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A neuromorphic physiological signal
processing system based on VO2 memristor
for next-generation human-machine
interface

Rui Yuan1,6, Pek Jun Tiw1,6, Lei Cai1, Zhiyu Yang2, Chang Liu1, Teng Zhang1,
Chen Ge 3, Ru Huang 1 & Yuchao Yang 1,2,4,5

Physiological signal processing plays a key role in next-generation human-
machine interfaces as physiological signals provide rich cognition- and health-
related information. However, the explosion of physiological signal data pre-
sents challenges for traditional systems. Here, we propose a highly efficient
neuromorphic physiological signal processing system based on VO2 memris-
tors. The volatile and positive/negative symmetric threshold switching char-
acteristics of VO2 memristors are leveraged to construct a sparse-spiking yet
high-fidelity asynchronous spike encoder for physiological signals. Besides,
the dynamical behavior of VO2 memristors is utilized in compact Leaky Inte-
grate and Fire (LIF) and Adaptive-LIF (ALIF) neurons, which are incorporated
into a decision-making Long short-termmemory Spiking Neural Network. The
system demonstrates superior computing capabilities, needing only small-
sized LSNNs to attain high accuracies of 95.83% and 99.79% in arrhythmia
classification and epileptic seizure detection, respectively. This work high-
lights the potential of memristors in constructing efficient neuromorphic
physiological signal processing systems and promoting next-generation
human-machine interfaces.

Physiological signals reflect the electrical activity of a specific body
part1 and provide valuable information about mood, cognition, and
many other health issues2, thus any deviation from the norm in pat-
terns may indicate an underlying health problem. For instance,
arrhythmias can be picked up by electrocardiogram (ECG) signals3

while epilepsy, which is a common neurological disorder, manifests
itself as abnormalities in electroencephalogram (EEG) signals during
epileptic seizure4. Monitoring and analyzing these physiological sig-
nals form the basis of biomedical devices used for the diagnosis,

detection, and treatment of various diseases2. While anomaly detec-
tion and analysis can be done manually, a physiological signal pro-
cessing system that is capable of providing diagnosis without human
intervention can be useful in providing a second opinion or even
picking up subtle and easily overlooked patterns.

In a traditional physiological signal processing system, the analog
physiological signals are first converted into digital signals by analog-
to-digital converters (ADC) and then stored in memory before being
further processed in digital computing units5–7. However, the frequent
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movement of a massive amount of data between memory and com-
puting units heavily affects the speed and power consumption8,9. The
parallel and event-driven10 neuromorphic computing system, which is
inspired by the human brain, is a promising alternative approach for
breaking the von Neumann bottleneck11. It is much more energy effi-
cient and suited for processing physiological signals, as they contain
spatiotemporal information, thus motivating the design of a brain-like
physiological signal processing system. Although some neuromorphic
physiological signal processing systems based on complementary
metal-oxide semiconductor (CMOS) technology have been demon-
strated,most of them suffered fromarea andenergy inefficiencies, due
to the incorporation of complex auxiliary circuits and bulky capacitors
for the implementation of bio-dynamics11–15.

To achieve an efficient neuromorphic physiological signal pro-
cessing system,memristors provide an appealing platformdue to their
abundant ion dynamics16–28 and electrical behaviors akin to those
found in biological neurons and synapses, hence lending themselves
well to realizing compact neuromorphic architectures. While the
hardware implementations of Leaky Integrate and Fire (LIF) neurons
have been reported widely in literature27–29, few studies demonstrated
hardware implementations of Adaptive-Leaky Integrate and Fire (ALIF)
neurons30,31, which have been shown to improve the computational
capabilities of neuromorphic systems. Nevertheless, these ALIF hard-
ware implementations still have room for optimization. More impor-
tantly, a complete memristor-based neuromorphic physiological
signal processing system that features a highly efficient spike encode
scheme and a more biologically plausible neural network with ALIF
neurons has not yet been reported.

In this work, a complete neuromorphic physiological signal pro-
cessing hardware system for the next-generation human-machine
interface based on VO2 memristors is demonstrated. Specifically, a
platform that can convert analog physiological signals into a stream of

asynchronous spike events is proposed, which fully utilizes the posi-
tive andnegative symmetric thresholds and fast volatile characteristics
of VO2 memristors so as to simplify the circuit. Different from the
frequency-encodingmodeof traditional neurons, the spikes fromeach
channel of the encoding platform mark the time at which the input
signal has changed beyond a fixed threshold, which can preserve the
original input information content to the greatest extentwhile keeping
a low spiking rate to reduce energy consumption. Besides, a
memristor-based decision system that features a Long short-term
memory Spiking Neural Network (LSNN) with powerful computational
capabilities32 is provided, wherein ALIF neurons were designed effi-
ciently using VO2 memristors. The performance of this system was
evaluated via arrhythmia classification and epileptic seizure detection
tasks, achieving accuracies of 95.83% and 99.79%, respectively. This
systemwith a small LSNNhas implied immense potential in processing
various physiological signals and can hold great prospect in dealing
with other temporal signals in general.

Results
Design of VO2 memristor-based neuromorphic physiological
signal processing system
Figure 1 schematically illustrates the proposed VO2 memristor-based
neuromorphic processing system, which integrates an asynchronous
spike encoder and an LSNN-based decision system. In the data com-
pression and encoding stage, the memristor-based asynchronous
spike encoder converts each channel of the collected physiological
signals, such as ECG and EEG, into two-channel spike trains (UP/DOWN
channel), which represent the rise or fall of the original signal,
respectively. The asynchronous spike encoder based on memristor
was inspiredbyLC-ADC14,33–36 anddeltamodulator circuits37–39, wherein
spikes from each channel mark the time at which the input signal
changes beyond a fixed threshold. The speed of spikes emission is
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Fig. 1 | Theneuromorphic physiological signal processing systembasedonVO2

memristor for the next-generation human-machine interface. The system
integrates an asynchronous spike encoder and a decision system based on mem-
ristors. In the data compression and encoding stage, the memristor-based asyn-
chronous spike encoder converts each channel of the recorded physiological
signals, into two-channel spike trains (UP/DOWN channel). Spikes from each

channel mark the time at which the input signal changes beyond a fixed threshold,
thus realizing non-uniform and sparse spike coding to reduce the amount of data
and energy consumption. In the processing stage, a decision system featuring an
LSNN is used to process encoded spike information and to output results, wherein
the LIF and ALIF neurons are also constructed by VO2 memristors efficiently.
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determined by the variation rate of the input signal, thus realizing non-
uniform and sparse spike encoding, which can reduce the amount of
data and energy consumption. Compared with the frequency encod-
ing of traditional neurons, thismethod contains temporal information
and is thus more friendly to neuromorphic systems. Since the infor-
mation of the original signal is preserved to the greatest extent, the
encoded asynchronous spike trains can reconstruct the original signal
accurately, which is hard for frequency coding. In the section regard-
ing the asynchronous spike encoder based on VO2 memristor, we
introduced in detail how to use memristors to implement asynchro-
nous spike encoding without ADC/DAC and special control circuits.
Another core of the system is the decision network. Here, amemristor-
based decision system that features an LSNN is utilized in which the
memristor also plays a central role. The LSNN-based decision system
contains two kinds of neurons, the LIF neuron and ALIF neuron.
Among them, the hardware implementation of the ALIF neuron
requires a feedback mechanism and hence is relatively difficult. In this
system, we utilized VO2 memristors to construct not only LIF neurons
but also ALIF neurons efficiently. By incorporating these key char-
acteristics, the neuromorphic system can exhibit high accuracy with
few weights and used for physiological signal processing in human-
machine interfaces.

VO2 memristor-based artificial LIF neuron
Neurons are the building blocks of brain-like systems. To construct the
artificial neuron efficiently, memristors with highly uniform threshold
switching (TS)27,40,41 and volatile characteristics are required. The
memristor used in thiswork is basedonVO2 and isdesigned as aplanar
device as shown in Fig. 2a. Supplementary Fig. 1a shows a scanning

electron microscopy (SEM) image of the device, where the channel
length is 400 nmand the electrodewidth is 2μm.Details of fabrication
processes are shown in Methods. Supplementary Fig. 1b shows the
transmission electron microscopy (TEM) image of the device, and a
zoom-in view of the VO2 film and corresponding fast Fourier trans-
formation is shown in Supplementary Fig. 1c, d, where well-ordered
lattice fringes are evident, verifying the high crystalline quality of VO2

film which is important for achieving high uniformity in our devices.
The cross-sectional scanning transmission electron microscopy
(STEM) image and corresponding energy dispersive X-ray spectro-
scopy (EDS) mapping of O, Al, Si, V, Ti, and Au elements in the device
can be seen in Supplementary Fig. 2a, along with EDS elemental line
profile in the same region (Supplementary Fig. 2b). Stable volatile
resistive switching is indicated by the I–V characteristics of the VO2

memristor (Fig. 2b), where 100 cycles were performed. The device
changes from a high resistance state (HRS) to a low resistance state
(LRS) once the applied voltage exceeds a threshold voltage (Vth) of
around ±3.4 V and immediately returns to HRS when the applied vol-
tage falls below the holding voltage (Vhold) of around ±1.45 V. This
resistive switching phenomenon arises from the metal-insulator tran-
sition of VO2, which is a result of the intertwined structural and elec-
tronic phase changes42–44. The transition between the low-temperature
semiconducting phase and the high-temperature metallic phase
occurs at around ~340K, and can be triggered by Joule heating45. To
illustrate this point, we simulated the thermodynamic resistive
switching process using COMSOL Multiphysics. As shown in Supple-
mentary Fig. 3, the switching of the VO2 memristor between HRS and
LRS is accompanied by the formation or disappearance of a high-
temperature filament, which has also been previously observed46,47. To
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Fig. 2 | The implementation of memristor-based artificial LIF neuron.
a Schematic diagramof the VO2memristor, which is designed as a planar structure.
b Current-voltage characteristics of the device repeated for 100 cycles, showing
stable volatile resistive switching. cCumulative plots ofVth_pos, Vhold_pos, Vth_neg, and
Vhold_neg, showing low variations. d Illustration of the artificial neuron based on VO2

memristor. e–h The artificial neuron response under different series resistance RL

and applied voltage. i, j The effect of series resistance RL and applied voltage on
spiking frequency. Larger series resistance and lower input voltage will result in a
lower charging current, thereby reducing the firing frequency. k, l Simulation
results of the artificial neuron using our SPICE model, showing high congruence
with experiment results.
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be specific, heat is generated in the VO2 memristor as the applied
voltage increases (state (1) to (2)). Once the phase transition is trig-
gered, a filament forms through the VO2 gap, switching the device
from HRS to LRS. Then, the filament expands as the voltage is
increased (state (2) to state (3)). When the voltage is reduced, the heat
dissipates, and the filament size decreases (state (3) to state (4)). Once
the applied voltage is below Vhold, the filament breaks down and the
device eventually returns to HRS (state (4) to state (1)). The simulated
I-V curve agrees well with the experimentally measured curve, further
verifying the Joule heating-induced phase transition and the filament
formation picture. Figure 2c displays the cumulative plots of positive
and negative threshold/holding voltages, including Vth_pos, Vhold_pos,
Vth_neg, and Vhold_neg in 100 repeated cycles. The coefficient of variation
(Cv) definedby the ratio of the standarddeviation (σ) to themeanvalue
(μ) of Vth_pos, Vhold_pos, Vth_neg, and Vhold_neg were 0.65%, 0.86%, 0.31%,
and 1.68%, respectively, showing very low cycle-to-cycle (C2C) varia-
tions. The superior uniformity can be attributed to the high crystal-
linity epitaxial VO2 thanks to the matching lattice planes across the
film-substrate interface48, as well as the preservation of such desirable
qualities in a planar device structure (Supplementary Note 1). In
addition to the uniformity observed under steady state, the VO2

memristor also displayed very small variations in Vth and Vhold when it
was connected to an external circuit and was operating in a dynamical
state (Supplementary Fig. 4). The Cv of Vth and Vhold during ~1000
periods of transient oscillations were 0.73% and 0.48%, respectively.
Moreover, when the planar VO2 memristor was operated in air under
normal atmospheric pressure, under different ambient pressures
ranging from 3.5 × 10−3 mbar down to 5.0 × 10−4 mbar and in an N2

environment, it also exhibited stable threshold switching behavior
with no appreciabledifference in its I-V characteristics (Supplementary
Fig. 5). This implies that such devices are not affected by various
atmospheric content such as moisture. Crucially, the VO2 memristor
demonstrated a high endurance of >6.5 × 106 switching cycles (Sup-
plementary Fig. 6), which ensures the reliability of encoders and neu-
rons that incorporate such devices. Supplementary Fig. 7 displays the
transient electrical measurements, where the switching speed of the
VO2 memristor in this work is <70 ns from off-state to on-state and
<60 ns from on-state to off-state, exhibiting a high-speed threshold
switching characteristic.

The circuit configuration of artificial neuron based on VO2 mem-
ristor is shown in Fig. 2d. The VO2 memristor is connected in parallel
with a capacitor and in series with a load resistor RL. Besides, a 50 Ω
resistor R0 is used to convert the current into a voltage output. The
dynamics of an ion channel located near the soma of a neuron can be
mimicked by the threshold switching (TS) behavior of VO2 while the
membrane capacitance is represented by Cp. The oscilloscope is used
to measure electrical waveforms across the Cp, the input waveforms,
and the output of the artificial neuron (see Methods and Supplemen-
tary Fig. 8). When a voltage is applied to the artificial neuron, the
capacitor begins to charge. Once the voltage on the capacitor exceeds
Vth, the VO2 memristor switches to LRS. As a result, a spike is gener-
ated, which will be transmitted to the next neuron. Besides, the
capacitorwill bedischarged through the on-statememristor.When the
voltage on the capacitor drops below Vhold, the device will return to
HRS. The spiking rate of the artificial neuron strongly depends on the
series resistance, applied voltage, and parallel capacitance. Figure 2e, f
shows the response of the artificial neuron under different series
resistanceRL (18 kΩ, 10 kΩ)whenfixing a constant input voltageof 10 V
without an external parallel capacitor (More results can be found in
Supplementary Fig. 9). A larger RL will reduce the input current, thus
slowing down the charging process, thereby reducing the firing fre-
quency (Fig. 2i). On the other hand, a larger input voltage will increase
the charging current, thereby speeding up the charging process, thus
increasing the frequency (Fig. 2g, h, j and Supplementary Fig. 10).
Supplementary Fig. 11 shows the experimental response of the artificial

neuron under different parallel capacitors. As the parallel capacitance
increases, the integration process becomes slower, thus reducing the
firing frequency. These firing behaviors can also be deduced from the
RC circuit analysis detailed in Supplementary Note 2.

To gain insights into the neuron circuit behavior and to assist in
designing the ALIF neuron and the spike encoder, we developed a
SPICE model using LTSPICE for our VO2 memristor (Supplementary
Fig. 12 and “Methods”) based on the one proposed in ref. 49. Our
improved model has no polarity, thus allowing symmetrical static I–V
characteristics and switching thresholds under positive and negative
biases, which is in accordancewith practical planar VO2memristors. In
essence, the model consists of a comparator, which compares the
terminal voltage of the device to Vth/Vhold when it is in HRS/LRS and
flips the state if the terminal voltage increases/decreases beyond the
thresholds. The inclusion of R0 and C0 is to suppress instantaneous
state transitions of the comparator, which models the finite switching
time of the real-world VO2 memristor. The voltage across C0 is then
used to determine the resistance of the VO2 memristor model. The
simulation results were in good agreement with the experimental
results as shown in Fig. 2k–l, where Vin and RL were set as 10 V and 18
kΩ, respectively (Supplementary Table 1 lists the parameters of the
device).

VO2 memristor-based adaptive LIF neuron
Building upon the compact LIF neuron presented in the previous
section, we designed a highly efficient VO2 memristor-based ALIF
neuronby adding anadaptive control circuit, which requires only a few
extra components and a feedback connection (Fig. 3a). The adaptive
property stems from the increased membrane leakage current after
the neuron fires, which renders subsequent input integration harder
and has its analogous process found in biological neurons50. The key
processes involved in this ALIF neuron are summarized in Fig. 3b. The
workings of the LIF part are similar to that of the LIF neuron, but with
an additional membrane leakage path via M3. To achieve adaptation,
the spike output is amplified by the M1 common-emitter amplifier to
driveM2, whichchargesC2 and increasesVg. Consequently,M3 turns on
more and increases the leakage current with each spike. By Kirchoff’s
Current Law, the increased leakage current is subtracted from the
input charging current, resulting in a slower charging of C1 during the
integration phase and a reduced spiking frequency. In biological
neurons, the adaptive effect diminishes and the spiking frequency
returns to the initial level when the neuron is rested. In our ALIF neu-
ron, this feature is enabled by R3, which provides C2 with a discharging
path and turns offM3 slowly. It is important to note that Vg has to be a
slow-changing variable relative to Vm, that is to say, the adaptive time
constant (τa =R3C2) needs to be sufficiently large compared to the
membrane time constant (τm= (RVO2 +R1)C1). To effectively utilize the
temporal processing capability of ALIF neurons, which stems from
their adaptive property, the choiceof τa should roughlybe on the same
time scale as the total input duration31,51. Another point to note is that
although not demonstrated in this work, the simple common-emitter
amplifier introduces signal gain and allows the neuron to drive sub-
sequent stages23, which could be beneficial in realizing future compact
multilayer networks.

To further understand the workings of this ALIF neuron, we simu-
lated the circuit in LTSPICE with the aforementioned VO2 model. The
circuit parameters used under controlled conditions are listed in Sup-
plementary Table 2. To illustrate the effect of Vg on the spiking fre-
quency, we directly varied the voltage applied on the gate of M3, and
calculated the spiking frequency and its reciprocal, the inter-spike
interval (ISI), from the resulting output voltage spikes (Fig. 3c). When Vg
is lower than the turn-on threshold voltage ofM3 (Vt, M3 ~ 0.7 V),M3 is off
and the spiking frequency remains constant in this range. As Vg is
increased further beyond Vt, M3, the spiking frequency decreases
monotonically. Beyond a Vg of ~1.65V, the membrane leakage current is
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so large that the reduced input current cannot charge C1 sufficiently to
raise Vm to Vth, therefore the neuron stops firing. Thus, is it evident that
the spiking frequency of the proposed ALIF neuron can be modulated
by Vg. The effect of the width-to-length (W/L) ratio ofM3 on the spiking
frequency was also simulated and the results are plotted in Supple-
mentary Fig. 13, showing that, for a given Vg, a largerW/L ratio results in
a lower spiking frequency due to an increased leakage current.

Next, we simulated the dynamical adaptation of the circuit by
applying a constant step input currentwhile allowingVg to dynamically
evolve. The resulting waveforms of Vg, Vm, and Vspike are illustrated in
Fig. 3d. The evolutionof the ISI is illustrated in the curve corresponding
to the controlled condition in Supplementary Fig. 15. As Vg increases
with each spike, the spiking frequency remains constantly high initi-
ally, before decreasing at an increasing rate, which is a similar trend as
that in Fig. 3c. Eventually, Vg is high enough such that Vm cannot reach
Vth unless Vg has decreased sufficiently. This is evident from the gra-
dual plateau feature during the late charging phase in the Vm wave-
form. As a result, Vg simply oscillates around a fixed value with a
prolonged period and the spiking frequency saturates at its lowest
level.When the input signal is removed, Vg decays at a ratemuch lower
than that of Vm, illustrating the difference in their time constants. The
adaptive property of the circuit can be tuned by adopting different
values for W/L (M2, M3), C2, and R3, as elucidated in Supplementary
Fig. 14-15. It can be seen that the onset of adaptation is later if either C2

is large or the W/L of M2 is small, as a larger capacitor and a smaller
current result in a slower charging process. On the other hand, the
saturation frequency canbe tunedbyM2,M3, andR3. A largerW/LofM2

induces a larger step increase in Vg, which dwells on its raised value
longer if R3 is larger, hence contributing to a larger ISI. Besides,M3 with

a larger W/L requires a lower Vg to achieve the same leakage current,
and a lower Vg decays at a slower rate, which increases the ISI. It is
worth noting that the initial high frequency cannot be adjusted as it is
solely determined by the LIF part. Thus, we presented the various
tuning knobs to obtain different adaptive properties, which can be
useful in optimizing the performance of the ALIF neurons. The
benchmark of the ALIF neuron in this work against previous imple-
mentations is shown in Supplementary Table 3, highlighting the sim-
plicity of our circuit.

The asynchronous spike encoder based on VO2 memristor
Another key role in neuromorphic physiological signal processing
systems is the spike encoder. An ideal encoder should provide a
compressed representation of the data while preserving as much
information as possible52. In ordinary neurons, analog signals are
encoded as spike frequencies which do not contain accurate timing
information, making it difficult to reconstruct the original analog sig-
nals. The asynchronous spike encoder based on VO2 memristor con-
verts the input analog signal into two spike trains, a positive and a
negative (UP/DOWN channel). The positive spike represents the
moment when the input signal increases beyond a threshold, while the
negative spike represents themomentwhen the input signal decreases
beyond a threshold. The spike trains can accurately reconstruct the
original input analog signal due to the inclusion of precise time
information. The schematic of memristor-based asynchronous spike
encoder is depicted in Fig. 4a, including input amplifier with a
capacitive-divider gain stage, intermediate amplifier, VO2 memristor
and feedback reset branch. According to the law of conservation of
charge at the negative input terminal node of the input stage op-amp,
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the voltage at gout changes onlywhen the input voltage changes. Then
the voltage of gout is amplified by the intermediate stage op-amp and
applied to the VO2 memristor. When the voltage exceeds the positive/
negative threshold Vth of the memristor, the memristor will become
LRS, thus issuing a positive/negative high voltage onR3. Then, the high
voltage will turn on the NMOS/PMOS through the feedback path, and
reset the voltage of gout. At this moment, the voltage on the VO2

memristor will be lower than positive/negative Vhold, thus the mem-
ristor will automatically return to HRS, the voltage on R3 falls, thereby
turning off the PMOS/NMOS on the feedback path. On the other hand,
the positive and negative spikes are separated by two diodes to UP/
DOWN channels as outputs. The threshold δ represents the incre-
mental or decremental change of the input signal that causes a single
spike, which can be described by Eq. 1 when C1 =C2:

δ =
V th

α Roff
Roff +R3

ð1Þ

where Vth is the threshold voltage of the VO2 memristor, while Roff is
the resistance of the HRS. α is the absolute amplification factor of the
intermediate stage op-amp, which can be described by Eq. 2:

α =
R2

R1
ð2Þ

It can be seen from the above formula that δ can be adjusted by
the amplification factor α of the intermediate stage op-amp.

We first use a sine wave to verify the functionality of the
memristor-based asynchronous spike encoder. Figure 4b exhibits the
simulation results in LTSPICE, where the blue curve represents the
original input, and the pink curve represents the reconstructed result,
in the first row. It can be seen that the signal is well reconstructed. The
middle row shows the node gout of the asynchronous spike encoder
(green curve), which is next amplified by intermediate stage op-amp
and applied to the VO2memristor.When the amplified voltage reaches
the symmetrical positive/negative threshold voltage of the VO2

memristor, the memristor switches to low resistance and emits a
positive/negative spike, which is divided into two channels by two
parallel reverse diodes as shown in the last row of Fig. 4b, where the
red and blue curve represent theUP andDOWNchannels, respectively.
When a spike appears in the UP channel, it means that the original
signal has increased by a δ. On the contrary, when a spike appears in
the DOWN channel, the original signal has decreased by a δ. The fre-
quency of spikes emission depends on the rate at which the original
input signal changes. The faster the original input signal changes, the
higher the intensity of the spikes. This type of encoding has the
advantage of the sparsity of the spikes, and the on-demand nature of
the encoding (when the input signal is not changing, no output spikes
are produced)11. Supplementary Fig. 16 exhibits the influence of
amplification factor α of the intermediate stage op-amp on the delta,
the larger the α, the smaller the δ. Increasing the amplification factor
improves the accuracy, but also increases the spike emission rate,
thereby increasing energy consumption. We tested the encoder with
two typical ECG signal waveforms, both of them can be well encoded
and reconstructed as shown in Fig. 4c, d, demonstrating its potential as
a next-generation neuromorphic spike encoder for physiological
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Fig. 4 | Proposedmemristor-based asynchronous spike encoder. a Schematic of
memristor-based asynchronous spike encoder which includes an input amplifier
with capacitive-divider gain stage, an intermediate amplifier, a VO2 memristor, and
a feedback reset branch. The voltage at gout changes only when the input voltage
changes which is then amplified by the op-amp in the middle stage and applied to
the VO2 memristor. Once the voltage of VO2 memristor exceeds its positive and
negative threshold voltage, VO2 memristor will switch to low resistance and gen-
erate a large current. This current is converted to a high voltage by R3, which will
turn on the PMOS/NMOS transistor on the feedback path, thereby resetting gout.
At this time, the voltage on the VO2memristor is lower than its holding voltage, and
VO2memristor switches to high resistance state, so that the voltage of R3 decreases
and the PMOS/NMOSwill be turned off. Finally, the positive and negative spikes are
divided into two channels through two antiparallel diodes. A good reconstruction

of the original input signal can be achieved using the encoded spikes since it marks
the timeatwhich the input signal increasesor decreases by afixedvalue δ.With this
type of encoding, the spikes are sparse and the encoding is on-demand, which is
friendly to neuromorphic systems. b The simulation results of memristor-based
asynchronous spike encoder in LTSPICE when a sine signal is applied. The first row
represents the original input signal (blue curve) and the reconstructed signal (pink
curve). The second and third rows represent the voltage of the node gout and the
output spike on UP/DOWN channel, respectively. Where the signal changes more
violently, the spikes are more intensive. When the input signal increases by a fixed
value δ, a spike appears on the UP channel. Conversely, at the moment a spike
appears on the DOWN channel, the input signal decreases by δ. c, d The simulation
results when two typical ECG waveforms are input to an asynchronous spike
encoder.
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signals. Due to the full use of the positive and negative thresholds and
volatile characteristics of the VO2 memristor, our circuit has been
greatly simplified without using complex control circuits and ADC/
DAC, compared with previous work (Supplementary Table 4). The
simulation parameters of the asynchronous spike encoder are pro-
vided in Supplementary Table 5.

A key aspect that needs to be considered when using a VO2

memristor in the asynchronous spike encoder is its reliability in
encoding physiological signals. This can be assessed based on the
lifespan of the encoder and the signal encoding quality. As afore-
mentioned, the VO2 memristor has a high endurance (Supplementary
Fig. 6), which will ensure the durability of the encoder. On the other
hand, the quality of signal encoding is affected by Vth fluctuations. We
introduced varying degrees of Vth fluctuations in the SPICE model and
performed multiple noisy encoding processes (Supplementary
Note 3). The encoding quality was quantified by the mean squared
error (MSE) between the original and the reconstructed signals. The
results are plotted in Supplementary Fig. 17, along with examples of
signal reconstruction under zero, moderate and high degrees of Vth

fluctuations. As the MSE and Cv correlate positively, our VO2 memris-
tor, which has a remarkably low Cv, will yield accurately encoded spike
outputs (Supplementary Note 3). Moreover, the tightMSE distribution
at such low Cv will also enable superior repeatability in spike encoding.
Therefore, these results on the endurance and signal encoding quality
attest to the reliability of our VO2 memristor-based spike encoding
architecture.

VO2 memristor-based LSNN and arrhythmia classification
Using the key modules presented above, we designed a robust and
efficient physiological signal processing system with great temporal
processing capacity. As shown in Fig. 5a, the system consists of two
stages, namely the VO2 memristor-based encoder followed by the
decision-making VO2-based LSNN32. The encoder converts analog
physiological signals, for instance an ECG signal of a heartbeat, into UP
andDOWNspike trains on aper input channel basis. These spike trains,
which faithfully represent the original signal, are then relayed to the
LSNN. Spatially, the LSNN is a 3-layer network comprising an input
spiking layer, a hidden recurrent spiking layer with a low-pass filter,
and an output classification layer. Each synaptic weight in all connec-
tions is assigned a random synaptic delay at network initialization. The
core of the LSNN is the hidden recurrent layer, which consists of LIF
neurons and ALIF neurons. It is the adaptive property of the ALIF
neurons that endows LSNN with its temporal computing capability51.
Here, we utilized the VO2 memristor-based LIF neurons and ALIF
neurons from the previous sections. During network simulations, the
dynamics of these neurons were modeled according to their corre-
sponding circuit designs andhave the followingdiscretizedmembrane
dynamics equations (Eqs. 3–4):

Vm LIF t +Δtð Þ=αVm LIF tð Þ+ 1� αð ÞReffx ð3Þ

Vm ALIF t +Δtð Þ=αVm ALIF tð Þ+ 1� αð ÞReff x � I leak
� � ð4Þ

where α = exp �Δt=ReffC1

� �
. Reff, x, and Ileak are the effective resistance

of the VO2 memristor in HRS in series with the readout resistor, the
input current scaled by a factor, and the leakage current via transistor
M3 due to adaptation, respectively. When Vm exceeds Vth_eff, it is reset
to Vhold_eff, where Vth_eff and Vhold_eff are the effective threshold and
holding voltages of VO2 memristor considering the readout resistor,
respectively. Ileak depends on Vg, which evolves according to the dis-
cretized dynamics equation (Eq. 5):

Vg t +Δtð Þ=βVg tð Þ+ 1� βð ÞR3Iaz ð5Þ

where β= exp �Δt=R3C2

� �
, z is 1 if a spike was fired and 0 otherwise,

and Ia is the adaptive charging current viaM2. The forward pass during
both the training and testing phases, as well as the backward pass
during only the training phase, is shown in the flow chart in Fig. 5b. In
the forward pass, the input spike vector of the current timestep and
the hidden spike vector of the previous timestep are linearly trans-
formed by the forward weights and the recurrent weights, respec-
tively. The resulting vectors are added together and then integrated in
the hidden layer to produce a hidden spike vector, which is subse-
quently low-pass filtered before being linearly transformed by output
weights into an output vector. The output node with the highest value
in the last timestep corresponds to the classification result. In the
backward pass, the total error consisting of the classification cross-
entropy loss and a spike regularization term, which promotes sparse
firing of the spiking neurons32, is back-propagated to train the fully-
connected weights. As each spiking neuron is effectively a non-
differentiable step activation function, we used a surrogate derivative
for gradient calculations32,53 (see “Methods”).

Next, we investigated the performance of the proposed physio-
logical signal processing system on classifying heartbeats from the
MIT-BIH arrhythmia database54. The ECG recordings were pre-
processed and categorized according to the AAMI recommended
classes55 (see “Methods”). 2000 heartbeat samples were used as our
dataset, which were randomly split into a training set of 1664 samples
and a testing set of 336 samples.

For this 4-class heartbeat classification task, weused the proposed
systemwith an LSNN of size 3 × 100 × 4, inwhich out of the 100 hidden
neurons, 60 were LIF neurons while the other 40 were ALIF neurons.
The 3 input nodes correspond to UP, DOWN, and CUE channels, while
the 4 output nodes correspond to the 4 classes of heartbeats. Other
LSNN parameters are listed in Supplementary Table 6, wherein the
parameters describing the VO2 memristor were extracted from
experimental data. The single-channel analog heartbeat is encoded
into an UP spike train and a DOWN spike train using the VO2

memristor-based encoder as shown in Fig. 5c. Also shown is the CUE
channel, which fires constantly at the end of the heartbeat, prompting
the LSNN to generate a valid classificationoutput.We trained the LSNN
for 150 training epochs. Figure 5d, e plot the spike raster of the LIF
neurons and ALIF neurons, respectively, when the trained system was
classifying a normal heartbeat (Fig. 5a inset, Fig. 5c). Figure 5f illus-
trates the Vg evolution of five ALIF neurons. Each step increase in Vg

implies a spike being fired by that neuron in the previous timestep,
hence the spiking activities and the patterns within can be easily
observed. ALIF neurons that fire at a high rate during the heartbeat
(timestep ~500) could not fire easily during the output period (time-
step >1000) by virtue of their adaptive property manifested here as a
high Vg, while those initially inactive neurons fired at a high rate during
the output period. This exemplifies the negative imprinting principle51,
which equips the ALIF neurons with remarkable temporal processing
capabilities. As can be seen from the output probabilities in Fig. 5g, the
system correctly classified this heartbeat. The evolution of the test
accuracy of the system is shown in Fig. 5h, indicating a maximum
accuracy of 95.83%. The confusion matrix in Fig. 5i further illustrates
the classification results in detail.

To further investigate the computational advantage of the VO2

memristor-based ALIF neurons, we trained two other same-sized
LSNNs but with different configurations, one with only hidden LIF
neurons (LIF-only LSNN) while the other with only hidden ALIF (ALIF-
only LSNN) neurons, on the same task. The spike raster plots, Vg evo-
lution, and output probabilities for an instance of a normal heartbeat
are shown in Supplementary Figs. 18–19. The accuracy evolutions, loss
evolutions, and confusion matrices are compared to the LSNN with
both types of spiking neurons (mixed LSNN) as shown in Supple-
mentary Fig. 20. We also trained the three configurations of LSNNs in
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memristor-based physiological processing system detailing the LSNN decision-
making stage, which is comprised of an input layer, a hidden recurrent layer with
LIF neurons andALIF neurons, a low-passfilter, and anoutput layer. The analogECG
heartbeat is first encoded by the VO2 encoder into UP and DOWN spike trains,
which are then relayed to the LSNN for classification. b Flow chart of the LSNN
operation. In the forwardpass, theweighted input spikes are added to theweighted
hidden spikes from the previous timestep and fed into the hidden layer. The
resulting hidden spikes are low-pass filtered and then weighted to generate output
vectors. The output nodewith the highest value in the last timestep corresponds to
the classification result. During back-propagation through time (BPTT), the cross-
entropy loss and the spike regularization term are added together and propagated

backward for weight updates. A differentiable surrogate function is used to cal-
culate the gradients. c Spike raster of the encoded normal heartbeat in (a) with a
CUE signal prompting a valid output period. d Spike raster of the LIF neurons.
e Spike raster of the ALIF neurons. f The Vg evolution of five ALIF neurons showing
that inactive (active) neurons before the output period fire with ease (difficulty)
during the output period. g The evolution of output probabilities showing that the
system correctly classified the normal heartbeat. h Evolution of test accuracy
during 150 training epochs, reaching a maximum of 95.83%. i Confusion matrix of
the classification results showing that the heartbeats were well classified.
j Comparison of the maximum accuracies of the mixed LSNN, the LIF-only LSNN,
and the ALIF-only LSNN in both the 2-class (N, not N) and the 4-class (N, VEB, SVEB,
F) heartbeat classification tasks, illustrating the importance and the computing
capacity of the ALIF neurons.
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classifying heartbeats as Normal (N) or not Normal (not N). The LSNNs
were of size 3 × 20 × 2, wherein 8 out of the 20 hidden neurons in the
mixed LSNN were ALIF neurons. The spike raster plots, Vg evolution,
and output probabilities for an instance of a normal heartbeat are
shown in Supplementary Figs. 21–23, while the accuracy evolutions,
loss evolutions, and confusion matrices are shown in Supplementary
Fig. 24. The best test accuracy statistics for 18 training trials are shown
in Supplementary Table 7. By comparing themaximum test accuracies
attained by the three LSNN configurations as shown in Fig. 5j, two
important observations can be made. Firstly, the LIF-only LSNN per-
formed worse than the mixed LSNN by approximately 15% and 18% in
terms of accuracy in the 2-class and the 4-class task, respectively,
thereby highlighting the importance of ALIF neurons in processing the
temporally-structured information within physiological signals. Sec-
ondly, the ALIF-only LSNN performed only marginally better than the
mixed LSNN in general, thereby signifying the necessity of setting only
a fraction of the hidden nodes as ALIF neurons to achieve superior
performance. These findings elucidate the immense temporal com-
puting capability of these neurons. Moreover, the design choice of
using themixed LSNN configuration is further justifiedby the potential
reduction of area costs over the ALIF-only LSNN, especially when
scaling up the system and considering its major use case in compact
wearable medical devices.

Epileptic seizure detection
To further verify the ability of the proposed VO2 memristor-based
physiological signal processing system in dealing with other complex
signals, we demonstrated epileptic seizure detection on EEG signals
from the CHB-MIT scalp EEG database56. The EEG recordings were
preprocessed as detailed in the “Methods” section. 2530 EEGclipswere
used for training, which is comprised of 1265 Normal (N, negative
class) and 1265 Epileptic (E, positive class) independent non-
contiguous EEG clips. The testing set is comprised of 2878 con-
tiguous EEG clips amounting to a one-hour period and is a highly
imbalanced dataset with only 31 contiguous epileptic clips. The choice
of a contiguous imbalanced testing set is to closely simulate a real-
world scenario during epileptic seizures, wherein the seizure episodes
are often sparse with each lasting for a short period of time. This is to
ensure that our trained system can be deployed in real-time epileptic
seizure detection in the future.

A schematic illustrating the training, testing, and post-processing
steps of the epileptic detection system is shown in Fig. 6a. The 18-
channel EEG clip (inset is an example of an epileptic clip) is first
encoded by the VO2 memristor-based encoder into 18 pairs of UP and
DOWN spike trains, before being input into the LSNN. The training and
testing phases of the LSNN are similar to that of the ECG task, wherein
the encoded signal is classified by the LSNN in the forward pass during
both phases, and the error, which includes cross-entropy loss and
spike regularization, is back-propagated through time to update the
weights during training only. Due to the highly imbalanced nature of
the testing set, the performance of the LSNN during testing was eval-
uated using the G-mean metric57, which is the geometric mean of the
sensitivity and the specificity of the classification system (Eqs. 6–8):

Sensitivity =
TP

TP+FN
ð6Þ

Specificity =
TN

TN+FP
ð7Þ

G�mean=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð8Þ

where TP, FP, TN, and FN denote true positives, false positives, true
negatives, and false negatives, respectively. To improve the system

performance, especially in terms of specificity, a post-processing step
was performed on the contiguous LSNN classification results to obtain
the final classification results58,59 (light purple box in Fig. 6a). It consists
of a moving average operation, followed by a thresholding operation
at each timestep to output a binary sequence, which is also contiguous
in time. Note that the post-processing step is decoupled from the
LSNN, and is not involved in loss calculation during training, or in
model evaluation during testing.

The LSNN employed for this task was of size 37 × 40 × 2, with 16
out of the 40 hidden spiking neurons being ALIF neurons. The 37 input
nodes include 18 UP channels, 18 DOWN channels, and a CUE channel,
while the 2 output nodes correspond to N and E. Other LSNN para-
meters are listed in Supplementary Table 6. We trained the LSNN for
150 epochs. The CUE signal and the encoded spike trains that repre-
sent the epileptic EEG clip in Fig. 6a are shown in Fig. 6b. The spike
raster plots of the LIF and ALIF neurons when the trained LSNN was
classifying this clip are shown in Fig. 6c, d, respectively. The Vg evo-
lution of five ALIF neurons is shown in Fig. 6e, while the output
probabilities are shown in Fig. 6f. As can be seen, the system correctly
classified this EEG clip. As shown in the confusionmatrix in Fig. 6n, the
accuracy, sensitivity, and specificity of the LSNN were 82.70%, 100%,
and 82.51%, respectively. All of the positive epileptic EEG clips were
accurately identified.We also trained a LIF-only LSNN and anALIF-only
LSNN on the same task (Supplementary Figs. 25–27), again corrobor-
ating the superior temporal processing capability of our ALIF neurons.
The test G-mean statistics for 18 training trials are shown in Supple-
mentary Table 8.

From these results, we can see that the specificity of the LSNN
indicates a rather high number of false positives, possibly due to
insufficient training data. The nature of the detected positives is
revealed by visualizing the contiguous LSNN classification results
(Fig. 6h) and comparing them against the target labels (Fig. 6g). While
the accurately identified true positives spanned several contiguous
EEG clips (Fig. 6k), the predicted false positives were randomly dis-
tributed throughout the one-hour period (Fig. 6l). This observation
motivated the inclusion of the aforementioned post-processing step.
As the moving average and the thresholding depends on the width of
the averaging window and the threshold value, respectively, we opti-
mized these parameters by enumerating their possible combinations
and comparing the post-processing accuracies, sensitivities, and spe-
cificities (Supplementary Fig. 28). A windowwidth of 9 and a threshold
of 0.8 were selected for the best accuracy and sensitivity. As shown in
Fig. 6i, the moving average smoothed out the random false positives
while preserving the clustered true positives. Upon thresholding, the
smoothened false positives were effectively removed (Fig. 6j), while
the true positives were retained (Fig. 6m). As shown in the confusion
matrix in Fig. 6o, the accuracy, sensitivity, and specificity after post-
processing were 99.79%, 90.32%, and 99.89%, respectively. Owing to
the efficient spike encoding scheme and the LSNN with high temporal
processing capability, our system achieved state-of-the-art perfor-
mance in various metrics while only needing 1–3 orders of magnitude
fewer weights (Supplementary Table 9). The small network coupled
with compact memristive circuit design for the encoder and the
spiking neurons will benefit future hardware integration in biomedical
devices and next-generation human-machine interfaces60.

Discussion
The proposed VO2 memristor-based physiological signal processing
system has a high area efficiency. To illustrate this, we compared each
VO2 circuitmodulewith existing CMOSormemristor implementations
(Supplementary Note 4). With proper device and circuit optimizations
(Supplementary Table 10), the LIF and ALIF neuron can achieve a small
area of ~41.3 μm2 and ~53.4 μm2, respectively. Besides achieving the
smallest area overhead, it is worth noting that the optimized VO2

memristor-based ALIF neuron is also superior in terms of the
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Fig. 6 | Illustration of the physiological processing system for EEG epileptic
seizure detection. a Flow chart of the VO2 memristor-based physiological signal
processing system for epileptic seizure detection. Each EEG clip is encoded by the
VO2 encoder and then classified by the LSNN. During training only, the cross-
entropy loss and the spike regularization term are calculated and propagated
backward to update the weights. A final post-processing step consisting of moving
average and thresholding improves the performance of the system. b Spike raster
of the encoded epileptic EEG clip in (a) with a CUE signal prompting a valid output
period. cSpike raster of the LIF neurons.dSpike raster of theALIF neurons. eTheVg
evolution of five ALIF neurons. f The evolution of output probabilities showing that
the system correctly classified the epileptic EEG clip. g Visualization of the con-
tiguous target labels. h Visualization of the contiguous classification results of the

LSNN. i The results obtained after applying moving average with a window of 9,
showing reduced values for regions with false positives, while maintaining high
values for regions with true positives. j The final classification results after
thresholding by a value of 0.8. k A zoomed-in plot of the area marked by the right
red rectangle in (h), showing the contiguous nature of true positives. lA zoomed-in
plot of the area marked by the left red rectangle in (h), showing the distributed
nature of false positives. m A zoomed-in plot of the area marked by the red rec-
tangle in (j), showing the correctly predicted epileptic seizure clips. n Confusion
matrix of the raw LSNN classification results before post-processing. o Confusion
matrix of the post-processed classification results, illustrating the benefits of the
post-processing step in increasing specificity and accuracy.

Article https://doi.org/10.1038/s41467-023-39430-4

Nature Communications |         (2023) 14:3695 10



combined aspects of area, speed and energy consumption (Supple-
mentary Fig. 29, Supplementary Table 11). Furthermore, the proposed
VO2memristor-based encoder can achieve an area of ~2231 μm2, which
is almost an order of magnitude smaller than other similar encoders
(Supplementary Tables 12–13). Thus, VO2 memristor-based encoder
and neurons can provide substantial benefits over other CMOS or
memristor implementations in realizing physiological signal proces-
sing systems. Further shrinking of VO2 memristors is desirable in rea-
lizing hardware-based neural networkswith an even higher integration
density, especially in neuron circuits when capacitors, which are the
dominant area-consuming components, are reduced or even replaced
by the intrinsic parasitic capacitance for faster computations. Planar
devices with gap sizes of 100nm or less have been reported
previously40,61, and aggressive scaling down to the limits of lithography
is possible given that the metal-insulator transition and, subsequently,
the threshold switching behavior still exists at the nanoscale62,63. Apart
from illustrating the benefits of our proposed physiological signal
processing system, another takeaway from this discussion is the need
for meticulous co-optimizations between various circuit components.
The demonstrated co-optimizations, although simple, represent the
first of many steps that need to be emphasized. Lastly, we further
envision the merging of the VO2 memristor-based encoders and neu-
rons with non-volatile crossbar arrays of emerging memories27 via
proper interfacing (Supplementary Fig. 30) to ultimately realize an
extremely compact physiological signal processing architecture.

In summary, a highly efficient neuromorphic physiological signal
processing hardware system for the next-generation human-machine
interface based on VO2 memristors was proposed for the first time.
This system contains a memristor-based asynchronous spike encoder
and adecision network that features a long short-termmemory spiking
neural network which analyzes the physiological signals encoded in
spikes. The spikes from memristor-based encoder mark the time at
which the input signal has changed beyond a fixed threshold, which
can preserve the original input information content to the greatest
extent, so the encoded spikes can reconstruct the original signal
accurately. The accuracy of signal encoding and reconstruction can be
adjusted by the amplification factor of the intermediate stage op-amp.
This spike encoding type has the advantage of sparse spikes and on-
demand nature (no output spikes if input signal does not change). The
asynchronous spike encoder was achieved efficiently without ADC/
DAC and special control circuits due to the positive/negative sym-
metric threshold and volatile characteristics of the VO2 memristor. In
the decision-making LSNN, the ALIF neuron plays a key role which was
achieved efficiently with VO2 memristor. The release of each spike will
change the current in the discharge path by feedback, achieving self-
adaptation. The incorporation of ALIF neurons significantly improved
the accuracy of the LSNN. The neuromorphic physiological signal
processing system based on memristor achieved high accuracies of
95.83% and 99.79%with a very small LSNN on arrhythmia classification
and epileptic seizure detection tasks, respectively. Our work demon-
strated the potential and high efficiency of memristor-based neuro-
morphic systems for physiological signal processing, facilitating the
construction of next-generation human-machine interfaces.

Methods
Fabrication of VO2 memristor devices
The 20 nm VO2 films were epitaxially grown on c-Al2O3 substrates by
pulsed-laser deposition (PLD) technique using a 308-nm XeCl excimer
laser operated at an energy density of about 1 J cm−2 and a repetition
rate of 3Hz. The VO2 films were deposited at 530 °C in a flowing oxy-
gen atmosphere at the oxygen pressure of 2.0 Pa. Then, the films were
cooled down to room temperature at the speed of 20 °C min−1. The
deposition rate of VO2 thin films was calibrated by X-ray
Reflection (XRR).

The VO2 memristor was designed as a planar structure with a
channel length of 400nm and a width of 2 μm. The electrodes, which
are composed of Au (40 nm) and Ti (5 nm) with a distance of 400 nm,
were patterned with electron beam lithography (EBL) along with
electron beam evaporation and lift-off.

Electrical measurements
The VO2 memristor was placed in a Signatone probe station to facil-
itate connections to the external circuit, sourcemeasurement unit and
oscilloscope. As for measurements under various ambient pressures
and in an N2 environment in Supplementary Fig. 5, the VO2 memristor
was placed in a LakeShore cryogenic probe station. Electrical mea-
surements were performed using an Agilent B1500A semiconductor
parameter analyzer and the RIGOL MSO8104 digital storage oscillo-
scope. We used an Agilent B1500A semiconductor parameter analyzer
to perform electrical measurements of a single VO2 device in Fig. 2b
and Supplementary Fig. 5. In Supplementary Figs. 4, 6 and 7, Agilent
B1500A was applied to create the pulse signal, and the oscilloscope
wasused tomeasure either the voltage across the deviceor the current
on the device. The experimental setup depicted in Supplementary
Fig. 8 was used to connect the VO2 device to the external LIF circuit for
electrical measurements. In Fig. 2e–h and Supplementary Figs. 9–11,
Agilent B1500A was applied to create the input signal, and the oscil-
loscopewas used tomeasure theoutput ofAgilent B1500A, the voltage
on the capacitor and the output of the LIF neuron circuit.

The physiological signal dataset
The MIT-BIH heart arrhythmia database54 contains 30min ECG
recordings from 48 subjects. In order to improve the simulation
accuracy, the original ECG waveforms were resampled at a frequency
of 1800 Hz and split into single heartbeats of ~556ms (1000 time-
steps). Then, the heartbeatswerenormalized to 0–0.6 V. In total, 2000
different heartbeats were used as the dataset for this task, wherein the
Normal (N), Ventricular ectopic beat (VEB), Supraventricular ectopic
beat (SVEB), and Fusion beat (F) classes consisted of 1000, 500, 250,
and 250 heartbeats, respectively.

The seizure data was obtained from CHB-MIT Scalp EEG
Database56. The CHB-MIT database contains scalp EEG recordings
from 22 patients at the Children’s Hospital Boston. The original
sampling rate of the database is 256 Hz. The EEG data in this work
was from patient 1 where the data were resampled to 800Hz. We
selected 2530 data clips from the database for training. Each data
clip contained 1000 time-step data with 18 channels (~1.25 s). The
test sets were arranged in a one-hour-long segment to simulate the
real-world situation. The EEG waveforms were all normalized
to 0–0.6 V.

The SPICE model of VO2 memristor
The schematic diagramof the planar VO2memristormodel is shown in
Supplementary Fig. 12. First, the biasing polarity is determined. If
V top ≥Vbot, then the model compares V top � Vbot to the thresholds: in
HRS, the model checks if V top � Vbot ≥V th (equivalently
V top ≥Vbot +V th), and in LRS, the model checks if V top � Vbot ≤Vhold

(equivalently V top ≤Vbot +Vhold). If V top<Vbot, the model compares
Vbot � V top to the thresholds, that is, checking Vbot ≥V top +V th and
Vbot ≤V top +Vhold in HRS and LRS, respectively. The right-hand sides of
these four inequalities are constructed using the four voltage sources
on the left to give V +

top and V +
bot, taking into account the state of the

device given by Vo (1 in HRS, 0 in LRS). These comparisons are done by
a comparator, which is modeled here by the behavioral voltage source
Vo according to Eq. 9:

Vo =
1
2

1 + tanh 2αΔVð Þ� � ð9Þ
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where ΔV is described by Eq. 10:

ΔV =
V +

bot � V top, V top ≥Vbot

V +
top � Vbot, V top<Vbot

(
ð10Þ

This will result in a hysteretic I-V behavior typical of such devices.
To model the finite switching time, R0 and C0 are introduced to sup-
press instantaneous change in Vo. The resistance of the device, RVO2,
which is determined by Vc, is then given by Eq. 11:

1
RVO2

=
1� Vc

Roff
+

Vc

Ron
ð11Þ

Simulation of the LSNN
The decision-making LSNN for physiological signal processing was
implemented using the PyTorch-based SpikingJelly module64. BPTT
was employed to train the network. The total loss L is given by Eq. 12:

L=
1
B

XB
i= 1

XC
j = 1

�tijlogσ yij
� �

+
λf
N

XN
n= 1

�fn � f0
� �2 ð12Þ

The first term on the right-hand side is the categorical cross-
entropy loss considering C number of categories and a training batch
size of B. yij and tij are the raw output (logits) and the target output,
respectively, of the j-th output neuron for the i-th input sample. σ(·) is
the softmax function. The second term describes the spike regular-
ization for sparse firing32, which is the mean squared difference
between the average firing rate of each hidden neuron and the target
frequency f0. N is the total number of hidden neurons and λf is the
regularization coefficient. The average firing rate of the n-th neuron is
given by Eq. 13:

�f n =
1
Δt

� 1
B

XB
i= 1

1
T

XT
j = 1

zijn

 !
ð13Þ

where T is the total number of timesteps, Δt is the length of each
timestep, and zijn is the presence of a spike at the j-th timestep
during the i-th input sample. Spiking neurons can be regarded as
having a non-differentiable step activation function, thus a
surrogate derivative described by Eq. 14 was used for gradient
calculations32,53.

f xð Þ=max 0, γ 1� ∣x∣ð Þ½ � ð14Þ

The values for all relevant parameters are listed in Supplementary
Table 6.

Data availability
All data supporting this study and its findings are available within the
article, its Supplementary Information and associated files. The source
data underlying Figs. 2b, c, e–l, 3c, d, 4b–d, 5a, c–j, 6a–o have been
deposited in [https://zenodo.org/record/7888750] or are available
from the corresponding author upon reasonable request.

Code availability
The codes used for the simulations are described in [https://github.
com/pekjuntiw/NCOMMS-23-03137] or are available from the corre-
sponding author upon reasonable request.
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