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Mixed strain pathogen populations
accelerate the evolution of antibiotic
resistance in patients

Julio Diaz Caballero1,6, Rachel M. Wheatley1,6, Natalia Kapel1,
Carla López-Causapé 2, Thomas Van der Schalk 3, Angus Quinn 1,
Liam P. Shaw1, Lois Ogunlana1, Claudia Recanatini 4, Basil Britto Xavier 3,
Leen Timbermont 3, Jan Kluytmans4, Alexey Ruzin5, Mark Esser 5,
Surbhi Malhotra-Kumar 3, Antonio Oliver2 & R. Craig MacLean 1

Antibiotic resistance poses a global health threat, but thewithin-host drivers of
resistance remain poorly understood. Pathogen populations are often
assumed to be clonal within hosts, and resistance is thought to emerge due to
selection for de novo variants. Here we show thatmixed strain populations are
common in the opportunistic pathogen P. aeruginosa. Crucially, resistance
evolves rapidly in patients colonized by multiple strains through selection for
pre-existing resistant strains. In contrast, resistance evolves sporadically in
patients colonized by single strains due to selection for novel resistance
mutations. However, strong trade-offs between resistance and growth rate
occur in mixed strain populations, suggesting that within-host diversity can
also drive the loss of resistance in the absence of antibiotic treatment. In
summary, we show that the within-host diversity of pathogen populations
plays a key role in shaping the emergence of resistance in response to
treatment.

Antibiotic resistance in pathogenic bacteria poses a fundamental
threat to human health. It is well established that antibiotic use is
associated with the emergence of resistance1,2. However, the within-
host drivers of resistance remain poorly understood,making it difficult
to predict the emergence of resistance at the scale of individual
patients3–5. This is an important problem to address, as resistant
infections are associated with worse outcomes for patients6,7.

The dominant model for the within-host emergence of resistance
is that resistance evolves because of selection for novel alleles that are
acquired in situ by mutation or horizontal gene transfer4,8–12. An
implicit assumption of this model is that hosts are colonized by clonal
pathogen populations that lack genetic variation due to bottlenecks

that occur during transmission8,13–16. However, hosts can also be colo-
nized by multiple strains of the same pathogen species17–22. Mixed
strainpopulations contain bothnovel genetic variation that is acquired
in situ and pre-existing variation that reflects differences between the
co-colonizing strains. A key concept from evolutionary biology is that
this additional source of standing genetic variation in mixed strain
populations should accelerate the evolutionary response to antibiotic
treatment by increasing the genetic diversity that selection acts on23–25.
This simple logic predicts that resistance will evolve rapidly in hosts
colonized by diverse pathogen populations.

In this paper, we test the hypothesis that resistance evolves
rapidly in diverse populations of Pseudomonas aeruginosa, an
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opportunistic pathogen that is an important cause of hospital-
acquired infection, particularly in immunocompromised and criti-
cally ill patients7,26–28. Pseudomonas can cause infections at a wide
range of anatomical sites, but the biggest problem with Pseudomonas
comes from infections of the lung7,28–30. P. aeruginosa evolves resis-
tance during infections at a very high rate compared to other ESKAPE
pathogens31, and resistance is an importance challenge for treating
Pseudomonas infection7,31. Previous studies have shown that different
strains ofPseudomonas can co-occur in the lungs of patientswho suffer
from chronic P. aeruginosa infection associatedwith cystic fibrosis and
bronchiectasis21,22,32. We tested the impact of within-patient Pseudo-
monasdiversity in ICUpatients using samples thatwere collected from
ASPIRE-ICU, an observational trial of Pseudomonas infection in Eur-
opean hospitals33.

Patients who were enroled into the ASPIRE-ICU trial were
screened for Pseudomonas soon after admission to ICU and then at
regular intervals thereafter. Clinical microbiology projects usually
focus on the analysis of a small number of isolates per patient sample,
making it difficult to assess the prevalence and importance of within-
patient pathogen diversity. ASPIRE-ICU, on the other hand, sampled
Pseudomonas isolates in an unbiased manner (i.e. without respect to
resistance phenotype), and collected up to 12 randomly chosen iso-
lates from all patient samples containing Pseudomonas. Most patients
who were enroled in the trial spent only a short time in ICU, but
longitudinal samples were collected from some patients, making it
possible to directly study the within-patient drivers of antibiotic
resistance8,34. In this paper, we use a combination of phenotypic assays
(resistance phenotyping, growth rate) and genomic analyses to
quantify within-patient diversity and antibiotic resistance. Using this
approach we show that at least 1/3 of patients are colonized by mul-
tiple Pseudomonas strains, and that resistance evolves rapidly in these
patients due to selection for pre-existing resistant strains.

Results
Genomic diversity of Pseudomonas aeruginosa
To characterize the diversity of P. aeruginosa within patients we
sequenced the genomes of 441 isolates that were collected from lower
respiratory tract samples of 35 ICU patients from 12 hospitals (Fig. 1A).
The number of patients per hospital was very unevenly distributed,
and ~50% (n = 17/35 patients) of our patients were from a single hos-
pital with a high Pseudomonas colonization rate (Fig. 1B) (Source data).

In linewithpreviouswork35, we found thatP. aeruginosahas a non-
epidemic clonal population structure, consisting of clearly differ-
entiated Sequence Types (STs) that are separated by long branches
(Fig. 1D). The most prevalent ST (ST235) segregated into three sub-
lineages, which diversified prior to our sampling (Fig. 1E). Given this
phylogeny, we considered STs and sub-lineages of ST235 to represent
unique strains.

The majority of patients (n = 23/35) were colonized by a single
strain (Fig. 1C). However, ~1/3 of patients (n = 12/35) were colonized by
multiple strains (Fig. 1C). Most of the patients that were colonized by
multiple strains were from a single hospital with a high Pseudomonas
colonization rate (Fig. 1B). However, the uneven sampling of patients
across hospitals made it impossible to test for variation in the pre-
valence of mixed strain colonization across hospitals (Fig. 1B). Previous
work has found evidence of mixed strain populations in chronic Pseu-
domonas infections21,32, suggesting that mixed strain populations may
be found in patients with a long history of Pseudomonas infection.
However, the prevalence of mixed strain populations did not differ
between patients who tested positive for Pseudomonas on ICU admis-
sion versus those who were colonized in ICU, suggesting that high
within-patient diversity is not simply a consequenceof chronic infection
(unpaired two-tailed t-test; p =0.9073) (Supplementary Table 1).

Strain diversity tended to be high in patients colonized by multi-
ple strains (mean Simpson’s index = 0.37, st.dev = 0.15) (Fig. 1C). This

measure of within-patient diversity does not depend on the number of
isolates sampled, but our estimate of the prevalence of mixed strain
colonization should be treated as conservative, as our ability to detect
rare strains was limited by the number of isolates sequenced per
patient. For example, in patients with six sequenced isolates, the
probability of detecting a rare strain present at a frequency of 5% is
only 26%, assuming a binomial sampling distribution. However, in
patients with >10 isolates, the probability of detecting a rare strain
increases to above 40%. We carried out rarefaction analysis of the
mixed strain patient populations to estimate the power of our sam-
pling to detect mixed strain populations. This showed that with six
isolates per sample (which is the median isolate number in our single
strain patient samples), multiple strains are captured in >99% of the
subsamples for 8/9 mixed strain patients (Supplementary Fig. 1).

Within-patient diversity and AMR
To understand the impact of within-patient diversity on antimicrobial
resistance (AMR), we measured resistance of isolates to a panel of
antibiotics including ciprofloxacin, meropenem, gentamicin, aztreo-
nam, ceftazidime and piperacillin/tazobactam using minimum inhibi-
tory concentration (MIC) assays. This panel included representatives
of all of the major families of antibiotics, but was biased towards β-
lactam antibiotics due to their clinical relevance for treating Pseudo-
monas infections36. In total we measured the resistance of 441 isolates
to six antibiotics (Fig. 1A), generating a large dataset on the distribu-
tion of resistance phenotypes (Source data).

Measuring antibiotic resistance using MIC assays generates
quantitative data on resistance. However, we chose to analyse
the resistance of each isolate to each antibiotic as a binary trait (i.e.
sensitive/resistant) for two reasons. First, the selective impact of
quantitative variation in MIC scores that are above the clinical break-
point concentration is not clear, as pathogens may not encounter
these high antibiotic doses during treatment37. Furthermore, some
bacterial isolates were resistant to the maximal doses of antibiotic
used in our susceptibility assays, and in these cases the quantitative
resistance score is undefined.

For approximately half the patients (n = 16/35) we obtained iso-
lates from only a single patient sample. Isolates from these patients
provide insights into within-host diversity, but they provided limited
insights into evolutionary drivers of AMR. To address this problem, we
measured changes in resistance using isolates from samples that were
collected from patients before and after treatment with antibiotics
that are active against P. aeruginosa (Fig. 2A). This subset of 13 long-
itudinally sampled patients included patients with single strain (n = 7
patients) and mixed-strain (n = 6 patients) Pseudomonas populations.
The remaining 6 longitudinally sampled patients were not treatedwith
antibiotics that are active against P. aeruginosa between their sampling
points. Importantly, the number of days between the initial and final
sample did not differ between patients with single strain and mixed
strain populations (unpaired two-tailed t-test; p = 0.3211) (Supple-
mentary Table 2).

To measure the response to antibiotic treatment, we calculated
the change in the proportion of isolates that were resistant to each
antibiotic over time for each combination of patient and antibiotic.
Measuring resistance to a panel of antibiotics allowed us to distinguish
between direct responses to antibiotics that were used in treatment
and collateral changes in resistance to antibiotics that were not used
for treatment for each patient (Source data). Surprisingly, direct
responses to antibiotic treatment were not larger than collateral
responses, implying an overall tendency towards cross-resistance
(main effect response type: F1,52 = 0.029, P =0.86) (Supplementary
Table 3). Given this, our analysis of changes in resistance in response to
treatment included all antibiotics in our panel. An important implica-
tion of this approach is that we assumed that each combination of
patient and antibiotic was an independent response.
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Antibiotics should impose strong selection for resistance in
populations where average levels of resistance are low. Consistent
with this hypothesis, resistance increased rapidly in patients where
the initial prevalence of resistant isolates was low (Fig. 2B; main effect
initial resistance, F1,52 = 32, P <0.0001). Importantly, this effect of
initial resistance did not depend on the diversity of the pathogen

population (initial resistance*diversity interaction: F1,52 = 0.018,
P =0.894) (Supplementary Table 3). Response to antibiotic treatment
varied between patients, even after correcting for the impact of initial
resistance, implying that individual combinations of host/pathogen/
treatment played an important role in the evolution of resistance
(nested effect of patient: F11,52 = 3.91, P =0.0004) (Supplementary
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Fig. 1 | Overview of patient cohort, methodology, and isolate dataset.
A Overview of sample collection. Endotracheal aspirate was collected from 35
patients with up to 12 Pseudomonas isolates per patient sample. A total of 441
isolates were collected and characterized via resistance phenotyping and genome
sequencing. B Map showing distribution of patient samples. Pie charts show total
mixed strain (orange) and single strain (blue) patients per country. Pie chart size is
adjusted by patient number, patient number is shown by ‘n=’ above the corre-
sponding chart. Figure was created using mapchart.net. C Within-host diversity of
P. aeruginosa. Bar height indicates the number of isolates and bar colour indicates
the Sequence Type(s) (ST) of P. aeruginosa collected from each patient in the study
cohort. Mixed strain populations were identified in 12/35 patients. Patient numbers

in bold indicate longitudinally sampled patients, and the isolates from each sample
are shown sequentially. * indicates patients with a mixed strain population con-
sisting of isolates from multiple distinct ST235 sub-lineages. Plotted points show
the diversity of clones within patients, as measured by Simpson’s Index, and the
lines show how Simpson’s Index changes in between samples in patients with two
samples. D Neighbour joining phylogeny based on core genes of all STs found
in this study and the respective proportion of MDR isolates in each ST82.
nucleotide substitutions per site. E Neighbour joining phylogeny based on core
genes of ST235 isolates showing the three distinct ST235 sub-lineages (cluster A, B
and C)82. Scale = nucleotide substitutions. The raw data is presented in the source
data file.

Fig. 2 | Mixed strain populations accelerate the emergence of resistance.
A Resistance phenotyping of isolates from the subset of 13 longitudinally sampled
patients that were treated with antibiotics that are active against Pseudomonas.
B Change in the prevalence of antibiotic-resistant isolates in patients with single
strain (blue) and mixed strain (orange) populations. Resistance to six antibiotics
was measured and the proportion of isolates that were resistant to each antibiotic
at each time point was calculated. Data are presented as mean values for the pro-
portion of isolates that were resistant to each antibiotic for the first sampling point
(initial prevalence) and the difference between sampling points (change in pre-
valence), from a minimum of n = 5 isolates per patient (source data file). Error bars

show the standard error of initial resistance (x-axis; n = 6 antibiotics) and the
change in resistance (y-axis; n = 6 antibiotics) across antibiotics. C Bars show the
mean (+/−s.e.) change in the prevalence of resistant isolates in single strain (n = 7
patients; blue) and mixed strain (n = 6 patients; orange) populations after cor-
recting for the effect of initial resistance. Mixed strain populations were associated
with larger increases in resistance in response to antibiotic treatment (main effect
diversity, F1,52 = 15.03, P =0.0003). The statisticalmodel used to analyse this data is
described in themethods and themodel output is given in Supplementary Table 3.
The raw data is presented in the source data file.

Article https://doi.org/10.1038/s41467-023-39416-2

Nature Communications |         (2023) 14:4083 4



Table 3). Crucially, increases in resistance were ~20% larger in patients
colonized by mixed strains compared to single strains for any given
level of initial resistance (Fig. 2C; main effect diversity, F1,52 = 15.03,
P =0.0003) (Supplementary Table 3).

Drivers of resistance in mixed strain infections
The emergence of resistance in patients withmixed strain populations
could be caused by either selection for pre-existing resistant strains or
selection for novel variants. To test for selection on pre-existing
strains, we simplified our antibiotic resistance phenotyping data by
classifying each isolate as multi-drug resistant (MDR; resistant to 3 or
more antibiotics) or non-MDR (Source data). This is an appropriate
measure of resistance due to the overall tendency towards cross-
resistance, and using this metric simplifies subsequent analysis.

Examining changes in the composition of mixed strain popula-
tions revealed that STs that were associated with non-MDR isolates
were repeatedly replaced by ST235 and ST654 (Fig. 3A–F). Both of
these strains are well-characterized and epidemiologically successful
MDR strains of P. aeruginosa38 that are common in hospitals from
south-eastern Europe39. In 3/5 patients where resistance increased in
response to treatment, the resistant strain was already detected prior
to treatment (Fig. 3A, C, D). In patient 15 (Fig. 3B), the ST654 resistant
strain that was detected after antibiotic treatment was not sampled at
the initial time point. However, polymorphisms were found in the
ST654 isolates that were sampled after antibiotic treatment (Supple-
mentary Fig. 2). Given the short time interval between sampling (7
days) and the low rate of within-host evolution of P. aeruginosa in
critically ill patients (10–20 SNPs/genome/year8,34), these pre-existing
polymorphisms provide good evidence that ST654 was present at a
low frequency prior to antibiotic treatment. In the remaining patient
(Patient 8; Fig. 3F), 2 new ST235 MDR strains were detected after
antibiotic treatment. The low number of isolates of each of these
strains (n = 2) made it difficult to test whether these strains were pre-
sent prior to antibiotic treatment. However, removing this patient
from the analysis did not alter any of our conclusions (Supplementary
Table 3).

In summary, antibiotic treatment of patients with mixed strain
populations was clearly associated with selection for pre-existing
resistant strains. One way to quantify this effect is to decompose the
increase in the prevalence of MDR isolates in the 5 patients where
resistance increased into changes in ST composition, whichwe assume
to reflect pre-existing variation, and changes in the prevalence ofMDR
within strains, which we assume reflect the impact of new variants that
were acquired during infection (Fig. 3G). In 4/5 patients all of the
increase in resistancewas driven by changes in ST composition, and in
the remaining patient changes in ST composition accounted for close
to 80% of the increase in MDR (Fig. 3G). Combining these data we
estimate that >90% of increase in MDR in patients with mixed strain
populations are driven by selection for pre-existing resistant strains.
This very clear result suggests that pathogen diversity is associated
with the rapid emergence of resistance because diverse pathogen
population aremore likely to contain pre-existing resistant strains, and
not because diversity per se accelerates the emergence of resistance
within strains.

Testing for de novo resistance evolution
To directly estimate the impact of strain diversity on the de novo
evolution of resistance, we tested for signatures of resistance acqui-
sition using genomic data from longitudinally sampled patients. The
genetic basis of antimicrobial resistance in Pseudomonas aeruginosa is
complex and multifactorial40–44. Most clinically relevant resistance
mutations increase the expression of chromosomal resistance genes,
such as mutations in peptidoglycan biosynthesis genes (ampD,
ampDh2, dab, mpl) that increase the expression of the chromosomal
ampC β-lactamase, or nalD and mexR mutations that increase the

expression of theMexAB-OprM andMexXY-Zmultidrug efflux pumps,
respectively. Chromosomal mutations can also confer increased
resistance by altering antibiotic targets, such as gyrA and parC muta-
tions that modify fluoroquinolone target sites. Finally, mutations can
restrict the entry of antibiotics into the cell, such as oprD mutations
that provide resistance to carbapenem antibiotics.

To test for the mutational evolution of resistance, we searched for
polymorphisms in genes that have been implicated in resistance using a
database constructed by45. Because this approach only includes known
resistance genes, it provides a conservative estimate of the presence of
resistance genes. For example, the ability to predict resistance pheno-
types basedon knowngenomic resistance determinants is low for some
antibiotics, such as meropenem, suggesting that important resistance
genes remain to be discovered. We only considered within-host poly-
morphisms in this analysis under the assumption that these variants
reflect de novomutations that arose following patient colonization. We
modelled the number of resistance polymorphisms for each patient/
strain combination with a negative binomial regression as a function of
the infection type (single-strain vs. mixed-strain) and the number of
isolates sequenced to account for variation in sampling intensity. There
was no significant difference in the number of de novo resistance var-
iants between single-strain and mixed-strain populations (Fig. 4A,
Supplementary Table 4a). As a control, we also measured levels of
genome-wide polymorphism i.e. other variants not associated with
resistance. Similarly, there was no significant effect on de novo variants
from the infection type, providing good evidence that de novo variants
arise at similar rates in both types of infection (Fig. 4B, Supplementary
Table 4b).

Although studies of resistance in Pseudomonas have tended to
focus on mutational resistance, there is growing evidence that P. aer-
uginosa acquires mobile resistance genes, including extended spec-
trum β-lactamases, carbapenemases, and aminoglycoside modifying
enzymes44,46. We tested for the acquisition of new resistance genes
through horizontal gene transfer by searching for increases in the
prevalence of acquired resistance genes (again, using the database
from ref. 45). We found no evidence for the acquisition of novel
resistance suggesting that Pseudomonas acquires resistance genes at a
low rate in the lung (see also ref. 47).

Within-patient diversity and fitness trade-offs
Trade-offs between antibiotic resistance and fitness play a key role in
the stability of resistance within patients following antibiotic treat-
ment. Antibiotic treatment often fails to eradicate sensitive cells8,34,48,
ensuring that competition between sensitive and resistant cells occurs
following antibiotic treatment. When resistance is associated with low
fitness due to trade-offs, competition can lead to the loss of
resistance8,34, limiting the ability of the population to adapt to future
antibiotic treatment48.

The acquisition of antibiotic resistance by mutation is typically
associated with costs49,50, suggesting that trade-offs should be com-
mon in patients where resistance has evolved due to selection for de
novo resistance mutations. Over time, resistant lineages can evolve to
offset the fitness costs of resistance by acquiring compensatory
mutations51–54. As such, we would expect trade-offs between resistance
and fitness to be weaker when resistance evolves by selection for pre-
existing resistant strains that have had more opportunity to acquire
compensatory mutations.

The most commonly used method to test for fitness costs asso-
ciated with resistance is to measure growth rate in antibiotic-free
culturemedium49. Culturemediumdoes not replicate the physical and
chemical complexity of host tissues and it lacks stressors that are likely
to play an important role in vivo, such as host-derived antimicrobials.
In spite of these clear limitations, estimates of growth ratemeasured in
culture medium are moderately well correlated with in vivo estimates
of fitness from animal models (r = 0.81; ref. 49), and there are
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compelling examples showing that in vitro growth rate can predict
fitness of P. aeruginosa in critically ill patients from the ASPIRE-ICU
study8,34.

To test for costs of resistance, we measured the growth rate of
isolates from all patients containing a mixture of MDR and non-MDR

Pseudomonas isolates (Fig. 5A; source data file). This subset of patients
included both single-strain (n = 6) and mixed-strain patients (n = 4)
(Fig. 5B). The MDR phenotype was associated with reduced growth,
demonstrating a trade-off associatedwith resistance(main effectMDR:
F1,167 = 5.42, P =0.021) (Fig. 5B) (Supplementary Table 5). In contrast to

Fig. 3 | Resistance emerges due to selection for pre-existing resistant strains.
A–F Changes in the prevalence of MDR isolates (resistant to 3 or more antibiotics)
and strain composition in longitudinally sampled patients with mixed strain
populations. Percentage of MDR isolates is shown between the first and last sam-
pling points. Colour blocks between these sampling points indicate patient anti-
biotic use. The inset pie charts show the proportion of STs at each time point (inner
ring), and the contribution of these STs to MDR (outer ring). Each inset pie chart is

labelled with the day of sampling it corresponds to. A Patient 8, B Patient 15,
C Patient 17, D Patient 10, E Patient 16, F Patient 18. G For these five mixed strain
population patients where resistance increases, we partitioned the increases in the
prevalence of MDR isolates into changes in ST composition and changes in multi-
drug resistance within strains. Numbers indicate patient ID. The raw data is pre-
sented in the source data file.
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our hypothesis, trade-offs were stronger in mixed strain populations
than in single strain populations (MDR*diversity interaction:
F1,167 = 11.24; P = 0.0010) (Fig. 5B) (Supplementary Table 5).

However, the genetic basis of this trade-off is not clear. Successful
MDR/XDR strains of P. aeruginosa typically carry a suite of chromo-
somal resistance mutations and horizontally acquired resistance
genes38,55 as opposed to the small number of SNPs in resistance genes
found in patients colonized by a single strain, and this asymmetry in

resistance gene content could explain the large costs associated with
pre-existing resistant strains. Alternatively, the low fitness of pre-
existing MDR strains could reflect fitness costs associated with other
genes that are unrelated to antibiotic resistance per se.

Discussion
Evolutionary approaches are increasingly being used to understand
and combat antibiotic resistance56–59, and an important challenge for

Fig. 5 | Fitness trade-offs within patients. A Selection of 10 patients with both
MDRand non-MDR isolates from the total cohort of 35 patients based on resistance
phenotyping data. B Points show the mean growth rate in antibiotic-free culture
medium (+/−s.e.m.) of 179 MDR and non-MDR isolates from patients with single
strain (n = 6) ormixed strain (n = 4)populations. Line colour corresponds topatient

number as shown in key.MDRwas associated with reduced growth rate (P =0.021),
and the trade-off associated with MDR was strongest in mixed strain populations
(P =0.001). The data from this assay was analysed using ANOVA (see ‘Methods’ for
model details, and Supplementary Table 5 for model output) and the raw data are
presented in the source data file.

Fig. 4 | Genomic drivers of resistance evolutionwithin patients. The abundance
of variants in A genes associated with antibiotic resistance and B all variants as a
function of sampling depth (i.e. number of isolates) in single strain (blue) and
mixed strain (orange) patients. Eachdata point represents a unique combination of
ST and patient. We modelled the number of variants with a negative binomial
regression accounting for the infection type, number of isolates, and a possible
interaction between them (n.variants ~ infection type*isolates). The number of
isolates per ST was positively associated with increased number of resistance

variants (0.13 +/−0.05 variants per additional isolate; z = 2.57, p =0.01) and other
variants (0.13 +/−0.03; z = 4.17, p <0.001). There was no significant difference
between STs from single strain and mixed strain patients in terms of A resistance
variants or B genetic diversity (Supplementary Table 4a, 4b). We excluded a single
strain population with an exceptionally high number of resistance variants (grey
data point, see ‘Methods’), although including it did not change this conclusion
(Supplementary Table 4c, 4d). The raw data is presented in the source data file.
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this field is to understand the within-host drivers of resistance3–5,8,34.
The key finding of this study is that resistance evolves rapidly in
patients colonized by diverse P. aeruginosa populations due to selec-
tion for pre-existing resistant strains, demonstrating a clear link
between within-host diversity and resistance. Conventional methods
used in clinical microbiology labs are systematically biased against the
detection of pathogen diversity, making it difficult to assess the
importance of pre-existing diversity in resistance across bacterial
pathogens. The rate at which resistance evolves in patients varies
widely across pathogens60, and we speculate that high levels of within-
host diversitymay explainwhy somepathogens, such asPseudomonas,
rapidly adapt to antibiotic treatment in patients60.

We also found evidence of mutations in genes that have pre-
viously been implicated in resistance, and an outstanding challenge is
to determine if these polymorphismswere present as standing genetic
variation at the onset of treatment (for example as a result of past
antibiotic treatment) or if these polymorphisms arose as a result of
spontaneous mutations during antibiotic treatment48. This could be
done using amplicon sequencing to quantify the abundance of resis-
tance polymorphisms before and after treatment in DNA extracted
frompatient samples, or by using phylogenetic approaches to date the
origin of resistance lineages8,34. Recent work has used amplicon
sequencing to showhowwithin-hostP. aeruginosadiversity is linked to
lung disease progression in patients with cystic fibrosis61.

Trade-offs between resistance and growth rate make it is chal-
lenging to understand how strains that vary in resistance can stably
coexist within the same patient over the long term. Therefore, we
speculate that within-patient diversity will be high in settings with a
high infection rate due to recurrent colonization11,22,32 or in patients
where antibiotic exposure is variable across host tissues, allowing high
and low resistance strains to coexist by occupying spatially distinct
niches62,63. A further challenge will be to determine if mixed strain
populations arise as a consequence of single colonization events or by
superinfection64. For example, transmissible strains of P. aeruginosa
can superinfect patients, giving rise to high within-patient strain
diversity in CF patients22,32,64,65. Finally, it is possible that some medical
conditions make it more likely for patients to be colonized bymultiple
strains due to variation in susceptibility to bacterial colonization.

In conclusion, our study underscores the importance of within-
host bacterial diversity for understanding AMR4,5,8,10,66,67. Using bac-
terial isolates to measure within-host diversity limited the number of
patients that we could include in this study and measuring bacterial
diversity by sequencingDNA extracted directly frompatient sample or
from pools of isolates should make it possible to assess the link
between diversity and AMR in larger cohorts of patients. Our findings
suggest that measuring the diversity of pathogen populations might
make it possible tomore accurately predict the likelihoodof treatment
failure at the level of individual patients, in the same way that mea-
surements of diversity in cancer cell populations have been informa-
tive for predicting the success of chemotherapy68,69.

Methods
Clinical data
The subjects were recruited as part of the observational, prospective,
multicentre European epidemiological cohort study ASPIRE-ICU (The
Advanced understanding of Staphylococcus aureus and Pseudomonas
aeruginosa Infections in Europe–Intensive Care Units, (NCT02413242
ClinicalTrials.gov)33. This was conducted according to the principles of
the Declaration of Helsinki, in accordance with the Medical Research
Involving Human Subjects Act and local guidelines in the participating
countries. The study protocol was approved by the research ethics
committee in each country or participating hospitals. Written
informed consent was obtained upon study enrolment from the par-
ticipants or their legally accepted representative. Adult subjects were
enroled between June 2015 and October 2018 within 3 days after ICU

admission. To be eligible the patients needed to be on mechanical
ventilation at ICU admission and have an expected length of hospital
stay ≥48 h33. Participants were followed through their ICU stay to
assess the development of pneumonia. Data on antibiotic use in the
two weeks preceding ICU admission and during the ICU stay were
reported. During ICU stay, lower respiratory tract samples were
obtained three times in the first week, two times in the three following
weeks, on the day of diagnosis of protocol pneumonia and seven days
after it. The demographic and clinical baseline characteristics of the
35 subjects included in this analysis are given in Supplementary
Table 6.

Sample collection and isolation
Lower respiratory samples used in this study were collected within the
ASPIRE-ICU study33. Untreated respiratory samples were stored at
−80 °C until shipment and further analysis at the central lab at the
University of Antwerp. The samples were blended (30,000 rpm, probe
size 8mm, steps of 10 s, max 60 s in total), diluted 1:1 v/v with Lyso-
mucil (10% Acetylcysteine solution) (Zambon S.A, Belgium) and incu-
bated for 30min at 37 °C with 10 s vortexing every 15min. Thereafter,
quantitative culture was performed by inoculating 10-fold dilutions on
CHROMID P. aeruginosa Agar and blood agar using spiral plater
EddyJet (IUL, Spain). Plates were incubated at 37 °C for 24 h and CFU/
mL was calculated. Plates without growth were further incubated for
48 h and 72 h. Matrix-Assisted Laser Desorption Ionization-Time of
Flight Mass Spectrometry (MALDI-TOF MS) was used to identify up to
12 P. aeruginosa colonies per sample, whichwere stored at−80 °Cuntil
shipment to the University of Oxford and further use.

Resistance phenotyping
All P. aeruginosa isolates were grown from glycerol stocks on Luria-
Bertani (LB) Miller Agar plates overnight at 37 °C. Single colonies were
then inoculated into LB Miller broth for 18–20h overnight growth at
37 °C with shaking at 225 rpm. Overnight suspensions were serial
diluted to ~5 × 105 CFU/mL. Resistance phenotyping was carried out as
minimum inhibitory concentration (MIC) testing via broth microdilu-
tion as defined by EUCAST recommendations70,71, with the alteration of
LBMiller broth for growthmedia and theuse of P. aeruginosaPAO1 as a
reference strain. Antibiotics were assayed along the following 2-fold
dilution series between: ciprofloxacin (0.125–16 µg/mL), aztreonam
(1–128 µg/mL), ceftazidime (1–256 µg/mL), meropenem (0.25–64 µg/
mL), piperacillin/tazobactam (2–256 µg/mL) and gentamicin
(0.5–128 µg/mL). Growth inhibition was defined as OD595 <
0.200.We calculated a single biologically independentMIC for eachof
the 441 P. aeruginosa isolates on each antibiotic (Source Data). When
an isolate reached the measurable limit of the MIC assay (i.e. not
inhibited at the highest concentration used), the MIC was recorded as
double of the upper limit in the raw data file of MIC results (Source
data). The number of resistance phenotypes was calculated as the
number of MICs per isolate above the following: ciprofloxacin (0.5 µg/
mL), aztreonam (16 µg/mL), ceftazidime (8 µg/mL), meropenem (8 µg/
mL), piperacillin/tazobactam (16 µg/mL) and gentamicin (8 µg/mL).
These points were set from EUCAST guidelines for Pseudomonas (v11
breakpoint table, and MIC distributions for P. aeruginosa data for
gentamicin)71. MDR isolates were defined as isolates with 3 or more
resistance phenotypes. For longitudinally sampled patients treated
with colistin (patient 6, patient 16, patient 18, patient 32, patient 35),
the same protocol was used to determine colistin MIC along the fol-
lowing 2-fold dilution series between: 0.5–64 µg/mL, and a colistin
resistance phenotype was determined as an MIC above 2 µg/mL
(Source data)71.

Sequencing
All isolateswere sequenced in theMiSeqorNextSeq illumina platforms
yielding a sequencing coverage of 21X–142X. Raw reads were quality
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controlled with the ILLUMINACLIP (2:30:10) and SLIDINGWINDOW
(4:15) in trimmomatic v. 0.39. Quality controlled readswere assembled
for each isolate with SPAdes v. 3.13.1 with default parameters. These
assemblies were further polished using pilon v. 1.23 with minimum
number of flank bases of 10, gap margin of 100,000, and kmer size of
47. Resulting contigs were annotated based on the P. aeruginosa strain
UCBPP-PA14 in prokka v. 1.14.0. Each isolate was typed using the
Pseudomonas aeruginosamulti-locus sequence typing (MLST) scheme
from PubMLST (Last accessed on 11.06.2021). Sixteen isolates chosen
randomly from the key STs were sequenced with the Oxford nanopore
MinION platform using the FLO-MIN106 flow-cell and the SQK-LSK109
kit. Raw reads were basecalled using guppy v. 0.0.0 + 7969d57 and
reads were demultiplexed using qcat v. 1.1.0 (https://github.com/
nanoporetech/qcat). Resulting sequencing reads were assembled
using unicycler v. 0.4.872, which used SAMtools v. 1.973, pilon v. 1.2374,
and bowtie2 v. 2.3.5.175, in hybrid mode with respective illumina reads.

For the rarefaction analysis of mixed strain patient samples the
datasets were subsampled 100X from size 2 to N-1, where N is the
actual size of the sample, using the standard random library of python
v. 3.9.16. The null hypothesis that the sampling is normally distributed
was tested using the normaltest function from the script library76,77.

Variant calling
Paired-ended reads were mapped to the P. aeruginosa PAO1 reference
genome (NC_002516.2) with Bowtie 2 v2.2.4, and pileup and raw files
were obtained by using SAMtools v0.1.16 and PicardTools v1.140, using
the Genome Analysis Toolkit (GATK) v3.4-46 for realignment around
InDels. From the raw files, SNPs were extracted if they met the fol-
lowing criteria: a quality score (Phred-scaledprobability of the samples
reads being homozygous reference) of at least 50, a root-mean-square
(RMS)mapping quality of at least 25 and a coverage depth of at least 3
reads, excluding all ambiguous variants. MicroInDels were extracted
from the totalpileup files whenmeeting the following criteria: a quality
score of at least 500, a RMSmapping quality of at least 25 and support
from at least one-fifth of the covering reads78. Filtered files were con-
verted to vcf and SNPs and InDels were annotated with SnpEff v4.2.79.
Gene absence was evaluated using SeqMonk (https://www.
bioinformatics.babraham.ac.uk/projects/seqmonk/) and OprD struc-
tural integrity was investigated within the de novo assemblies using an
appropriate reference sequence. Finally, all mutations within a set of
genes known to be involved in antibiotic resistancewere extracted and
natural occurring polymorphisms were filtered45. The presence of
horizontally acquired antimicrobial resistance determinants was also
investigated using the web tool ResFinder (https://cge.cbs.dtu.dk/
services/ResFinder/).

To identify mutations and gene gain/loss during the infection,
short-length sequencing reads from each isolate weremapped to each
of the four long-read de novo assemblies with bwa v. 0.7.17 using the
BWA-MEM algorithm. Preliminary SNPs were identified with SAMtools
andBCFtools v. 1.9. Low-quality SNPswere filtered out using a two-step
SNP calling pipeline, which first identified potential SNPs using the
following criteria: (1) Variant Phred quality score of 30 or higher, (2) At
least 150 bases away from contig edge or indel, and (3) 20 or more
sequencing reads covering the potential SNP position. In the second
step, each preliminary SNP was reviewed for evidence of support for
the reference or the variant base; at least 80% of reads of Phred quality
score of 25 or higher were required to support the final call. An
ambiguous call was defined as one with not enough support for the
reference or the variant, and, in total, only one non-phylogenetically
informative SNP position had ambiguous calls. Indels were identified
by the overlap between the HaplotypeCaller of GATK v. 4.1.3.0 and
breseq v. 0.34.0. The variable genome was surveyed using GenAPI v.
1.098 based on the prokka annotation of the short-read de novo
assemblies. The presence or absence of genes in the potential variable
genome was reviewed by mapping the sequencing reads to the

respective genes with BWA v.0.7.17.SNPs/indels. A maximum parsi-
mony phylogeny was constructed based on high-confidence SNPs to
illustrate the genetic diversity of isolates recovered from patient 15
(Supplementary Fig. 2). Phylogenies were plotted with iTOL80.

Growth assays
All isolates were grown from glycerol stocks on LB Miller Agar plates
overnight at 37 °C. Single colonies were then inoculated into LB Miller
broth for 18–20h overnight growth at 37 °C with shaking at 225 rpm.
Overnight suspensions were serially diluted to an OD595 of ~0.05 and
placed within the inner 60 wells of a 96-well plate equipped with a lid.
To calculate growth rate, isolateswere then grown in LBMiller broth at
37 °C and optical density (OD595nm) measurements were taken at 10-
min intervals in a BioTek Synergy 2 microplate reader set to moderate
continuous shaking. Growth rate was then calculated as the maximum
slope of OD versus time over an interval of ten consecutive readings,
and at least three biologically independent replicate cultures were
measured for all of the pulmonary isolates to calculate the mean
growth rate of each isolate (Source data).

Statistics
For each patient sample, we calculated the proportion of isolates that
were resistant to each antibiotic as described above70,71. Changes in
resistance for each antibiotic were measured as the difference in
proportion of resistant isolates between the final and initial sample for
longitudinally sampled patients (Source data), giving a total of 6
responses per patient (i.e. 1 response per antibiotic/patient combina-
tion). Although the proportions of isolates that were resistant to
antibioticswere notnormally distributed, changes in the proportion of
resistant isolates were normally distributed. To test drivers of anti-
biotic resistance we used an ANOVA that included main effects of
initial proportion of resistant isolates (continuous variable, 1DF),
antibiotic (5DF), pathogen diversity (single strain ormixed strain; 1DF)
and response type (direct or collateral, 1DF. We nested patient within
pathogen diversity (11DF). We included an interactions between initial
proportion of resistant isolates and pathogen diversity (1DF) and initial
resistance and antibiotic (1DF). Non-significant terms were then
sequentially removed to yield a reduced model containing only sig-
nificant effects (Supplementary Table 3).

The number of observed de novo variants for each ST/patient
combination (n.variants) can be treated as a count variable. Because of
overdispersion we used a negative binomial regression using the
glm.nb function in the “MASS” R package v7.3-5581. We controlled for
single vs. mixed infections (infection.type) and number of sequenced
isolates per ST (isolates.per.ST) using the model formula: n.variants ~
infection.type*isolates.per.ST. We ran separate models for resistance-
associated variants (Supplementary Table 4a) and all other variants
(Supplementary Table 4b). In both models, the only significant asso-
ciation was with the number of sequenced isolates (p <0.05 for both).
This analysis excluded one outlier from a single-strain patient (isolate
25-0925) where we found many polymorphic deletions in genes asso-
ciated with antibiotic efflux. However, including the outlier did not
change the conclusion that infection type had no significant effect
(Supplementary Table 4c, 4d).

Fitness costs were assessed by comparing the growth rate of
co-occurringMDR (i.e. 3 ormore resistancephenotypes) andnon-MDR
(i.e. 0-2 resistance phenotypes) lung isolates from the same
patient.We considered all patientswithmultiple (i.e. >1)MDR andnon-
MDR isolates in this analysis, giving a total of 179 isolates from 10
patients (Source data). To understand the sources of variation in fit-
ness, we used an ANOVA that included main effects of resistance
phenotype (i.e. MDR or non-MDR; 1DF), pathogen diversity (single
strain or mixed strain; 1DF) and patient nested within pathogen
diversity (8DF). We tested for variation in fitness trade-offs between
single strain and mixed strain populations by including a resistance
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phenotype*pathogen diversity interaction in the model. The full sta-
tisticalmodel is presented in SupplementaryTable 5. JMPv.12wasused
for statistical analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data have been deposited in the Oxford Research
Archive for Data (https://doi.org/10.5287/ora-mzzd1qykn). Isolates
can be obtained from the corresponding author for research use via
an MTA subject to permission from the ASPIRE research committee.
All sequencing data generated in this study and all isolate assemblies
can be found at: (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA974969). All clinical data analysed for these patients as part of
this study are included in this article within the supplementary infor-
mation or source data file. Source data are provided with this paper.
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