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Robust projection of East Asian summer
monsoon rainfall based on dynamical modes
of variability

Daokai Xue 1 , Jian Lu 2 , L. Ruby Leung 2, Haiyan Teng3,
Fengfei Song 4,5, Tianjun Zhou 6 & Yaocun Zhang1

The Asian monsoon provides the freshwater that a large population in Asia
depends on, but how anthropogenic climate warmingmay alter this key water
source remains unclear. This is partly due to the prevailing point-wise
assessment of climate projections, even though climate change patterns are
inherently organized by dynamics intrinsic to the climate system. Here, we
assess the future changes in the East Asian summer monsoon precipitation by
projecting the precipitation from several large ensemble simulations and
CMIP6 simulations onto the two leading dynamical modes of internal varia-
bility. The result shows a remarkable agreement among the ensembles on the
increasing trends and the increasing daily variability in both dynamicalmodes,
with the projection pattern emerging as early as the late 2030 s. The increase
of the daily variability of the modes heralds more monsoon-related hydro-
logical extremes over some identifiable East Asian regions in the coming
decades.

Asian monsoon affects a large area of South and East Asia, which are
home to almost half of the world’s population. How the Asian mon-
soon rainfall is projected to change under anthropogenic climate
warming has profound social and ecological consequences for the
Asian populations and is of critical importance to the stakeholders and
policymakers in these Asian countries. Considerable efforts have been
made to project the future monsoon changes under global warming.
While the increased water vapor holding capacity of the warming
atmosphere will increase the summer monsoon precipitation in
general1–3, how the monsoon circulation will respond to warming has
been mainly construed to be the source of the uncertainty4–8. Mean-
while, evidencebegan to emerge for the intensificationof theNorthern
Hemisphere (NH) summer monsoon, attributable to the faster warm-
ing rate in the NH compared to the Southern Hemisphere under global
warming9. However, uncertainties in the projection of the regional
monsoons10–13 remain large, not least due to the specific dynamic and

thermodynamic components and their complex interactions for each
regional monsoon system. Furthermore, model biases in representing
the rainfall and circulation of the regional monsoon systems persist
across generations of climate models, undermining the fidelity in the
projectionsmade by climatemodels. For example, climatemodels still
have difficulty in simulating both the mean position and the variability
of the Meiyu-Changma-Baiu rainbelt over eastern China, Korean
Peninsula, and southern Japan14–19. East Asia and the Indian sub-
continent are among the regions with the largest model uncertainties
in the end-of-the-century precipitation projection12,20–23. As society
demands reliable climate change information for the purpose of
planning, adaptation, and policymaking, any increase in confidence in
regional climate projections can be of great societal value.

As astutely stated in the seminal work of K. Hasselmann24, cli-
mate projection is a problem of “fingerprinting”, that is, capturing
the forced response in a much-reduced dimension through pattern
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filtering so as to greatly improve the signal-to-noise ratio. In the
same vein as Hasselmann and a number of similar studies25–27, we use
the neutral modes of the Asian monsoon rainfall variability as the a
priori fingerprints to filter through the model-simulated precipita-
tion signals to provide a more confident projection of regional
monsoon rainfall. Although, both serve to reduce the dimension of
the signal detection problem, compared to the empirical orthogonal
functions (EOFs) originally proposed in ref. 24, which are empirically
determined, neutral modes represent the coherent spatial patterns
that are dynamically organized and ranked according to the mag-
nitude of the singular values, with the leading mode representing
the least damped, and thus most excitable pattern in the climate
system (See Methods for the derivation and explanation of neutral
modes). In addition, neutral modes capture the more deterministic
aspect of the systemgoverned by the robust dynamics of the climate
system28–30. Therefore, the precipitation patterns extracted through
the neutral mode analysis are more robust to climate noise and
model uncertainty, and thus more detectable and predictable than
the precipitation at a single grid point. Furthermore, the confidence/
robustness of the Asian monsoon rainfall response expressed in
neutral modes can be stratified by mode rank, with leading modes
being more robust and the confidence derived from them poten-
tially transferable to the real climate change response.

As it turns out, our analysis reveals a consensus on the sign of the
change of the leading modes of the East Asian Monsoon (EAM) pre-
cipitation across the multi-model ensembles examined here. In addi-
tion, the daily standard deviation (std) of the modes is projected to
increase at an even greater rate, indicating more extreme daily varia-
tions of thesemodes in a warmer climate. Interestingly, the circulation
of the modes contributes more to the increase in EAM precipitation
modes than the thermodynamic factors. Within the multi-model
ensembles, we also assess the time of emergence (ToE) of the forced
changes of these two modes and infer the emergent robust

component of the EAM rainfall response under an uncurbed emission
scenario.

Results
The leading neutral modes and their trends in CESM-SMILEs
The precipitation dynamicmodes are extracted as the leading singular
modes of the linear response function (LRF) for precipitation con-
structed based on Green’s function perturbation experiments with the
National Center for Atmospheric Research’s slab-coupled Community
Atmospheric Model version 5 (CAM5-SOM). They are herein referred
to as the neutral modes (NMs) of precipitation. The first neutral mode
(NM1) for JJA precipitation is shown in Fig. 1a. Over the Asia-Western
Pacific sector, NM1 is well identified with the leading EOF pattern
(Fig. 1b, c), revealing the iconic tripolar pattern of the EAM rainfall,
which features a positive anomaly over the middle and lower reaches
of the Yangtze River valley, the southern Korean peninsula, and
southern Japan, sandwiched by negative anomalies on both flanks
(Fig. 1c). Thus, the tripolar pattern can be interpreted as a part of the
global precipitation mode. Similarly, NM2 can be identified with the
second EOF of the Asian monsoon precipitation, which is character-
ized by a dipole, referred to in the literature as the South Flood-North
Drought (SFND) pattern31–36 (Fig. S1). From this point on, the regional
imprints of the leading NMs within the domain [85°−150°E, 5°−45°N]
will be used as the fingerprints for future projection of the summer
rainfall over the East Asian regions.

To this end, CESM2 large ensemble (CESM-LENS2) under the
CMIP6 historical forcing and the SSP370 forcing scenario37 and the
large ensembles of four models from the Single-Model Initial-condi-
tion Large Ensembles project (SMILEs38) under the standard CMIP5
“historical” and “future” Representative Concentration Pathway 8.5
(RCP8.5) forcing protocols are used. These five ensembles are collec-
tively referred to as CESM-SMILEs for short. Due to the different for-
cing protocols between SSP370 and RCP8.539, the trend component

Fig. 1 | Agreement between the 1st neutral mode (NM1) and the first empirical
orthogonal function (EOF1) of East Asian summer monsoon rainfall. a NM1 of
the global June–July–August (JJA) precipitation extracted from the precipitation
linear response function (LRF) (unit is mmday−1). The green dashed contours

indicate the 6mmday−1 isoline of the JJA summer rainfall climatology. b A close-up
of NM1 over East Asia to facilitate comparison with the observed EOF1 pattern of
summer rainfall over the same region shown in c.
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during the “future” projection period in the CESM-LENS2 ensemble is
scaled up by a factor of 1.3 to account for the scenario difference when
we estimate the ToE and attribute projection uncertainties (see
Methods for the rationale for the scaling factor).

We project the JJA precipitation from CESM-SMILEs onto the
standardized NM1 pattern of CESM-LENS2 (since NMs are only avail-
able for CESM-LENS2 from its LRF) and the resulting dimensional NM1
indices are shown in Fig. 2. There emerges a consensus on the positive
trend in the projected changes in the NM1 index, implying a moist-
ening trendover the corridor from themiddle and lower reaches of the
Yangtze River valley eastward to southern Japan, and a drying trend
over Indochina due to the contribution of NM1. More remarkably, the
increasing trend in the JJA std of the daily NM1 index is even greater
than that in the seasonal NM1 index, with the grand ensemble mean
increasing by 39.8% for the former and 29.2% for the latter by the end
of the century (taking into account the scenario differences between
CESM-LENS2 and SMILEs). For reasons yet to be understood, the
CESM-LENS2 has a much larger internal variability in the NM indices
than other ensembles (Fig. S2). Unanimous agreement is also found on
the projections of the JJA mean and std of the NM2 index across the
CESM-SMILEs ensembles, with the grand ensemble mean NM2 index
increasing by 26.5% and the grand ensemble mean std of the NM2
index increasing by 32.7% by the end of the century. Treating the

CESM-SMILEs as a grand ensemble, we will show that the grand
ensemblemean trends in both theNM1 andNM2 indices are significant
relative to the internal noise when we examine the ToE of the forced
signals. Over the domain shown in Fig. 1b, NM1, and NM2 together
explain more than 50% of the total spatial variance in the
June–July–August (JJA) seasonal mean precipitation trend between
2011 and 2100. Notably, since NM2 represents the negative SFND
pattern (Fig. S1), a positive trend in the NM2 index in the future
(Fig. S3e) would mitigate the positive SFND trend over the past six
decades in China.

Uncertainty attribution and time of emergence
Following Lehner et al.20, we partition the sources of uncertainty into
the component due to the internal variability uncertainty and the
component due to model uncertainty as follows

Tt = I
=

t +Mt
ð1Þ

each estimated as the variance for a given summer (denoted by sub-
script t) for each NM index. The fractional uncertainty for the two

sources at a given year t can be simply calculated as Mt
Tt

and I
=

t
Tt
,

respectively. See Methods for the detailed definitions. Since the

Fig. 2 | The evolution of the first neutral mode (NM1) projections in CESM-
SMILEs. Left panels: projections of the June–July–August (JJA) seasonal mean pre-
cipitation onto the NM1 pattern over East Asia, or the NM1 index. Right panels: The
std of summer daily NM1 index. Solid line in each left (right) panel is the ensemble
mean projection (ensemble mean of the std of the daily NM1 index). The shading
indicates the range of the one std of the ensemble members of each individual

ensemble. A gray bar in each panel demarcates the boundary between the “his-
torical” and “future” periods of the simulations. The side box in each panel shows
the mean and spread (represented by one std) of the near-term (2021–2040,
green), mid-term (2041–2060, blue), and long-term (2080–2100, red) projections.
Note the different scales shown on the y axis of each panel.
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SMILEs ensemble simulations are all forced by the same
RCP8.5 scenario, and the end-of-the-century forcing for the CESM-
LENS2 has been rescaled to be 8.5Wm−2, scenario uncertainty can be
ignored here.

Figure 3a shows the multi-model ensemble mean (MMEM) evo-
lution of theNM1 index (black line) togetherwith itsmodel uncertainty
(orange shading) and internal variability uncertainty (green shading). It

is interesting to note that from the turn of the century to the end of the
21st century, both model and internal uncertainties increase with time
(so a hinderance to the early detection of the NM1 index trend), while
their fractional contributions to the total uncertainty remain roughly
unchanged (Fig. 3b). However, a distinct behavior is observed in the
evolution of the uncertainties of the NM2 index, with the contribution
of model uncertainty increasing during the second half of the 20th

Fig. 3 | The evolution of uncertainty components and time of emergence (ToE)
of the forced response. a Evolution of the multi-model ensemble mean (MMEM)
first neutral mode (NM1) index and its internal variability and model uncertainties
represented by two std (i.e., 2

ffiffiffiffi
I
=

t

q
and 2

ffiffiffiffiffiffiffi
Mt

p
, respectively) on either side of the

MMEM; b fractional contribution to the total uncertainty from the two uncertainty
sources; c same as a but for the std of the NM1 index; d same asb but for the std of
the NM1 index. Note that a 10-year running mean has been applied to these time
series. e Time evolution of the forced response of the NM1 index (black line) with

respect to the historical (1850–2010) mean. The light green shading indicates the
upper and lower bounds of the grand ensemble. The blue and red arrows delineate
the ToE based on two definitions (see text for details). The corresponding sensi-
tivities to the length of the reference timewindow are also depicted in the inset. f is
the same as e, but for the std of the NM1 index. In both e and f, the gray shading
indicates the upper and lower bounds of the grand internal variability during the
historical period (1850–2010).
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century and decreasing during the 21st century (Fig. S3). While one
might expect that increasingwater vapor holding capacitywith climate
warmingmay increase the variance of the tropical precipitation, which
can inflate the uncertainties, the different behavior between the two
modes suggests that more complex factors may be at play behind the
time dependence of the neutral mode uncertainties. In contrast to the
seasonal NM1 index, themodel uncertainty for the std of the daily NM1
index shrinks during the 20th century and then stabilizes during the
21st century (Fig. 3c). Thus, in a fractional sense, the internal variability
uncertainty in the NM1 std increases consistently with time over the
period considered (Fig. 3d). The same is true for theNM2 std (Fig. S3d).
Compared to the seasonal mean NM1 index, the relatively stable total
uncertainty and the larger forced trend in the std of the NM1 index
imply a higher detectability for the change in the latter (cf. Fig. 3a, c).
As the std here reflects the behavior of the hydrological extremes
within the monsoon system, more process-oriented investigations in
this regard are warranted in the future. The two-component parti-
tioning of the uncertainty should be distinguished from the three-
component partitioning reported in the literature20,40, which often
shows a decreasing trend in the fractional contribution from the
internal variability uncertainty due to the rapidly diverging scenarios
after the mid-21st century.

When will these upward trends in the NM indices and their std be
detectable in the 21st century? We answer this question by identifying
the ToE of the forced changes. Two definitions of ToE are considered:
one is more stringent, defined as the year at which the lower bound of
the NM indices first exceeds the upper bound of the historical NM
indices in the grand ensemble; the other ismore lenient, defined as the
year atwhich the grand ensemblemeanof the NM indices first exceeds
the upper bound of the historical NM indices. The former ToE is also
known as “first year of all signals out” and the latter one as “first year of
ensemble mean out”. The upper and lower bounds of the historical
indices (indicated by the gray area in Fig. 3e, f) are identified from the
collection of the inter-member spreads over the period 1850–2010
from each of the five individual ensembles. The “first year of all signals
out” is detected by year 2073 for the NM1 index and by year 2065 for
the NM1 std (Fig. 3e, f), while the “first year of ensemble mean out” is
detected much earlier, before 2040 for both the seasonal NM1 index
and the NM1 std. Fig. 3e, f also show that the ToEs are relatively
insensitive to the historical bin size used to define the lower and upper
bounds of the internal variability (see the insets). Because the forced
trends in NM2are relatively weak, only the lenient ToE canbe detected
within this century (Fig. S3e and S3f). It should be noted that the ToE
can differ substantially when assessed separately for each individual
ensemble. For example, the stringent ToE cannot be detected within
the century for the NM1 index in CESM-LENS2 due to its large internal
variability and relatively weak trend (see Fig. S5).

Dynamic contribution to the NM trends
Even in the absence of circulation change, increasing moisture in
the atmosphere can enhance the existing pattern of the hydrological
cycle, including the patterns of the leadingmodes of variability41. Does
the circulation change play any role in the forced NM trends above, or
are they purely thermodynamically driven? To infer the dynamical
factors, we first compute the patterns associated with NM1 for SST,
850hPa wind, 500hPa geopotential height, specific humidity, and
streamfunction (Fig. 4a, b; see Methods for the calculation of the NM
associated patterns). The resulting patterns resemble verymuch those
of the well-known ‘Pacific-Japan pattern’ in the literature42,43, suggest-
ing that the Pacific-Japan pattern is the manifestation of the leading
neutralmode of JJA precipitation over the East Asia-Pacific sector31. We
then project the 850hPa streamfunction (ψ850) and specific humidity
(Q850) anomalies onto their corresponding NM1-associated patterns
to elucidate the evolution of the dynamic and thermodynamic com-
ponents of NM1, respectively. In so doing, we assume that the NM1-

associated pattern in Q850 represents the thermodynamic fingerprint
of the NM1 circulation on the background mean moisture field. There
is a clear upward trend during the “future” period in both the dynamic
and thermodynamic projection coefficients (Fig. 4c, d). Specifically,
the fractional increase of the dynamic trend is ~19.6% relative to the
“historical” mean, accounting for 67% of the total trend of the NM1
index (Fig. 4e). This leaves only 33% for the thermodynamic cause; this
figure is somewhat corroborated by the 13.8% fractional increase in
the Q850 trend (Fig. 4d). Thus, the circulation changes over the East
Asia-Pacific sector contribute qualitatively more to the precipitation
changes associated with NM1 than the thermodynamic factor44,45. This
is also true for the NM2 trend, where the inferred dynamical factor
contributes 58% and the thermodynamic factor 42% to the total
increase of the NM2 precipitation (see Fig. S4c–e). In addition to the
significant contribution of the dynamic factor to the ensemble mean
increase in the precipitation modes, the large uncertainty in the NM
circulation pattern (shading in Fig. 4c and Fig. S4c) suggests that the
dynamical factor also dominates the uncertainty in the future projec-
tion of these neutral modes, consistent with the established notion on
the source of the uncertainty in regional precipitation projections7,46,47.

Projection from a synthetic ensemble
Since each of the five large ensembles provides projections for the
NM1 and NM2 indices, one can form 25 synthetic projections for the
end-of-the-century (2081–2100) JJA precipitation over East Asia by
randomly pairing the projections of theNM1 andNM2 indices from the
5 ensembles as follows

Pi, j = c1,iV 1 + c2, jV2 ð2Þ

where c1 and c2 are the dimensional NM1 and NM2 projection coeffi-
cients, and V 1 and V2 are the non-dimensional patterns of NM1 and
NM2, respectively, and the subscripts i and j index the 5 models. This
exercise is further motivated by the significant pattern correlations
between the EOF1s/EOF2s of the CESM-SMILEs models and the
observation (see Table S1). As shown in Fig. 1 and Fig. S1, the NM1/
NM2 patterns here are representative of the mode behavior in both
climate models and reality. Figure 5a shows the synthetic ensemble
mean projection of the East and Southeast Asian JJA precipitation by
the end of the century, along with colored dots illustrating the >90%
agreement of the 25 synthetic projections on the sign of the
precipitation change. Through the lens of NMs, there is considerable
consensus on the increase in summer precipitation over the middle
and lower reaches of the Yangtze River. This wet area extends north to
the Yellow River basin and then west to the Gobi Desert, and east to
South Korea and southern Japan. A robust moistening also emerges
over Indochina and the northern Philippines. On the other hand, the
southern provinces of China including Tibet should expect a drier-
than-normal summer climate by the end of the century. In addition,
compared to the conventional projecting usingmulti-model ensemble
mean (Fig. 5b), the regional agreement among the synthetic ensembles
is much greater.

A similar synthetic ensemble can also be constructed by pro-
jecting the 21st century JJA precipitation trends simulated by 36
CMIP6 climate models onto the two leading NMs. The resulting
synthetic ensemble mean projection and the 90% consensus across
its 1296 members (Fig. 5c) are in very good agreement with the
CESM-SMILEs-based ensemble, although with somewhat weaker
magnitude and shrunk areas of consensus as more diverse models
are included. It is important to note that the NMs-based projections
yield different patterns from those of the conventional multi-model
ensemblemean projection, the latter being instead characterized by
a negative SFND pattern in eastern China with little inter-model
consensus (compare the NM-based projections in Fig. 5a, c with their
corresponding conventional projections in Fig. 5b, d). We also note

Article https://doi.org/10.1038/s41467-023-39460-y

Nature Communications |         (2023) 14:3856 5



that the magnitude of the conventional projections is much weaker
than the corresponding NM-based projections. We interpret the
weakmagnitude in the former as the result of the cancellation across
different CMIP6 models with biases in a somewhat random fashion
over the Asia-Pacific sector. Indeed, if one treated the models as
perfect and the grand ensemble mean of the CESM-SMILEs as the
“true” response, the NM-based projection would asymptote to the
grand ensemble mean with increasing number of NMs included
(Fig. S6). However, if one treated one ensemble of the CESM-SMILEs
as the “true” climate and other ensembles as “models” to capture the
“true” climate change signal, the NM-based projections would lose
themonotonicity in the skill increase with increasing number of NMs

(Fig. S7, blue dashed line). Compared to the case where all the
models are treated as perfect (i.e., blue line), this illustrates the
greater uncertainties and the lack of consensus in the higher-order
modes among climate models. In addition, a model’s uncertainty as
measured by the model’s spread-to-signal ratio (MSSR, red line,
calculated as the ratio of the variance of the inter-model spread to
the variance of the grand ensemble mean) can increase sharply as
more NMs are used in the projection. Thus, there is a trade-off in the
NM-based projection between the number of modes considered and
the risk of contamination by the uncertain modes. Therefore, only a
smaller number of NMs may be selected for the purpose of robust
climate change projection.

Fig. 4 | The dynamic patterns associated with the first neutral mode (NM1).
a The NM1-associated patterns in sea surface temperature (shading), 850 hPa wind
(vectors, ms−1), and 500hPa geopotential height (contours, gpm). b The NM1-
associated patterns inQ850 (shading) and streamline (arrowed lines). SeeMethods
for the calculation of the NM1-associated patterns. c The time series of the

projectionofψ850 onto theNM1-associated pattern. The shading indicates the two
std of the internal variability of the grand ensemble. d Same as c but for the time
series of the projection of Q850 onto the NM1-associated pattern. e The fractional
contributions to the precipitation trend during the projection period from the
dynamic (light blue) and thermodynamic (pink) components in the CESM-SMILEs.
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Finally, we attempt to extend the NM-based projection to the
higher ordermodes for CESM-SMILEs. For thosemodes that satisfy the
“first year of ensemble mean out” condition within the 21st century
with the same sign across the models, and whose inclusion does not
push the averaged model spread-to-signal ratio (MSSR) to be greater
than one, we consider them in the multi-NM-based projection and the
result is reported in Fig. S8. SeeMethods for the exact procedureof the
multi-NM-based projection. It turns out that considering sixmoreNMs
does not fundamentally change the pattern and magnitude of the
projected precipitation change.

Discussion
A consensus has been reached on the component of future
regional rainfall change over East Asia that is projected onto the
leading NMs, with the NM-based projection pattern in sharp
contrast to what one would obtain from the conventional multi-
model ensemble average. Given that NM is the least damped and
hence the most excitable mode intrinsic to the climate system,
this NM-based consensus can be interpreted as the excitation
(resonance) of the internal modes by (to) the external climate
forcings. Given the fact that the two leading modes find their
counterparts in the observations, the robust projections onto
these modes may represent something more trustworthy than the
conventional, point-wise ensemble projection. To the extent that
the grand ensemble spread represents the true uncertainty of the
internal monsoon rainfall variability, and that these leading NMs
may dominate the total response, this regional pattern of summer
precipitation change shown in Fig. 5a would be something to
expect to emerge before the end of the century. An immediate
next question is what are the anthropogenic forcings behind this
consensus. Although there is little doubt that increasing green-
house gas forcing plays a dominant role in the 21st century trend,
we cannot rule out a possible contribution from the changing
aerosol emissions. Indeed, we find a consistent negative trend in
the NM2 index during the 20th century in the models

participating in the Detection and Attribution Model Inter-
comparison Project48 (DAMIP). The upward NM2 trend discussed
earlier may reflect the projected reduction in pollutant
emissions49,50. Projections of the forced changes in the leading
NMs from each of the climate-forcing agents, and the roles they
may have played in the past century, belong to topics for future
investigation.

An obvious caveat of the current study is that the NMs used
for projection here are those of a single climate model; a more
judicious approach would be for each model to project the
simulated precipitation onto its own NMs. Therefore, it is
imperative to identify the linear response function and the asso-
ciated NMs for each model. As such, an inter-model mode com-
parison project similar to that proposed by ref. 51 is needed to
further solidify the robustness of the projection. If the NMs to be
identified for multiple models display agreement, potential
emergent constraints52 would be more readily established from
the NM perspective, with a hope of narrowing the spread of the
projected changes in the leading modes. It is also important to
note the difference between robustness and accuracy of the
regional climate projection: the NM-based approach can bring
out the robust aspect of the regional response, but it does not
necessarily lead to more accurate regional climate projection.
The latter will be predicated on building agreements on higher
and higher orders of the NMs across climate models.

Equally important is the transferability of the future NMs projec-
tions from climatemodels to reality, the basis of which is mainly based
on the spatial similarity between the NMs and the observed EOFs. This
transferability can be further strengthened by the agreement on the
NM patterns across different climate models, a consensus that has yet
to be reached, and by projections to eachmodel’s ownNMs.While it is
unlikely that the NM-based projection will fully capture the true cli-
mate change response—an impossible task—it provides a feasible
pathway to approach the true climate change signal as climate models
improve and model uncertainty is gradually reduced.

Fig. 5 | Neutralmode (NM)-based versus conventional precipitationprojection.
a Ensemble mean change of the June–July–Augst (JJA) precipitation from the syn-
thetic ensemble based on 25 combinations of the projected changes in NM1 and
NM2 (shading, mmday−1) and the corresponding across-member consensus indi-
cated by the >90% agreement on the sign of the local rainfall change by the end of

the 21st century (dotted areas). b The projection of the JJA precipitation using the
multi-ensemblemeanof CESM-SMILEs.c Similar to a, but for theCMIP6simulations
projected onto the NM1 and NM2. d The projection of JJA precipitation based on
simple multi-model ensemble mean of CMIP6.
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Methods
Linear response function and neutral modes from Green’s
function experiments
The detailed procedure for constructing the LRF for the JJA global
precipitation using Green’s function forcing perturbation experiments
is reported in Lu et al.30. Here only a brief recapitulation is provided.

While several methods have been used in the climate commu-
nity to estimate the LRF of the climate system, such as the linear
inverse model (LIM53) and the fluctuation-dissipation theorem54, the
Green’s function forcing perturbation approach has proven to
be more robust and applicable to more general systems, such as the
Earth’s climate29. The model used for our Green’s function experi-
ments is the CAM5 coupled to a motionless mixed-layer ocean; the
experiment set consists of a 150-year control run as reference and 99
pairs of q-flux perturbation runs. Each pair consists of two experi-
ments with q-flux anomalies of equal magnitude but opposite sign
from a rectangular patch representing a geographic location of the
global ocean. The 99 q-flux anomaly patches are tiled in such a way
so that their sum is equivalent to a uniform flux of 12Wm−2 over the
global open ocean. The paired forcing perturbations allow us to
isolate the linear response and the corresponding linear response
function, as the climate system represented by models can have
rather sizable nonlinear dependence on the sign and magnitude of
the forcing if it is not small enough51,55.

Assuming a common linear operator that governing the linear
response of the JJA precipitation to each of the perturbation cases,
there is a systematic linear relationship between the forcing and
response as follows

LδP ≈ F , ð3Þ

where δP comprises 99 columns of vectors (δpk), each representing
the linear JJA precipitation response to the corresponding q-flux
forcing (the linear response δpk for each patch k is calculated as the
half of the difference of the response to the positive forcing
perturbation minus that to the negative forcing perturbation), F is a
99 by 99 diagonal matrix whose diagonals are the area-integrated q-
fluxes of the patches. Making use of the diagonality of F , it is easy to
compute the Green’s function matrix G as δPF�1, with its kth columns
computed as

gk =
δpk

Fk
, ð4Þ

where Fk is the area-integrated q-flux within patch k. Finally, the
Green’s function-based LRF L can then be estimated as the pseudo-
inverse of the Green’s function matrix: L≈G�1.

Applying singular value decomposition (SVD) to matrix L, i.e.,

L=UΣVT , ð5Þ

one can then extract the non-dimensional neutral modes of the
forcing-response system represented by the right vectors stored in V
and their corresponding optimal forcing patterns represented by the
left vectors stored inU . The singular values (si) are all negative and are
contained in the diagonalmatrix Σ in an ascending order, with the first
singular value being the smallest (in terms of absolute value),
representing minimum dissipation and maximum excitability.

We test the separability of the singular values of the two leading
NMs using Jackknife resampling, which involves a leave-one-out
strategy in the estimation of the parameters (in our case, the two
smallest singular values) in a data set of N records. For the 99 forcing
cases, we can repeat the calculation of the LRF and its two smallest
singular values 99 times, leaving out one forcing case each time. We
then use a paired-sample one-tailed t test to test the null hypothesis

that the difference between the 2nd smallest and the smallest singular
values is zero, against the alternative that the difference is nonzero.
The t test rejects the null hypothesis at the 5% significance level, indi-
cating that the two smallest singular values and their corresponding
singularmodes are well separated. The same test is also performed for
the separability between the 2nd smallest and the 3rd smallest singular
values, and the result also rejects the null hypothesis.

The associated patterns with a mode of interest in other variables
(X ), such as sea surface temperature, geopotential height, etc., can be
obtained by the following procedure. From Eq. (5), since the ith pre-
cipitation neutral mode (say vn) can be thought of as the response to
the corresponding rescaled left vector, i.e., unsn, the associated pat-
terns of other variables can also be thought of as being driven by this
rescaled optimal forcing. Since the Green’s function experiments have
already produced the response of X to each of the patches, we can
make use of them and stack the q-flux normalized response (δxk

Fk
) to

form a responsematrix δX . The associated dimensional pattern in the
variable X with mode n can then simply be estimated as

δxn = δX unsn ð6Þ

Partitioning of uncertainty
We first define the internal variability uncertainty for the variable x in
the JJA season of each year t for each individual model m as

Im,t � var xm,t,i � xm
t

� �
,

and the model uncertainty as

Mt � var xmt � x
=
t

� �
,

respectively, where the subscript i indicates the ensemble member,
(‾)m the ensemble mean for model m, (=) the multi-member, multi-
model ensemble mean, which hereafter is referred to as the grand
ensemblemean. The internal variability uncertainty is computed as the
multi-model ensemble mean of the internal variability uncertainty of
each model: I

=

t ; thus the total uncertainty at a given year t can be
estimated as the sum of the multi-model ensemble averaged internal
variability uncertainty and the model uncertainty, i.e.,

Tt = I
=

t +Mt

The uncertainty partitioning for the std of the NMs can be com-
puted similarly but for the std (σ) of the daily NM index variability for a
given summer. Defining a reference “historical” value xo as the grand
ensemble mean of x averaged over the period from 1850–2010, the
“future” forced grand ensemble response in this study is computed
as x

=
t � xo.

Criteria for choosing NMs for precipitation projection
For a NM to be included in the NM-based projection, the sign of the
ensemblemeanprojection on thatmodemust agree among all models
of the CESM-SMILEs. In addition, for each of the selected NMs, its
projected trend during the 21st century must exceed “the first year
ensemble mean out” criterion. Finally, to be considered in the NM-
based projection, the inclusion of the additional NMmust not increase
the averaged model spread-to-signal ratio (MSSR), defined as follows,
to greater than one.

1
N

X
n

Nn=Sn

where Nn indicates the variance of the across-ensemble spread of the
projection to thenthmodedue tomodel uncertainty, Sn is the variance
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of the multi-model mean projection onto the nth mode, and N is the
number of the total NMs selected. The projection is performed
sequentially from low to high NMs. The criteria allow us to select up to
the 10th NM, excluding the 4th and 8th modes (see the result of the
projecting in Fig. S8).

Data sets
APHRODITE, a daily gridded precipitation data set for Asia spanning
from 1951 through 2007, is obtained from http://www.chikyu.ac.jp/
precip/ and used for the estimate of the observed EOF of the Asian
summer monsoon precipitation56.

The CESM2 Large Ensemble (CESM-LENS2) consists of 100
members at 1-degree spatial resolution covering the period
1850–2100 under the CMIP6 historical and SSP370 future radiative
forcing scenarios. More details about CESM-LENS2 can be found at
https://www.cesm.ucar.edu/projects/community-projects/LENS2/.
For the ToE estimation and the uncertainty attribution analysis to be
compared with the SMILEs simulations, the linear trends in CESM-
LENS2 are all scaled up by a factor of 1.3 during the projection
period (2011–2100). The projection period starts from the year
when the GHG forcing was already ~2Wm−2 compared to the pre-
industrial level. Therefore, the rescaling factor is calculated as:
ð8:5� 2Þ=ð7� 2Þ= 1:3. With the rescaling, we can form a grand
ensemble by combining LENS2 and SMILEs under a presumably
same GHG forcing.

SMILEs data are archived in the Multi-Model Large Ensemble
Archive (MMLEA; Table 1) at the National Center for Atmospheric
Research38. All SMILEs simulations used here are forced with the
standard CMIP5 “historical” and Representative Concentration
Pathway 8.5 (RCP8.5) forcing scenarios. The SMILEs models have
horizontal resolutions ranging from ~1° to ~2.5° and the ensemble
size for each model varies from 16 to 30. Here we only select
four large ensembles (CanESM5, MK3.6, CM3, and EC-EARTH) that
provide daily precipitation data on the publicly available SMILEs
website: http://www.cesm.ucar.edu/projects/community-projects/
MMLEA/. All the large ensemble data used in this study are listed
in Table 1.

Data availability
In addition to the publicly available data sets mentioned in the Meth-
ods section, the Green’s function data sets used to compute the
summer precipitation neutral modes have been published on the
publicly accessible data portal Zenodo at https://doi.org/10.5281/
zenodo.4588073.

Code availability
The code central to the main conclusions of this study will be released
upon the acceptance of the manuscript on the data portal: https://
zenodo.org/record/7936696#.ZGH3WXZBwuV.

References
1. Chen, H. & Sun, J. Projected change in East Asian summermonsoon

precipitation under RCP scenario. Meteorol. Atmos. Phys. 121,
55–77 (2013).

2. Lee, J. Y. & Wang, B. Future change of global monsoon in CMIP5.
Clim. Dyn. 42, 101–119 (2014).

3. Hsu, P. C., Li, T., Murakami, H. & Kitoh, A. Future change of the
global monsoon revealed from 19 CMIP5 models. J. Geophys. Res.
Atmos. 118, 1247–1260 (2013).

4. Endo, H., Kitoh, A., Ose, T., Mizuta, R. & Kusunoki, S. Future changes
and uncertainties in Asian precipitation simulated by multi-physics
andmulti-sea surface temperature ensemble experimentswithhigh-
resolution Meteorological Research Institute atmospheric general
circulationmodels (MRI-AGCMs). J. Geophys. Res. 117, D16118 (2012).

5. Biasutti, M. et al. Global energetics and local physics as drivers of
past, present and future monsoons. Nat. Geosci. 11, 392–400
(2018).

6. Hall, A. Projecting regional change. Science 346, 1461–1462 (2014).
7. Xie, S. P. et al. Towards predictive understanding of regional cli-

mate change. Nat. Clim. Change 5, 921–930 (2015).
8. Yang, B., Zhang, Y., Qian, Y. & Huang, A. Better monsoon pre-

cipitation in coupled climatemodels due to bias compensation.NPJ
Clim. Atmos. Sci. 2, 1–8 (2019).

9. Wang, X., Xie, S. P., Guan, Z. & Wang, M. A common base mode of
Asian summer monsoon variability across timescales. J. Clim. 34,
7359–7371 (2021).

10. Flato, G., Marotzke, J. Abiodun, B. Braconnot, P. & Rummukainen,
M. Evaluation of climate models. In: Climate Change 2013: The
Physical Science Basis. Contribution ofWorkingGroup I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change. (Stocker, T. F. Qin, D. Plattner, G. K. & Midgley, P. M. Eds.)
Cambridge University Press, pp. 741–882 (2013)

11. Li, X. & Ting, M. Understanding the Asian summer monsoon
response to greenhouse warming: the relative roles of direct
radiative forcing and sea surface temperature change. Clim. Dyn.
49, 2863–2880 (2017).

12. Zhou, T., Lu, J., Zhang, W. & Chen, Z. The sources of uncertainty in
the projection of global landmonsoon precipitation.Geophys. Res.
Lett. 47, e2020GL088415 (2020).

13. Huang, D., Liu, A., Zheng, Y. & Zhu, J. Inter-model dpread of the
dimulated east Asian summer monsoon rainfall and the associated
atmospheric circulations from the CMIP6 models. J. Geophys. Res.
127, e2022JD037371 (2022).

14. Lin, J. L. et al. Subseasonal variability associatedwith Asian summer
monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Clim. 21,
4541–4567 (2008).

15. Boo, K. O., Martin, G., Sellar, A., Senior, C. & Byun, Y. H. Evaluating
the East Asian summer monsoon circulation in climate models. J.
Geophys. Res. 116, D01109 (2011).

Table 1 | List of model simulations from LENS2 and SMILEs

Modeling center Model version Resolution Years No. of members Forcing References

CSIRO MK3.6 ~1.9° × 1.9° 1850–2100 30 historical, rcp85 Jeffrey et al.57

GFDL CM3 2.0° × 2.5° 1920–2100 20 historical, rcp85 Sun et al.58

SMHI/KNMI EC-EARTH ~1.1° × 1.1° 1860–2100 16 historical, rcp85 Hazeleger et al.59

NCAR CESM2 ~1.0° × 1.0° 1850–2100 100 historical, ssp585 Rodgers et al.37

CCCma CanESM5 ~2.8° × 2.8° 1850–2100 25 historical, rcp85 Swart et al.60

For the CMIP6 data sets, we usemonthly precipitation for both the historical (1962–2005) and the future SSP5.85 scenario for the future projection (2056–2099) of the Asianmonsoon rainfall. Only
the first member of each model is used. Data from the following models are analyzed: ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CanESM5, CESM2, CESM2-
WACCM, CIESM, CMCC-CM2-SR5, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, EC-Earth3, EC-Earth3-Veg, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC31-
LL, HadGEM3-GC31-MM, IITM-ESM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MCM-UA-1-0, MIROC6, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, TaiESM1,
UKESM1-0-LL. The CMIP6 data can be downloaded from: https://esgf-node.llnl.gov/search/cmip6/.

Article https://doi.org/10.1038/s41467-023-39460-y

Nature Communications |         (2023) 14:3856 9

http://www.chikyu.ac.jp/precip/
http://www.chikyu.ac.jp/precip/
https://www.cesm.ucar.edu/projects/community-projects/LENS2/
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
https://doi.org/10.5281/zenodo.4588073
https://doi.org/10.5281/zenodo.4588073
https://zenodo.org/record/7936696#.ZGH3WXZBwuV
https://zenodo.org/record/7936696#.ZGH3WXZBwuV
https://esgf-node.llnl.gov/search/cmip6/


16. Ninomiya, K. Characteristics of intense rainfalls over southwestern
Japan in the Baiu season in the CMIP3 20th century simulation
and 21st century projection. J. Meteor. Soc. Jpn. 90A, 327–338
(2012).

17. Huang, D., Zhu, J., Zhang, Y. & Huang, A. Uncertainties on the
simulated summer precipitation over EasternChina from theCMIP5
models. J. Geophys. Res. Atmos. 118, 9035–9047 (2013).

18. Song, F., Zhou, T. & Qian, Y. Responses of East Asian summer
monsoon to natural and anthropogenic forcings in the 17 latest
CMIP5 models. Geophys. Res. Lett. 41, 296–603 (2014).

19. Kitoh, A. The Asian monsoon and its future change in climate
models: a review. J. Meteorol. Soc. Jpn. 95, 7–33 (2017).

20. Lehner, F. et al. Partitioning climate projection uncertainty with
multiple large ensembles and CMIP5/6. Earth Sys. Dyn. 11, 491–508
(2020).

21. Turner, A. & Annamalai, H. Climate change and the South Asian
summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

22. Simpkins, G. Quantifying monsoon uncertainty. Nat. Rev. Earth
Environ. 1, 436 (2020).

23. Collins, M. et al. 2013: Long-term climate change: projections,
commitments and irreversibility. In: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change [Stocker, T. F., D. Qin, G.-K. Plattner,M. Tignor, S. K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, pp. 1029–1136, https://doi.org/10.1017/
CBO9781107415324.024.

24. Hasselmann, K. On the signal-to-noise problem in atmospheric
response studies. In:Meteorology over the Tropical Oceans, edited
byD. B. Shaw, pp. 215–219. RoyalMeteorological Society, Bracknell,
Berkshire, England, (1979).

25. North, G. R., Kim, K.-Y., Shen, S. P. & Hardin, J. W. Detection of
forced climate signals, part I: filter theory. J. Clim. 8, 401–408
(1995).

26. North, G. R. & Kim, K.-Y. Detection of forced climate signals, part II:
filter theory. J. Clim. 8, 409–417 (1995).

27. Barnett, T. P. &Schlesinger,M. E.Detectingchanges inglobal climate
induced by greenhouse gases. J. Geophys. Res. 92, 14,772–14,789
(1987).

28. Hassanzadeh, P. & Kuang, Z. The linear response function of an
idealized atmosphere. Part I: construction using Green’s functions
and applications. J. Atmos. Sci 73, 3423–3439 (2016).

29. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing
equations fromdata by sparse identification of nonlinear dynamical
systems. Proc. Natl. Acad. Sci. 113, 3932–3937 (2016).

30. Lu, J., Xue, D., Leung, L. R. & Zhou, W. The leading modes of Asian
summermonsoon variability as pulses of atmospheric energy flow.
Geophy. Res. Lett. 48, e2020GL091629 (2021).

31. Nigam, S., Zhao, Y., Ruiz-Barradas, A. & Zhou, T. The south-flood
north-drought pattern over eastern China and the drying of the
Gangetic Plain. In: Climate change: Multidecadal and beyond, pp.
347–359 (2016).

32. Yatagai, A. & Yasunari, T. Interannual variations of summer pre-
cipitation in the arid/semi-arid regions in China and Mongolia: their
regionality and relation to the Asian summermonsoon. J. Meteorol.
Soc. Jpn. 73, 909–923 (1995).

33. Wang, B. et al. Tibetian Plateau warming and precipitation changes
in East Asia. Geophys. Res. Lett. 35, L14702 (2008).

34. Ding, Y., Sun, Y., Wang, Z., Zhu, Y. & Song, Y. Inter-decadal variation
of the summer precipitation in China and its association with
decreasing Asian summer monsoon part II: possible causes. Int. J.
Climatol. 29, 1926–1944 (2009).

35. Huang, R., Liu, Y. & Feng, T. Interdecadal change of summer pre-
cipitation over Eastern China around the late-1990s and associated

circulation anomalies, internaldynamical causes.Chin. Sci. Bull.58,
1339–1349 (2013).

36. Zhang, R. Changes in East Asian summer monsoon and summer
rainfall over eastern China during recent decades. Sci. Bull. 60,
1222–1224 (2015).

37. Rodgers, K. B., Lee, S. S., Rosenbloom,N. & Yeager, S. G. Ubiquity of
human-induced changes in climate variability. Earth Sys. Dyn. 12,
1393–1411 (2021).

38. Deser, C., Lehner, F., Rodgers, K. B., Ault, T. & Ting,M. Insights from
Earth system model initial-condition large ensembles and future
prospects. Nat. Clim. Change 10, 277–286.

39. Tebaldi, C., Debeire, K., Eyring, V. & Ziehn, T. Climate model pro-
jections from the scenario model intercomparison project (Sce-
narioMIP) of CMIP6. Earth Sys. Dyn. 12, 253–293 (2021).

40. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in
regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108
(2009).

41. Held, I. M. &Soden, B. J. Robust responses of the hydrological cycle
to global warming. J. Clim. 19, 5686–5699 (2006).

42. Nitta, T. Convective activities in the tropical western Pacific and
their impact on the Northern Hemisphere summer circulation. J.
Meteorol. Soc. Jpn. 65, 373–390 (1987).

43. Kosaka, Y. & Nakamura, H. Mechanisms of meridional teleconnec-
tion observed between a summer monsoon system and a sub-
tropical anticyclone. Part I: the Pacific-Japan pattern. J. Clim. 23,
5085–5108 (2010).

44. Oh, H., Ha, K. J. & Timmermann, A. Disentangling impacts of
dynamic and thermodynamic components on late summer rainfall
anomalies in East Asia. J. Geophys. Res. Atmos. 123, 8623–8633
(2018).

45. Li, Z., Sun, Y., Li, T., Ding, Y. & Hu, T. Future changes in East Asian
summer monsoon circulation and precipitation under 1.5 to 5 C of
warming. Earth’s Future 7, 1391–1406 (2019).

46. Long, S. M., Xie, S. P. & Liu, W. Uncertainty in tropical rainfall pro-
jections: atmospheric circulation effect and the ocean coupling. J.
Clim 29, 2671–2687 (2016).

47. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the
regional pattern of projected future changes in extreme precipita-
tion. Nat. Clim. Change 7, 423–427 (2017).

48. Gillett, N. P. et al. The Detection and Attribution Model Inter-
comparison Project (DAMIP v1.0) contribution to CMIP6. Geosci.
Model Dev. 9, 3685–3697 (2016).

49. Riahi, K., Van Vuuren, D. P., Kriegler, E. & Tavoni, M. The shared
socioeconomic pathways and their energy, land use, and green-
house gas emissions implications: an overview. Glob. Environ.
Change 42, 153–168 (2017).

50. Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. Climate effects of
black carbon aerosols in China and India. Science 297, 2250–2253
(2002).

51. Bloch-Johnson, J., et al.: The Green’s function model inter-
comparison project (GFMIP) protocol. ESS Open Archive (2023).

52. Klein, S. A. & Hall, A. Emergent constraints for cloud feedbacks.
Curr. Climate Change Rep. 1, 276–287 (2015).

53. Penland, C. Random forcing and forecasting using principal oscil-
lation pattern analysis. Mon. Wea. Rev. 117, 2165–2185 (1989).

54. Gritsun, A. & Branstator, G. Climate response using a three-
dimensional operator basedon thefluctuation-dissipation theorem.
J. Atmos. Sci 64, 2558–2575 (2007).

55. Lu, J. et al. Neutral modes of surface temperature and the optimal
ocean thermal forcing for global cooling. npj Clim. Atmos. Sci. 3,
9 (2020).

56. Yatagai, A., Kamiguchi, K., Arakawa & Kitoh, A. APHRODITE: con-
structing a long-term daily gridded precipitation dataset for Asia
based on a dense network of rain gauges. Bull. Am. Meteorol. Soc.
93, 1401–1415 (2012).

Article https://doi.org/10.1038/s41467-023-39460-y

Nature Communications |         (2023) 14:3856 10

https://doi.org/10.1017/CBO9781107415324.024
https://doi.org/10.1017/CBO9781107415324.024


57. Jeffrey, S., Rotstayn, L., Collier, M. & Syktus, J. Australia’s
CMIP5 submission using the CSIRO-Mk3. 6 model. Aust. Meteorol.
Oceanogr. J. 63, 1–14 (2013).

58. Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled
climate response to Arctic sea ice loss during 1990–2090 and its
contribution to climate change. J. Clim. 31, 7823–7843 (2018).

59. Hazeleger, W., Severijns, C., Semmler, T. & Willén, U. EC-Earth: a
seamless earth-system prediction approach in action. Bull. Am.
Meteorol. Soc. 91, 1357–1364 (2010).

60. Swart, N. C., Cole, J. N., Kharin, V. V. &Winter, B. TheCanadianearth
system model version 5 (CanESM5. 0.3). Geosci. Model Dev. 12,
4823–4873 (2019).

Acknowledgements
This work is supported by the National Key Research and Development
Program of China (2020YFA0608903) and the Office of Science, U.S.
Department of Energy Biological and Environmental Research as part of
the Regional and Global Model Analysis program area. The Pacific
Northwest National Laboratory (PNNL) is operated for DOE by Battelle
Memorial Institute under contract DE-AC05-76RLO1830. D.X. and Y.Z. is
jointly supported by the National Science Foundation of China
(42105051, 42105166 and 42075020). F.S. is supported by the National
Natural Science Foundation of China (Grant 42175029). We also
acknowledge the US CLIVAR Working Group on Large Ensembles for
making the SMILEs data sets publicly available and the World Climate
Research Program’s Working Group on Coupled Modeling, which is
responsible for CMIP6.

Author contributions
D.X. and J.L. came up with the original idea of the dynamical mode-
based approach for regional climate projection, inspired by a conversa-
tion with H.T., and were also responsible for the correspondence during
the reviewprocess. D.X. also performed all the analyses of the study and
wrote the first draft of the manuscript. J.L. and L.R.L. contributed to
drafting and revising themanuscript. H.T., F.S., T.Z., andY.Z. contributed
to the interpretation of the results as experts in monsoon dynamics and
climate projections; they also made suggestions that helped improve
the presentation of the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39460-y.

Correspondence and requests for materials should be addressed to
Daokai Xue or Jian Lu.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39460-y

Nature Communications |         (2023) 14:3856 11

https://doi.org/10.1038/s41467-023-39460-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability
	Results
	The leading neutral modes and their trends in CESM-SMILEs
	Uncertainty attribution and time of emergence
	Dynamic contribution to the NM trends
	Projection from a synthetic ensemble

	Discussion
	Methods
	Linear response function and neutral modes from Green’s function experiments
	Partitioning of uncertainty
	Criteria for choosing NMs for precipitation projection
	Data sets

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




