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CAJAL enables analysis and integration of
single-cell morphological data using metric
geometry

Kiya W. Govek1, Patrick Nicodemus1, Yuxuan Lin2, Jake Crawford3,
Artur B. Saturnino 2, Hannah Cui2, Kristi Zoga1, Michael P. Hart 1 &
Pablo G. Camara 1,4,5

High-resolution imaging has revolutionized the study of single cells in their
spatial context. However, summarizing the great diversity of complex cell
shapes found in tissues and inferring associations with other single-cell data
remains a challenge. Here, we present CAJAL, a general computational fra-
mework for the analysis and integration of single-cell morphological data. By
building upon metric geometry, CAJAL infers cell morphology latent spaces
where distances between points indicate the amount of physical deformation
required to change the morphology of one cell into that of another. We show
that cell morphology spaces facilitate the integration of single-cell morpho-
logical data across technologies and the inference of relations with other data,
such as single-cell transcriptomic data. We demonstrate the utility of CAJAL
with several morphological datasets of neurons and glia and identify genes
associated with neuronal plasticity in C. elegans. Our approach provides an
effective strategy for integrating cell morphology data into single-cell omics
analyses.

Since the advent of staining techniques in the nineteenth century, cell
morphology has become one of the most described phenotypes in
biology. The idea that themorphology of a cell is related to its function
has been central tomajor discoveries, suchas the neurondoctrine1, the
molecular basis of sickle cell disease2, and the pathways for cell
migration and chemotropic sensing3. In the nervous system,whole-cell
patch-clamp has enabled the morphological reconstruction and elec-
trophysiological recording of >100,000 neurons4. The incorporation
of high-throughput single-cell RNA-seq onto patch-clamp, known as
Patch-seq5–9, has opened the door to deeper characterizations that
include morphological, transcriptomic, and electrophysiological
information from the same cells10. More broadly, the recent explosion
of spatially resolved technologies for single-cell transcriptomics has

transformed the study of cells in their spatial context by enabling
researchers to infer links between morphological and molecular
phenotypes11–13. The potential of this new array of techniques is
immense, not only for cell taxonomic purposes, but also for unco-
vering the pathways that are associatedwith, andmay ultimately drive,
the morphological diversification and plasticity of cells.

Algorithms for cell morphometry seek to determine similarities
among the morphology of individual cells in digitally reconstructed
microscopy images. Current methods extract a set of shape descrip-
tors that summarize the morphology of each cell. Simple geometric
descriptors like the area and perimeter of the cell14,15 can be applied to
most cell types, but have limited power to accurately discriminate
complex cellmorphologies like those of neurons andglia. On the other
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hand, more complex cell-type-specific descriptors, such as neuronal
branching patterns16–18, need to be tailored to the specific cell type of
interest and cannot be applied broadly. In addition, they are arbitrary
with respect to the features that are used, and the weight assigned to
them. To overcome these limitations, other methods introduce simi-
larity scores based on tree alignment19,20 or decomposition in Fourier,
Zernike, or spherical harmonicmoments21–24. However, thesemethods
require building combinations of descriptors that are invariant under
rigid transformations or carefully pre-aligning the cells using Pro-
crustes analysis, and they fail to quantify morphological differences
between highly dissimilar cells. In general, none of the current
approaches reflect the biophysical processes involved in cell mor-
phological changes or lead to an actual distance function in the cell
morphology space. These limitations have precluded the development
of advanced algebraic and statistical approaches for the analysis of cell
morphology data, such as methods for integrating these data, con-
structing consensus cell morphologies, or inferring cell state trajec-
tories associated with morphological processes.

Here, we build upon recent developments in applied metric
geometry and shape registration25–27 to establish a general compu-
tational framework for studying complex and heterogeneous cell
morphologies across the broad range of cells found in tissues. This
framework enables the characterization of morphological cellular
processes from a biophysical perspective and produces an actual
mathematical distance upon which rigorous algebraic and statistical
analytic approaches can be built. Our analyses show that this
approach has the generality and stability of simple geometric shape
descriptors, the discriminative power of cell-type-specific descrip-
tors, and the unbiasedness and hierarchical structure of moments-
based descriptors. Using this framework, we address several out-
standing methodological roadblocks in relating cell morphology to
molecular content and function, including the integration of mor-
phological information across experiments and technologies and the
combined analysis of morphological, molecular, and physiological
information of individual cells. Applying this framework to Patch-
seq, patch-clamp, fluorescencemicro-optical sectioning tomography
(fMOST), electron, and two-photon microscopy data of neurons and
glia, we identify some of the genetic andmolecular programs that are
associated with the plasticity of neurons. Taken together, the results
of these analyses demonstrate that the application of metric geo-
metry to the study of cell morphology not only increases the accu-
racy and versatility of cell morphology analyses, but also enables
currently unavailable analyses such as the integration of cell mor-
phological data across experiments. We have implemented this
analytic framework in an open-source software28, called CAJAL, which
we expect will be useful to researchers working with single-cell
morphological data of any kind.

Results
A general framework for the quantitative analysis of cell mor-
phology data
In its simplest formulation, the study of cell morphology involves the
quantitative comparison of cell shapes irrespective of distance-
preserving transformations (isometries), such as rotations and
translations. From a mathematical standpoint, this is a problem of
metric geometry. The Gromov–Hausdorf (GH) distance measures
how far two compact metric spaces are from being isometric29,30. In
physical terms, it determines the minimum amount of deformation
required to convert the shape of an object into that of another. The
use of the GH distance to describe cell shapes is therefore broadly
applicable to any cell type, as it does not rely on geometric features
that are particular to the cell type or require pre-aligning the cells to a
reference shape. Because of these reasons, we sought to develop a
general framework for cell morphometry by building upon these
concepts in metric geometry.

Since computing the GH distance is intractable even for relatively
small datasets, we based our approach upon a computationally effi-
cient approximation, referred to as the Gromov–Wasserstein (GW)
distance25–27. The GW distance preserves most of the mathematical
properties of the GH distance and leads to an actual distance
function26. Although its running time grows cubically with the number
of points, its efficiency can be further improved by means of nearly
linear-time approximations that build upon optimal transport
regularization31,32 and nesting strategies33.

The starting point to our analytic framework is the 2D segmen-
tationmasks or 3D digital reconstructions of individual cells, which are
discretized by evenly sampling points from their outline (Fig. 1a). For
each cell, we compute the pairwise distance matrix (di) between its
sampledpoints. Then, for eachpair of cells, i and j, we compute theGW
distance between the matrices di and dj using optimal transport
(Fig. 1b). The result is a pairwise GW distance that quantifies the
morphological differences between each pair of cells.

Different metrics for measuring distances between sampled
points lead to different properties of the GW distance that may be
advantageous in specific applications (Fig. 1a). For example, using
Euclidean distance results in a GW matrix that accounts for the posi-
tioning of cell appendages, which can be particularly useful in the
study of neuronal projections. On the other hand, using geodesic
distance results in a GW matrix that is invariant under bending
deformations of the cell, and it is therefore particularly sensitive to
topological features such as the branching structure of cell
appendages.

In all cases, the resulting GW distance can be thought of as a
distance in a latent space of cell morphologies (Fig. 1c). In this latent
space, each cell is represented by a point, and distances between cells
indicate the amount of physical deformation needed to change the
morphology of one cell into that of another. By formulating the pro-
blem in this way, we can use statistical and machine learning approa-
ches to define cell populations based on their morphology;
dimensionally reduce and visualize cell morphology spaces; integrate
cell morphology spaces across tissues, technologies, and with other
single-cell data modalities (for example, single-cell RNA-seq or ATAC-
seq data); or infer trajectories associated with continuous morpholo-
gical processes. For example, for datasets that contain both morpho-
logical and omics data, the Laplacian score for feature selection34 can
be used to identify omics features, such as gene expression or genetic
variants, that are associated with differences in cell morphology. We
have implemented these analyses in an open-source Python library,
called CAJAL, which can be used with arbitrarily complex and hetero-
geneous cell populations28 (Fig. 1d).

GW cell morphology spaces accurately summarize complex cell
shapes
To assess the ability of GW cell morphology spaces to summarize
complex cell shapes, we applied CAJAL to the 3D basal and apical
dendrite reconstructions of 506 neurons from themouse visual cortex
profiled with patch-clamp35. The resulting space of cell morphologies
recapitulated the neuronal morphological types of the visual cortex
(Fig. 2a). Cells with a similar morphology appeared in proximity in the
UMAP representation of this space. Molecularly defined neuronal
types were also localized in the representation (Fig. 2b), consistent
with the presence of morphological characteristics that are unique to
each molecular subtype. Excitatory and inhibitory neurons clustered
separately, and individual neurons were organized in the cell mor-
phology space according to their cortical layer and Cre driver line
(Fig. 2b). Clustering the morphology space using Louvain community
detection36 partitioned it into 9 morphological populations. Using the
metric structure of the cell morphology space, we then computed
the medoid and average cell morphology for each cluster (Fig. 2c).
These summaries accurately represented the main morphological
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characteristics of the cell populations and were consistent with the
diversity of neuronalmorphologies found in themouse visual cortex35.
Specifically, known morphological types (m-types) of visual cortex
neurons obtained by hierarchical clustering of pre-defined lists of
morphological features35 were localized in the cell morphology space
(Supplementary Fig. 1).

Current methods for neuronal morphometry differ in their mod-
eling assumptions, the use of predefined morphological features, and
their capacity to produce a morphological distance function. To per-
form a quantitative evaluation of the ability of the GW distance to
accurately summarize complex neuron morphologies in comparison
to current neuronal morphometry methods, we analyzed four pub-
lished datasets from the Allen Brain Institute and the BRAIN Initiative.
These datasets comprised three different technologies for single-cell
morphology profiling and included two Patch-seq datasets of the
mouse visual37 and motor cortices38, a fMOST dataset of the mouse
brain39, and the patch-clamp dataset of the visual cortex35 analyzed

above. For each of the four datasets, we assessed the ability of CAJAL
and 6 other methods (Sholl analysis16, L-measure17, SNT18, NBLAST19,
TMD40, and ElasticP2P41) to identify morphological differences
between molecularly defined neurons. In the case of the patch-clamp
dataset, we considered neurons labeled with different Cre driver lines,
for a total of 31 lines, with the understanding that each line pre-
ferentially labels distinct molecular neuronal types. In the case of the
two Patch-seq datasets, we considered the classification of motor and
visual cortex neurons into 9 and 6 known transcriptionally defined
classes37,38, respectively. In the case of the fMOST dataset, we con-
sidered the combination of Cre driver line and anatomic location, for a
total of 8 neuronal types.

We first evaluated the performance of eachmethod using the cell-
type separation (CTS) score introduced in a previous comparative
study of cell shape analysis methods22. This score quantifies the rela-
tive separation of molecularly and anatomically defined cell types in
the morphology space produced by each method. Across all four

Fig. 1 | A general framework for the quantitative analysis and integrationof cell
morphological data based onmetric geometry. a CAJAL takes as input the 2D or
3D cell segmentationmasks or traces of a set of cells. For each cell, a set of points is
evenly sampled from the outline and their pairwise distancematrix di is computed.
The Euclidean and geodesic distances between 2 sampled points is indicatedwith a
blue and red dashed line, respectively. Different metrics for computing di capture
different aspects of cell morphology. b An optimal matching between the dis-
cretized morphologies of each pair of cells is established by computing the GW
distance between their corresponding di matrices. Computationally efficient
approximations to theGWdistanceuse optimal transport theory to establish amap
between the distributions of sampled points pairwise distances in each cell. The

value of the cost function at the minimum quantifies the amount of deformation
that is needed to convert the shape of one cell in that of another. cTheGWdistance
matrix can be thought of as a distance in a latent space of cell morphologies. This
enables the application of statistical andmachine learningmethods for the analysis
and integration of point clouds. d Overview of the open-source software CAJAL.
The software takes single-cell morphological data in the form of segmentation
masks or neuronal traces as input and enables its integration with other single-cell
data modalities, the visualization and clustering of cell morphology spaces, the
identification of molecular and electrophysiological features associated with
changes in cell morphology, the computation of average or representative cell
shapes, and the visualization of trajectories in the cell morphology space.
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datasets, CAJAL exhibited the highestCTS score among the 7methods,
with a score 3.1 times larger on average than that of the othermethods
(Fig. 2d and Supplementary Table 1). ElasticP2P and L-Measure
achieved the second and third best scores, respectively, with values
half the size of CAJAL’s score.

We next trained a k nearest neighbor classifier to predict the
molecular type of each neuron based on its location in the cell mor-
phology space. We estimated the accuracy of each method (percen-
tage of correctly classified cells) using a cross-validation scheme
(Methods). In this analysis, all methods are expected to have accura-
cies substantially smaller than 100%, since transcriptomic subtypes
cannot be fully distinguished based onmorphology. However, relative
differences in accuracy in this analysis are indicative of differences in
the ability of each method to capture meaningful biological informa-
tion fromcellmorphology.We found that the accuracy of CAJAL varied
between 29% and 66% depending on the dataset, and outperformed
other methods in 22 out of the 24 dataset-method comparisons
(Supplementary Table 2, Wilcoxon rank-sum test p value < 10−4). The
second best-performing method was TMD, which produced similar
results toCAJAL in the twoPatch-seq datasets, achieving 99% and 106%
accuracy with respect to CAJAL (TMD accuracy = 63%, 54%, CAJAL
accuracy = 64%, 52%, respectively). However, the accuracy of TMDwas
substantially lower in the Patch-clamp and fMOST datasets, achieving
respectively 64% and 62% accuracy with respect to CAJAL (TMD

accuracy = 19%, 41%, CAJAL accuracy = 29%, 66%, respectively). On
average, the accuracy of CAJAL was 1.42 times higher than that of the
other methods (Fig. 2d and Supplementary Table 2). SNT and TMD
were the second and third most accurate methods, with an average
accuracy 85.6% and 82.5% relative to CAJAL, respectively.

The use of accuracy as a metric for classification performance
evaluation can offer inflated results in some circumstances42. For
instance, in the above analysis the accuracy of a random classifier
varied between 5% and 20% depending on the dataset (Supplementary
Table 2).Matthews correlation coefficient (MCC) has beenproposed as
an alternative metric for classification performance evaluation that
accounts for both true and false positives and negatives42. In our
analysis, we found that the MCC of CAJAL was on average 1.84 times
larger than that of the othermethods, with theMCC of the second and
third best performingmethods (SNT andTMD) beingonaverage 75.6%
that of CAJAL (Fig. 2d and Supplementary Table 2).

To assess the stability of these results, we repeated these analyses
for different choices of the intracellular pairwise distance function and
sampling approach. We observed that using Euclidean distance to
measure pairwise distances between sampled points offered more
accurate predictions of the transcriptomic class of neurons than using
geodesic distance (Supplementary Fig. 2a). This suggests that the
relative position of neuronal appendages, and not only their topology,
contains information about the transcriptomic class of the neuron.

Fig. 2 | Cell morphology spaces accurately summarize the complexity of cell
shapes. aUMAP representation of the cell morphology space of 506 neurons from
the murine visual cortex profiled with whole-cell patch-clamp. The representation
is colored by the morphological cell populations that resulted from clustering the
cell morphology space using Louvain community detection. The morphologies of
individual neurons randomly sampled from 4 of the populations are shown for
reference. Apical and basal dendrites are indicated in purple and red, respectively.
b The UMAP representation is colored by the neuronal type (top), cortical layer
(middle), and Cre driver line (bottom). The GW cell morphology space captures
morphological differences between neurons of different molecular type and

anatomic location. c The metric structure of the GW morphology space enables
performing algebraic operations such as averaging shapes. The figure shows the
medoid (indicated with a circle) and average morphologies (in boxes) computed
for each of the morphological populations in (a). d Cell-type separation (CTS)
score, accuracy, and Matthews correlation coefficient (MCC) for CAJAL and six
other neuronalmorphometrymethods in the task of predicting themolecular and/
or anatomic location of individual neurons in four datasets (one patch-clamp, two
Patch-seq, and one fMOST datasets). The dashed line indicates the accuracy of a
random classifier. More detailed information is presented in Supplementary
Tables 1 and 2. Source data are provided as a Source data file.
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Moreover, using a fixed-step approach to sample points from the
outline of the cells generally produced more accurate results than
random sampling (Supplementary Fig. 2a). Expectedly, the accuracy of
the predictions was stable against different choices of sampled points
(<10% variation in MCC), and both accuracy and running time
increased with the number of sampled points (Supplementary
Fig. 2b–d). The accuracy of the predictions saturated at approximately
100 sampled points in thesedatasets, indicating nomajor advantage in
sampling a larger number of points. However, we expect this number
to depend on themorphological complexity of the cells andmay differ
in other datasets and cell types.

The results of these analyses collectively showcase the utility and
versatility of the GWdistance to perform unbiased studies of complex
cell morphologies.

GW cell morphology spaces recapitulate heterogeneous
cell types
We next evaluated the ability of the GW distance to summarize cell
morphologies across heterogenous cell populations. For that purpose,
we used CAJAL to study the morphologies of 70,510 cells from a cubic

millimeter volume of the mouse visual cortex profiled by the Machine
Intelligence from Cortical Networks (MICrONS) program using two-
photon microscopy, microtomography, and serial electron
microscopy43. This dataset not only includes neurons, but also several
types of glia and immune cells.

The UMAP representation of the cell morphology space pro-
duced by CAJAL recapitulated in an unsupervised manner the broad
spectrum of cell types that are present in the tissue, including several
populations of neurons, astrocytes, microglia, and immune cells
(Fig. 3a). These populations were consistent with the manual anno-
tations of 185 individual cells provided by the MICrONS program
(Fig. 3b), except for a small number of neuronal reconstructions in
the cluster of non-bipolar neurons that were manually annotated as
bipolar. Thesemanually annotated reconstructions exhibited a larger
number of branches and higher cable length than manually anno-
tated neurons in the cluster of bipolar neurons (Supplementary
Fig. 3a, Wilcoxon rank-sum test p value < 0.01). A closer examination
indicated a possible origin of these discrepancies in the presence of
segmentation artifacts in these reconstructions (Supplemen-
tary Fig. 3b).

Fig. 3 | Cell morphology spaces summarize cell shapes across heterogeneous
cell types. a UMAP representation of the cell morphology space of 70,510 cells
froma cubicmillimeter volumeof themouse visual cortex profiled by theMICrONS
program using two-photon microscopy, microtomography, and serial electron
microscopy43. The representation is colored by the cell populations identified by
clustering of the cell morphology space. The morphology of randomly sampled
cells from several populations is shown for reference. The magnification is indi-
cated in cases where the morphology of the cells has been zoomed in to facilitate
visualization. b The position of 185 cells that were manually annotated by the
MICrONS program is indicated in the UMAP representation, showing consistency
with the structure of the cell morphology space. c The UMAP representation of the
cellmorphology space is colored by the cortical layer of each cell. Themorphology
space recapitulates morphological differences between neurons and astrocytes
from different cortical layers. d The part of the UMAP representation corre-
sponding to astrocytes is colored by the volume of the minimum-size box

containing the astrocyte. Astrocytes in the lower part of the UMAP have smaller
dimensions than at the top. For reference, the morphology of 4 astrocytes is also
shown. e Boxplot summarizing the distribution of the angle of the major axis of
astrocytes from different layers with respect to the pial surface (n = 4763 cells).
Astrocytes from layer 2/3 are elongated perpendicularly with respect to the pial
surface. For reference, the part of the UMAP representation corresponding to
astrocytes colored by the cortical layer each also shown. Boxplots denote the
median (line), interquartile range (box), min(max(x), Q3 + 1.5 IQR) (upper whisker),
and max(min(x), Q1 − 1.5 IQR) (lower whisker). f The ability of CAJAL to identify
morphological differences between neurons of differentmolecular type and T cells
from different anatomical locations is evaluated in comparison to four general
algorithms for cell morphometry and according to three different metrics of per-
formance. The dashed line indicates the accuracy of a random classifier. CTS score:
cell-type separation score. Source data are provided as a Source data file.
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Neurons from different cortical layers were associated with
distinct regions of the cell morphology space, indicating the pre-
sence of morphological differences between neurons from different
layers (Fig. 3c). In addition, our analysis uncovered morphological
differences between astrocytes located in different cortical layers
(Fig. 3d, e). Specifically, layer 1 astrocytes were substantially smaller,
and layer 2/3 astrocytes were elongated perpendicularly to the pial
surface, in comparison to astrocytes residing in other cortical layers
(Fig. 3d, e). These differences were consistent with recent observa-
tions based on Glast-EMTB-GFP transgenic mice44.

To quantitatively evaluate the ability of the GW distance to sum-
marize cell morphologies across very different cell types in compar-
ison to current general methods for cell morphometry, we considered
the 3D morphological reconstructions of 512 T cells from the mouse
popliteal lymph node, submandibular salivary gland, and skin, profiled
with intra-vital two-photon microscopy21, in addition to the Patch-seq
dataset of the mouse motor cortex38 described above. In contrast to
neuronal morphometry methods, general cell morphometry methods
canbe applied to arbitrary cell types.Hence,we evaluated the ability of
CAJAL and four other general methods (CellProfiler45, SPHARM21,24,
Zernike moments22,23, and the PCA-based approach of Celltool22 and
VAMPIRE46) to predict the anatomic location of each T cell and the
transcriptomic class of each neuron based on theirmorphology. In this
analysis, CAJAL performed similarly to the other methods in distin-
guishing themorphologies of T cells fromdifferent anatomic locations
(Fig. 3f). However, the performance of the other methods in the ana-
lysis of neuronal morphologies was substantially inferior, and only
CAJAL achieved a high accuracy and CTS score in both datasets
(Fig. 3f). Overall, these results underscore the effectiveness of the GW
distance in summarizing the vast range of cell shapes present in
mammalian tissues.

Multimodal analyses of GW cell morphology spaces enable
uncovering genetic determinants of cell morphology
The combined analysis of morphological and genomic data from
individual cells has the potential to unravel the genetic and mole-
cular pathways that are associated with the progression of high-level
cellular processes such as cell differentiation and plasticity. Since
changes in cell morphology are continuous, establishing associations
between cell morphology and other data is best accomplished by
methods of analysis that are purpose-built for continuous processes.
We extended our previous work on clustering-independent analyses
of omics data47 to implement a statistical approach for identifying
molecular and physiological features that are associated with chan-
ges in cell morphology. We use the Laplacian score for feature
selection34 to test the association between the values of each feature
and the structure of the morphology space, while accounting for
user-specified covariates such as the age of the individual (Fig. 4a).
To illustrate this approach, we used it to identify genes that con-
tribute to the morphological plasticity of neurons in C. elegans. For
that purpose, we considered the 3D morphological reconstructions
of the DVB neuron in male worms. The DVB neuron is an excitatory
GABAergic motor interneuron located in the dorso-rectal ganglion of
the worm. It develops post-embryonically and undergoes post-
developmental neurite outgrowth in males, altering its morphology
and synaptic connectivity, and contributing to changes in the spicule
protraction step ofmalemating behavior48. We applied our approach
to identify loss of function mutations that are associated with
changes in the dynamic morphology of the DVB neuron, taking the
age of the worm as a covariate to reliably compare morphological
changes across timepoints in adulthood. We considered 12 gene
mutants, 5 double mutants, and controls across days 1 to 5 of
adulthood (Supplementary Table 3), including 7 gene mutants and 1
double mutant from a previous study49. Our analysis identified
mutations in the genes unc-97, lat-2, nlg-1, unc-49, nrx-1, and unc-25 as

significantly affecting the morphology of the DVB neuron (Fig. 4b;
Laplacian score permutation test, FDR < 0.05). Consistent with these
results, cells from the same developmental stage or carrying one of
the significant mutations appeared localized in the UMAP repre-
sentation of the cell morphology space (Fig. 4c, d). The results of this
analysis were stable against different choices for the scale parameter
(ε) of the Laplacian score47 and the addition of small amounts of
noise to the digital reconstructions of the DVB neuron (Supple-
mentary Figs. 4a, b). By repeating this analysis for worms of each age
separately, we identified the age at which each of these mutations
starts to significantly affect the morphology of the DVB neuron
(Fig. 4e). To interpret these morphological differences in terms of
neuronal characteristics, we used the Laplacian score to evaluate the
association of 33 morphological features with the structure of the
cell morphology space (Supplementary Dataset 1). We found that
mutations in nlg-1 and unc-25 caused an increase in neurite length
and number of branches compared to control worms (Supplemen-
tary Fig. 4c), while inactivating mutations in unc-97 and nrx-1 stunted
neurite growth (Supplementary Fig. 4c). Altogether, these results are
consistent with previous findings49, where the morphological phe-
notype of inactivating mutations in unc-97, nlg-1, and nrx-1 was
described, and they extend them by uncovering new genetic deter-
minants of neuronal plasticity in C. elegans and quantitative differ-
ences in the age of onset of themorphological alterations induced by
different genes.

Integrative analysis of molecular, physiological, and morpho-
logical data from single cells
The incorporation of single-cell RNA-seq onto whole-cell patch-clamp,
known as Patch-seq, has enabled concurrent high-throughput mea-
surements of the transcriptome, physiology, and morphology of
individual cells10. The integrative analysis of these multi-modal data
can be used to uncover transcriptomic and physiological programs
associated with morphological differences between cells.

We used CAJAL to analyze the basal and apical dendrites of 370
inhibitory and 274 excitatory motor cortex neurons profiled with
Patch-seq38. Consistent with our previous results, the GW cell mor-
phology space captured morphological differences between the den-
drites of neurons from different neuronal transcriptomic classes and
cortical layers (Fig. 5a, b). By representing the pairwise distance
between each pair of cells in the transcriptomic, electrophysiological,
andmorphological latent spaces as a point in a 2D simplex, we found a
large degree of variability in the morphology of the dendrites of
extratelecephalic-projecting (ET) neurons that was not paralleled by
their gene expression profile (Fig. 5c). In contrast, the dendrites of
Lamp5+ and bipolar (Vip+) GABAergic neurons showed limited mor-
phological variability in comparison to their gene expression pro-
file (Fig. 5c).

We characterized the gene expression and electrophysiological
programs associatedwithmorphological differences betweenneurons
by using the Laplacian score approachdescribed above.Weperformed
this analysis separately for inhibitory and excitatory neurons to iden-
tify 173 and 556 genes, and 14 and 22 electrophysiological features,
respectively, that were significantly associated with themorphological
diversity of their dendrites (Fig. 5d and Supplementary Datasets 2 and
3; Laplacian score permutation test, FDR <0.1). Expectedly, most of
these genes (111/173 and 325/556) and electrophysiological features
(14/14 and 22/22) were also associated with at least one transcriptomic
type (gene-wise negative binomial generalized linear model and Wil-
coxon rank-sum test, respectively, FDR <0.1), indicating that most of
these associations originate from morphological and electro-
physiological differences between transcriptomic types and not
necessarily from direct involvement in morphological processes.
Nevertheless, among the 7 genes that were significant for both exci-
tatory and inhibitory neurons, there were several genes that have been
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previously reported to be involved in dendritemorphogenesis, such as
Dscam, which plays a central role in dendritic self-avoidance50, and
Pcdh7, which regulates dendritic spine morphology and synaptic
function51.

We next investigated the presence of gene expression programs
that form part of continuous morpho-transcriptomic trajectories. We
computed the RNA velocity field in the gene expression space to
predict the future gene expression state of each cell based on the
observed ratio between un-spliced and spliced transcripts52,53. We
reasoned that by projecting the RNA velocity field onto the GW cell
morphology space and looking for transcriptomic trajectories that
also appear as trajectories in this space, we could identify continuous
transcriptomic processes that are correlated with changes in cell

morphology. Although RNA velocity trajectories were sparse in these
data, consistent with the fact this dataset only consists of postnatal
mice (ages 35 to 245 days)38, our approach revealed several morpho-
transcriptomic trajectories involving chandelier, basket, and Lamp5+

neurons (Fig. 5e), which might be the result of postnatal develop-
mental programs and aging in mice. Cells along these trajectories
showed increased complexity in their apical and basal dendrites in
parallel to changes in their gene expression profile. To characterize
these gene expression programs, we focused our analysis on 78 genes
that were associated with the RNA velocity field of inhibitory neurons
and computed the Laplacian score of each of these genes in the GW
cell morphology space. This analysis revealed that 32 of the 78 RNA
velocity genes were also significantly associated with the structure of

Fig. 4 | Identificationofmutations thathave an impact in themorphologyof an
individual neuron. a Schematic of approach for identifying features (gene
expression,mutations, protein expression, etc.) associatedwith cell morphological
changes based on multi-modal data. For each feature, the degree of consistency
between the feature values and the structure of the cell morphology space is
quantified using the Laplacian score (C). Features with a low score are associated
with local regions of the cell morphology space. The statistical significance of each
feature in relation to the covariates is evaluated by means of a one-sided permu-
tation test. In the figure, examples of features that are significantly localized in the
cell morphology space (feature 1, a small number of random configurations have a
smaller value of Cfeature, independently of the value of Ccovariate), not significantly
localized in the cell morphology space (feature 2, a large number of random con-
figurations have a smaller value of Cfeature), and substantially localized in the mor-
phology space but in association with the covariate (feature 3, a small number of

random configurations have smaller value of Cfeature, but they are not independent
on the value of Ccovariate), are presented. b Mutations that have an impact on the
morphology of the DVB interneuron in C. elegans. Null alleles are ranked according
to their Laplacian score (C) in the cell morphology space of the DVB interneuron.
The age of the worm was used as a covariate. Genes that significantly impact the
morphology of the DVB interneuron are indicated in red (FDR<0.05). c, d UMAP
visualization of the cell morphology space of the DVB interneuron colored by the
age of each worm (c) and the mutation status of unc-97, nlg-1, nrx-1, and unc-25 (d)
(red: mutated; gray: wild-type). e Restricting the analysis to worms of the same age
allows us to identify the age of onset of the morphological effects induced by each
significantmutation (FDR<0.05). Dashed lines indicate time points for which there
is limited data to restrict the analysis. Source data are provided as a Source datafile.
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Fig. 5 | Integrative analysis of molecular, physiological, and morphological
data of mouse motor cortex neurons. a UMAP representation of the GW cell
morphology space of the dendrites of 370 inhibitory neurons and 274 excitatory
neurons from themousemotor cortex profiled with Patch-seq by Scala et al.38. The
representation is colored by the neurotransmitter type (excitatory/inhibitory), the
transcriptomic type, and the cortical layer of the cells, showing a large degree of
localization of molecular and physiological features on the morphological space.
b UMAP representation colored by the morphological cell populations defined by
Louvain clustering. The medoid and average cell morphology (in boxes) are shown
for each cell population. cTernary plots showing the discrepancy between pairwise
distances between cells in the morphology (M), transcriptomic (T), and electro-
physiology (E) latent spaces for each transcriptomically defined population. The
dendrites of ET excitatory neurons present a large degree of variability in their
morphology which is not paralleled by consistent changes in their gene expression

profile, whereas the dendrites of Lamp5+ GABAergic neurons present limited
morphological variability in comparison to their gene expression profile. CT cor-
ticothalamic neurons, ET extratelecephalic neurons, IT intratelenchephalic neu-
rons. d Top genes and electrophysiological features that are significantly
associated with the morphological diversity of excitatory and inhibitory neurons
according to their Laplacian score in the cellmorphology space (FDR <0.1).Most of
the genes and electrophysiological features that are significantly associated with
the morphological diversity of neurons are also associated with one or several
t-types. The part of the UMAP corresponding to excitatory or inhibitory neurons is
colored by the expression level and values of some of the significant genes and
electrophysiological features, respectively. CPT: counts per thousand. e Morpho-
transcriptomic trajectories computed by projecting the RNA velocity field in the
cell morphology space. The morphology of several chandelier, basket, and Lamp5+

neurons along the trajectories is shown for reference.
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the cell morphology space (Supplementary Dataset 4; Laplacian score
permutation test, FDR <0.05). These 32 genes included genes that
code for secreted factors, such as Spon1, Fgf13, Rspo2, and Reln (Sup-
plementary Fig. 5), and were enriched for genes involved in memory
and cognition (GO enrichment adjusted p-value = 0.007). In contrast,
the 46 genes that were associated with transcriptomic trajectories but
not with morphological trajectories were enriched for genes involved
in neuronal death and apoptosis (GO enrichment adjusted p
value = 0.002).

Collectively, these results illustrate the utility of CAJAL to identify
and characterize molecular and electrophysiological programs corre-
lated with differences in cell morphology using single-cell Patch-
seq data.

GW cell morphology spaces facilitate the integration of cell
morphology data across technologies
Advances in cell morphology profiling techniques have led to an
explosion of high-resolution cell morphology data over the past
decade4. The ability to perform integrated analyses of such data
regardlessof the experimental approach and technology thatwas used
to generate them would be a powerful tool for imputing missing data
and refining taxonomic classifications of cells. For example, by inte-
grating patch-clamp and Patch-seq data the transcriptomic type of
cells that have been profiledwith patch-clamp could be imputed based
on their morphology.

We used CAJAL to build a combined morphology space of the
basal and apical dendrites of visual cortex neurons profiledwith patch-
clamp35 and visual and motor cortex neurons profiled with Patch-
seq37,38. The combined dataset consisted of 1662 neurons, of which
1,156 had associated single-cell RNA-seq data. Inhibitory and excitatory
neurons from different datasets clustered together in separated
regions of the combined morphology space (Fig. 6a), indicating that
the structure of this space is mostly driven by biological differences
rather than by experimental or computational artifacts. To evaluate
the consistency of the combined cell morphology space, we con-
sidered the t-type54 of the cells profiled with Patch-seq, and quantita-
tively assessed the distance in the combined cell morphology space
between cells of the same transcriptomic class (for the Patch-seq data)
or cells labeled with the corresponding Cre driver line (for the patch-
clamp data). Cells of same transcriptomic class but from different
Patch-seq datasets, as well as cells from thematching Cre driver line in
the patch-clamp dataset, were closer to each other in the combined
morphology space than cells from different transcriptomic classes or
Cre driver lines (Fig. 6b, c and Supplementary Fig. 6; Wilcoxon rank-
sum test p value < 10−100), demonstrating the utility of the GWdistance
for integrating cell morphology data across experiments and
technologies.

We also used the same approach to refine the annotation of visual
cortical neurons profiled with serial electron microscopy by the
MICrONS program43. We considered 883 full neuron reconstructions
from the two Patch-seq datasets and created a combined morphology
space of these cells along with a subset of 1000 evenly sampled and
139 manually annotated neurons from the MICrONS dataset. As with
the integration of patch-clamp and Patch-seq data, the manually
annotated neuronal types from the MICrONS dataset were closer to
Patch-seq cells of the matching t-type in the consolidated cell mor-
phology space than to non-matching t-types (Fig. 6d, e and Supple-
mentary Fig. 7; Wilcoxon rank-sum test p value < 10−100). For example,
the only chandelier cell annotated in the MICrONS dataset was closer
to Pvalb Vipr2 t-type cells from the Patch-seq data than to cells from
other t-types (Supplementary Fig. 7; Wilcoxon rank-sum test
p value = 0.035).

Using this combined cell morphology space, we refined some of
the manual annotations of the MICrONS dataset with more precise
transcriptomic definitions. For example, of the three Martinotti cells

annotated in the MICrONS dataset, one cell presenting a distinct
morphology with a densely arborized axon was closer in the mor-
phology space to Patch-seq cells of the Sst Chrna2 t-type (Fig. 6f;
Wilcoxon rank-sum test p value = 0.045), while the other two Marti-
notti cells were closer to Sst Calb2 t-type cells (Fig. 6f; Wilcoxon rank-
sum p value = 10−3). This is consistent with previous results showing
that expression of Chrna2 is characteristic of layer 5 Martinotti cells
that project into layer 155, and we confirmed that the soma of the
predicted Chrna2Martinotti cell was indeed located in layer 5 while its
long axon ended in layer 1 (Fig. 6f). Similarly, among the manually
annotated basket cells in the MICrONS dataset, one had a more con-
densed morphology than the others (Fig. 6g). This smaller basket cell
was close in the cell morphology space to Vip Chat Htr1f and Vip
Col15a1 Pde1a t-type Patch-seq cells (Fig. 6g; Wilcoxon rank-sum
p-value = 0.02), while larger basket cells were closer to Pvalb Sema3e
Kank4 and Pvalb Gpr149 Islr t-type Patch-seq cells (Fig. 6g; Wilcoxon
rank-sum p value = 10−14). These results were again in agreement with
the molecular characterization of small and large basket cells in the
somatosensory cortex56.

These results show the utility of GW cell morphology spaces to
perform integrative analyses of cell morphological data across tech-
nologies and represent a conceptual basis for the development of
algorithms for cell morphological data integration.

Discussion
Shape registration has experienced several breakthroughs over the
past 15 years with the formalization of new paradigms that allow for
more flexibility in the quantification of morphology57. Here, we built
upon one of these constructions, the GW distance, to develop a
general computational framework and software for the multi-modal
analysis and integration of single-cell morphological data. The pro-
posed framework does not rely on predefined morphological fea-
tures, is insensitive to rigid transformations, and can be efficiently
used with arbitrarily complex and heterogeneous cell morphologies.
Using this approach, we have accurately built, analyzed, and visua-
lized cell morphology latent spaces. Like gene expression latent
spaces in the analysis of single-cell RNA-seq data, morphological
latent spaces are instrumental in the analysis and integration of
single-cell morphological data. Themetric properties of these spaces
allowed us to integrate single-cell morphological data of neurons
across experiments and technologies; identify morphological,
molecular, and physiological features that define different sub-
populations of neurons and glia; and establish associations between
morphological, molecular, and electrophysiological cellular pro-
cesses in these cells. Our quantitative and comparative studies using
Patch-seq, patch-clamp, fMOST, electron, and two-photon micro-
scopy data show that GW-basedmorphological analyses represent an
improvement in accuracy and scope with respect to currentmethods
for the analysis of cell morphology data, particularly in the Patch-
clamp and fMOST datasets we analyzed, and enable previously una-
vailable analyses, such as inferring the transcriptional type of indi-
vidual neurons based on the morphology of their dendrites or
integrating morphological data across technologies.

The specific features of CAJAL in comparison to existing methods
for cell morphometry can be informative in deciding whichmethod to
utilize for quantitative analysis of cellmorphometry (Fig. 7). A defining
characteristic of CAJAL is its versatility. Like methods based on simple
geometric descriptors, GW-based cell morphometry can be used with
arbitrary cell types (Fig. 3). Its power to discriminate complex
morphologies, such as those of neurons and glia, is comparable, and in
some cases superior, to that of cell-type specific descriptors like those
produced by SNT18 and L-Measure17 (Fig. 2). In addition, similarly to
moments-based descriptors, GW morphometry surveys cell shape
from a physical perspective (by sampling points from the outline)
instead of using user-defined lists of morphological features.
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Although, the computational complexity of CAJAL is larger than that of
methods based on user-defined lists of morphological features (in our
studies, its application to 506 neurons using 100 sampled points per
neuron took 80min on a standard desktop computer), the imple-
mentation of recent strategies for reducing the computational com-
plexity of GW distance31,33 will substantially reduce the runtime of

CAJAL and thus enable sampling a larger number of points per cell in
large datasets like the MICrONS dataset.

More generally, we expect that the analytic framework presented
in this work will serve as the basis for the development of other cur-
rently missing computational methods for the analysis of single-cell
morphological data, such as methods for batch-correcting cell
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morphological data or modeling morphological processes. We envi-
sion that the development of these and other methods for single-cell
morphological analyses will significantly impact our understanding of
the relation between morphological, molecular, and physiological
diversification of cells.

Methods
Computation of GW cell morphology spaces
We build upon the application of metric geometry to the problem of
finding a correspondence between two point-clouds such that the size
of non-isometric local transformations is minimized25–27. CAJAL takes
as input the digitally reconstructed cells. For each cell i, it samples n
points regularly from the outline and computes their pairwise distance
matrix, di. It then computes the GW distance between every pair of
distance matrices

GW di,dj

� �
=
1
2
min
Tij2C

X
α,β,δ,γ

∣ di

� �
αβ � dj

� �
γδ
∣
2

Tij

� �
αγ

Tij

� �
βδ

ð1Þ

where the matrix Tij specifies a weighted pointwise matching
between the points of cells i and j, and C represents the space of
all possible weighted assignments26. By construction, CAJAL does
not require pre-aligning cell outlines, since the input to GW is the
pairwise distance matrix within each cell, di, which is invariant
under rigid transformations. Depending on the application, we

consider two choices for the distances di: Euclidean and geodesic
distance.

The output is ametric space for cell morphologies which can then
be clustered and visualized using standard procedures, such as Lou-
vain community detection36 and UMAP58. For each population of cells,
X , we compute its average morphology as the distance matrix

d̂X
� �

αβ
=

1
X
X
i,γ

TimedðX Þ
� �

αγ
di

� �
γβ ð2Þ

where medðX Þ denotes the medoid of X with respect to the GW dis-
tance matrix. The morphology can then be visualized by computing
the shortest-path tree or multidimensional scaling (MDS) of d̂X . In
addition, to facilitate the interpretation ofmorphology spaces, we find
it isuseful toplot the values of standardmorphological descriptors like
cell height, width, diameter, neuronal depth, or fractal dimension17,18,45

in the UMAP representation of the cell morphology space.

Evaluation of features on the cell morphology space
To evaluate features, such as gene expression or electrophysiological
properties, on GW cell morphology spaces, we build upon a spectral
approach for clustering-independent analyses of multimodal data34,47.
We first construct a radius neighbor graph of the GW distance with
radius ε. Each feature g is represented by a vector f g of length the
number of cells.

Fig. 6 | Integration of cell morphology data across experiments and technol-
ogies. a UMAP representation of the combined cell morphology space of the basal
and apical dendrites of visual cortex neurons profiled with patch-clamp35, and
visual andmotor cortex neurons profiledwith Patch-seq37,38. The combined dataset
consists of 1,662neurons. The representation is coloredby theneuronal type.bThe
same UMAP representation is colored by the Cre driver line (for patch-clamp cells)
or the t-type (for Patch-seq cells). Cells of same t-type but from different Patch-seq
dataset, and cells from the corresponding Cre driver line in the patch-clamp
dataset, localize in the same regions of the morphology space. c The location of
cells from each of the dataset is indicated in red in the UMAP representation of the
combined cell morphology space. d UMAP representation of the combined cell
morphology space of 883 full neuron reconstructions from the motor and visual
cortices profiled with Patch-seq37,38 and 1139 neurons from the mouse visual cortex
with a combination of two-photon microscopy, microtomography, and serial

electronmicroscopy43, 139 ofwhichhavebeenmanually annotatedby theMICrONS
program. The manually annotated neuronal types from the MICrONS dataset
localize in the same regions of themorphology space than Patch-seq cells from the
corresponding t-type. e The location of cells from each of the datasets is indicated
in red in the UMAP representation of the combined cell morphology space.
f Refined annotation of 3 Martinotti cells that were manually annotated by the
MICrONS program. One of the Martinotti cells presents a distinct morphology and
is close in the morphology space to Patch-seq cells of the Sst Chrna2 t-type, while
the other two Martinotti cells are closer to Sst Calb2 t-type cells. g Refined anno-
tation of 3 basket cells that were manually annotated by the MICrONS program.
One basket cell has a more condensed morphology than the others and is close in
the morphology space to Path-seq cells of the Vip Chat Htr1f and Vip Col15a1 Pde1a
t-types, while the other two larger basket cells are close to Pvalb Sema3e Kank4 and
Pvalb Gpr149 Islr cells.

Fig. 7 | Decision-tree-style summaryof someof themaindistinguishing characteristics betweenCAJALandothermethods for cellmorphometry.CAJALand8other
commonly used methods for cell morphometry are included.
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The Laplacian score of g on the cell morphology space is then
given by34

Cg =

P
ij f g

� �
i
� f g

� �
j

� �2

Aij

Var f g
� � ð3Þ

where A is the adjacency matrix of the radius neighbor graph, and
Varðf g Þ the estimated variance of f g . Features with a low Cg score are
associated with morphologically similar cells. The significance of the
score can be statistically assessed for each feature by means of a one-
tailed permutation test and adjusted for multiple hypothesis testing
using Benjamini–Hochberg procedure. To assess the significance of a
feature g in the presence of a set of covariates hm, we perform a
permutation test where the entries of f g and f hm

are simultaneously
permuted and the scores Cg and Chm

are computed at each
permutation. We denote these values collectively as Cnull

g and Cnull
hm

.
We then solve the regression problem

Cnull
g ∼β0 +

X
m

βmC
null
hm ð4Þ

and consider the distribution of residuals as the null distribution for
the adjusted score,

eCg =Cg � β0 �
X
m

βmChm ð5Þ

Processing of Patch-seq and patch-clamp morphological
reconstructions
We downloaded the morphological reconstructions of neurons from
several repositories. For the Patch-clamp dataset of Gouwens et al.35, we
downloaded 509 reconstructions in SWC format from the Allen Cell
Types database, using Cell Feature Search and selecting for “Full” or
“Dendrite Only” reconstruction types. Three of the SWC files were
unsorted and were left out of further processing, for a total of 506
neurons. For the Patch-seq dataset of Gouwens et al.37, we downloaded
574 reconstructions from the Brain Image Library (BIL) repository. We
removed 62 neurons that did not have assigned transcriptomic types,
for a total of 512 neurons. For the Patch-seq dataset of Scala et al.38, we
downloaded 645 reconstructions from the inhibitory and excitatory sets
from the BIL repository, skipping the one inhibitory neuron that had no
dendrites, for a total of 644 neurons. Lastly, for the fMOST dataset of
Peng et al.39, we downloaded 653 neuronal reconstructions from the BIL
repository for which subclass or type annotations were available.

The SWC format represents eachneuron as a tree of vertices, such
that an edge canbedrawnbetween a vertex and its parent, forming the
skeleton of the neuron. From this format, we sampled 100 points
radially around the soma at a given step size. We used a binary search
to identify the step size which returns the required amount of evenly
spaced points. To calculate the pairwise geodesic distance between
these points, we constructed a weighted graph with weights given by
the distance to the latest sampled point. We then used the
Floyd–Warshall algorithm implemented in Networkx59 to compute all
pairwise shortest path distances in this graph. Alternatively, we com-
puted the pairwise Euclidean distance between the 3D coordinates of
these points.

We the computed the GW distance between each pair of cells as
described above (subheading “Computation of GW cell morphology
spaces”) using the ot.gromov.gromov_wasserstein function of the
“POT: Python Optimal Transport” Python library60. We then used this
precomputed distance to build a 2D visualization of the morphology
space using the https://github.com/tkonopka/umap package in R. We

computed the Louvain clusters of a KNN graph of the GW distance
using the multilevel.community function of the igraph R package61.

Average shape of neurons
To compute the average shape of a cluster of cells in the GW cell
morphology space, we first found the medoid cell as the cell with the
minimum sumof distances to all other cells in the cluster. To compute
amorphological distance between cells, theGWalgorithm identifies an
optimal matching Tij between the points we have sampled (subhead-
ing “Computation of GW cell morphology spaces”). We used this
matching to align the other cells in the cluster to the medoid, by
reordering the pairwise geodesic distance matrix of their sampled
points tomatch thedistancematrix of themedoid cell.We rescaled the
geodesic distance matrix of each cell into an unweighted graph dis-
tance by dividing out the minimum distance between any two points,
so that the rescaled distances were integers. We set a threshold on
these distances at 2, such that the distance was 0 from the point to
itself, 1 to an adjacent point in the tree of the neuron trace, and 2 to any
farther point.We averaged all of these distancematrices together over
the cells in the cluster and built a k =3 nearest neighbor graph,
essentially connecting each sampled point to the three other points it
was most often adjacent in the neurons of that cluster. We took the
shortest path tree in this graph as the average shape for that cluster
usingDijkstra’s algorithm.We color eachpoint in this average shapeby
a confidence value based on its minimum original unweighted graph
distance, summed over the cluster, to any other point.

Comparison of CAJAL with current methods for neuronal
morphometry
We compared our approach to six other morphological methods for
neuron analysis by applying them to the dendrite reconstructions of
the neuronal datasets listed above (subheading “Processing of Patch-
seq and patch-clamp morphological reconstructions”), except for the
fMOST dataset, for which we considered the full reconstructions.
These methods have stricter assumptions on the input, forcing us to
remove disconnected components from the reconstructions. We
appliedNBLAST19, as implemented in the nat.nblast R package (https://
github.com/natverse/nat.nblast). We calculated a pairwise distance
between all neurons using the nblast_allbyall function with the mean
normalization method. We ran the Topological Morphology Descrip-
tor (TMD) method of Kanari et al.40 using the TMD Python package
(https://github.com/BlueBrain/TMD). We followed their distances
example (https://github.com/BlueBrain/TMD/blob/master/examples/
distances_example.py) to compute the persistence image difference
between every pair of neurons. We skipped 26 neurons across the two
Patch-seq datasets for which get_ph_neuron or get_persistence_ima-
ge_data errored due to a lack of bifurcating branches. We used the
Measure Multiple Files batch script of the ImageJ SNT plugin18 to
compute morphological features of neurons, including the Sholl
features16. We also computed morphological features using
L-Measure17, selecting all of their provided functions. We ran
ElasticP2P41 using their MATLAB implementation (https://github.com/
50-Cent/ElasticPath2Path) with 500 samples per path.

We used three different metrics to assess the ability of these
algorithms to identify morphological differences between Cre lines,
transcriptomic types, or anatomic locations. We implemented the
median-based group discrimination statistic used by Pincus and
Theriot22 to compare methods for cell-shape analysis. In addition, we
used a 7-fold k = 10 nearest neighbor classifier from the scikit-learn
Python library to predict the Cre driver line, transcriptomic class, or
t-type of each cell based on morphological distance and used the
Matthews correlation coefficient and the proportion of correctly
classified cells to evaluate the accuracy of the predictions. Statistical
significances were estimated based on 10 different random initializa-
tions of the 7-fold k = 10 nearest neighbor classifier.
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Morphological analysis of the MICrONS dataset
We downloaded the 113,182 static cell segmentation meshes from
MICrONS using the trimesh_io module from the package MeshParty
(https://meshparty.readthedocs.io/) at the lowest resolution (resolu-
tion 3). We then downloaded higher resolution meshes for cells that
had less than 10,000 vertices at this lowest resolution. Cells with less
than 1001 vertices at the lowest resolution were re-downloaded at the
highest resolution (resolution 0). Cells with 1001 to 3000 vertices at
the lowest resolution were re-downloaded at resolution 1, and cells
with 3001 to 10,000 vertices were re-downloaded at resolution 2.

Along with other metadata available through the CAVEclient
(https://github.com/seung-lab/CAVEclient), such as the 3D coordi-
nates of neuron soma, we collected the cell IDs for each manually
annotated cell type provided by the MICrONS program in their web-
site.Weused the layer 2/3, layer 4, and layer 5manually annotated cells
to estimate cortical layer boundaries in the y values of the 3D soma
coordinates. We placed these cutoffs at layer 1 < 104,191 <layer 2/
3 < 133,616 <layer 4 < 179,168 <layer 5 < 213,824 <layer 6.

We sampled 50 vertices from the triangular mesh of each cell,
using the linspace function of the NumPy package62 to evenly select
vertices, since vertices were roughly ordered by proximity, and this
gives an approximation of even sampling over the 3D space. We
skipped the very large blood vessel mesh and 240 meshes with less
than 50 vertices, for a total of 112,941 meshes. We used the heat
method63, implemented in the MeshHeatMethodDistanceSolver func-
tion of the Python library potpourri3D (https://github.com/nmwsharp/
potpourri3d), to compute geodesic distances between the sampled
points on the mesh. We parallelized the computation of the pairwise
GW distance between the 112,941 meshes on 128 cores, but otherwise
used the same process as with the Patch-seq and patch-clampdatasets
(subheading “Processing of Patch-seq and patch-clampmorphological
reconstructions”). Due to the large size of the resulting GW pairwise
distance matrix, we used the Python libraries leidenalg64 and umap-
learn65 to cluster the cells and compute 2D UMAP visualizations,
respectively. We labeled the clusters based on themanually annotated
cells provided by the MICrONS program.

We found that some morphological clusters mostly consisted of
artifacts or neuron-glia doublets and removed those. In addition,
another morphological cluster contained both neuron-neuron doub-
lets and individual neuronswith complexmorphologies, sowe devised
an approach to remove meshes containing multiple somas from that
cluster. We determined the number of somas in each mesh from that
cluster by using MeshParty to skeletonize the meshes and convert
them into graph representations where nodes have a radius value, and
nodes within soma regions fall in a specific range of radii. For us, this
range was 4000–30,000. We used HDBSCAN66 to cluster these nodes
in the 3D space and counted each cluster with at least three nodes as a
soma. Meshes with more than one soma were removed from the
cluster. Lastly, we noticed that many meshes with very high y coordi-
nates appeared stretched, so we removed meshes with a y soma
coordinate greater than 240,000. After removing all these artifacts, we
recomputed a UMAP visualization of the remaining 70,510 cells in the
cell morphology space using umap-learn.

For each astrocyte, we measured the bounding box by placing
lower and upper bounds on the 1% and 99% quantiles of the mesh
vertices along each of the first three principal components. We took
the arccosine of thefirst principal component along the y axis to be the
orientation angle of the astrocyte and measured its deviation from
perpendicular.

Morphological analysis of T cells
We retrieved 512 3D meshes of T cells from Medyukhina et al.21. We
evenly sampled200points from the list of vertices in eachmesh,which
approximates an even sampling in 3D space since the vertices are
roughly ordered in a spiral down the cell. We computed the GW

distance of the pairwise Euclidean distances between these points as
described above (subheadings “Computation of GW cell morphology
spaces” and “Processing of Patch-seq and patch-clamp morphological
reconstructions”).

Comparison of CAJAL with general methods for cell
morphometry
We applied the Celltool method of Pincus and Theriot22 using their
Python package (https://github.com/zpincus/celltool). Since this
method only works with 2D cell segmentations, we sampled the 2D
boundary of the projection of each cell along the first two axes to the
same number of sampled points used for CAJAL. We aligned these
contours using a maximum of 20 iterations, allowing for reflections,
and saved the non-normalized PCA values from the shape model. We
used CellProfiler 4.0.314 on binary 2D projection images to compute
both general shape features and Zernike moments using Measur-
eObjectSizeShape. We ran SPHARM21 using their Python package
(https://github.com/applied-systems-biology/Dynamic_SPHARM) on
all of the mesh vertices for each cell. For neurons, we used the
marching_cubes function of the scikit-learn Python library to define 3D
mesh vertices. We used the spectrum.return_feature_vector function
of SPHARM to extract the amplitude of harmonic components from
the spectra produced by compute_spharm. We compared these
methods to CAJAL using the same metrics described above (sub-
heading “Comparison of CAJAL with current methods for neuronal
morphometry”).

Evaluation of the accuracy and runtimeof CAJAL as a function of
the number of sampled points
We sampled 25, 50, 75, 100, and 200 points from each cell from the
patch-clamp dataset of Gouwens et al.35 and applied CAJAL as descri-
bed above to compute the GW distance between cells. We used the
Calinski–Harabasz score, the median-based statistic of Pincus and
Theriot22, and the Matthews coefficient of a k = 10 nearest neighbor
classifier (subheading “Comparison of CAJALwith currentmethods for
neuronalmorphometry”) to assess how the number of sampled points
affects the ability of CAJAL to capture morphological differences
between cells from different Cre driver lines. Runtimes were deter-
mined based on 12 threads of a desktop computer with an 8-core Intel
Xeon E5-1660 3.20GHz CPU.

Morphological analysis of the DVB neuron
We considered the neurite reconstructions of the DVB neuron from
799 adult male C. elegans aged 1–5 days from control strains or strains
containing mutations in the genes nrx-1, mir-1, unc-49, nlg-1, unc-25,
unc-97, lim-6, lat-2, ptp-3, sup-17, or pkd-2 (Supplementary Table 3). All
strains were maintained on NGM-agar filled plates and seeded with
OP50 E. coli bacteria as a food source at 23o Celsius. Strains used in this
study were previously published49 or were provided by the NIH Cae-
norhabditis Genetics Center (CGC). C. elegans were anaesthetized
using 100mM of sodium azide (NaN3) and mounted on a pad of 5%
agar on glass slides and analyzed by fluorescence microscopy on a
Zeiss 880 confocal laser-scanning microscope. Fiji67 was used to open
Confocal Z-stack files and then loaded into the SNT18 plugin. The DVB
axonwas traced from the soma to the ventral anterior turn, at thepoint
it becomes a single anterior directed process. All neurites off this
portion of the primary axon were included in the trace. SNT18 was used
to create and save 3D skeletons for input to CAJAL. We computed the
GW distance between these morphological reconstructions as descri-
bed above (subheadings “Computation of GW cell morphology
spaces” and “Processing of Patch-seq and patch-clamp morphological
reconstructions”), based on the geodesic pairwise distance of 100
points sampled from each neuron. We then introduced an indicator
function for each mutated gene, which took values 0 or 1 on each cell
depending on whether the worm had a wild-type or a mutated version
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of the gene, respectively. To determine which of the 11 mutated
genes were associated with changes in morphology, we computed
the Laplacian score of each indicator function on the GW cell mor-
phology space as described above (subheading “Evaluation of fea-
tures on the cell morphology space”). To compute the score, we used
the R package RayleighSelection47 with 1000 permutations, ε equal
to the median GW distance and the age of the worm in days as a
covariate. We evaluated the stability of the results against different
choices for the scale parameter ε by repeating this analysis for 11
different values of ε corresponding to the 0th, 10th, 20th, …, 80th,
90th, and 100th percentiles of the distribution of GWdistances in the
cell morphology space. We also evaluated the stability of the analysis
against the addition of noise to the digital reconstructions of the DVB
neuron. For that purpose, we shifted the coordinates of each vertex
in the SWC files by random amounts sampled from a Gaussian dis-
tribution with mean 0 and standard deviation 1.5 and 7.2mm, cor-
responding to 10% and 50% of the total standard deviation of the
coordinates across the dataset, respectively. In the same way, we
used RayleighSelection to determine which of 33 morphological
features computed with SNT were significantly localized in the cell
morphology space. In addition, we performed the same analysis
using only neurons from a single day, for each day, to determine the
age at which the effect of significant mutations on themorphology of
the DVB neuron starts to emerge.

Identification of genes and electrophysiological features asso-
ciated with the morphology of neuronal dendrites
We used the same process described above (subheading “Processing
of Patch-seq and patch-clamp morphological reconstructions”) to
compute the GW distance between the morphological reconstruc-
tions of the dendrites of 644 neurons profiled by Scala et al.38. We
sampled 100 points from each dendrite and used geodesic distance
to measure the distance between points. To determine which genes
are associated with morphological variability we computed the
Laplacian score of each gene on the GW morphology space using
RayleighSelection, as described above (subheading “Evaluation of
features on the cell morphology space”). Gene expression values
were normalized as logð1 + 5000size � normalized expressionÞ, we
used 1000 permutations, and ε was given by the median GW dis-
tance. We only tested genes expressed in at least 5% and less than
90% of cells. We identified gene ontology enrichments using the R
package gProfileR68, where we performed an ordered query of the
significant genes based on their Laplacian score and restricted
the search to biological process (BP) gene ontologies. We used the
same procedure based on the Laplacian score to determine which
electrophysiological features were associated with changes in the
morphology of the dendrites.

Computation of RNA velocity trajectories
We clipped 3’ Illumina adapters and aligned FASTQ files to the
GRCm38 mouse reference genome using the STAR aligner69. We used
the command “run_smartseq” from the velocyto command line tool52

to create a Loom file of spliced and unspliced reads. We then used the
scvelo Python package53 to compute RNA velocity trajectories. We
tested scvelo in dynamical or stochastic mode with 0, 10, or 20 mini-
mum counts; 500, 1000, or 2000 top variable genes; 10, 20, or 30
principal components; and 10 or 30 neighbors. We kept the velocity
trajectories with the highest average confidence per arrow, defined by
agreementwith neighboring arrows. These trajectories were produced
using stochastic mode with 0 minimum counts, 500 top variable
genes, 10 principal components, and 30 neighbors. We computed the
pseudotime using the velocity graph. We took all 78 genes which
passed the basic default filters in rank_velocity_genes() to be velocity-
related genes and used the Laplacian score to assess their morpholo-
gical association.

Consistency between transcriptomic, electrophysiological, and
morphological spaces
We defined the transcriptomic distance (dT ) between two cells as
the Spearman correlation distance between their log-normalized
gene expression profile, and their electrophysiological distance
(dE) as the Euclidean distance between their electrophysiological
feature vectors. We compared these distances and the GW mor-
phological distance (dM) between all pairs of cells in the dataset
of Scala et al.38 by representing them on a 2-simplex. For that
purpose, we standardized the logarithm of pairwise distances
independently for each data modality. We then took the axes of
the 2-simplex to be the given by the difference between each pair
of distances (dM � dT , dT � dE , dE � dM), so that the sum of the
coordinates equals 0 for each pair of cells. We plotted cell pairs in
the middle 98% of each axis.

Integrative analysis of Patch-seq and patch-clamp data
We combined the patch-clamp and two Patch-seq datasets into
one cell morphology space by computing the GW distance
between the morphological reconstructions of the dendrites of all
1662 neurons from the 3 datasets. We sampled 100 points from
each dendrite and used geodesic distance to measure distances
between points.

To evaluate the integration of the Patch-seq datasets, we utilized
the classification of neurons into the t-types of Tasic et al.54. This
classification is provided by Gouwens et al.37 as their transcriptomic
alias, andwe computed the classification for the dataset of Scala et al.38

using their t-type-assignment Jupyter notebook.We tested the overlap
between neurons of the same transcriptomic class but from different
datasets in the cell morphology space by performing aWilcoxon rank-
sum test, comparing the distribution of GW distances within the same
transcriptomic class with the distribution of GW distances between
transcriptomic classes.

To evaluate the integration between the two Patch-seq datasets
and the patch-clamp dataset, we matched the neuronal tran-
scriptomic classes in the Patch-seq datasets with the Cre driver lines
in the patch-clamp dataset. To define transcriptomic classes, we used
the first marker in the t-types and considered markers that existed in
at least five cells of two of the three datasets. This left Sst, Pvalb, and
Vip as major markers between the transcriptomic classes and Cre
lines, and Lamp5 and Sncg as markers between transcriptomic clas-
ses only. We again used the Wilcoxon rank-sum test to compare the
distributions of GW distances within and between these five major
transcriptomic types.

Integrative analysis of Patch-seq and MICrONS neuronal data
We calculated a combined GWmorphological space for the two Patch-
seq datasets and 1000 neurons evenly sampled from the MICrONS
dataset, in addition to 140 manually annotated neurons by the
MICrONS program. We sampled 50 points from the full neuronal
reconstructions from the Patch-seq datasets. In the case of the dataset
of Scala et al.38, this restricted our analysis to 370 neurons with full
reconstructions. Since the SWC format used in the Patch-seq datasets
contains a trace reconstruction, and the triangular cell segmentation
meshes used in the MICrONS dataset contain cell surface reconstruc-
tions, we computed the GW distance based on the pairwise Euclidean
distances between 50 points sampled from each neuron, instead of
geodesic distance.

To evaluate the integration, we matched some of the manually
annotated cells from theMICrONS dataset with t-types from the Patch-
seq datasets. Following the results of Tasic et al.54, we assigned the Sst
Calb2/Chrna2 t-types (Sst Calb2 Pdlim5, Sst Calb2 Necab1, Sst Chrna2
Ptgdr, Sst Chrna2 Glra3) to Martinotti cells, and the Pvalb Vipr2 t-type
to chandelier cells. Some other Pvalb t-types were assigned to basket
cells, such as Pvalb Sema3e Kank4 and Pvalb Gpr149 Islr, whereas CCK
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or small basket cells were associated with Vip t-types such as Vip Chat
Htr1f and Vip Col15a156. Since cells of the Vip subclass have bipolar
morphologies54, we assigned all other Vip subtypes to bipolar cells.We
then evaluated the consistency of the cell morphology space with
these assignments by using a Wilcoxon rank-sum test to compare the
distribution of GW distances between matching types across datasets
with the distribution GW distances between non-matching types
across datasets.

Statistics and reproducibility
We considered all the available samples from the Patch-seq, intra
vital two-photon microscopy, and MICrONS datasets used in this
study. No statistical method was used to predetermine sample size.
Sample sizes were chosen based on sample availability, correspond
to some of the largest single-cell morphological datasets that are
currently available, and led to statistically significant and repro-
ducible results in our analyses. We excluded 3 neurons from the
Gouwens et al. patch-clamp dataset35 since their SWC file was not
sorted. We excluded 62 neurons from the Gouwens et al. Patch-seq
dataset37 with no assigned transcriptomic type. The dendrites of one
inhibitory neuron from the Scala et al. Patch-seq dataset38 were not
present and this neuron was therefore not considered in the ana-
lyses. 42,672 meshes from the MICrONS dataset were identified as
artifacts or doublets after the filtering and quality control process
detailed above and were therefore not considered in downstream
analyses. For the DVB neuron morphology data, sample size was
uniformly determined by analyzing at least 3 animals for each con-
dition, and more than 10 animals in most cases. The order and allo-
cation of controls and mutants was randomized for each replicate.
The Investigators were not blinded to allocation during experiments
and outcome assessment. Blinding to genotype allocation was not
relevant to this study since all statistical tests involve the comparison
between genotypes. We used two-sided Wilcoxon rank-sum tests to
compare distances across conditions and one-sided permutation
tests to evaluate the statistical significance of the Laplacian score.
When testing multiple hypotheses, we used Benjamini–Hochberg
procedure to control the false discovery rate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets used in this study are publicly available. The mor-
phological reconstructions of the DVB neuron generated in this study
have been deposited in the neuromorpho.org database (Hart archive).
The patch-clamp data of Gouwens et al.35 are available at the “Allen
Brain Atlas data portal [http://celltypes.brain-map.org/data].” The
Patch-seq datasets of Gouwens et al.37 and Scala et al.38 are available at
the Brain Image Library (BIL) using the URLs https://download.
brainimagelibrary.org/biccn/zeng/pseq/morph/200526/ and https://
download.brainimagelibrary.org/biccn/zeng/tolias/pseq/morph/,
respectively. The fMOST dataset of Peng et al.39 are available at the BIL
using the URL https://download.brainimagelibrary.org/biccn/zeng/
luo/fMOST/cells/. The two-photon microscopy data of Medyukhina
et al.21 are available at https://asbdata.hki-jena.de/publidata/
MedyukhinaEtAL_SPHARM/. The MICrONS program dataset is avail-
able at the “MICrONS Explorer [https://www.microns-explorer.org/
cortical-mm3#segmentation-meshes].” The GRCm38mouse reference
genome is available at https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_000001635.20/. All other data supporting the findings
of this study are available within the article and its Supplementary
Files. Any additional requests for information can be directed to, and
will be fulfilled by, the lead contact. Source data are provided with
this paper.

Code availability
The source code and documentation of CAJAL are available at https://
github.com/CamaraLab/CAJAL and https://cajal.readthedocs.io/28.

References
1. Ramón y Cajal, S. Studies on Vertebrate Neurogenesis (Tho-

mas, 1960).
2. Pauling, L., Itano, H. A., Singer, S. J. &Wells, I. C. Sickle cell anemia,

a molecular disease. Science 110, 543–548 (1949).
3. Wessells, N. et al. Microfilaments in cellular and developmental

processes. Science 171, 135–143 (1971).
4. Ascoli, G. A., Donohue, D. E. & Halavi, M. NeuroMorpho.Org: a

central resource for neuronal morphologies. J. Neurosci. 27,
9247–9251 (2007).

5. Bardy, C. et al. Predicting the functional states of human iPSC-
derived neurons with single-cell RNA-seq and electrophysiology.
Mol. Psychiatry 21, 1573–1588 (2016).

6. Cadwell, C. R. et al. Electrophysiological, transcriptomic and mor-
phologic profiling of single neurons using Patch-seq. Nat. Bio-
technol. 34, 199–203 (2016).

7. Chen, X. et al. Coupled electrophysiological recording and single
cell transcriptome analyses revealed molecular mechanisms
underlying neuronal maturation. Protein Cell 7, 175–186 (2016).

8. Foldy, C. et al. Single-cell RNAseq reveals cell adhesion molecule
profiles in electrophysiologically defined neurons. Proc. Natl Acad.
Sci. USA 113, E5222–E5231 (2016).

9. Fuzik, J. et al. Integration of electrophysiological recordings with
single-cell RNA-seq data identifies neuronal subtypes. Nat. Bio-
technol. 34, 175–183 (2016).

10. Lipovsek, M. et al. Patch-seq: past, present, and future. J. Neurosci.
41, 937–946 (2021).

11. Asp, M., Bergenstrahle, J. & Lundeberg, J. Spatially resolved
transcriptomes-next generation tools for tissue exploration. Bioes-
says 42, e1900221 (2020).

12. Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an organ’s
molecular architecture at single-cell resolution by spatially
resolved transcriptomics. Trends Biotechnol. 39, 43–58 (2021).

13. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat.
Methods 19, 534–546 (2022).

14. Carpenter, A. E. et al. CellProfiler: image analysis software for
identifying and quantifying cell phenotypes. Genome Biol. 7,
R100 (2006).

15. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: inte-
grated library and plugins for mathematical morphology with
ImageJ. Bioinformatics 32, 3532–3534 (2016).

16. Sholl, D. A. Dendritic organization in the neurons of the visual and
motor cortices of the cat. J. Anat. 87, 387–406 (1953).

17. Scorcioni, R., Polavaram, S. & Ascoli, G. A. L-Measure: a web-
accessible tool for the analysis, comparison and search of digital
reconstructions of neuronal morphologies. Nat. Protoc. 3,
866–876 (2008).

18. Arshadi, C., Gunther, U., Eddison, M., Harrington, K. I. S. & Ferreira,
T. A. SNT: a unifying toolbox for quantification of neuronal anatomy.
Nat. Methods 18, 374–377 (2021).

19. Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S. & Jefferis, G.
S. NBLAST: rapid, sensitive comparison of neuronal structure and
construction of neuron family databases. Neuron 91,
293–311 (2016).

20. Wan, Y. et al. BlastNeuron for automated comparison, retrieval and
clustering of 3D neuron morphologies. Neuroinformatics 13,
487–499 (2015).

21. Medyukhina, A. et al. Dynamic spherical harmonics approach for
shape classification of migrating cells. Sci. Rep. 10, 6072 (2020).

22. Pincus, Z. & Theriot, J. A. Comparison of quantitative methods for
cell-shape analysis. J. Microsc. 227, 140–156 (2007).

Article https://doi.org/10.1038/s41467-023-39424-2

Nature Communications |         (2023) 14:3672 15

http://celltypes.brain-map.org/data
https://download.brainimagelibrary.org/biccn/zeng/pseq/morph/200526/
https://download.brainimagelibrary.org/biccn/zeng/pseq/morph/200526/
https://download.brainimagelibrary.org/biccn/zeng/tolias/pseq/morph/
https://download.brainimagelibrary.org/biccn/zeng/tolias/pseq/morph/
https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/cells/
https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/cells/
https://asbdata.hki-jena.de/publidata/MedyukhinaEtAL_SPHARM/
https://asbdata.hki-jena.de/publidata/MedyukhinaEtAL_SPHARM/
https://www.microns-explorer.org/cortical-mm3#segmentation-meshes
https://www.microns-explorer.org/cortical-mm3#segmentation-meshes
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001635.20/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001635.20/
https://github.com/CamaraLab/CAJAL
https://github.com/CamaraLab/CAJAL
https://cajal.readthedocs.io/


23. Khotanzad, A. & Hong, Y. H. Invariant image recognition by Zernike
moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990).

24. Brechbühler, C., Gerig, G. & Kübler, O. Parametrization of closed
surfaces for 3-D shape description.Comput. Vis. Image Underst. 61,
154–170 (1995).

25. Mémoli, F. On the use of Gromov-Hausdorff distances for shape
comparison. In Proc. Eurographics Symposium on Point-Based
Graphics 81–90 (2007).

26. Mémoli, F. Gromov–Wasserstein distances and themetric approach
to object matching. Found. Comput. Math. 11, 417–487 (2011).

27. Mémoli, F. & Sapiro, G. A theoretical and computational framework
for isometry invariant recognition of point cloud data. Found.
Comput. Math. 5, 313–347 (2005).

28. Govek, K. W. et al. CAJAL software (this paper). zenodo https://doi.
org/10.5281/zenodo.7976173 (2023).

29. Gromov, M. Groups of polynomial growth and expanding maps
(with an appendix by Jacques Tits). Publ. Math. l’IHÉS 53,
53–78 (1981).

30. Edwards, D. A. inStudies in Topology (eds Stavrakas, N.M. &Allen K.
R.) 121–133 (Elsevier, 1975).

31. Scetbon, M., Cuturi, M. & Peyré, G. Low-rank Sinkhorn factorization.
In International Conference on Machine Learning 9344–9354
(PMLR, 2021).

32. Solomon, J., Peyré, G., Kim, V.G.&Sra, S. Entropicmetric alignment
for correspondence problems. ACM Trans. Graph. 35, 1–13 (2016).

33. Chowdhury, S., Miller, D. & Needham, T. Quantized Gromov-
Wasserstein. In Machine Learning and Knowledge Discovery in
Databases. Lecture Notes in Computer Science (eds Oliver, N.,
Perez-Cruz, F., Kramer, S., Read, J. & Lozano, J. A.) 811–827
(Springer, 2021).

34. He, X., Cai, D. &Niyogi, P. Laplacian score for feature selection.Adv.
Neural Inf. Process. Syst. 18, 507–514 (2006).

35. Gouwens, N. W. et al. Classification of electrophysiological and
morphological neuron types in the mouse visual cortex. Nat. Neu-
rosci. 22, 1182–1195 (2019).

36. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, P10008 (2008).

37. Gouwens, N. W. et al. Integrated morphoelectric and tran-
scriptomic classification of cortical GABAergic cells. Cell 183,
935–953.e919 (2020).

38. Scala, F. et al. Phenotypic variation of transcriptomic cell types in
mouse motor cortex. Nature 598, 144–150 (2021).

39. Peng, H. et al. Morphological diversity of single neurons in mole-
cularly defined cell types. Nature 598, 174–181 (2021).

40. Kanari, L. et al. A topological representation of branching neuronal
morphologies. Neuroinformatics 16, 3–13 (2018).

41. Batabyal, T. & Acton, S. T. Elastic Path2Path: automated morpho-
logical classification of neurons by elastic path matching. In 25th
IEEE International Conference on Image Processing (ICIP). 166–170
(IEEE, 2018).

42. Chicco,D. & Jurman,G.The advantages of theMatthewscorrelation
coefficient (MCC)over F1 score andaccuracy in binary classification
evaluation. BMC Genomics 21, 6 (2020).

43. MICrONS Consortium et al. Functional connectomics spanning
multiple areas of mouse visual cortex. Preprint at bioRxiv https://
doi.org/10.1101/2021.07.28.454025 (2021).

44. Lanjakornsiripan, D. et al. Layer-specific morphological and mole-
culardifferences in neocortical astrocytes and their dependenceon
neuronal layers. Nat. Commun. 9, 1623 (2018).

45. McQuin,C. et al. CellProfiler 3.0: next-generation imageprocessing
for biology. PLoS Biol. 16, e2005970 (2018).

46. Wu, P. H. et al. Evolution of cellular morpho-phenotypes in cancer
metastasis. Sci. Rep. 5, 18437 (2015).

47. Govek, K. W., Yamajala, V. S. & Camara, P. G. Clustering-
independent analysis of genomic data using spectral simplicial
theory. PLoS Comput. Biol. 15, e1007509 (2019).

48. LeBoeuf, B. & Garcia, L. R. Caenorhabditis elegansmale copulation
circuitry incorporates sex-shared defecation components to pro-
mote intromission and sperm transfer. G3 7, 647–662 (2017).

49. Hart, M. P. & Hobert, O. Neurexin controls plasticity of a mature,
sexually dimorphic neuron. Nature 553, 165–170 (2018).

50. Fuerst, P. G., Koizumi, A., Masland, R. H. & Burgess, R. W. Neurite
arborization and mosaic spacing in the mouse retina require
DSCAM. Nature 451, 470–474 (2008).

51. Wang, Y. et al. PCDH7 interacts with GluN1 and regulates dendritic
spinemorphology and synaptic function.Sci. Rep. 10, 10951 (2020).

52. La Manno, G. et al. RNA velocity of single cells. Nature 560,
494–498 (2018).

53. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing
RNA velocity to transient cell states through dynamical modeling.
Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0591-3 (2020).

54. Tasic, B. et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563, 72–78 (2018).

55. Hilscher, M.M., Leao, R. N., Edwards, S. J., Leao, K. E. & Kullander, K.
Chrna2-Martinotti cells synchronize layer 5 type A pyramidal cells
via rebound excitation. PLoS Biol. 15, e2001392 (2017).

56. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H.
Anatomical, physiological, molecular and circuit properties of nest
basket cells in the developing somatosensory cortex.Cereb. Cortex
12, 395–410 (2002).

57. Biasotti, S., Cerri, A., Bronstein, A. & Bronstein, M. Recent trends,
applications, and perspectives in 3D shape similarity assessment.
Comput. Graph. Forum 35, 87–119 (2016).

58. Becht, E. et al. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.
4314 (2018).

59. Hagberg, A., Swart, P. & S Chult, D. Exploring network structure,
dynamics, and function using NetworkX. In Proc. 7th Python in
Science Conference 11–15 (SciPy, 2008).

60. Flamary, R. et al. Pot: Python optimal transport. J. Mach. Learn. Res.
22, 1–8 (2021).

61. Csardi, G. & Nepusz, T. The igraph software package for complex
network research. InterJ. Complex Syst. 1695, 1–9 (2006).

62. Harris, C. R. et al. Array programming with NumPy. Nature 585,
357–362 (2020).

63. Crane, K., Weischedel, C. &Wardetzky, M. Geodesics in heat: a new
approach to computing distance based on heat flow. ACM Trans.
Graph. 32, 1–11 (2013).

64. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden:
guaranteeing well-connected communities. Sci. Rep. 9,
5233 (2019).

65. Leland, M., John, H., Nathaniel, S. & Lukas, G. UMAP: uniform
manifold approximation and projection. J. Open Source Softw. 3,
861 (2018).

66. McInnes, L., Healy, J. & Astels, S. hdbscan: Hierarchical density
based clustering. J. Open Source Softw. 2, 205 (2017).

67. Schindelin, J. et al. Fiji: an open-source platform for biological-
image analysis. Nat. Methods 9, 676–682 (2012).

68. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler–a
web-based toolset for functional profiling of gene lists from large-
scale experiments. Nucleic Acids Res. 35, W193–200 (2007).

69. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

Acknowledgements
The authors are grateful to Dr. Zhaolan Zhou for his constructive com-
ments on the manuscript and Matthew Jozwik for assisting with the

Article https://doi.org/10.1038/s41467-023-39424-2

Nature Communications |         (2023) 14:3672 16

https://doi.org/10.5281/zenodo.7976173
https://doi.org/10.5281/zenodo.7976173
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314


conversion of files for the DVB analysis. This work was supported by the
National Institute of Mental Health (NIMH) of the National Institutes of
Health (NIH) under award number RF1 MH130553 (P.G.C.).

Author contributions
K.G. performed the computational analyses. K.G. and P.N. implemented
CAJAL. Y.L., J.C., and H.C. assisted with some of the computational
analyses. A.B.S. implemented the covariate analysis of the Laplacian
score. K.Z. and M.P.H. generated the morphological reconstructions of
the DVB neuron and assisted with their analysis. P.G.C. and K.G. jointly
wrote the manuscript. P.G.C. supervised the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39424-2.

Correspondence and requests for materials should be addressed to
Pablo G. Camara.

Peer review information Nature Communications thanks Janos Fuzik,
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39424-2

Nature Communications |         (2023) 14:3672 17

https://doi.org/10.1038/s41467-023-39424-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	CAJAL enables analysis and integration of single-cell morphological data using metric geometry
	Results
	A general framework for the quantitative analysis of cell morphology data
	GW cell morphology spaces accurately summarize complex cell shapes
	GW cell morphology spaces recapitulate heterogeneous cell types
	Multimodal analyses of GW cell morphology spaces enable uncovering genetic determinants of cell morphology
	Integrative analysis of molecular, physiological, and morphological data from single cells
	GW cell morphology spaces facilitate the integration of cell morphology data across technologies

	Discussion
	Methods
	Computation of GW cell morphology spaces
	Evaluation of features on the cell morphology space
	Processing of Patch-seq and patch-clamp morphological reconstructions
	Average shape of neurons
	Comparison of CAJAL with current methods for neuronal morphometry
	Morphological analysis of the MICrONS dataset
	Morphological analysis of T�cells
	Comparison of CAJAL with general methods for cell morphometry
	Evaluation of the accuracy and runtime of CAJAL as a function of the number of sampled points
	Morphological analysis of the DVB neuron
	Identification of genes and electrophysiological features associated with the morphology of neuronal dendrites
	Computation of RNA velocity trajectories
	Consistency between transcriptomic, electrophysiological, and morphological spaces
	Integrative analysis of Patch-seq and patch-clamp data
	Integrative analysis of Patch-seq and MICrONS neuronal data
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




