right panel corresponds to the symmetrized--
MBL Hamiltonian with W = 9.
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Code availability
All code used in this work is available upon reasonable request.
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