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Out-of-distribution generalization for
learning quantum dynamics

Matthias C. Caro 1,2,3,4,13 , Hsin-Yuan Huang 4,5,13, Nicholas Ezzell 6,7,
Joe Gibbs8,9, Andrew T. Sornborger6, Lukasz Cincio10, Patrick J. Coles10,11 &
Zoë Holmes6,12

Generalization bounds are a critical tool to assess the training data require-
ments of Quantum Machine Learning (QML). Recent work has established
guarantees for in-distribution generalization of quantum neural networks
(QNNs), where training and testing data are drawn from the same data dis-
tribution. However, there are currently no results on out-of-distribution gen-
eralization in QML, where we require a trained model to perform well even on
data drawn from a different distribution to the training distribution. Here, we
prove out-of-distribution generalization for the task of learning an unknown
unitary. In particular, we show that one can learn the action of a unitary on
entangled states having trained only product states. Since product states can
be prepared using only single-qubit gates, this advances the prospects of
learning quantum dynamics on near term quantum hardware, and further
opens up new methods for both the classical and quantum compilation of
quantum circuits.

In quantummachine learning (QML), a quantumneural network (QNN)
is trained using classical or quantum data, with the goal of learning
how to make accurate predictions on unseen data1–3. This ability to
extrapolate from training data to unseen data is known as general-
ization. There is much excitement currently about the potential of
such QML methods to outperform classical methods for a range of
learning tasks4–11. However, to achieve this, it is critical that the training
data required for successful generalization can be produced
efficiently.

While recent work has established a number of fundamental
bounds on the amount of training data required for successful gen-
eralization in QML11–24, less attention has been paid so far to the type of
training data required for generalization. In particular, prior work has
established guarantees for the in-distribution generalization of QML
models, where training and testing data are assumed to be drawn

independently from the same data distribution. However, in practice
onemay only have access to a limited type of training data, and yet be
interested in making accurate predictions for a wider class of inputs.
This is particularly an issue in the noisy intermediate-scale quantum
(NISQ) era25, when deep quantum circuits cannot be reliably executed,
effectively limiting the quantum training data states that can be
prepared.

In this article, we study out-of-distribution generalization in QML.
That is, we investigate generalization performance when the testing
and trainingdistributions donot coincide. Specifically, we consider the
task of learning unitary dynamics, which is a fundamental primitive for
a range of QML algorithms. At its simplest, the target unitary could be
the unknown dynamics of an experimental quantum system. For this
case, which has close links with quantum sensing26 and Hamiltonian
learning27–29, the aim is essentially to learn a digitalization of an analog
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quantumprocess. This could beperformedusing a ‘standard’quantum
computer or a simpler experimental system with perhaps a limited
gate set, as sketched in Fig. 1a, b, respectively. Alternatively, the target
unitary could take the formof a knowngate sequence thatone seeks to
compile into a shorter depth circuit or a particular structured form30–33.
The compilation could be performed either on a quantum computer,
see Fig. 1c, or entirely classically, see Fig. 1d. Such a subroutine can be
used to reduce the resources required to implement larger scale
quantum algorithms including those for dynamical simulations34–37.

Here we prove out-of-distribution generalization for unitary
learning with a broad class of training and testing distributions. Spe-
cifically, we show that the average prediction error over any two locally
scrambled38,39 ensembles of states are perfectly correlated up to a small
constant factor. This is captured by our main theorem, Theorem 1. By
combining this observation with in-distribution generalization guar-
antees it follows that if the training and testing distributions are both
locally scrambled (but potentially otherwise different distributions),
out-of-distribution generalization is always possible between locally
scrambled distributions. In particular, we show that a QNN trained on
quantum data capturing the action of an efficiently implementable
target unitary on a polynomial number of random product states,
generalizes to test data composed of fully random states. That is,
rather intriguingly, we show that one can learn the action of such a
unitary on a broad spread of highly entangled states having only stu-
died its action on a limited number of product states.

We numerically illustrate these analytical results by showing that
the short time evolution of a Heisenberg spin chain canbewell learned
using only product state training data. Namely, we find that the out-of-
distribution generalization error nearly perfectly correlateswith the in-
distribution generalization error and the training cost. In particular, in
our numerical experiments, the testing performances achieved by the
QML model on Haar-random states and on random product states
differ only by a small constant factor, as predicted analytically. We
further perform noisy simulations that demonstrate how the noise
accumulated preparing highly entangled states can prohibit training.
In contrast, noisy training on product states, which can be prepared
using only single-qubit gates, remains feasible. Additionally, in Sup-
plementary Note 3 we numerically validate our generalization guar-
antees in a task of learning so-called fast scrambler unitaries40. Thus
our results make the possibility of using QML to learn unitary pro-
cesses nearer term. Our results further suggest a new quantum-
inspired classical approach to unitary compilation. Namely, our results
imply that a low-entangling unitary can be compiled using only low-
entangled training states. Such circuits can be readily simulated using
classical tensor network methods, and hence this compilation can be
performed classically.

Results
Framework
In this work, we consider the QML task of learning an unknown n-qubit
unitaryU 2 UððC2Þ�nÞ. The goal is to use training states to optimize the
classical parameters α of V(α), an n-qubit unitary QNN (or classical
representation of a QNN), such that, for the optimized parameters αopt,
V(αopt) well predicts the action of U on previously unseen test states.

To formalize this notion of learning, we employ the framework of
statistical learning theory41,42. The prediction performance of the
trained QNN V(αopt) can be quantified in terms of the average distance
between the output state predicted by V(αopt) and the true output
state determined by U. The average is taken over input states from a
testing ensemble, which represents the ensemble of states that one
wants to be able to predict the action of the target unitary on. More
precisely, the goal is to minimize an expected risk

RPðαÞ=
1
4
E Ψj i∼P jjU Ψj i Ψh jUy � V ðαÞ Ψj i Ψh jV ðαÞyjj21

� �
, ð1Þ

where the testing distribution P is a probability distribution over
(pure) n-qubit states Ψj i and the factor of 1/4 ensures 0≤RPðαÞ≤ 1.

A learner will not have access to the full testing ensembleP and so
cannot evaluate the cost in Eq. (1). Instead, it is typically assumed that
the learner has access to a training data set consisting of input-output
pairs of pure n-qubit states,

DQðNÞ= ΨðjÞ
��� E

,U ΨðjÞ
��� E� �n oN

j = 1
, ð2Þ

where the N input states are drawn independently from a training
distribution Q. Equipped with such training data, the learner may
evaluate the training cost

CDQðNÞðαÞ=
1
4N

XN
j = 1

U ΨðjÞ
��� E

ΨðjÞ
D ���Uy

���
�V ðαÞ ΨðjÞ

��� E
ΨðjÞ
D ���V ðαÞy���2

1
:

ð3Þ

We note that this cost can be rewritten in terms of the average fidelity
as

CDQðNÞðαÞ= 1�
1
N

XN
j = 1

ΨðjÞ
D ���V ðαÞyU ΨðjÞ

��� E��� ���2 ð4Þ

and thus can be efficiently computedusing a Loschmidt echo14 or swap
test circuit43,44. The hope is that by training the parameters α of the
QNN tominimize the training cost CDQðNÞðαÞ onewill also achieve small
risk RPðαÞ.

However, whether such a strategy is successful crucially depends
on whether the training cost CDQðNÞðαÞ is indeed a good proxy for the
expected cost RP αð Þ. This is exactly the question of generalization:
Does good performance on the training data imply good performance
on (previously unseen) testing data?

In statistical learning theory, answers to this question are given in
terms of generalization bounds. These are bounds on the general-
ization error, which is typically taken to be the difference between
expected risk and training cost, i.e.,

genP,DQðNÞ αopt

� �
:¼ RP αopt

� �
� CDQðNÞ αopt

� �
: ð5Þ

Usually, such bounds are proved under an i.i.d. assumption on training
and testing. That is, they are based on the assumptions (a) that the
training examples are drawn independently from a training distribu-
tion Q and (b) that the training and testing distributions coincide,
Q=P. In this case, we speak of in-distribution generalization.

Fig. 1 | Applications of quantum dynamics learning. a Quantum dynamics
learning of an experimental process using a quantum computer. b Quantum
dynamics learning with a more specialized experimental system with potentially a
limited gate set. c, d Quantum compilation of a known unitary on a quantum
computer and classical computer, respectively.
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In this paper, we consider out-of-distribution generalizationwhere
we drop assumption (b) by allowing Q≠P. Borrowing classical
machine learning terminology, one can also regard this as a scenarioof
dataset shift45, or more specifically covariate shift46,47, which is often
addressed using transfer learning techniques48,49. We formulate our
results for a broad class of ensembles called locally scrambled
ensembles. In loose terms, locally scrambled ensembles of states can
be thought of as ensembles of states that are at least locally random.
Throughout, we use the terms ‘distribution’ and ‘ensemble’ inter-
changeably.More formally, locally scrambled ensembles are definedas
follows.

Definition 1. (Locally scrambled ensembles). An ensemble of n-qubit
unitaries is called locally scrambled if it is invariant under pre-
processing by tensor products of arbitrary local unitaries. That is, a
unitary ensemble ULS is locally scrambled iff for U ∼ULS and for any
fixedU1, . . . ,Un 2 UðC2Þ alsoUðNn

i= 1UiÞ∼ULS. Here and elsewhere, the
“~” notation means that the random variable on the left has the dis-
tribution on the right as its law. For instance, U ∼ULS means that the
random unitary U is drawn from the distribution ULS. Accordingly, an
ensemble SLS of n-qubit quantum states is locally scrambled if it is of
the form SLS =ULS 0j i�n for some locally scrambled unitary ensemble
ULS. We use U 0j i�n to denote the ensemble of states generated by
drawing unitaries from U and applying them to the n-qubit all-zero
state 0j i�n. We denote the classes of locally scrambled ensembles of
unitaries and states as ULS and SLS, respectively.

In fact, our results hold for a slightly broader class of ensembles
where we only require that the ensemble agrees with a locally scram-
bled one up to and including its (complex) second moments. That is,
more informally, the average over the ensemble agrees with those of a
locally scrambled ensemble over all functions ofU that contain atmost
two copies of U. We will denote these broader classes of unitary and
state ensembles, which we formally define in Supplementary Note 1, as
Uð2Þ

LS and Sð2Þ
LS , respectively.

In our results, we suppose that both the testing and training
ensembles are such ensembles, i.e., P 2 Sð2Þ

LS andQ 2 Sð2Þ
LS . However, as

Sð2Þ
LS captures a variety of different possible ensembles, P andQ can be

ensembles containing very different sorts of states. In particular, as
detailed further in Supplementary Note 1, the following are important
examples of ensembles in Sð2Þ

LS :
• SHaar�n

1
- Products of Haar-random single-qubit states.

• SStab�n
1

- Products of random single-qubit stabilizer states.
• SHaar�n=k

k
- Products of Haar-random k-qubit states.

• SHaarn
- Haar-random n-qubit states.

• S2design - A 2-design on n-qubit states.
• SAk

RandCirc - The output states of random quantum circuits. (Here
Ak denotes the k-local n-qubit quantum circuit architecture
from which the random circuit is constructed.)

These examples highlight that the class of locally scrambled
ensembles includes both ensembles that consist solely of product
states and ensembles composedmostly of highly entangled states.We
can use this to our advantage to construct more efficient machine
learning strategies.

Typically the learner will be interested in learning the action of a
unitary on a wide class of input states including both entangled and
unentangled states. For example, they might be interested in learning
the action of a unitary on all states that can be efficiently prepared on a
quantum computer using a polynomial-depth hardware-efficient
layered ansatz. Thus in general the expected risk should be evaluated
over distributions such as SHaarn

, S2design or SAk
RandCirc (for k≥2) which

cover a large proportion of the total Hilbert space.
In classical machine learning, one often thinks of the training data

as given. However, in the context of learning or compiling quantum
unitary dynamics (as sketched in Fig. 1), one in practice needs either to

prepare the training states on a quantum computer or in an experi-
mental setup, or to be able to efficiently simulate them classically.
Thus, it is desirable to trainon states that can be prepared using simple
circuits, i.e., those that are short depth, low-entangling or require only
simple gates. This is especially important in the NISQ era due to noise-
induced barren plateaus50 or other noise-related issues51. Therefore, as
random stabilizer states and random product states can be prepared
using only a single layer of single-qubit gates, it makes practical sense
to train using the ensembles SHaar�n

1
or SStab�n

1
.

In thismanner the class of ensembles that are locally scrambled to
the second moment, Sð2Þ

LS , divides naturally into sub-classes of ensem-
bles that give rise to training sets and testing sets. We sketch this
in Fig. 2.

Analytical results
Having set up our framework, we now present our analytical results.
First, we show that all locally scrambled ensembles lead to closely
related expected risks for unitary learning. Second, we use this
observation to lift in-distribution generalization to out-of-distribution
generalization when using a QNN to learn an unknown unitary from
quantum data. For the formal proofs see Supplementary Note 2.

We first show a close connection between the risks for unitary
learning arising fromany locally scrambled ensembles.Moreprecisely,
we show that they can be upper and lower bounded in terms of the
expected risk over the Haar distribution in our main technical result:

Lemma 1. For any Q 2 Sð2Þ
LS and any parameter setting α,

1
2
RSHaarn

ðαÞ≤ d
d + 1

RQ αð Þ≤RSHaarn
ðαÞ, ð6Þ

where d = 2n is the dimension of the target unitary U being learned.
This result establishes that learning over any locally scrambled

distribution is effectively equivalent (up to a constant multiplicative
factor) to learning over the uniformdistribution over the entireHilbert
space. We note that the factor of 1/2 in the lower bound emerges from
the structure of our proof, and for typical cases we expect the relation
between the costs to be tighter still. We explore this numerically in
Supplementary Note 3 for the special case of training on random
product states, i.e. Q=SHaar�n

1
.

A direct consequence of Lemma 1 is that the risks arising fromany
two locally scrambled ensembles are related as follows.

Theorem 1. (Equivalence of locally scrambled ensembles for com-
paring unitaries). Let P 2 Sð2Þ

LS and Q 2 Sð2Þ
LS , then for any parameter

setting α,

1
2
RQ αð Þ≤RP αð Þ≤ 2RQ αð Þ: ð7Þ

Fig. 2 | Locally scrambled ensembles. Venn diagram showing how the class of
ensembles that are locally scrambled up to the second moment, Sð2Þ

LS , divides
naturally into training ensembles and testing ensembles. For the formal definitions
of each of the ensembles referenced see Supplementary Note 1.
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Theorem 1 establishes an equivalence (up to a constant multi-
plicative factor) between all locally scrambled testing distributions
for the task of learning an unknown unitary on average. In parti-
cular, even simple locally scrambled ensembles, such as tensor
products of Haar-random single-qubit states or of random single-
qubit stabilizer states, are for this purpose effectively equivalent to
seemingly more complex locally scrambled ensembles. The latter
include the output states of random quantum circuits or, indeed,
globally Haar-random states.

Theorem 1 gives rise to a general template for lifting in-
distribution generalization bounds for QNNs to out-of-distribution
generalization guarantees in unitary learning. This is captured by the
following corollary:

Corollary 1. (Locally scrambled out-of-distribution generalization
from in-distribution generalization). LetP 2 Sð2Þ

LS andQ 2 Sð2Þ
LS . Let U be

an unknown n-qubit unitary. Let V(α) be an n-qubit unitary QNN that is
trainedusing training dataDQðNÞ containingN input-output pairs, with
inputs drawn from the ensembleQ. Then, for any parameter setting α,

RPðαÞ≤ 2 CDQðNÞðαÞ+genQ,DQðNÞ αð Þ
� �

: ð8Þ

Thus, when training using training data DQðNÞ, the out-of-
distribution risk RPðαoptÞ of the optimized parameters αopt after
training is controlled in terms of the optimized training cost
CDQðNÞðαoptÞ and the in-distribution generalization error
genQ,DQðNÞ

�
αopt

	
. We can now bound the in-distribution generalization

error using already known QML in-distribution generalization
bounds11–23 (or, indeed, any suchbounds that arederived in the future).
We point out that our results up to this point do not require any
assumptions on the QNN architecture underlying V(α), except for
overall unitarity. As a concrete example of guarantees that can be
obtained this way, we combine Corollary 1 with an in-distribution
generalization bound established in20 to prove:

Corollary 2. (Locally scrambled out-of-distribution generalization for
QNNs). LetP 2 Sð2Þ

LS andQ 2 Sð2Þ
LS . LetU be an unknown n-qubit unitary.

Let V(α) be an n-qubit unitary QNN with T parameterized local gates.
When trained with the cost CDQðNÞ using training data DQðNÞ, the out-
of-distribution risk w.r.t. P of the parameter setting αopt after training
satisfies

RPðαoptÞ≤ 2CDQðNÞðαoptÞ+O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T logðTÞ

N

r !
, ð9Þ

with high probability over the choice of training data of size N
according to Q.

The out-of-distribution generalization guarantee of Corollary 2 is
particularly interesting if the training data is drawn from a distribution
composed only of products of single-qubit Haar-random or random
stabilizer states, i.e. Q=SHaar�n

1
or Q=SStab�n

1
, but the testing data is

drawn frommore complex distributions such as the Haar ensemble or
the outputs of random circuits, i.e. P =SHaarn

or P =SRandCirc. In this
case, Corollary 2 implies that efficiently implementable unitaries can
be learned using a small number of simple unentangled training states.
More precisely, if U can be approximated via a QNN with poly(n)
trainable local gates, then only poly(n) unique product training states
suffice to learn the action of U on the Haar distribution, i.e. across the
entire Hilbert space.

To understand why out-of-distribution generalization is possible,
recall that any state is linearly spanned by n-qubit Pauli observables
P∈ {I, X, Y, Z}⊗n, and each Pauli observable P can be written as a linear
combination of product states sj i sh j= Nn

i= 1 si
�� � si

� ��, where
si∈ {0, 1, + , − , y + , y − }. These two facts imply that for any state
ϕ
�� � ϕ

� ��, there exists coefficients αs, such that ϕ
�� � ϕ

� ��=Psαs sj i sh j.

Hence, if we exactly know U sj i sh jUy for all 6n product states sj i sh j,
then we can figure out U ϕ

�� � ϕ
� ��Uy for any state ϕ

�� � ϕ
� �� by linear

combination. However, this requires an exponential number of pro-
duct states in the training data. In our prior work20, we show that one
only needs poly(n) training product states to approximately know
U sj i sh jUy for most of the 6n product states, assuming U is efficiently
implementable. The key insight in this work is that one can predict
U ϕ
�� � ϕ

� ��Uy as long as the coefficients αs in ϕ
�� � ϕ

� ��=Psαs sj i sh j are
sufficiently random and spread out across the 6n product states. We
make this condition precise by defining locally scrambled ensembles
and proving that the action of U on a state sampled from any such
ensemble can be predicted. In Supplementary Note 2, we further dis-
cuss the role that linearity plays in our results.

We can immediately extend our results for out-of-distribution to
local variants of costs. Such local costs are essential to avoid cost-
function-dependent barren plateaus52 when training a shallowQNN. As
a concrete example, when taking SHaar�n

1
as the training ensemble, we

can consider the local training cost

CL
Prod,NðαÞ= 1�

1
N

XN
j = 1

Tr ΨðjÞ
Prod

��� E
ΨðjÞ

Prod

D ���UyV ðαÞHðjÞ
L V ðαÞyU

h i
, ð10Þ

where
��ΨðjÞ

Prod

�
=
Nn

i = 1

��ψðjÞ
i

�
∼SHaar�n

1
for all j and we have introduced

the local measurement operator HðjÞ
L = 1

n

Pn
i= 1

��ψðjÞ
i

��
ψðjÞ
i

��� 1�i. This
local cost is faithful to its global variant for product state training in the
sense that it vanishes under the same conditions30, but crucially, in
contrast to the global case, may be trainable52. In Supplementary
Note 2, we prove a version of Corollary 2 when training on the local
cost from Eq. (10). Specifically we find:

Corollary 3. (Locally scrambled out-of-distribution generalization for
QNNs via a local cost). Let P 2 Sð2Þ

LS and let U be an unknown n-qubit
unitary. Let V(α) be an n-qubit unitary QNNwith T parameterized local
gates. When trained with the cost CL

Prod,N, the out-of-distribution risk
w.r.t. P of the parameter setting αopt after training satisfies

RPðαoptÞ≤ 2nCL
Prod,NðαoptÞ+O n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T logðTÞ

N

r !
, ð11Þ

with high probability over the choice of training data of size N.
Clearly, analogous local variants of the training cost can be

defined whenever the respective ensemble has a tensor product
structure (such as SStab�n

1
). However, if the training data is highly

entangled, constructing such local costs in this manner is not pos-
sible. Thus, this is another important consequence of our results:
The ability to train solely on product state inputs makes it
straightforward to generate the local costs that are necessary for
efficient training.

The results presented thus far concern the number of unique
training states required for generalization, but in practice multiple
copies of each training state will be needed for successful training. As
Oð1=ϵ2Þ shots are required to evaluate a cost to precision ϵ and since
for gradient based training methods one needs to evaluate the partial
derivative of the cost with respect to each of the T trainable para-
meters, one would expect to need on the order ofOðTMopt=ϵ

2Þ copies
of each of the N input states and output states to reduce the cost to ϵ.
Here Mopt is the number of optimization steps. Classical shadow
tomography53–55 provides a way towards a copy complexity bound that
is independent of the number of optimization steps. Namely, exploit-
ing covering number bounds for the space of pure output states of
polynomial-size quantum circuits (compare refs. 4,20), polynomial-
size classical shadows can be used to perform tomography among
such states. In the case of an efficiently implementable target unitaryU
and QNN V(α) that both admit a circuit representation with T 2
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OðpolyðnÞÞ local gates,OðT logðT=ϵÞ=ϵ2Þ≤ ~OðpolyðnÞ=ϵ2Þ copies of each
of the input states

��ΨðjÞ� and output states
��ΦðjÞ� suffice to approxi-

mately evaluate the cost (both the global and local variants) and its
partial derivatives arbitrarily often.

Numerical results
Here we provide numerical evidence to support our analytical results
showing that out-of-distribution generalization is possible for the
learning of quantum dynamics. We focus on the task of learning the
parameters of an unknown target Hamiltonian by studying the evolu-
tion of product states under it.

For concreteness,we suppose that the targetHamiltonian is of the
form

Hðp,q, rÞ=
Xn�1

k = 1

ZkZk + 1 +pkXkXk + 1

� 	
+
Xn
k = 1

qkXk + rkZk

� 	
, ð12Þ

with the specific parameter setting (p*, q*, r*) given by p*
k = sin πk

2n

� 	
for

1 ≤ k ≤n − 1 and q*
k = sin πk

n

� 	
, r*k = cos πk

n

� 	
for 1 ≤ k ≤ n. The learning

is performed by comparing the exact evolution under e�iHðp* ,q* ,r*Þt to
a Trotterized ansatz. Specifically, we use an L layered ansatz
VLðp,q, rÞ :¼ UΔtðp,q, rÞ

� 	L where UΔt is a second order Trotterization
of e−iH(p,q, r)Δt. That is,

UΔtðp,q, rÞ= e�iHAðrÞΔt=2e�iHBðp,qÞΔte�iHAðrÞΔt=2 ð13Þ

where the Hamiltonians HAðrÞ :¼
Pn�1

k = 1 ZkZk + 1 +
Pn

k = 1 rkZk and
HBðp,qÞ :¼

Pn�1
k = 1 pkXkXk + 1 +

Pn
k = 1 qkXk contain only commuting

terms and so can be readily exponentiated.
We attempt to learn the vectors p*, q*, and r* by comparing

e�iHðp* ,q* ,r*Þt jψji and VLðp,q, rÞ jψji over N random product states jψji.
To do so, we use the training dataDQðNÞ withQ=SHaar�n

1
, and the cost

function given in Eq. (4). The learning is performed classically for
n = 4,…, 12 and L = 2,…, 5 and we take the total evolution time to be
t =0.1. For all values of n we train on two product states, i.e. N = 2. We
repeated the optimization 5 times in each case and kept the best run.
While the small training data size N = 2 was sufficient for the model
considered here, in Supplementary Note 3 we present amore involved
unitary learning setting that requires larger values of N.

Figure 3 plots the in-distribution risk and out-of-distribution
risk as a function of the final optimized cost function values,
CDQð2ÞðαoptÞ with Q=SHaar�n

1
. Here the in-distribution risk is the

average prediction error over random product states, i.e. RSHaar�n
1

,
and for the out-of-distribution testing we chose to compute the risk
over the global Haar distribution, i.e. RSHaarn

. These risks can be
evaluated analytically using Supplementary Lemma 3 and Supple-
mentary Eqs. (6) and (7). The linear correlation between the cost
function and both RSHaar�n

1

and RSHaarn
demonstrates that both in-

distribution and out-of-distribution generalization have been suc-
cessfully achieved.

Next, we perform noisy simulations to assess the performance of
learning the parameters of theHamiltonian in Eq. (12) in two situations:
(i) the training is performed on random product states and (ii) the
training data is prepared with deep quantum circuits. We expect that
the presence of noise will have a different impact depending on the
amount of noise that is accumulated during the preparation of the
training states.

Our simulations used a realistic noise model based on gate-set
tomography on the IBM Ourense superconducting qubit device56 but
with the experimentally obtained error rates reduced by a factor of 20
tomake thedifference in trainingmorepronounced. The training set is
constructed from just two states (either product states or those pre-
pared with a linear depth hardware efficient circuits).

The optimizer is a version of the gradient-free Nelder–Mead
method57. The cost function in Eq. (4) is computed with an increasing

number of shots, starting with 10 shots per cost function evaluation.
That number is increased by 50% once the optimizer detects a lack of
progress within a specified number of iterations. This optimization
procedure is sensitive to flatness of the cost function landscape: The
flatter the landscape, themore shots are needed to resolve it and find a
minimizing direction.

Figure 4 shows the results of the training procedure performedon
an n = 6 qubit system. Here, we train the L = 2 ansatz for VL(p,q, r) and
consider total evolution time t =0.1. The optimization is repeated 20
times, each time startingwith different random initial point (p0, q0, r0).
Red (blue) lines indicate the risk obtained for product (deep circuit)
training states as a function of total number of shots.

Training with product states is successful: once the number of
shots per cost function evaluation is large enough (total shots above
103), the optimizer detects the downhill direction and the in-
distribution risk is gradually decreased, eventually reaching 10−3.
The out-of-distribution risk closely follows the in-distribution risk

Fig. 3 | Out-of-Distribution Generalization for Hamiltonian Learning. Here we
present our results from learning the Hamiltonian specified in Eq. (12) by training
on only 2 product states. As the number of layers L in the ansatz is increased the
obtainable cost function value decreases. We plot the correlation between the
optimized cost CDQ ð2ÞðαoptÞ with Q=SHaar�n

1
, and the (in-distribution) risk over

product states, RSHaar�n
1

, and (out-of-distribution) risk over the Haarmeasure, RSHaarn
.

The lines indicate the joined values for L = 2, 3, 4, 5 for the different values of n
indicated in the legend.

Fig. 4 | Training in the presence of noise. The cost function is optimized for two
types of training data: (i) product states (red lines) and (ii) states prepared with
deep circuits (blue lines). We performed 20 independent optimizations, each time
initializing the optimization differently and selecting a different random training
set. The shaded region represents the standard deviation of all 20 runs. Dotted
(solid) lines represent in-distribution (out-of-distribution) risk.
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proving that generalization can be achieved with product training
states under realistic noise and finite shot budget conditions. In
contrast, the training set built with deep circuits fails to produce
successful training for all 20 optimization runs. Even in the limit of
very large number of shots, both in-distribution and out-of-
distribution risks remain large. This proof-of-principle numerical
experiment shows that our out-of-distribution generalization
guarantees can make training and learning feasible in noisier sce-
narios than otherwise viable.

Discussion
Our work establishes that for learning unitaries, QNNs trained on
quantum data enjoy out-of-distribution generalization between some
physically relevant distributions if the training data size is roughly the
number of trainable gates. The class of locally scrambled distributions
that our results hold for fall naturally into sub-classes of training
ensembles and testing ensembles, characterized by their practicality
and generality, respectively. The simplest possible training ensemble
in this context are products of stabilizer states. Our results show that
training on this easy to experimentally prepare and easy to classically
simulate ensemble generalizes to the uniformHaar ensemble of states,
as well as to practically motivated ensembles such as the output of
random circuits. Thus, somewhat surprisingly, we have shown the
action of quantum unitaries can be predicted on a wide class of highly
entangled states, having only observed their action on relatively few
unentangled states.

These results have implications for the practicality of learning
quantum dynamics. We are particularly intrigued by the possibility of
using quantum hardware or experimental systems to characterize
unknown dynamics of quantum experimental systems. This could be
done by coherently interacting a quantum system with a quantum
computer, or alternatively could be conducted in amore conventional
experimental setup. We stress for the latter, the experimental setup
may not be equipped with a complete gate set, and so our proof that
learning can be done using only products of random single qubit
states, which require only simple single-qubit gates to prepare, is
particularly important.

We are also interested in the potential of these results to ease the
classical compilation of local short-time evolutions into shorter depth
circuits30 and circuits of a particular desired structure34,35. Since low-
entangling unitaries and product states may be classically simulated
using tensor network methods, our results show that the compilation
of such unitaries may be performed entirely classically. This could be
used to develop more effective methods for dynamical simulation or
to learn more efficient pulse sequences for noise resilient gate
implementations.

An immediate extension of our results would be to investigate
whether our proof techniques can be used tomore efficiently evaluate
Haar integrals, or more generally to relate averages over different
locally scrambled ensembles in other settings. For example, onemight
explore whether they could be used in a DQC1 (deterministic quantum
computation with 1 clean qubit) setting where one inputs a maximally
mixed state58. Alternatively, one might investigate whether they could
be used to bound the frame potential of an ensemble, an important
quantity for evaluating the randomness of a distribution that has links
with quantifying chaotic behavior59.

In this paper, we have focused on the learning of quantum
dynamics, in particular the learning of unitaries, using locally
scrambled distributions. Given recent progress on different quantum
channel learning questions60–70, it is natural to ask whether out-of-
distribution generalization is possible for other QML tasks such as
learning quantum channels or, more generally, for performing clas-
sification tasks such as classifying phases of matter20,71,72. (We note
that our proof techniques extend beyondunitary dynamics to doubly
stochastic quantum channels, which can be understood as affine

combinations of unitary channels [ref. 73, Theorem 1].) It would
further be valuable to investigate whether out-of-distribution gen-
eralization is viable for other classes of distributions. Such results, if
obtainable, would again have important implications for the practi-
cality of QML on near term hardware and restricted experimental
settings.

Our approach to out-of-distribution generalization does not rely
on specific learning algorithms, nor transfer learning techniques, as is
often the case in the classical literature45–49. Rather, we establish gen-
eralization guarantees that apply to a specific QML task (learning
quantum dynamics) with data coming from a specific class of dis-
tributions (locally scrambled ensembles). That is, we show that in this
context, out-of-distribution generalization is essentially automatic. In
the classical ML literature, a similar-in-spirit focus on properties of the
class of distributions of interest can for example be seen in the con-
cepts of invariance74,75 and variation76 of features, but the nature of
these properties is still quite different from the ones that we consider.
Nevertheless,wehope that combining suchperspectives fromclassical
ML theory with physics-informed choices of distributions, as in our
case, will lead to a better understanding of out-of-distribution
generalization.

Methods
In this section, we give an overview over the proof strategy leading to
our central analytical result contained in Lemma 1. At a high level, our
proof boils down to rewriting RSHaarn

ðαÞ and RQ αð Þ with Q locally
scrambled into forms which are comparable by known and newly
derived inequalities.

First, we recast the Haar risk RSHaarn
ðαÞ into an average over Pauli

products and upper bound it by a risk over local stabilizer states. To do
so, we rewrite the Haar risk by recalling the relationship between the
(Haar) average gate fidelity between two unitaries U and V and the
Hilbert–Schmidt inner product77,

RSHaarn
ðαÞ=E Ψj i∼SHaarn

1� j Ψh jUyV ðαÞ Ψj ij2� �
=

d
d + 1

1� 1

d2 jTr½U
yV ðαÞ�j2


 �
:

ð14Þ

Next, we use the Pauli basis expansion of the swap operator to write
the Haar risk as an average over Pauli operators. That is, as shown
explicitly in Supplementary Lemma 1, we use

SWAP=
X

P2f1,X ,Y ,Zg�n

P � P ð15Þ

to show that

jTr½UyV �j2 = 1
d

X
P2f1,X ,Y ,Zg�n

Tr½PUyVPV yU� : ð16Þ

This gives an expression for the Haar risk RSHaarn
ðαÞ in terms of an

average over Pauli products. This average over Pauli observables can
then be upper bounded by an average over products of stabilizer
states by introducing a spectral decomposition, as detailed in Sup-
plementary Lemma 2 and Supplementary Corollary 1. Finally, by the
2-design property of the random single-qubit stabilizer states, we can
rewrite this upper bound in terms of a local Haar average,

d + 1
d

RSHaarn
ðαÞ≤ 2 1� χð Þ where ,

χ =E�n
i= 1 ψij i∼Haar�n

1
�n
i= 1

ψi

� ��
 �
~U
y
W ~U �n

i= 1
ψi

�� �
 �����
����
2

" #
:

ð17Þ

The latter can then be related to RQ αð Þ becauseQ is locally scrambled,
which then leads to the first inequality in Lemma 1. Here the choice to
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bound by Haar�n
1 specifically hints towards our final result that a

unitary can be learnt over the Haar average from product state
training data.

Second, we recast the generic locally scrambled riskRQ into a sum
of locally scrambled expectation values over different partitions of the
system. Specifically, using a well known expression for the complex
second moment of the single-qubit Haar measure (see, e.g., Eq. (2.26)
in ref. 59),

E ψj i∼Haar1
ψ
�� � ψ
� ���2

h i
=
1� 1+SWAP

6
, ð18Þ

we find that

RQ αð Þ= 1� 1
6n

X
A�f1,...,ng

E~U ∼ ~U TrAc ~U
y
UyV ~U

h i��� ������ ���2
F
, ð19Þ

where ~U ∼ ~U is drawn from the locally scrambled unitary ensemble ~U
with Q= ~U 0j i�n. See Supplementary Lemma 3 for more details. From
here, we can usematrix-analytic inequalities to show a lower bound on
the Frobenius norm of a partial trace of a matrix in terms of the
absolute value of the trace of the original matrix. Plugging this lower
bound into the explicit expression for RQ αð Þ translates exactly to the
second inequality in Lemma 1.

Data availability
Thedata generated and analyzedduring the current study are available
from the authors upon request.

Code availability
Further implementation details are available from the authors upon
request.

References
1. Biamonte, J. et al. Quantum machine learning. Nature 549,

195 (2017).
2. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quan-

tum machine learning. Contemp. Phys. 56, 172 (2015).
3. Schuld, M. & Petruccione, F. Machine Learning with Quantum

Computers (Springer, 2021).
4. Huang, H.-Y. et al. Quantum advantage in learning from experi-

ments. Science 376, 1182 (2022).
5. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quan-

tum speed-up in supervised machine learning. Nat. Phys. 17,
1013–1017 (2021).

6. Aharonov, D., Cotler, J. & Qi, X.-L. Quantum algorithmic measure-
ment. Nat. Commun. 13, 1 (2022).

7. Huang, H.-Y., Kueng, R. & Preskill, J. Information-theoretic bounds
on quantum advantage in machine learning. Phys. Rev. Lett. 126,
190505 (2021).

8. Chen, S., Cotler, J., Huang, H.-Y. & Li, J., Exponential separations
between learning with and without quantummemory. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science
(FOCS) 574–585 (IEEE, 2022).

9. Chen, S., Cotler, J., Huang, H.-Y. & Li, J. A hierarchy for replica
quantum advantage. Preprint at https://arxiv.org/abs/2111.
05874 (2021).

10. Cotler, J., Huang, H.-Y. & McClean, J. R. Revisiting dequantization
and quantum advantage in learning tasks. Preprint at https://arxiv.
org/abs/2112.00811 (2021).

11. Huang, H.-Y. et al. Power of data in quantummachine learning.Nat.
Commun. 12, 1 (2021).

12. Caro, M. C. & Datta, I. Pseudo-dimension of quantum circuits.
Quant. Mach. Intell. 2, 14 (2020).

13. Abbas, A. et al. The power of quantum neural networks. Nat.
Comput. Sci. 1, 403 (2021).

14. Sharma, K. et al. Reformulation of the no-free-lunch theorem for
entangled datasets. Phys. Rev. Lett. 128, 070501 (2022).

15. Bu, K., Koh, D. E., Li, L., Luo, Q. & Zhang, Y. Statistical complexity of
quantum circuits. Phys. Rev. A 105, 062431 (2022).

16. Banchi, L., Pereira, J. & Pirandola, S. Generalization in quantum
machine learning: a quantum information standpoint.PRXQuant, 2,
040321 (2021).

17. Du, Y., Tu, Z., Yuan, X. &Tao,D. Efficientmeasure for theexpressivity
of variational quantum algorithms. Phys. Rev. Lett. 128,
080506 (2022).

18. Gyurik, C., van Vreumingen, D. & Dunjko, V. Structural risk mini-
mization for quantum linear classifiers. Quantum 7, 893 (2023).

19. Caro, M. C., Gil-Fuster, E., Meyer, J. J., Eisert, J. & Sweke, R.
Encoding-dependent generalization bounds for parametrized
quantum circuits. Quantum 5, 582 (2021).

20. Caro, M. C. et al. Generalization in quantummachine learning from
few training data. Nat. Commun. 13, 4919 (2022).

21. Chen, C.-C. et al. On the expressibility and overfitting of quantum
circuit learning. ACM Trans. Quant. Comput. 2, 1 (2021).

22. Popescu, C. M. Learning bounds for quantum circuits in the
agnostic setting. Quant. Inf. Process. 20, 1 (2021).

23. Cai, H., Ye, Q. & Deng, D.-L. Sample complexity of learning para-
metric quantum circuits. Quant. Sci. Technol. 7, 025014 (2022).

24. Volkoff, T., Holmes, Z. & Sornborger, A. Universal compiling and
(no-)free-lunch theorems for continuous-variable quantum learn-
ing. PRX Quant. 2, 040327 (2021).

25. Preskill, J. Quantum computing in the NISQ era and beyond.
Quantum 2, 79 (2018).

26. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev.
Mod. Phys. 89, 035002 (2017).

27. Wang, J. et al. Experimental quantum Hamiltonian learning. Nat.
Phys. 13, 551 (2017).

28. Wiebe, N., Granade, C., Ferrie, C. & Cory, D. Quantum Hamiltonian
learning using imperfect quantum resources. Phys. Rev. A 89,
042314 (2014).

29. Gentile, A. A. et al. Learning models of quantum systems from
experiments. Nat. Phys. 17, 837 (2021).

30. Khatri, S. et al. Quantum-assisted quantum compiling. Quantum 3,
140 (2019).

31. Sharma, K., Khatri, S., Cerezo, M. & Coles, P. J. Noise resilience of
variational quantum compiling. N. J. Phys. 22, 043006 (2020).

32. Jones, T. & Benjamin, S. C. Robust quantum compilation and circuit
optimisation via energy minimisation. Quantum 6, 628 (2022).

33. Heya, K., Suzuki, Y., Nakamura, Y. & Fujii, K. Variational quantumgate
optimization. Preprint at https://arxiv.org/abs/1810.12745 (2018).

34. Cirstoiu, C. et al. Variational fast forwarding for quantum simu-
lation beyond the coherence time. npj Quantum Inf. 6, 1
(2020).

35. Gibbs, J. et al. Long-time simulations for fixed input states on
quantum hardware. npj Quantum Inf. 8, 135 (2022).

36. Geller, M. R., Holmes, Z., Coles, P. J. & Sornborger, A. Experimental
quantum learning of a spectral decomposition. Phys. Rev. Res. 3,
033200 (2021).

37. Gibbs, J. et al. Dynamical simulation via quantummachine learning
with provable generalization. Preprint at https://arxiv.org/abs/
2204.10269 (2022).

38. Kuo, W.-T., Akhtar, A., Arovas, D. P. & You, Y.-Z. Markovian entan-
glement dynamics under locally scrambled quantum evolution.
Phys. Rev. B 101, 224202 (2020).

39. Hu, H.-Y., Choi, S. & You, Y.-Z. Classical shadow tomography with
locally scrambled quantum dynamics. Phys. Rev. Res. 5,
023027 (2023).

Article https://doi.org/10.1038/s41467-023-39381-w

Nature Communications |         (2023) 14:3751 7

https://arxiv.org/abs/2111.05874
https://arxiv.org/abs/2111.05874
https://arxiv.org/abs/2112.00811
https://arxiv.org/abs/2112.00811
https://arxiv.org/abs/1810.12745
https://arxiv.org/abs/2204.10269
https://arxiv.org/abs/2204.10269


40. Belyansky, R., Bienias, P., Kharkov, Y. A., Gorshkov, A. V. & Swingle,
B. Minimal model for fast scrambling. Phys. Rev. Lett. 125,
130601 (2020).

41. Vapnik, V. N. & Chervonenkis, A. Y. On the uniform convergence of
relative frequencies of events to their probabilities. Theor. Prob.
Appl. 16, 264 (1971).

42. Valiant, L. G. A theory of the learnable. Commun. ACM 27,
1134 (1984).

43. Buhrman, H., Cleve, R., Watrous, J. & De Wolf, R. Quantum finger-
printing. Phys. Rev. Lett. 87, 167902 (2001).

44. Gottesman, D. & Chuang, I. Quantum digital signatures. Preprint at
https://arxiv.org/abs/quant-ph/0105032 (2001).

45. Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. & Lawr-
ence, N. D. Dataset Shift in Machine Learning (MIT Press, 2008).

46. Shimodaira, H. Improving predictive inference under covariate shift
by weighting the log-likelihood function. J. Stat. Plan. Inference 90,
227 (2000).

47. Shen, Z. et al. Towards out-of-distribution generalization: a survey.
Preprint at https://arxiv.org/abs/2108.13624 (2021).

48. Pratt, L. Y. et al. Direct transfer of learned information among neural
networks. In Proc. Ninth National Conference on Artificial Intelli-
gence (AAAI-91) 584–589 (ACM, 1991).

49. Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans.
Knowledge Data Eng. 22, 1345 (2009).

50. Wang, S. et al. Noise-induced barren plateaus in variational quan-
tum algorithms. Nat. Commun. 12, 1 (2021).

51. Stilck França, D. & Garcia-Patron, R. Limitations of optimization
algorithms on noisy quantum devices. Nat. Phys. 17, 1221 (2021).

52. Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost
function dependent barren plateaus in shallow parametrized
quantum circuits. Nat. Commun. 12, 1 (2021).

53. Huang,H.-Y., Kueng, R. & Preskill, J. Predictingmany properties of a
quantum system from very few measurements. Nat. Phys. 16,
1050 (2020).

54. Elben, A. et al. The randomized measurement toolbox. Nat. Rev.
Phys. https://doi.org/10.1038/s42254-022-00535-2 (2022).

55. Huang,H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably
efficient machine learning for quantum many-body problems. Sci-
ence 377, eabk3333 (2022).

56. Cincio, L., Rudinger, K., Sarovar, M. & Coles, P. J. Machine learning
of noise-resilient quantum circuits. PRX Quant. 2, 010324 (2021).

57. Nelder, J. A. &Mead, R.A simplexmethod for functionminimization.
Comput. J. 7, 308 (1965).

58. Knill, E. & Laflamme, R. Power of one bit of quantum information.
Phys. Rev. Lett. 81, 5672 (1998).

59. Roberts, D. A. & Yoshida, B. Chaos andcomplexity by design. J. High
Energy Phys. 2017, 121 (2017).

60. Flammia, S. T. &Wallman, J. J. Efficient estimation of Pauli channels.
ACM Trans. Quant. Comput. 1, 1 (2020).

61. Harper, R., Flammia, S. T. & Wallman, J. J. Efficient learning of
quantum noise. Nat. Phys. 16, 1184 (2020).

62. Harper, R., Yu, W. & Flammia, S. T. Fast estimation of sparse quan-
tum noise. PRX Quant. 2, 010322 (2021).

63. Flammia, S. T. & O’Donnell, R. Pauli error estimation via population
recovery. Quantum 5, 549 (2021).

64. Chen, S., Zhou, S., Seif, A. & Jiang, L. Quantum advantages for Pauli
channel estimation. Phys. Rev. A 105, 032435 (2022).

65. Chung, K.-M. & Lin, H.-H. Sample efficient algorithms for learning
quantum channels in PAC model and the approximate state dis-
crimination problem. In 16th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC 2021), Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 197
(ed. Hsieh, M.-H.) 3:1–3:22 (Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021).

66. Caro, M. C. Binary classification with classical instances and quan-
tum labels. Quant. Mach. Intell. 3, 18 (2021).

67. Fanizza, M., Quek, Y. & Rosati, M. Learning quantum processes
without input control. Preprint at https://arxiv.org/abs/2211.
05005 (2022).

68. Huang, H.-Y., Flammia, S. T. & Preskill, J. Foundations for learning
from noisy quantum experiments, https://arxiv.org/abs/2204.
13691 (2022).

69. Huang, H.-Y., Chen, S. & Preskill, J. Learning to predict arbitrary
quantum processes, https://arxiv.org/abs/2210.14894 (2022).

70. Caro, M. C. Learning quantum processes and Hamiltonians via the
Pauli transfer matrix. https://arxiv.org/abs/2212.04471 (2022).

71. Uvarov, A., Kardashin, A. & Biamonte, J. D. Machine learning phase
transitions with a quantum processor. Phys. Rev. A 102,
012415 (2020).

72. Monaco, S., Kiss, O., Mandarino, A., Vallecorsa, S. & Grossi, M.
Quantum phase detection generalization from marginal quantum
neural network models. Phys. Rev. B 107, L081105 (2023).

73. Mendl, C. B. & Wolf, M. M. Unital quantum channels–convex
structure and revivals of Birkhoff’s theorem. Commun. Math. Phys.
289, 1057 (2009).

74. Arjovsky, M., Bottou, L., Gulrajani, I. & Lopez-Paz, D. Invariant risk
minimization. https://arxiv.org/abs/1907.02893 (2019).

75. Arjovsky, M. Out of distribution generalization in machine learning.
Preprint at https://arxiv.org/abs/2103.02667 (2021).

76. Ye, H. et al. Towards a theoretical framework of out-of-distribution
generalization. In Advances in Neural Information Processing Sys-
tems, Vol. 34 (ed. Ranzato,M., Beygelzimer, A.,Dauphin, Y., Liang, P.
& Vaughan, J. W.) pp. 23519–23531 (Curran Associates, Inc., 2021)

77. Nielsen, M. A. A simple formula for the average gate fidelity of a
quantum dynamical operation. Phys. Lett. A 303, 249 (2002).

Acknowledgements
We thank Marco Cerezo for helpful conversations. We thank the
reviewers at NatureCommunications for their valuable feedback.M.C.C.
was supported by the TopMath Graduate Center of the TUM Graduate
School at the Technical University of Munich, Germany, the TopMath
Program at the Elite Network of Bavaria, by a doctoral scholarship of the
German Academic Scholarship Foundation (Studienstiftung des deut-
schen Volkes), by the BMWK (PlanQK), and by a DAAD PRIME Fellowship.
N.E. was supported by the U.S. DOE, Department of Energy Computa-
tional Science Graduate Fellowship under Award Number DE-
SC0020347. H.-Y.H. is supported by a Google PhD Fellowship. P.J.C.
and A.T.S. acknowledge initial support from the Los Alamos National
Laboratory (LANL) ASC Beyond Moore’s Law project. Research pre-
sented in this paper (A.T.S.) was supported by the Laboratory Directed
Research and Development (LDRD) program of Los Alamos National
Laboratory under project number 20210116DR. L.C. acknowledges
support from LDRD program of LANL under project number
20230049DR. L.C. and P.J.C. were also supported by the U.S. DOE,
Office of Science, Office of Advanced Scientific Computing Research,
under the Accelerated Research in Quantum Computing (ARQC) pro-
gram. Z.H. acknowledges support from the LANL Mark Kac Fellowship
and from the Sandoz Family Foundation-Monique de Meuron program
for Academic Promotion.

Author contributions
The project was conceived byM.C.C., H.-Y.H., A.T.S., L.C., P.J.C., and Z.H.
Theoretical results were proved by M.C.C., H.-Y.H., and Z.H. Numerical
implementations were performed by N.E., J.G., and L.C. The manuscript
was written by M.C.C., H.-Y.H., N.E., J.G., A.T.S., L.C., P.J.C., and Z.H.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Article https://doi.org/10.1038/s41467-023-39381-w

Nature Communications |         (2023) 14:3751 8

https://arxiv.org/abs/quant-ph/0105032
https://arxiv.org/abs/2108.13624
https://doi.org/10.1038/s42254-022-00535-2
https://arxiv.org/abs/2211.05005
https://arxiv.org/abs/2211.05005
https://arxiv.org/abs/2204.13691
https://arxiv.org/abs/2204.13691
https://arxiv.org/abs/2210.14894
https://arxiv.org/abs/2212.04471
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/2103.02667


Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39381-w.

Correspondence and requests for materials should be addressed to
Matthias C. Caro.

Peer review information Nature Communications thanks Hong-Ye Hu,
Dong-Ling Deng, and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39381-w

Nature Communications |         (2023) 14:3751 9

https://doi.org/10.1038/s41467-023-39381-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Out-of-distribution generalization for learning�quantum dynamics
	Results
	Framework
	Analytical results
	Numerical results

	Discussion
	Methods
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




