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Top-down identification of keystone taxa in
the microbiome

Guy Amit 1,2 & Amir Bashan 1

Keystone taxa in ecological communities are native taxa that play an especially
important role in the stability of their ecosystem. However, we still lack an
effective framework for identifying these taxa from the available high-
throughput sequencing without the notoriously difficult step of reconstruct-
ing the detailed network of inter-specific interactions. In addition, while most
microbial interaction models assume pair-wise relationships, it is yet unclear
whether pair-wise interactions dominate the system, or whether higher-order
interactions are relevant. Here we propose a top-down identification frame-
work, which detects keystones by their total influence on the rest of the taxa.
Our method does not assume a priori knowledge of pairwise interactions or
any specific underlying dynamics and is appropriate to both perturbation
experiments and metagenomic cross-sectional surveys. When applied to real
high-throughput sequencing of the human gastrointestinal microbiome, we
detect a set of candidate keystones and find that they are often part of a
keystone module – multiple candidate keystone species with correlated
occurrence. The keystone analysis of single-time-point cross-sectional data is
also later verified by the evaluation of two-time-points longitudinal sampling.
Our framework represents a necessary advancement towards the reliable
identification of these key players of complex, real-world microbial
communities.

The concept of keystone taxa (species), which was first introduced in
1969 by Paine1,2, generally refers to native species that play an espe-
cially important role in the stability of their ecosystem. Since then,
identifying keystones has become an elemental component in ana-
lyzing ecosystems in order to understand their vulnerabilities and
maintain sustainability3,4. Keystone species could also be potentially
used inmodulation experiments, as main drivers of an existing system
to an alternative, more desirable, steady state5,6. An exact ecological
definition of keystone species has been a subject of a long-standing
debate3,7 and has been continually developed over the years8.

One well-accepted definition for keystone species was given by
Power et al.9. There, the authors introduced the term ‘community
importance’, which evaluates the effect of a species on traits of the
ecosystem, such as productivity, nutrient cycling, species richness, or

the abundance of one or more functional groups of species or of
dominant species. Community importance was defined in one of two
ways. The first was the abundance-to-trait relationship, which tests
how much the relative abundance of a species affects the trait in
question. The second was the presence-to-trait relationship, which
tests how the removal of a species entirely from the system affects the
trait. A species with unusually large community importance, either by
its abundance-to-trait relationship or presence-to-trait, is considered
to be a keystone species. We refer to these definitions as ‘abundance-
impact’ and ‘presence-impact’, respectively (see Table 1).

Both ways define the ‘keystoneness’ of a species through an ideal
experimental setup in which its abundance, or presence, is controlled
and altered directly. Such experiments are indeed the only direct way
of identifying a species as a keystone, since they can capture all the
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complex, and unexpected consequences arising from non-linear and
often indirect interactions. It should be noted that, in contrast to
presence-impact experiments, abundance-impact perturbation might
be practically impossible in real-world experiments9.

Recent data-driven research of microbial communities provides
new opportunities for finding keystone species, but also poses new
challenges5. One major challenge stems from the fact that studies of
natural microbial communities, such as environmental or human-
associated microbiomes, commonly do not involve controlled per-
turbation experiments, due to both technical and/or ethical reasons.
Instead, they are usually studied through large-scale cross-sectional
metagenomic surveys. These surveys are typically rich in data, com-
posed of hundreds of metagenomic samples which contain thousands
of species10,11. Without perturbation experiments, the research is
focused on identifying candidate keystones, by estimating the species
impact from the cross-sectional data alone12.

Traditional identificationmethods of candidate keystones rely on
evaluating their centrality in a mediation network model, such as co-
occurrence networks or inferred models of the underlying dynamics,
e.g., parameterization of Generalized Lotka-Volterra (GLV) or
consumer-resources models13–17. This approach has several funda-
mental drawbacks18. For example, complete reconstruction of the
ecological network of N species from cross-sectional data in a bottom-
up fashion is very challenging, since the number of available samples is
typically much smaller compared to the number of possible pair-wise
interactions, N2. In addition, conventional correlation analysis is sub-
ject to spurious correlations due to the compositionality of relative
abundances in genomic survey data19,20. Furthermore, mediation net-
work models are based on the assumption that interspecific interac-
tions are pair-wise with a specific functional form. Another drawback,
which is more pertinent, is that the commonly used interpretation of
keystone species focuses on their presence-impact (i.e., ‘how will the
system react to a removal of the species?’). This interpretation coin-
cides well with the currently available manipulation techniques of
microbial communities, whichmainly include controlling the presence
of species, e.g., by removing or adding species using antibiotics, pro-
biotics, or fecalmicrobiota transplant, and seldom by direct control of
their abundance. In contrast, these network-based models measure
instead the abundance impact of the species as they analyze how the
abundance of each species is related to the other species.

Therefore, there is a conceptual and practical gap between the
species with the high presence-impact we aim to detect and the
abundance impact measured by traditional network models.

Here, to overcome these difficulties, we introduce a unified fra-
mework for identifying keystone species that can be applied con-
sistently to both simulated perturbation experiments and cross-
sectional data. A keystone’s presence-impact is defined by how much
its presence or absence affects the abundance profile of the rest of the
species in a top-down manner. The effect of the species is measured
without calculating the pair-wise correlation network and does not
even assume that the ecological dynamics are governed by pair-wise
interactions. This network-free approach to measuring the presence-
impact of species avoids the above-mentioned pitfalls of network
reconstruction.

Results
As mentioned above, the presence-impact of a species can only be
definitively determined using removal/addition perturbation experi-
ments, while analysis of cross-sectional data can indirectly estimate the
species’ impact. Following themethodology presented in refs. 9,21, we
introduce a presence-impact measure that can be applied to both
perturbation experiments and cross-sectional data. The presence-
impact Ii of species i is determined by the change of the abundance
profile of all other species in its local community associated with
reversing its presence state, i.e., removing the species if it was present,
or introducing it into the system if it was absent (See Fig. 1a and
Methods). Likewise, if a species has a strong presence-impact, as
measured using perturbation experiments, its presence/absence pat-
tern in naturally assembled communities is also expected to be asso-
ciated with community-wise differences in the abundance profiles of
the other species. This empirical association, which we term Empirical
Presence-abundance Interrelation (EPI), can be detected from cross-
sectional data to identify candidate keystone species. Specifically, for a
given species i, we propose three different definitions of its EPI:Di

1 and
Di
2 which are based on the distances between the relative abundance

profiles andQiwhich is based on themodularity concept fromnetwork
science (see Fig. 1b–d and Methods). The main definitions used in this
manuscript are summarized in Table 1 and a list of the mathematical
symbols is presented in Supplementary Table 1. Note the distinction
here between candidate keystones and actual keystone taxa. Since the
EPI is measured only on cross-sectional data, it can not distinguish
between correlation and causation effects. In other words, a taxon can
have a large EPI value if it affects theother taxadisproportionately, or if
it is affected disproportionately by other species. To disentangle this
correlation from causation effects, perturbation experiments are
required, where the actual presence-impact can be directly measured.

Table 1 | Glossary of often-used terms throughout the manuscript

Term Definition

Simulations of ecological dynamics

GLV Generalized Lotka-Volterra.

Interaction network The intrinsic dynamical rules governing the interactions between the species.

Interaction-strength-based keystones Artificial keystones generated by modifying a species interactions strengths.

Structure-based keystones Artificial keystones are generated by the natural structure of the interaction network.

Keystoneness definition

Community Importance The effect of a single species on traits of the ecosystem.

Presence-impact The effect of a single species on the rest of the species in the community, as measured by addition/removal experiments
(also termed ‘presence-to-community-impact’).

Abundance-impact The effect of a single species on the rest of the species in thecommunity is hypotheticallymeasuredby abundancealteration
experiments (also termed ‘abundance-to-community-impact’).

Keystone candidates identification

Co-occurrence network The empirical network of correlations between the species was reconstructed from cross-sectional samples.

EPI Empirical presence-abundance interrelation; the estimated level of presence-impact of a species based on cross-
sectional data.

Longitudinal EPI The estimated level of presence-impact of a species based on longitudinal data.
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The EPI proposes which species of interest will be leading candidates
for further perturbation experiments.

Here we use numerical models of population dynamics with arti-
ficial keystones that allow us to simulate and study the relations
between three aspects: the underlying interactions, the presence-
impact fromnumerical experiments, and the EPI from simulated cross-
sectional data. Later on, we apply the EPI to real cross-sectional high-
throughput sequencing to demonstrate it in naturally complex
communities.

Presence-impact in simulations
We start with a simple demonstration of the presence-impact defini-
tion, Ii, on simulated GLV perturbation experiments with designated
strength-based and structure-based keystones (see Methods). As
shown in Fig 2, the presence-impacts of the designated strength-based
and structure-based keystones are significantly larger than thoseof the
non-keystone species (see Methods for the statistical tests used). This
demonstrates that the underlying dynamics of the ecological com-
munity are manifested in the presence-impact as measured from the
resulted abundance profile. Note that we define the presence-impact
through the abundance change of the other species. This has three
main advantages, comparedwith aprevious definitionwhich considers
the number of extinct species22: (i) The impact of a keystone species
considersnot only its negative influenceonother species thatmay lead
to their extinction but also the positive influence that increase their
abundance. (ii) There is no need to set an extinction threshold when
calculating the impact from perturbation experiments. (iii) The mea-
sured impact is found tobe closely related to theunderlyingdynamical
structure (see Supplementary Fig. 3).

In order to study the relation between the underlying dynamics
and cross-sectional data we first simulate cohorts of cross-sectional
data with a single designated strength-based keystone and measure
the EPI of all the species (Fig. 3). In this ideal case, all three above-
mentioned EPI measures (D1, D2, and Q) successfully mark the desig-
nated species as a clear keystone candidate, as its EPI values are sig-
nificantly larger comparedwith the rest of the species. This canbe seen
in the PCoA space where the samples are distinctly divided into two
groups, depending on whether the keystone species is present or
absent (Fig. 3b, e), while the highmodularity of the keystone species is

evident by the fact that there areonly a few samples of different groups
that are connected with an edge (Fig. 3h).

Next, we conduct systematic experiments in order to test the
statistical relationship between the presence-impact, as measured
from perturbation experiments, and the EPI, as measured from cross-
sectional data (Supplementary Fig. 3). We define ecological dynamics
with either strength-based or structure-based keystones, simulate
cohorts of M samples with N species, and perform perturbation
experiments for each of the species. We then test the correlation
between the three EPI measures (Di

1, D
i
2 and Qi) and the presence-

impact Ii, for all i = 1,…N. To ensure awide rangeof impact values in the
case of the strength-based keystones, the boosting parameter, Ki, was
taken from a log-normal distribution with parameters μ =0.5 and σ = 1.
The range of values of the presence-impact in the structure-based case
is due to the natural scale-free degree distribution of the network. As
shown in Supplementary Fig. 3, significant correlations are evident
between each of the EPI measures and the experimental presence-
impact I. Notably, themodularitymeasureQ had the largest significant
correlation amongst the EPI measures.

In Supplementary Fig. 6 the abundance value. In other words,
while a PCAplotmight show a large difference between samples based
on large variability in the relative abundance values of species, even
when interactions are not present, the EPI measure removes the test
species from the data before calculating its impact is less sensitive to
such variations.

In Supplementary Fig. 7weshowhow theD1 EPImeasure is used to
identify keystone species in the Stable Marriage model of ecological
dynamics23. In this model, the species abundance is determined by
preference lists, not an underlying interaction network, so detecting
species using a reconstruction of the correlation network makes little
sense. When the preference lists are correlated, the system is fru-
strated and keystone species with higher-than-average EPI values are
prominent.

Presence-impact in real microbial communities
We analyze real metagenomic cross-sectional data of the gastro-
intestinal tract from the Human Microbiome Project (HMP)24,25 (see
Methods) and apply our EPI measures to identify keystone candidates.
Estimation of species abundances through metagenomic sequencing

a b c d

Presence-impact from 
pertubation experiments

Emperical presence-impact (EPI) from cross-sectional data

Presence-impact, Ii EPI as average of the 
distances, Di

1

EPI as modularity, Qi, of the 
sample-to-sample similarity 
network

EPI as distances between 
the averages, Di

2

Species i experimentally added

Species i experimentally removed

Species i present

Species i absent

Fig. 1 | Schematic illustration of presence-impact calculation. a Presence-
impact, Ii, as measured by perturbations experiments, is defined by the distance
between the abundance profiles of the same community before and after species i
is added/removed. b, c Two distance-based measures of estimating the EPI from
cross-sectional data. The first, Di

1, is by measuring the mean distance between all
pairs of sampleswith andwithout the species (represented by the gray arrows). The
second, Di

2, is by measuring the distance between the means of the groups,

represented by the black arrowbetween the twocrosses.d EPI using themodularity
measure, Qi. A sample-to-sample similarity network is constructed and its mod-
ularity is calculated based on the two groups of samples, those where species i is
present and those where it is absent. High modularity of the network indicates a
natural separation between the samples associated with the presence-absence of
the species. The distances between the samples in all cases are measured with
respect to the re-normalized abundance of all other species (see Methods).
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surveys is susceptible to significant uncertainties due to many factors
including experimental errors and sampling noise. This also affects the
presence/absence pattern of the species. For example, it has been
recently shown26 that the species observed relative frequencies (the
percent of samples where the species were detected) is determined by
the mean and variance of their abundances, together with the sam-
pling depth. Furthermore, the presence/absence of data is affected by
the specific experimental and computational pipelines used. Thus,
when analyzing real high-throughput sequencing, the ‘absence’ of a
species should be interpreted as being below the detection limit,
whereas an observed species is more confidently defined as ‘present’.
There are, however, arguments in favor of considering presence/
absence data in high-throughput sequencing27, specifically with
regards to the problem of compositionality, however the opinions on
that subject are still divided. The EPI measures use a combination of
both the presence/absence of the species in question and the relative
abundance data of the other species. We choose to focus on the pre-
sence/absence of the species in question, mainly due to two

methodological reasons: (i) The original and commonly used ecolo-
gical definition of keystone species relates to its presence/absence. (ii)
Currently available methods for manipulating microbial communities
include tools that can introduce new taxa (probiotics and FMT) or
remove taxa (narrow spectrum antibiotics), while directly controlling
the abundance of specific species is currently not feasible.

Figure 4 presents the EPI values, of all three measures, for
N = 1000 top-abundant species (OTUs). The figure shows the existence
of candidate keystones in real data from stool samples, as exemplified
by EPI values larger than two standard deviations compared with the
rest of the species (marked by the shaded gray area). Note that key-
stone candidates are identified only by the relative values of their EPI
comparedwith the cohort of the species, notby the absolute value. For
each of the measures, the separation between the samples associated
with thepresence/absenceof the taxawith thehighest EPI value is clear
in the PCoA plots and networkmodel (Fig. 4b, e, h) in marked contrast
with a random, non-keystone, species (Fig. 4c, f, i). These three taxa
detected by the different EPI measures are defined as distinct OTUs,
nevertheless, their taxonomic classification is identical, i.e., all three
OTUs were classified down to the Bacteroides genus level (but have no
classification at the species level). In addition, the EPI values calculated
for all OTUs by the different measures are significantly correlated as
shown in Supplementary Fig. 4.

Systematic analyses of additional 12 cohorts of microbial samples
from different body sites are shown in Supplementary Figs. 12–24. In
most cases, we see that the distribution of EPI values has a dominant
meanpeakwith a small number of specieswith considerably higher EPI
values. In addition, the presence/absence of species with the top EPI
value is associatedwith the separation of the samples in the PCoAplots
and the sample-to-sample networks. Exceptional is the vaginal micro-
biome (Supplementary Figs. 22–24), which is characterized by obvious
clusters, or state types28 (as also seen in the PCoA analysis). In these
cases, the presence/absence patterns of many species are associated
with the clusters, so no specific species stand out in the EPI distribu-
tions. In the Discussion section, we further discuss the relationship
between the EPI method and dimension reduction techniques, such as
PCA or PCoA.

As previously stated, direct validation of the EPI requires pertur-
bation experiments on a large number of taxa. In Supplementary Fig. 8
we show additional analysis of keystone detection in the leaves
microbiome of the plant model Arabidopsis. The “effect size” from
perturbation experiments for a small number of selected species of
one data set (see ref. 29 for further details) is compared with the EPI
values calculated fromcross-sectional data of a different experiment30.
We find a significant correlation between the two values (r =0.7926
with p =0.00367), suggesting that natural variability across samples is
shaped by ecological interactions that can be observed by controlled
perturbation experiments. In addition, even though the sequencing
depth is a major contributor to biases in the presence/absence of
data26, in Supplementary Fig. 9 we show that the ranking of the taxa
according to the EPI values, of the top keystone candidate, is relatively
stable to the choice of sequencing depth in both simulated and real
data from the human gut.

Longitudinal EPI
When calculating the EPI from cross-sectional data, two possible
issues may arise. First, the empirical association observed for a given
species may be due to confounding factors attributed to inter-
personal heterogeneity in the analyzed population, such as genetics,
life-style, or nutritional variability. Second, while our original defini-
tion of the presence-impact of a species considers the magnitude of
the transition of its microbial community following perturbation
experiments, the EPI is measured across different subjects for which
a direct transition may not be induced by that species. To address
these issues, we analyze the presence-impact using an alternative
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Fig. 2 | Detectionof a keystone species in simulatedperturbation experiments.
a Interaction-strength-based keystone in an Erdős-Renyi network. The network
represents the interaction matrix A of N = 100 species. The average degree 〈d〉 of
the nodes (species) is 10. The directed blue edges represent the out-going inter-
actions of a designated keystone species j, which were boosted with a constant
Kj = 10. Based on this network, perturbation experiments were performed for each
species as detailed inMethods.b Presence-impact of each species of the network in
a. The arrow marks the impact of the designated keystone species, which is sig-
nificantly above the rest of the species (p = 8.242 × 10−18 using a one-tailed z-test).
c Structure-based keystone created using Barábasi-Albert model, with parameters
m0 = 3 and d =0.1 (see Methods). Here the strengths of the interactions remain
untempered with. However, there are natural hubs, i.e., species with large number
of interactions. The largest hub and its out-going interactions are marked in solid
black. d Presence-impact of each species of the network in c. The arrow marks the
impact of the hub species, which is significantly larger than the rest of the species
(p = 1.004 × 10−6 using a one-tailed z test). The few remaining species with high
impact are also natural hubs, albeit smaller than the main one. For both cases,
distances between the reduced abundance profiles, hSik ,Si*k i, were measured using
the Bray–Curtis dissimilarity measure.
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approach from two-time-points longitudinal data and compare it
with the results from cross-sectional data (see Fig. 5a). The long-
itudinal EPI, Lik , measures the dissimilarity between two samples from
the same body site collected from the same subject, k, with a time
interval, where the presence state of species i is different between
the two samples. This is then averaged across all subjects to get a
single value Li (see Methods). Figure 5b shows the relationship
between the empirical and longitudinal EPI. The two measures are
significantly correlated (Pearson coefficient of r = 0.38 with p < 10−17).
Specifically, there is a significant agreement between the sets of
candidate keystones from the two measures, with 11 shared candi-
dates (p < 10−11 using the Fisher test). Furthermore, after a shuffling
process that preserves both the relative frequencies of the species
and the number of observed species in each sample, the presence-
impact shows no agreement between the EPI and the longitudinal EPI
(see Supplementary Fig. 5). The general agreement between the EPI
and the longitudinal EPI, which is less prone to the above-mentioned
issues, further supports that the presence-impact of a species can be
captured from the analysis of cross-sectional data.

The methodology of comparing the cross-sectional EPI and the
longitudinal presence-impact has two limitations. First, the calculation
of the longitudinal presence-impact for a particular microbial species
is possible only using a subset of thepopulation forwhich thepresence
attribute of that species has changed between the first and second
measurements. Second, although the host-related environmental fac-
tors are assumed to be more stable for longitudinal data, it is possible
that some confounding factors are related to both across-hosts and
within-host variability, leading to spurious correlations between the
two calculated measures. This effect can be completely ruled out only
bydirectperturbation experiments. An exampleof howenvironmental
confounding factors may affect keystone candidates detection is
presented in Supplementary Fig. 25.

Keystone modules
An interesting question is how the presence-impact of the species is
related to the co-occurrence relationships of different species. To
investigate this, we construct a co-occurrence network where the
nodes represent the different species, and the links are based on the
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Fig. 3 | Demonstrationof the three EPImeasures calculatedon simulated cross-
sectional data. Cross-sectional samples were simulated with a single designated
interaction-strength-based keystone (see Methods section). a Distribution of the
EPI D1 values of all the species. The solid blue arrow points to the Di

1 value of the
keystone species, i, and the red arrow points to the Dj

1 value of a random species, j.
b PCoA visualization of the abundance profiles Sik colored by the presence/absence
of the keystone species. The clear separation between the twogroups illustrates the
high EPI value of the keystone species. c Similar to b for the random species j. Here
there is no separation of the samples. d–f Similar to a–c for the EPI D2. The black
crosses in b–f mark the mean of the groups. g Similar to a for the modularity EPI
measure, Q. h The sample-to-sample correlation network, Bi, associated with the

keystone species i. Filled (empty) nodes represent samples where the species is
present (absent). The natural separation between the nodes into two groups indi-
cates the largemodularity valueQi. i, Similar to h for a random species j. The lack of
separationbetween the groups indicates the lowmodularity valueQj of the random
species. Sampleswere generated using GLV simulations on an Erdős-Renyi network
with N = 100 nodes (species). The average degree of each node is 50. The internal
growth rate of each species i, riwas set to unity. The boosting parameter was set to
K = 10. The samples were normalized to 1, and the distance metric used was
Bray–Curtis. Thenetwork thresholdparameter for the calculationof themodularity
was pQ =0.1.
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presence/absence relationship between them, calculated as the Nor-
malized Mutual Information31. Figure 6 shows details from the net-
works, where each node is colored by its EPI value, calculated
independently from the network itself. We find that many of the
observed candidates are part of what we term a ‘keystone module’, a
set of species with highly correlated presence-absence patterns, which
together form a group that has a large presence-impact on the rest of
the species. The black rectangles in Fig. 6 highlight examples of such
groups of species with high mutual information between them, and
generally large EPI values.

To test this effect, we compare the EPI values of species to their
neighboring species in the mutual information co-occurrence net-
work. As shown in Fig. 6d–f, the EPI values of neighboring species are
significantly correlated. Such correlation is not observed in a null
model, where the EPI values were randomly reshuffled between the
species. This means that species have a tendency to share high EPI
values with neighboring species, supporting the existence of such
keystone modules. A reasonable hypothesis is that one or few of the
species in the module is indeed a keystone species, and the rest are
‘satellite species’, which themselves do not have an unusually large

presence-impact, but are strongly connected to the keystone species.
In Supplementary Fig. 10, we show similar results obtained with the
Jaccard similarity measure. Future work should be done on identifying
those keystone modules systematically, and distinguishing between
the keystone species and the satellite species.

Discussion
Due to recent advances inmetagenomic sequencing, researchers have
been able to study and characterize microbial communities under
countless conditions and scenarios. Many of those studies also include
a keystone identification step, since they are considered as main dri-
vers of the ecological dynamics of the community. It is therefore vital
for us to define what keystone species is in exact terms, and also have
our detection protocols coincide with our definition. In this work we
show how to calculate the presence-impact from perturbation
experiments, and propose three alternative definitions for EPI from
cross-sectional data to detect keystone candidates, all in a top-down
manner without any network reconstruction.

These definitions are not mere semantics. Characterizing pre-
cisely the presence-impact of a species is important for practical
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Fig. 4 | EPI of real high-throughput sequencing from the gut microbiome.
a Distribution of the EPI D1 values of all N = 1000 top-abundant species. The gray
areamarks the EPI values greater than two standard deviations from themean. Blue
and red arrows mark the EPI values of a candidate keystone, i, and a random
species, j, respectively. b PCoA visualization of keystone-associated abundance
profilesSik . Filleddots represent sampleswhere the species ispresent, empty circles
represent samples where the species is absent. The samples are naturally separated
by the absence/presence of the keystone species into two types. c Similar to b for
the random species j. Here there is no visible separation of the samples into types.
d–f Similar to a–c for the EPI D2. The black crosses mark the mean of the groups.

g Similar to a for the modularity EPI measure, Q. h The sample-to-sample correla-
tion network, Bi, associated with the keystone candidate i. Filled (empty) nodes
represent samples where the species is present (absent). The natural separation
between the nodes into twogroups indicates the largemodularity valueQi. i Similar
toh for a randomspecies j. The lack of separationbetween the groups indicates the
low modularity value Qj of the random species. The three EPI distributions clearly
diverge from a normal distribution and are rather right-skewed (the percentages of
species with EPI larger than two standard deviations from the mean are 4.6%, 4.1%,
and 3.1%, for D1, D2, and Q, respectively, compared with the 2.2% expected in the
case of normal distribution).
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reasons: Current real microbial perturbation experiments (on human
subjects or other environments) mainly rely on either introducing new
species to the community or eliminating them.Directly controlling the
abundance of specific species in a community is, at present, not fea-
sible. The information on the species’ presence-impact can be directly
applied when designing such perturbations. on the one hand, pertur-
bations, such as probiotics, that include keystone taxa should be

treated with caution since they may lead to dramatic changes in the
microbial community. On the other hand, keystone taxa may be used
as the main drivers when steering the microbiome to a desired alter-
native state.

An interesting question is how the presence-impact of a species is
related to its abundance impact. Assuming that we have a well-
accepteddefinition of the influenceof a species on a system32,33, we can
think about two different types of how the influence of a species
dependson its abundance. Inone case, the influence of a species grows
with its abundance, i.e., ‘abundance-impact’. In another case, the
influenceof a species ismainly dependent on its presence, but remains
constant for different abundances, i.e., ‘presence-impact’ (as schema-
tically illustrated in Supplementary Fig. 11). For example, the influence
of a species that consumes common resources is expected to be
dependent upon its abundance. In another example, a pathogen may
indirectly affect the community by triggering a response of the
immune system in a threshold-like manner, while above the triggering
threshold, the influence remains the same. The EPI measure for cross-
sectional data captures both effects, while a complimentary working
definition of an abundance impact is required to distinguish
between them.

In some cases, the effect of a keystone species can be captured
using dimensional reduction techniques, as demonstrated in Fig. 3.
Yet, this approach has two significant drawbacks. First, when the
samples represent relative abundances, large variations between the
samples can be caused by the variance of a high-abundant species
which does not necessarily interact with the other species either
directly or indirectly (see Supplementary Fig. 6. In contrast, the EPI of a
particular species is calculated over the re-normalized abundance
profiles excluding that species (3), such that the spurious correlations
due to the compositionality of the data are removed. Second, the aim
of the PCA/PCoA methods is to preserve the global structure of the
data and thus may miss the local effect of the presence/absence of a
species34. By local effects, wemean that the presence/absence effect is
measured between communities with similar compositions. Such local
effects are conceptually analogous to perturbation experiments where

c

Q

-0.02

0

0.02

0.04

0.06

a

D
1

0.8

0.82

0.84

b

D
2

0.25

0.3

0.35

0.4

0 0.04
Q of node i

-0.02

0

0.02

0.04

0.06

Q
 o

f n
ea

re
st

 n
ei

gh
bo

rs
 o

f i

f

r = 0.48

p < 10-10

0.8 0.85
D

1
 of node i

0.8

0.82

0.84

D
1 o

f n
ea

re
st

 n
ei

gh
bo

rs
 o

f i

d

r = 0.46

p < 10-10

0.2 0.3 0.4
D

2
 of node i

0.2

0.3

0.4

D
2 o

f n
ea

re
st

 n
ei

gh
bo

rs
 o

f i

e

r = 0.39

p < 10-10

Fig. 6 | Keystone modules in the presence-absence co-occurrence network.
Analysis was done on the top N = 1000 species in gut microbiome data. a Detail of
the co-occurrence network of species based on the presence-absence data. Edges
represent the top 25percentile of normalizedmutual information values calculated
between all species pairs. The edges were colored according to the Pearson cor-
relation, where blue (red) indicates positive (negative) correlations. Each node
(species) in the network is colored by its EPID1 value. The black rectangle highlights
anexample of a typical groupofhighly correlated specieswhich large EPI values. All
the species in the rectangle are of the genusBacteroides.b Similar to a forD2. All the

species in the rectangle are of the genus Bacteroides. c Similar to a for Q. All the
species in the rectangle are of the genus Faecalibacterium. dWe statistically study
the relation between the network structure and the EPI values of the nodes by
calculating the correlation between the EPI D1 values of the nearest neighbor spe-
cies (black dots). The gray dots represent the same values after randomly shuffling
the EPI values among the species. Pearson correlation scores and associated p
values are presented in the figure. e, f Similar to d for D2 and Q. From d–f the p
values are p = 3.3241 × 10−203, p = 2.095 × 10−178, p = 1.4273 × 10−127.

Fig. 5 | Comparison between the longitudinal and empirical presence-
abundance interrelation in the gutmicrobiome. a The HMP data set includes 121
individuals for whom two stool samples have been collected with a time interval
(between one and twelve months)50. We calculate the EPID1 values using the cross-
sectional data from the first visits only, and compare themwith the longitudinal EPI
values, L, which are calculated by comparing the first and second samples of each
subject individually (see Methods). b Each dot represents the D1 and L values of an
individual species (After the filtering process, we are left with 509 species, see
Methods). The values of the two measures are significantly correlated (r =0.38,
p = 1.0082× 10−18 using Pearson correlation). The top 5%D1 and L values aremarked
by the shaded red and blue areas, respectively, which correspond to the candidate
keystones of the two methods. Using Fisher test, we found a significant level of
correspondence between the shared candidates of the two methods
(p = 5.1598 × 10−11 with 11 shared candidates). Ten of the shared OTUs are of the
genus Bacteroides and one is of Leptotrichia. All of them with unassigned species
taxonomic level.
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a single species is introduced to a community tomeasurehow it affects
that same community.

Focusing on the local effects is important due to two character-
istics of real microbial communities. The species-species interactions
may be context-dependent, i.e., the same species may have different
effects in different microbial communities35–38. In addition, microbial
interactions are inherently non-linear39,40, and in fact, it has been
recently shown that straightforward correlation analysis of pair-wise
interactions from cross-sectional abundance information carries only
limited information on the real underlying interactions14,41. The PCA/
PCoA methods are not designed to account for context-dependent
and non-linear interactions34.

The EPI measures D1 potentially circumvents this difficulty as it
does not assume the samples are divided into two distinct groups,
separated along a single dimension, but rather takes into accountmore
complex effects, as schematically demonstrated in Fig. 1b, c. The Q is
designed to be even more sensitive to non-linear effects, as it com-
pares only neighboring samples when evaluating the effect of the
species, methodologically similar to the t-SNE method. When analyz-
ing real-world data, it is important to utilize all the methods in our
arsenal to ensure robust statistical conclusions, and the EPI measure
helps us enforce the validity of keystone identification protocols.

When analyzing a given data set, the top-down approach, such as
the EPI method, and the bottom-up approach, such as the reconstruc-
tion of a correlation network, provide two different perspectives on the
same system. We believe that these approaches can complement each
other. Inonedirection, information fromthenetwork canbe reduced to
its components, i.e., detecting important species by their centrality in
the network, which can be compared with the EPI results. Moreover,
top-down information can be incorporated to facilitate network ana-
lysis. An exampleof such adual approach is theobservationof keystone
modules. It would be interesting to devise a way to systematically
identify them from a given data. Later on, we hope to be able to dis-
tinguish between real keystones in the module and satellite species.

Methods
Population dynamics model
The GLV model represents the dynamics of N interacting species as a
set of ordinary differential equations,

dxi
dt

= rixi +
XN
j = 1

aijxixj, i= 1, . . . ,N: ð1Þ

Here, xi and ri are the abundance and intrinsic growth rate of
species i, respectively, aij quantifies how much species i is affected by
the abundance of species j, and aiix

2
i represents the logistic growth

term, which is set to aii = −1 for all i. We consider amicrobial ‘sample’ as
a steady state of a GLVmodel parameterized by the growth rate vector
r= frig 2 RN and the interaction matrix A= ðaijÞ 2 RN ×N . Unless
otherwisementioned, in our simulationswe setN = 100. The values of r
are chosen from a uniform distributionUð0,1Þ. The non-zero elements
ofAdefine the ‘interactionnetwork’ and are chosen to represent either
Erdős-Renyi (ER)42 or Barabási-Albert (BA)43 topologies, as detailed
below. The values of the non-zero elements of A are drawn from a
uniform distribution Uð�σA,σAÞ, where σA represents a scaling factor
chosen to ensure ecological stability. For each GLV model (defined by
specific A and r), we generate cohorts of M = 100 different ‘samples’
(alternative steady states) by choosing different random initial condi-
tions, i.e., a set of initial present species and abundances. Specifically,
each species is initially present in a sample with a probability of 0.8,
and the values of the initial abundances are chosen from a uniform
distribution Uð0,1Þ. Each sample is simulated by integrating the dif-
ferential equations (Eq. (1)) using the ode45 function in MATLAB. The
simulated samples arenormalized to 1, i.e., only the relative abundance
is used in the analysis of keystone species.

Simulating keystone species
In our simulations, we create two different types of keystone species
(see Fig. 2). ‘Interaction-strength-based keystones’ are created in
structurally homogeneous (ER) interaction networks by boosting the
strength of the out-going interactions of selected species. Alter-
natively, ‘Structure-based keystones’, are naturally created in hetero-
geneous (BA) interaction networks where a few species have much
more interactions compared with all other species. We explain them
both in detail below.

Interaction-strength-based keystones. We start by creating an
interaction matrix A that represents an ER model with edges density
pER, in which each species interacts with a characteristic number
pER(N − 1) of other species. Then, we enhance the strength of the out-
going interactions aji of species i, by multiplying them with a positive
constant Ki,

~aji =K
iaji, j = 1, . . . ,N, ð2Þ

where ~aji are the new interactions strengths after the boosting pro-
cedure. These new interactions are then used in Eq. (1) to simulate the
dynamics. The value of Ki can be chosen manually to introduce a
designated keystone species or can be randomly sampled from a long-
tailed distribution (e.g., log-normal distribution)44, which generates a
few highly influential species whilst most other species have low
interaction strength.

Structure-based keystones. Following ref. 22, to create Structure-
based keystones, we use the BAmodel which generates a networkwith
heterogeneous degree distribution. Themodel generates a network of
N nodes, based on n0 pre-selected seed nodes. The seed nodes form a
fully connected network, and the remaining N − n0 nodes are sequen-
tially connected to the n < n0 existing nodes in the network, with
probability pi proportional to the degree di of each node i. A direc-
tionality parameter d is also added to the process of reconstructing
scale-free networks for the numerical simulations, which partially
negates the independence between the out-going and in-going
interactions22. The scale-free degree distribution in the network natu-
rally creates keystones, i.e., nodes with a comparably large number of
interactions, and are usually part of the seed nodes (see Supplemen-
tary Fig. 3). MATLAB script used to generate directed BA networks is
presented in Supplementary Information.

Calculating presence-impact in perturbation experiments
The presence-impact of species i in a local community (sample) k is
defined as follows. We denote the abundance profile of a particular
sample k with Sk, in which species i can be initially present or absent,
while after a perturbation where species i was added/removed, the
abundance profile is denoted as S*k . We label the pre-perturbation
abundance profile of all the species except species i as Sik , and the post-
perturbation abundance profile, excluding species i, as Si*k . Both Sik and
Si*k are re-normalized to 1, to remove the mathematical relations
between species i and the rest of the species that are the result of the
compositionality nature of the data, i.e.,

SikðjÞ : =
SiK ð jÞP
jS

i
kð jÞ

ð3Þ

and similarly for Si*k . We then calculate the community-specific
presence-impact, Iik , as the distance between Sik and Si*k ,

Iik = hSik ,Si*k i, ð4Þ

where the 〈⋅〉 symbol represents a distance function between the two
samples, e.g., Bray–Curtis (BC) or root Jensen-Shannondivergence. The
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distance Iik represents the influence of the presence of species i on the
abundance profile of the rest of the species for the local community k.

The presence-impact of species i is then the average of Iik over a
cohort of different communities. The presence-impact of species i, Ii, is
defined as the average

Ii =
1
M

X
k

Iik , ð5Þ

whereM is the number of samples. Ahigh valueof Ii indicates that there
is a large general difference between the abundance profiles asso-
ciated with adding/removing species i. The presence-impact Ii is a
direct way of measuring the effect of removing/adding a species from
the system which is suitable for both numerical and real-world
experiments. Note that our definition is different from the one used
in ref. 22. A MATLAB script for calculating I, in the case of GLV
dynamics, is presented in the Supplementary Information.

Identification of candidate keystones from cross-sectional data
Consider a cohort ofM samples, with abundance profiles Sk, k = 1,…,M
which were either generated from GLV dynamics or are the result of
real-world surveys. To calculate the EPI of species i, we divide the
samples into two subsets, subset Gi which includes all samples where
species i is present, and subset Gi which includes all samples where
species i is absent. Then, we test the level of separation between
the two subsets based on the abundance profiles that include all
species excluding species i.Wehavedevised three alternativemethods
to measure this separation (see Fig. 1).

Distance-based separation, D1. The separation between the two
subsets, Gi and Gi, is measured as the average distance between the
samples of the two subsets, Di

1. We denote the abundance profiles in
which species i is present, excluding the abundance of species i itself,
as Sik ,k 2 Gi, and where species i is absent as Sik0 ,k0 2 Gi. Both Sik and Sik0

are re-normalized to 1 to minimize compositionality effects. Then, we
calculate the average distance between Sik and Sik0 , namely Di

1, as

Di
1 =

1

∣Gi∣∣Gi∣

X
k2Gi ,k02Gi

hSik ,Sik0 i, ð6Þ

where the sum is over all the possible pairs of samples from the Gi and
Gi subsets, and the ∣⋅∣ symbol denotes the size of the subset.

Distance-based separation, D2. Alternatively, we can calculate the
distance between the mean samples, Di

2,

Di
2 =

1

∣Gi∣

X
k2Gi

Sik ,
1

∣Gi∣

X
k02Gi

Sik0

* +
: ð7Þ

In Fig. 3a–f, we present themeasured EPI values,D1 andD2, onGLV
dynamics for a designated, interaction-strength-based keystone com-
pared with a random, non-keystone species, showing a high level of
separation between the subsets defined by the presence-absence of
the keystone species. In caseswhere the impact of a species results in a
uniform change of the microbiome composition, the outcomes of the
two measures may coincide, as demonstrated for GLV dynamics in
Fig. 3. The D1 measure is suitable to the case where the samples with
and without the keystone species are clustered into two distinct
groups (in the spaceembeddedby the re-normalized abundances of all
other species), with large inter-cluster distance compared to themean
intra-cluster distances. TheD2measure ismore suitable to cases where
the two groups of samples are not necessarily linearly separable,
meaning that even if the two clusters are centered at the same point,
the average distance between samples of different groups is large.

Modularity-based separation, Q. The distance-based approach
mentioned above has a potential flaw. It assumes that the relations
between all the different samples-pairs can be reliablymeasured using
the same dissimilarity scale. This is not generally true for high-
dimensional and non-linear spaces, and is exacerbated when calcu-
lating a dissimilarity value between ‘distant’ points.

An alternative approachwould be to focus on short distances only
and construct a sample-to-sample similarity network-based on the
most similar sample pairs. The separation level between two subsets
will then bemeasured based on their structural spanover this network.
To do this, we calculate the modularity, a measure of the correlation
between the labels of the nodes in a network, and the structure of the
network45–47. If themodularity ismaximal, i.e., equals 1, then each node
is only connected to other nodes with the same label. Low modularity
indicates a high degree of mixing between the nodes, i.e., each node
has a similar probability of being connected to a node with the same
label as to a node with a different label. The modularity is calculated
based on the structure of the sample-to-sample similarity network,
independently from the similarity values calculated between very dif-
ferent samples, and is therefore more suited for detecting commu-
nities even when the embedded space is unusual or complex.

To apply the modularity method for species i, we first define a
network of inter-samples similaritieswith respect to the abundances of
all other species excluding species i, whereas the presence/absence of
species i defines the labels of the nodes. Specifically, we calculate the
distances between the abundance profiles of the rest of the species for
all the sample pairs hSiα ,Siβiwhere α, β∈ {1,…M} and α ≠ β. The nodes of
the network represent the abundance profiles Siα and edges represent
sample pairs with distance smaller than a threshold T such that only a
certain percentile pQ of the samples are connected. All abundance
profiles, Siα , are re-normalized to 1 to minimize compositionality
effects.

The network associated with species i is represented by an adja-
cency matrix Bi, where each element of the matrix bi

αβ is equal to 1 if
hSiα ,Siβi≤T , and 0 otherwise. Then, each node α is labeled using a
membership variable siα . If species i is present in sample α (i.e., α∈Gi),
then siα = 1. Otherwise, if species i is absent from sample α (i.e., α 2 Gi),
then siα = � 1. Finally, the modularity, Qi, of the network associated
with the presence/absence of species i, is given by

Qi =
1

2wi

X
αβ

bi
αβ �

di
αd

i
β

2wi

" #
siαs

i
β + 1

2
, ð8Þ

where di
α is the degree of sample α, wi is the total number of edges,

wi = 1
2

P
αd

i
α , and the sum is over all sample pairs. The value of Qi is

bounded between −0.5 and 1, with larger values indicating a higher
level of separation between the subsets46. Note that the modularity
measured here is not the same as presented in ref. 48. There, the
authors calculated the modularity of the interaction network (where
each node represents an individual species). Here, the modularity is
calculated in relation to the abundance profiles (each node represents
a different sample).

A MATLAB script for calculating the EPI values Di
1, D

i
2, and Qi of a

given cohort of abundance profiles are presented in the Supplemen-
tary Information.

Longitudinal EPI
The HMP data provides a unique opportunity to verify the results of
the EPI, whilst eliminating issues of confounding factors, emanating
from the possible heterogeneity of the different subjects. The process
is based on comparing samples from the same subject, at two different
timepoints.Wedenote the sample of subject hof the first collection as
Sh,I and of the second collection as Sh,II. For each species i = 1…N, we
check if the presence state of species i is different between thefirst and
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second collections, i.e., if species i is present in the first collection and
absent in the second collection, or vice versa. If the present state is
indeed reversed, we define Sih,I and Sih,II as the abundance profiles of
subject h at the first and second collection times, respectively,
excluding species i and re-normalized to 1, i.e.,

XN
j = 1,j≠i

Sih,Ið jÞ= Sih,IIð jÞ= 1: ð9Þ

Then, for species i, and for subject h, the longitudinal EPI Lih is the
distance between the re-normalized first and second collections,

Lih = hSh,I,Sh,IIi: ð10Þ

The process is then repeated for all h = 1…H subjects to get the
total longitudinal EPI

Li =
1
H

XH
h = 1

Lih: ð11Þ

We avoid low prevalent species with a high bias towards the
longitudinal EPI by filtering out from the analysis species for which the
measure was based on 10 or fewer subjects, i.e., at least in 11 subjects
the presence state of the species was reversed between the first and
second collections.

Analysis of perturbation experiments
The process of identifying keystones through the use of presence-
impact must include a simple, but necessary, statistical step. Analo-
gously to the use of community importance from ref. 9, a species is
said to be a keystone when its presence-impact is significantly large
compared with the rest of the species. Therefore, when calculating the
presence-impact for a given experiment, we also need to calculate the
presence-impact of all other species individually and compare them to
each other. We then consider a species to be a keystone species if its
impact is larger than two standard deviations from themean impact of
all species. We demonstrate it in Fig. 2 where the impact of an artificial
strength-based keystone, and structure-based keystone, are indeed
much larger than their peers (blue and black arrows in Fig. 2b, d,
respectively).

Analysis of cross-sectional data
Similarly, a species is said to be a candidate keystonewhen its EPI value
is significantly larger than the rest of the species. Indeed for simulated
keystones, the high EPI value of the designated keystones is apparent
for all three proposed measures (Fig. 3) compared with the values of
the non-keystone species.

Unlike the ideal perturbation experiments, special considerations
must be taken into account when calculating the EPI of species from
high-throughput sequencing, mainly due to certain biases that stem
from differences in the relative frequency of the species (i.e., the
percent of samples where the species is present). For example, by
definition, it is impossible to calculate the EPI of a species that is pre-
sent in all the samples of a cohort, since we can not compare them to
the case where it is absent (in these cases we expect to only be able to
calculate the empirical abundance-to-community impact, which is
beyond the scope of this work). Furthermore, the EPI may be affected
by the frequency of the species of interest, a bias that is mainly
apparent when it is either present or absent in only a small fraction of
the samples. Supplementary Fig. 1 demonstrates this bias on a test case
of simulated cross-sectional data with no inter-species interactions. To
avoid this issue, when dealing with real-world data, we limited the
analysis only to species with a sufficient number of present and absent
samples (see “Human microbiome data filtering and analysis”).

Human microbiome data filtering and analysis
We analyzed real high-throughput sequencing of the human gut from
the HMP24,25. Samples represent the abundances of operational taxo-
nomic units (OTUs), obtained from 16S rRNA sequencing (variable
regions V3 to V5), of M = 107 healthy human subjects. We consider
individual OTUs as “species”. The samples went through the following
filtering process. We first filtered out any OTUs not present in any of
the samples. We then ordered the OTUs according to their mean
abundance and kept only the top N = 1000 OTUs with the top mean
abundance. The abundances of the remaining OTUs in each profile
were normalized to one. Finally, the presence-impact was calculated
only for OTUs with a relative frequency between 0.25 and 0.75, which
ensures maximal statistical power and avoids extreme cases with very
high or very low frequencies that are prone to high bias in D1 and D2

measures (see Supplementary Fig. 1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheHumanMicrobiome Project data used in this study are available in
the HMP database at https://hmpdacc.org/. The Arabidopsis datasets
were graciously provided by the research group of Dr. Vorholt. They
are also available at the following references29,30. No original experi-
mental data were collected in this study.

Code availability
MATLAB scripts used in this study are available in the Supplementary
Information and at: https://github.com/guy531/keystone49.
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