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Bayesian-optimization-assisted discovery of
stereoselective aluminum complexes for
ring-opening polymerization of racemic
lactide

Xiaoqian Wang 1,2, Yang Huang1,2, Xiaoyu Xie1,2, Yan Liu1, Ziyu Huo1,
Maverick Lin1, Hongliang Xin 1 & Rong Tong 1

Stereoselective ring-opening polymerization catalysts are used to produce
degradable stereoregular poly(lactic acids) with thermal and mechanical
properties that are superior to those of atactic polymers. However, the process
of discovering highly stereoselective catalysts is still largely empirical. We aim
to develop an integrated computational and experimental framework for
efficient, predictive catalyst selection andoptimization. As a proof of principle,
we have developed a Bayesian optimization workflow on a subset of literature
results for stereoselective lactide ring-opening polymerization, and using the
algorithm, we identify multiple new Al complexes that catalyze either iso-
selective or heteroselective polymerization. In addition, feature attribution
analysis uncovers mechanistically meaningful ligand descriptors, such as
percent buried volume (%Vbur) and the highest occupied molecular orbital
energy (EHOMO), that can access quantitative andpredictivemodels for catalyst
development.

High-performance homogeneous single-site catalysts for polymer
synthesis are required for economically producing environmentally
friendly degradable polymers1–4. Moreover, because the stereo-
chemistry of polymers determines their thermal and mechanical
properties, the development of polymerization catalysts that provide
stereoregular, microstructure-defined polymers has become
increasingly important for synthesizing degradable polymers with
new properties and applications5–13. For example, poly(lactic acid)
(PLA) with stereoregular microstructures, e.g., isotactic structures, is
crystalline, and have improved thermal properties (e.g., specific
melting temperature) and mechanical properties (e.g., higher tensile
modulus) than the atactic PLA12,14. However, because of the structural
complexity of many metal-based polymerization catalysts,
structure–activity relationships are often difficult to interpret15–18.
Trial-and-error-based discovery and optimization of polymerization
catalysts can be both time-consuming and expensive because this

method relies on polymer chemists’ experience and empirical
knowledge, and on serendipity.

The fundamental challenges associated with catalyst discovery
are not unique to polymer chemistry, and organic chemists have
addressed them by establishing linear relationships between specific
reagent descriptors and various outputs (e.g., product selectivity) on
the basis of mechanistic hypotheses, such as the Hammett equation
that relates chemical structure, originally represented by quantitative
experimental parameters, to reactivity19,20. Recently, a complementary
approach has emerged in the chemistry community that applies data-
driven machine learning methods to capture multidimensional
structure–activity relationships for catalysts21–27. Machine learning
approaches can accept numerous reagent features and reaction con-
ditions as inputs without recourse to a specific mechanistic hypoth-
esis, and can recognize hidden patterns in a multidimensional
chemical space26,28. In particular, the machine learning surrogate
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model in Bayesian optimization, e.g., Gaussian process regression
(GPR), uses parameter distributions reflecting the uncertainty of phy-
sical variables, as opposed to conventional computationally derived
point values, and is thereby advantageous for quantifying uncertainty
in the exploration process29,30. This approach has been successfully
used to develop enantioselective catalysts and to predict reaction
yields in organic chemistry28,30–35.

In a typical Bayesian optimization workflow (Fig. 1a), chemical
structures are represented by descriptors—mathematical tools for
describing properties of subunits or entire molecules—together with
parameterized reaction conditions to establish a dataset to train a
probabilistic surrogate model, which is constructed by learning from
previous observations with a prior over functions31,36. After the surro-
gate model is trained, new experiments are sequentially chosen by
optimizing an acquisition function that proposes potentially optimal
data points for the next evaluation of the reaction. The chosen
experiments are then carried out, and the results are put back into the
dataset to update the surrogatemodel, thereby completing one round
optimization28,32.

However, implementing such an approach in stereoselective
polymer chemistry can be particularly difficult because the catalyst
dataset for many stereoselective polymerizations is relatively small
(usually <100unique catalysts) comparedwith the datasets for organic
reactions (>1000 unique catalysts)28,30,33. In addition, unlike one-step
enantioselective organic reactions, stereoselective polymerizations
involve hundreds of enantioselective reactions, and the free-energy
difference affecting the stereoselectivity can be marginal (in the
2–5 kcalmol−1 range)16,17,37. Therefore, selecting mechanistically rele-
vant descriptors frommultidimensional datasets for machine learning
is challenging for polymerization reactions16,38. Bayesian optimization
has never been used to discover stereoselective polymer catalysts.
Moreover, no efficient implementable strategy based on data science
has been developed for use as a mechanistic tool for understanding
nonintuitive trends in catalyst performance in polymer science.

We hypothesized that the use of Bayesian optimization
approach that can efficiently handle small datasets for machine
learning might serve as a framework for overcoming the chal-
lenges posed in discovering stereoselective polymerization reac-
tion catalysts39. Establishing such a framework not only would
enable the discovery of new stereoselective polymerization cat-
alysts but also would provide a quantitative tool for rationalizing
catalyst performance in mechanistic studies. Herein, we describe
a workflow and analysis framework to achieve these goals. We
focused on Al-mediated stereoselective ring-opening poly-
merization (ROP) of racemic lactide (rac-LA), which affords ste-
reoregular PLA (Fig. 1b). Starting from literature data points for
tetradentate salen- and salan-type Al complexes, we showed that
our Bayesian optimization model can guide the discovery of
multiple high-performance isoselective and heteroselective Al
complexes for the ROP of rac-LA. Analysis of the machine-learned
results revealed important albeit nonintuitive descriptors that
can be used for mechanistic studies. Ultimately, our framework
serves as an important quantitative tool for both iterative catalyst
discovery and mechanism rationalization in polymerization
chemistry.

Results
Benchmarking the machine-learning algorithms
PLA is an attractive commodity polymer because it is renewable and
degradable, and it has numerous applications in packaging, agri-
culture, and biomedicine14,40. Its physicochemical properties are
directly related to its tacticity41,42. Because producing enantiopure LA
monomers carrying two stereogenic centers is difficult, stereoregular
PLA is synthesized by ROP of rac-LA using stereoselective metal
catalysts4,43–45. We focused on symmetrical salen- and salan-type Al

complexes because they are the most frequently studied metal com-
plexes for the ROP of rac-LA14,41,46, which might provide reasonably
sufficient data points to initiate themachine learning process. These Al
complexes can also provide stereoregular PLAs with different tacti-
cities, including stereoblock and heterotactic PLAs45,47. These com-
plexes usually exhibit isoselectivities in the ROP of rac-LA with decent
Pm values (Pm, probability ofmeso linkages)47,48, and only three salan-Al
complexes have been shown to lead to heterotactic PLAswith Pr values
exceeding 0.8 (Pr, probability of racemic linkages; Supplementary
Table 1)45. Note that we did not include asymmetrical ligands such as
salalen ligands due to computation challenges and possibilities invol-
ving complicated stereoselectivity mechanisms (detailed discussion
about ligands selection in Supplementary Table 1).

We aimed to use Bayesian optimization to discover new Al com-
plexeswithPmorPr values exceeding0.8 (Pr = 1−Pm) for stereoselective
ROP of rac-LA. We started by extracting the descriptors from the 56
unique data points for ROP of rac-LA catalyzed by salen- and salan-Al
complexes in the literature (Supplementary Table 1)45,47–56. Because of
thehigh computational costof eachwholemolecule and the large total
number of symmetrical ligands (576, Fig. 1a), we utilized a fragmen-
tation strategy57,58 whereby we divided each catalyst ligand into an
arene ring (fragment Am, containing the R1 and R2 groups) and an
amine linker (fragment BnCp, containing the R3 and C groups, Fig. 1a).
Results for each fragment were combinatorically concatenated into
new vectors to represent the properties of the whole catalyst (Fig. 1a).
In addition, using a fragmentation strategy could facilitate structure
predictions for late-stage synthesis, whereas using the entire catalyst
structure for prediction could initially be much more difficult when
having a relatively small dataset.

We applied various methods to generate descriptors for the
machine learning surrogate model, and we benchmarked these
descriptors’ performance on these 56 data points from literature. These
descriptors includeone-hot-encoding59, electrotopological-state index60,
eigenvalues of coulombmatrix61, molecular characteristics generated by
the Mordred program62, and properties obtained by DFT calculations
using the Gaussian program63 at the B3LYP-D3/6-31G(d)/SMD (toluene)
level of theory (details in Supplementary Information S4.1–4.2)64–67. We
built upon the algorithms developed by Doyle and coworkers30 (auto-
QChem inGithub) toextractDFTdescriptors formachine learning. These
descriptors were then evaluated on regression performance using the
GPR surrogate model68. GPR is a popular probabilistic machine-learning
regression model for Bayesian optimization. For continuous domains
such as stereoselectivity, it is typical to assume that the unknown func-
tion can be sampled by means of a Gaussian process (details in Supple-
mentary Information S4.3)68. For each type of descriptors, we applied
5-fold cross validation for the training, that is, in each fold,wedivided the
randomly shuffleddataset into45datapoints as training set and 11points
as test set. We found that consistent regression performance—lowest
mean errors and standard deviations—could be achieved using the
datasets generated by electrotopological-state index, Mordred and DFT
(Fig. 2a; details in Supplementary Information S4.5). Notably, DFT-
encoded descriptors, whose parity plot between GPR-predicted and
measure Pm values shown in Fig. 2b, could provide rich chemical infor-
mation with insights for reaction mechanism studies. Therefore, we
carried out the remainder of the studies usingDFT-encoded descriptors.

Next we investigated the searching efficiency of Bayesian opti-
mization, implemented using the algorithms byDoyle and coworkers30

(edbo in Github), and benchmarked its searching performance against
a random search process still using the 56 data points from the lit-
erature. We carried out the optimization to search the points with the
highest Pm or Pr values in the literature dataset over 12 iterations
(defined as one run). For bothmethods, 3 initial points were randomly
selected, and 3 new points were proposed per iteration (details in
Supplementary Information S4.5). The whole optimization process
was independently repeated for 10 runs. For both Pm and Pr
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optimizations, Bayesian optimization converged (i.e. standard devia-
tion of reached zero) within 7 iterations; whereas no convergence was
achievedwithin 12 iterations for the randomsearch process (Fig. 2c, d).
Thus, our Bayesian optimization model offered superior search effi-
ciency over the random search process in our case. Additionally, our
Bayesian optimization method was also found more efficient to reach
convergence, compared to the sequential model-based algorithm
configuration method69 (see Supplementary Information S4.9).

Algorithm-guided search of stereoselective ROP catalysts
We then investigated the ability of our model, which was initially
trained on the 56 literature data points, to discover new Al complexes
with high Pmor Pr values (Fig. 1b). The localized initial data distribution
over the entire chemical spaces (Supplementary Fig. 5; details in
Supplementary Information S4.6) indicated that multiple iterations
were needed in order to approach global optima. Two Bayesian opti-
mization models were built for Pm and Pr, respectively, owning to the
distinctive two Bayesian optimization directions. We used the trained
surrogate model to optimize the expected improvement acquisition

function that balances exploration and exploitation in the discovery
process and is built with both the GPR-predicted mean and variance
values (details in Supplementary Information S4.4). The model sub-
sequently proposed ligands potentially having high Pm or Pr values.
The predicted points were ranked by the acquisition function, and we
selected the top-ranked data points (i.e. the most promising ligands
proposed by the model) to prepare ligands and verify their stereo-
selectivities in ROP of rac-LA. To circumvent prohibitively multistep,
reagent- and time-consuming syntheses, we assigned each substituent
a metric called “synthetic scale”, which was based on the sum of the
expected number of steps required to synthesize Am and BnCp and
thus to build the whole Al complex (Supplementary Table 2). We
focused on ligands that could be prepared in nomore than three steps
becausewe prioritized accelerated catalyst discovery over exploration
of whole chemical spaces, and time presents a substantial cost (note
that some synthetic-demanding ligands, e.g., A15C3B1 requiring 5 steps
to prepare–even its Al complex having an excellent isoselectivity48,
would not be considered owing to time andmaterials limitations). The
experimental data points obtained for the proposed ligands in each
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Fig. 1 | Summary of Bayesian-optimization-guided workflow for discovering
stereoselective polymerization catalysts. a Overview of Bayesian optimization.
To efficiently utilize computational resources, the Am and BnCp fragments of salen
and salan ligands for Al complexes were subjected to DFT calculations to generate
descriptors, and were concatenated to generate the datasets of symmetrical
ligands. An initial 56-data-point literature dataset, whose distribution over the

entire chemical spaces was plotted (details in Supplementary Fig. 5), was used to
train a Gaussian process regression (GPR) surrogate model to generate an acqui-
sition function that proposes new experiments in the design space. The experi-
mental results were fed back into the dataset to iteratively optimize the acquisition
function and refine the model. b Substituents used for salen and salan ligands for
stereoselective ring-opening polymerization of racemic lactide.
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round were appended to the dataset to refine the model for next-
round prediction (Fig. 1a).

Weprepared 33 salen- and salan-Al complexes thatwere proposed
by themodel. In our first-roundmodeling, we included polymerization
reaction parameters such as temperature and monomer concentra-
tion, but these parameters were found to be less relevant to the results
of predicted points compared with the catalyst descriptors. This is
because the chemical structures of the ligands largely determined the
stereoselectivity in polymerization. Therefore, DFT-based descriptors
were exclusively used over three computation–experiment rounds,
andwe carried out the ROP of rac-LA in toluene at 70 or 110 °C. Among
the 33 newly synthesized complexes, we identified 8 that were iso-
selective (Pm>0.8) and 5 that were heteroselective (Pr > 0.8; Fig. 3a, b
and Supplementary Tables 3–8). The Al complexes with A11C3B1 and
A11C2B1 both afforded stereoblock copolymers with Pm values over
0.92 (representative homodecoupled 1H NMR of the α-methine region
in PLA prepared using (A11C3B1)Al complex in Fig. 3c; NMR spectra of

the PLA synthesized by other Al complexes in Supplementary
Figs. 6–11), and high monomer conversions >95% over 12 h ([rac-LA]/
[Al] = 100/1, Table 1, entries 1–2), which exhibited slightly better iso-
selectivity control compared with the previously reported (A3C3B1)Al
complex48 (Fig. 3c and Table 1, entries 1 versus 7).

Additionally, our algorithm-guided approach helped us to dis-
cover multiple highly heteroselective Al catalyst ligands, including
A5C1B2, which had a Pr of 0.94 (homodecoupled 1HNMR in Fig. 3c), and
A5C1B3, A16C1B2, and A16C1B3, all of which had Pr values of 0.93 (Fig. 3b
and Table 1, entries 3–6). Among the complexes that produced ste-
reoregular PLAs, Al complexes with A5C1B2 and A16C1B2 afforded
polymers that exhibited molecular weights close to the calculated
values (Table 1, entries 3 and 5) and that showed narrow molecular
weight distributions (Đ < 1.1; representative size exclusion chromato-
graphy in Supplementary Fig. 12), features that are characteristic of
well-controlled living polymerization. All of these four Al catalysts
showedmarkedly improved stereocontrol in the preparation of highly

Fig. 2 | Benchmarking the machine learning algorithms. a Comparison of
machine-learning regression performance using descriptors generated by differ-
ent methods. The error bars are the standard deviations of prediction errors in the
5-fold cross validations. OHE one-hot encoding, DFT density functional theory, EI
electrotopological-state index, CM coulombmatrix. b Parity plot of Pm values (Pm,
probability ofmeso linkages) predictedbyGaussianprocess regression (GPR) using
the DFT-encoded descriptors and observed Pm values obtained from the literature
dataset. The error bars are the predicted standard deviation values. The optimi-
zation curves for 12-round search of the maximum observed (c) Pm and (d) Pr
values (Pr, probability of racemic linkages). Each optimization process was

independently repeated for 10 runs (12 iterations per run). For each run, three
initial points were randomly selected, and three new points were proposed per
iteration. Data are shown as the mean value with the standard deviation (band
width) of the highest observed (c) Pm or (d) Pr up to each iteration (details in
Supplementary Information S4.5). The Bayesian optimization curves in c and
d both achieved convergence (i.e. the blue band diminished, pointed with the
arrows) within 7 rounds. In contrast, the random search process exhibited large
standard deviations (i.e. the red band never diminished) and failed to converge
within 12-round optimization.
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Newly discovered Al complexes with Pm values > 0.8
(the predicted Pm value in parenthesis)

a

b Newly discovered Al complexes with Pr values > 0.8
(the predicted Pr value in parenthesis)

c d

e f

Fig. 3 | Discovery of stereoselective Al complexes guided by a Bayesian opti-
mizationmodel. aAl complexes with highPm values (>0.8;Pm, probability ofmeso
linkages). b Al complexes with high Pr values (>0.8; Pr, probability of racemic
linkages). c Representative of homodecoupled 1H NMR spectra of α-methine
region in poly(lactic acids) (PLAs) prepared by isoselective catalyst (A11C3B1)Al
(left), andheteroselective catalyst (A5C1B2)Al (right), andboth are compared to PLA
prepared by reported catalysts (A3C3B1)Al and (A6C1B3)Al. d Representative

stress–strain curves obtained by uniaxial extension of PLAs with various micro-
structures, and low-density polyethylene (LDPE). Polymer molecular weights,
molecular weight distributions, and phase-transition temperatures are provided in
Supplementary Table 9. e Absolute error between predicted and experimental
values (|Pexp–Ppred|) of catalysts identified in each round of optimization. f The
number of highly stereoselective complexes discovered in each round of
optimization.
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heterotactic PLA, when compared to the previously reported (A6C1B3)
Al complex45 (Table 1, entries 3–6 versus 8).

Furthermore, differential scanning calorimetry measurements of
a stereoblock PLA with a Pm of 0.96 (prepared using (A11C3B1)AlMe
complex; Mn = 44.5 kDa, sb-PLA) had a melting temperature (Tm) of
192 °C; whereas a heterotactic PLA with a Pr of 0.87 (prepared using
(A16C1B3)AlMe complex; Mn = 67.4 kDa, ht-PLA) exhibited a glass tran-
sition temperature of 50 °C (Supplementary Table 9; representative
differential scanning calorimetry results in Supplementary Fig. 13),
values that are consistent with the literature56,70. We also characterized
the stress–strain characteristics of the synthesized stereoregular PLAs.
The sb-PLA exhibited a fracture strength (σ) of 48.5MPa and a fracture
strain (ε) of 5.0%; whereas the ht-PLA—whose physico-mechanical
property has been underexplored—exhibited the elastomeric behavior
with a high ε of 533% and a σ of 11.2MPa (Fig. 3d). Additionally, we
found the blend of sb-PLA and ht-PLA at the 1/1 mass ratio showed
improved ductility and toughness compared to sb-PLA, and out-
performed the non-degradable commodity low-density polyethylene
(Fig. 3d). These results suggest that the microstructures of polymers
impact the thermo-mechanical properties, and mixing PLAs with dif-
ferent tacticities may improve their mechanical properties71,72.

More important, over the course of algorithm-guided discovery,
the mean absolute error between the experimental and predicted
values dropped markedly, from 0.36 in the first round to 0.10 in the
third round in the search for complexes with high Pr values (Fig. 3e).
The portion of high-performance stereoselective Al catalysts (Pm or
Pr > 0.8) discovered in the third iteration is higher than the first and
second iterations, suggesting an improved search efficiency of our
model (Fig. 3f). The less accuracyof thefirst-round Pr prediction canbe
observed in A4C1B2 and A4C1B3, which were predicted as hetero-
selective catalysts but turned out to be isoselective ones. We reason
that the limited heteroselective catalyst information—only 9 of 56
complexes having Pr values over 0.5—at the beginning of the search
could contribute to the high prediction error in the first round.
Nevertheless, such high uncertainty in the unexplored high-Pr-value
region in the chemical space quickly decreased when several high-Pr-
value complexes were identified and appended into the training set to
refine themodel, thereby significantlydecreasing theprediction errors
in the subsequent rounds. Inparticular, the twoheteroselective ligands
based on A5, which had only one Pm data point (Pm=0.76) in the
literature54, would not likely have been investigated on a trial-and-
error, screening, or intuition-guided study. Despite the small size of
the initial training dataset, the performance of our current algorithm

demonstrates that our integrative framework is efficient and capable
of proposing valuable data points.

Attribution analysis and mechanistic studies
The purpose of using data science techniques is not only to discover
new catalysts but also to improve our understanding of stereo-
selective polymerization in such a way as to facilitate catalyst design.
Therefore, we utilized the SHAP (SHapley Additive exPlanations)
package73,74 (https://github.com/slundberg/shap), a game theory
approach, to analyze the magnitude of each DFT descriptor’s con-
tribution to the Pm or Pr value (details in Supplementary Informa-
tion S4.7). The SHAP value generated in SHAP analysis, which is
referenced to the output average values, measures the importance of
the individual feature in a coalition of features that cooperate
towards forming a prediction in the machine learning model
(Fig. 4a)22,75. The positive and negative SHAP value refers to positive
and negative correlation, respectively, between Pm and the corre-
sponding descriptor. The larger the absolute value, the stronger the
correlation is. Notably, the SHAP analysis based onourGPR surrogate
model allowed us to identify more descriptors contributing to the
stereoselectivity, compared to the analysis using the random forest
regression76 surrogate model (details see Supplementary Informa-
tion S4.9). We found that a high SHAP value of the minimum %VBur

(percent buried volume77) of the BnCp fragment contributed themost
to the increased Pr values; whereas the maximum %VBur of the Am

fragment correlated with increased Pm, suggesting that the steric
effects of the various fragments affected the overall stereoselectivity.
Indeed, global analysis of %VBur for whole Al complexes revealed that
highly heteroselective salen and salan Al complexes (Pr > 0.8) had %
VBur values in a narrow range around 67–68%; whereas the %VBur

values for highly isoselective salen and salan Al complexes (Pm > 0.8)
were in a relatively broad range of 60–66% (Fig. 4b and Supple-
mentary Table 10). Additionally, SHAP analysis showed that themean
frequency, the Mulliken charge, and the energy of the highest
occupied molecular orbital (HOMO) of the Am fragment contributed
to the outcome Pm values in the model (Fig. 4a). To delineate the
contributions of the molecular descriptors to the catalyst selectivity,
we performed multivariate linear analysis to convert the most
important steric and electronic factors into readily interpretable
factors (Fig. 4c; details in Supplementary Information S4.8). This
analysis revealed decent correlations between the experimentally
observed Pm outcomes and the multivariate model containing six
electronic descriptors and two steric descriptors from the Am and
BnCp fragments (R2 = 0.65). In addition to the steric factors, our
attribution analysis showed that altering the electronic properties,
especially in the Am fragment in the Al complexes, could result in
significant changes in stereoselectivity. Indeed, the electron-
withdrawing substituents in the Am fragment, which lowered the
HOMO energy and increased the electronegativity of the fragment,
likely contributed to the increased Pr value (Supplementary Fig. 14a).
Multivariate regression analysis of salan-type Al complexes having
AmB2C1 and AmB3C1 ligands (14 ligands), which exhibit a broad range
of Pr value, quantitatively described the electronic perturbation on
the catalyst stereoselectivity (R2 = 0.94, Fig. 4d), in addition to the
steric effect (%Vbur). Moreover, we evaluated the electronic effects of
BnCp fragments using Al complexes with A3BnCp ligands (13 ligands),
and the multivariate regression model effectively describing that a
decrease in the HOMO energy of the BnCp fragment—presumably
caused by delocalized electrons—contributed to increased Pm values
(R2 = 0.89, Fig. 4e; also see model in Supplementary Fig. 14b only
including %Vbur and EHOMO).

In contrast, studying the transition state energies determined on
the basis of the established DFT-computed mechanism for stereo-
selective ROP of rac-LA37 was expensive at high computational cost.
The stereoselective ROP of LA proceeds via two transition states: TS1

Table 1 | Representative stereoselective Al complexes for
ring-opening polymerization of racemic lactide (rac-LA)

Entry Ligand Predicted
mean Pm

Measured
Pm (Pr)a

Conv
%b

Mn

(kDa)c
MWcal

(kDa)
Đc

1 A11C3B1 0.89 0.95 (0.05) 95.2 14.0 13.8 1.03

2 A11C2B1 0.94 0.92 (0.08) 97.0 32.2 14.0 1.05

3 A5C1B2 0.13 0.06 (0.94) 78.1 11.1 11.3 1.01

4 A5C1B3 0.03 0.07 (0.93) 81.3 8.3 11.7 1.06

5 A16C1B2 0.20 0.07 (0.93) 87.7 12.9 12.6 1.04

6 A16C1B3 0.14 0.07 (0.93) 58.8 15.9 8.5 1.08

7d A3C3B1 – 0.94 (0.06) 96.2 11.9 13.9 1.16

8d A6C1B3 – 0.11 (0.89) 75.8 12.5 11.0 1.09

Conv conversion,Mn number-average molecular weight, MWcal molecular weight calculated
from feed ratio and LA conversion, Đ molecular weight distribution, Pm probability ofmeso
linkages, Pr probability of racemic linkages. Polymerization conditions: [rac-LA]/[Al] = 100/1 at
70 °C for 12 h; [rac-LA] = 1.39M in toluene.
aDetermined by 1H NMR and 13C NMR spectroscopy. Pr = 1−Pm. See Supplementary Informa-
tion S1.2 for details.
bDetermined by 1H NMR spectroscopy.
cDetermined by size exclusion chromatography (SEC).
dAl complexes reported in the literature45,48 were prepared for comparison.
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involving nucleophilic attach of Al-alkoxide at carbonyl on the coor-
dinated LA, and a concerted cyclo-reversion reaction in TS2 (Supple-
mentary Fig. 15)37. The computation of TS1 states for various Al
complexes (at B3LYP-D3/6-31G(d)/SMD (toluene) level of theory)
showed that lactide “docking” on the top of Al complex was found
energetically favorable in reactions mediated by heteroselective Al
complexes, whereas the oligo(LA) resided on the top of Al complex in

reactions involving isoselective Al complexes (Supplementary Fig. 16).
This observation confirming the structural importance of %Vbur, which
was highlighted by our SHAP analysis, impacting the stereoselectivity
(Fig. 4a, b). Furthermore, our DFT computation results agreed well
with previous postulation that TS1 is more relevant transition state for
isoselective ROP of LA37: the free energy differences between the TS1
for D-LA/ligand-Al-(L-LA) and L-LA/ligand-Al-(L-LA) reactions and the
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observed Pm values for highly isoselective Al complexes were usually
higher than ~3 kcalmol−1 (Supplementary Table 11). Additionally, the
relatively large energy barrier differences in the ring-opening of D- and
L-LA in TS2 were found in heteroselective Al complexes (Supplemen-
tary Table 12), confirming that the heteroselectivity likely is deter-
minedbyTS2. Nevertheless, suchDFT computation of transition states
was costly, and was provided as an afterthought for the reaction
development, especially in this case where multiple conformers nee-
ded to be examined. Together, our work highlights the ability of
machine learning to readily identify importantmechanistic descriptors
for the catalyst search—such as %Vbur and EHOMO—that also help
quantitatively depict complex structure–reactivity relationships,
without requiring extensive DFT computation resources and the
knowledge of transition states.

Discussion
Rationally optimizing catalysts is often challenging. Moreover, once a
catalyst works, it may not be clear which specific features of the cat-
alyst underpin the performance. Herein we present a holistic, data-
driven workflow that can be used to discover high-performance cata-
lysts for stereoselective ROP and to understand the structural factors
that impact catalyst stereoselectivity. Ourfindings clearly demonstrate
the power of machine learning techniques for accelerating catalyst
development with proposals thatmight be outside scientists’ intuition
while also minimizing time and material costs. The workflow’s cap-
ability of efficiently proposing high-performing stereoselective poly-
merization catalysts has the potential to change the way polymer
chemists select and optimize catalysts. Information about the
mechanism of a given polymerization is rarely fully accessible in the
early stages of the catalyst search; therefore, our workflow would be
especially effective when data for iterative ligand searches is relatively
sparse, especially when commercial ligands provide only modest
performance at the beginning of a study. Additionally, our workflow
can also be used to quantify the contributions of various determinants
of catalyst performance. We expect that in the future, deep learning
models (e.g., graph neural networks78) could be incorporated into our
workflow to enhance search efficiency for more flexible catalyst scaf-
folds, in the discovery of chiral catalysts for enantioselective poly-
merization of racemic monomers79–83, and in the synthesis of
stereosequence-defined polymers from mixtures of monomers8.

Methods
Polymerization procedures
In a glove box, rac-lactide (200mg, 1.39mmol) in the toluene (1.0mL)
was mixed with benzyl alcohol (1.5mg, 0.014mmol) and Al catalyst
(0.014mmol) in a 15mL thick-wall glass vessel equipped with a stirrer
bar ([rac-LA]/[Al]/[BnOH] = 100/1/1). The reaction was stirred at 70 °C
for overnight. The reaction was cooled to room temperature, and an
aliquot of the solution was dried for NMR analysis to determine the
conversion and stereochemistry (see Supplementary Informa-
tion S1.2). The remaining solution was dried, and the obtained solid
was washed by excess methanol to remove the residue monomers for
SEC analysis (see Supplementary Information S1.3).

DFT descriptor generation for machine learning
Descriptors for each of the two fragments of each whole molecule are
calculated before they are concatenated to form a single fixed-length
feature vector to represent the whole molecule. We modified auto-
qchem package30 (https://github.com/PrincetonUniversity/auto-
qchem) to generate below descriptors from Gaussian output files.
The DFT descriptors include: the number of atoms, charge, spin mul-
tiplicity, dipole moment, electronic spatial extent, self-consistent field
energy, values and corrections of E, H, G, ZPE, stoichiometry, HOMO,
LUMO, electronegativity, hardness, element labels, atomic buried
volume, atomic Mulliken charge, atomic polar tensor charge, vibra-
tional frequencies, reduced mass, force constants, IR intensity and
steric descriptors. Steric descriptors (e.g., sterimol84) for each mole-
cule were measured by MORFEUS (github.com/kjelljorner/morfeus)
using on the Gaussian 16 output results. Source code, DFT descriptor
sets, and descriptor computation scripts can be found in https://
github.com/hlxin (https://doi.org/10.5281/zenodo.7982855).

Bayesian optimization
The initial dataset that trained the machine learning GPR surrogate
modelwere 56data points (i.e. 56uniqueAl complexes) collected from
literature (see Supplementary Table 1)45,47–50,52–55. As shown in Fig. 1, the
Al complexes were fragmented into substituents Am and BnCp.
Descriptors corresponding to each substituent in these 56 data points
were generated by various methods (see Supplementary Informa-
tion S4.2), and combined together for Bayesian optimization using
GPR model using re-coded edbo package (source code see https://
github.com/hlxin). Before being fed into the machine learning model,
features were normalized and decorrelated to reduce the chance of
overfitting, by removing features with Pearson correlation coefficient
over 0.95 (a discussion of feature interdependency is provided in
Supplementary Information S4.10). Expected Improvement acquisi-
tion function is used for new Al-complex molecules selection in each
iteration (more details in Supplementary Information S4.5). Con-
sidering the complexity of new molecule synthesis, a metric called
“synthetic scale” is proposed, based on the sum of evaluated number
of synthesis steps of each of the two split small molecules of each
whole Al-complex. Values from low to high correspond to the increase
in synthesis difficulty, and we only synthesize the model-suggested
catalysts with low synthetic scale values (see Supplementary Table 2).
This can be regarded as an extra component of the acquisition func-
tion in addition to mean and variance. For the three iterations of
Bayesian optimization, all the data of model-proposed catalysts is
tabulated in Supplementary Tables 3, 5, and 7 for isoselective catalysts
discovery and Supplementary Tables 4, 6, and 8 for heteoselective
catalysts discovery.

SHAP analysis
We used the SHAP (SHapley Additive exPlanations) package (https://
github.com/slundberg/shap) a game theoretic approach to explain the
output of amachine learningmodel, to calculate the Shapley value, the
magnitude of contribution of each normalized feature in DFT repre-
sentation for the determination of Pm or Pr referenced to output

Fig. 4 | Attribution analysis of the Bayesian optimization model. a Descriptor
ranking by SHAP (SHapley Additive exPlanations) values based on the Gaussian
process regression (GPR) model for optimizing Pm values (Pm, probability of meso
linkages) of the entire dataset of Al complexes. The top rank indicates the most
significant effects across all the predictions. The positive and negative SHAP value
refers to positive and negative correlation, respectively, between the measured Pm
value and the corresponding feature. The larger the absolute value, the stronger the
correlation is. The color coding indicates normalized high (red) to low (blue) fea-
ture values. b Correlation between Pm and %Vbur of the Al complex with the Pm
value. %Vbur, percent of buried volume. c–e Multivariant regression model high-
lighting important descriptors impacting c the Pm values for all Al complexes, d the

Pr values (probability of racemic dyad formation) in Al complexes with AmC1B2 and
AmC1B3 ligands, and e the Pm values in Al complexes with A3CpBn ligands. EHOMO(A),
HOMOenergy of theAm fragment (HOMO, thehighest occupiedmolecular orbital);
EN(A), electronegativity of the Am fragment; Vbur, %Vbur of the whole ligand; Vbur-

max(A), maximum %Vbur of the Am fragment; Freqmin(A), minimum frequency of the
Am fragment; EHOMO(BC), HOMO energy of the BnCp fragment; EN(BC), electro-
negativity of the BnCp fragment; Vbur-min(BC),minimum%Vbur of the BnCp fragment;
Freqmin(BC), minimum frequency of the BnCp fragment; MAEmean absolute error.
In the equations in c–e, the descriptors of the Am fragment are highlighted in
purple, and those of the BnCp fragment in green, and residue numbers in pink.
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averages. The principle of SHAP analysis was described in Supple-
mentary Information S4.7.

Multivariate linear regression
Multivariate linear regressionanalysiswasperformedusingR4.1.2. The
descriptors for the model were selected based on the SHAP analysis,
selecting most impactful descriptors that were mechanistically
meaningful for analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data, including dataset of DFT coordinates as Supplementary
Data 1, are provided with this paper. The authors declare that the data
supporting the findings of this study are available within the Article
and its Supplementary Information file, or from the corresponding
author upon reasonable request. Source data are provided with
this paper.

Code availability
The source code for descriptor generation, the computation scripts
for machine learning, all of the DFT descriptor sets, and other
descriptor sets, including one-hot-encoding, Mordred, CM and EI
descriptors, andGaussianoutputfiles used in thiswork canbe found in
https://github.com/hlxin/bayespoly, or in Zenodo85.
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