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Using a physics-informed neural network
and fault zone acoustic monitoring to
predict lab earthquakes

Prabhav Borate1, Jacques Rivière1, Chris Marone2,3, AnkurMali 4, Daniel Kifer5 &
Parisa Shokouhi 1

Predicting failure in solids has broad applications including earthquake pre-
dictionwhich remains an unattainable goal. However, recentmachine learning
work shows that laboratory earthquakes can be predicted using micro-failure
events and temporal evolution of fault zone elastic properties. Remarkably,
these results come frompurely data-drivenmodels trainedwith large datasets.
Such data are equivalent to centuries of fault motion rendering application to
tectonic faulting unclear. In addition, the underlying physics of such predic-
tions is poorly understood. Here, we address scalability using a novel Physics-
InformedNeural Network (PINN). Ourmodel encodes fault physics in the deep
learning loss function using time-lapse ultrasonic data. PINN models outper-
form data-driven models and significantly improve transfer learning for small
training datasets and conditions outside those used in training. Our work
suggests that PINN offers a promising path for machine learning-based failure
prediction and, ultimately for improving our understanding of earthquake
physics and prediction.

Prediction of catastrophic failure remains a critical albeit challenging
endeavor across disciplines, from the nondestructive evaluation and
structural health monitoring of industrial components1,2 and civil
infrastructure3–5 to geophysics. In the latter domain, decades of
research have greatly improved our understanding of earthquake
physics, however, it is not yet possible to make sufficiently accurate
predictions of when/where destructive earthquakes will occur, and
we can currently only rely on seismic hazard maps that tell us about
the likelihood for a magnitude-x earthquake to strike a particular
region in the next y years6,7. In the last decades, anthropogenic
earthquakes near geothermal reservoirs or due to wastewater injec-
tion have also threatened communities in regions of historically low
seismicity8,9, sometimes leading to early termination of innovative,
costly projects10–13. Improving our ability to assess seismic risk—or in
the long-term forecast earthquakes—would have a strong societal

impact, saving lives, reducing economic disaster, as well as
strengthening our ability to produce geothermal energy and non-
conventional oil & gas by mitigating seismic risk near produc-
tion sites.

Numerous laboratory studies have shown that the onset of failure
is associated with bursts of acoustic emission (AE) events taking place
during crack initiation and growth, and the number and amplitude of
AE events generally increase as the sample approaches failure14–24.
Recent friction studies on laboratory faults have shown that machine
learning (ML) algorithms can actually predict the timing and magni-
tude of lab quakes using AE data15,16,25–32. It is remarkable that solely
using acoustic emission data radiating from the faults as an input, the
fault strength can be accurately predicted throughout the laboratory
seismic cycle25,27. Past work33–35 has shown that the vast majority of
events radiate from the fault plane, therefore carrying information
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about the fault state. And as the elastic waves radiate/scatter through
the host granite blocks, they also provide information about the stress
state of the host rock. It is also remarkable that predictions work in the
early stage of the seismic cycle when the acoustic signal often looks
like noise, either because it lacks a clear P-wave, such as expected for
friction/fracture events, or because it represents something like tec-
tonic tremor involving the sum of many small or low frequency events
that overlap in time and cannot be distinguished as separate events36.
These studies show that the variance and kurtosis of AE data are the
most predictive features among the ~100 features considered by ML
models15,27. Other studies using active-sourceultrasonicmeasurements
have shown that laboratory quakes are preceded by reliable pre-
cursory signals, such as systematic changes in elastic wave velocity and
amplitude37–41. Most recent studies have shown that laboratory quakes
can also be predicted from active-source measurements using
machine learning approaches42,43, despite unfavorable conditions such
as the occurrence of irregular seismic cycles. Again, it is remarkable
that for some of the deep learning approaches used (like Long Short-
Term Memory or LSTM), the R2 values reach ~0.94 for shear stress
prediction.

While greatly striking, laboratory quake predictions are enabled
by the large amount of training data available. Scaled up to geological
times, it would be equivalent to decades/centuries of data in nature.
Also, such models might perform well for one particular dataset but
fail to provide accurate predictions for another, slightly different
dataset. This challenge can be overcome using various strategies such
as meta-learning44,45 and continual lifelong learning46. An alternative
promising approach is Physics-Informed Neural Network (PINN)
modeling47 with the goal of improving predictions, model transfer-
ability and generalizability while reducing the amount of required
training data. Physics-informed learning integrates pure data and
physical laws to train the models. The PINN models can be imple-
mented by introducing observational, inductive, or learning bias47. In
case of observational bias, sufficient data covering the input and out-
put domain of a learning model serve as a form of physics-based
constraint that is embedded in the ML model48. The main challenge is
the cost of data acquisition to generate a large volume of data which
may involve complex and large-scale experiments or computational
models. The inductive biases approach focuses on developing spe-
cialized neural network architectures that implicitly incorporate
physics49. The effectiveness of these models is currently limited to
simple physics and their extension to complex laws is still challenging
and difficult to encode in the network architecture. Finally, the PINN
can be implemented using the learning bias approach in which
appropriate physics constraints are added to the cost function to
penalize predictions inconsistent with the underlying physics50,51. This
approach is widely used as the flexibility of adding penalty constraints
allows the inclusion of many domain-specific physical principles into
the model.

Here, we present a learning bias-based PINN framework that is
tasked with predicting shear stress and fault slip rate history given
information on fault zone elastic wave speed and transmitted ampli-
tude. The PINN framework incorporates two physics constraints, one
that relates the elastic coupling of a fault with the surrounding host
rock52, and another that relates fault stiffness to the ultrasonic trans-
mission coefficient53,54. We systematically vary the amount of training
data and find that, as training data becomes scarce, the PINN models
outperform the purely data-driven models by roughly 10–15%. The
PINN models are also more effective than purely data-driven models
when tasked to predict laboratory quakes from a differing dataset
(transfer learning).

Results and discussion
A brief description of the experimental procedure and data is given
below. The performance of data-driven, PINN and transfer learning

models for different training data sizes is then presented and
discussed.

Friction experiment & ultrasonic monitoring
The friction experiments are carried out in a double direct shear (DDS)
loading configuration, where three blocks of Westerly granite are
loaded to create two faults, each of area 5 × 5 cm2 (inset, Fig. 1a). Prior
to loading, the block surfaces are dusted with fine quartz powder
(< ≈200μm layer thickness). The vertical and horizontal pistons are
used to apply shear (τ) andnormal (σ) stresses, respectively. Twodirect
current differential transformers (DCDT) are used to measure shear
and normal displacements of the hydraulic pistons, while two strain-
gauge load cells measure shear and normal stresses. An additional on-
board DCDT attached to the central granite block and referenced to
the base of the sample assembly is used to measure slip rate (V). To
commence the experiment, normal stress σ = 10MPa is applied to the
sample and held constant via servo-control. Next, the central block is
pushed downward at a constant rate of Vl = 8.9μm/s. As the block is
pushed down, the shear stress increases until the fault becomes
unstable, the shearing block rapidly displaces (slips) and a sharp drop
in the shear stress is recorded (lab earthquake). After the drop, a new
stick-slip cycle begins; the fault gets locked again (sticks) and shear
stress continues to increase. In order to develop robust machine
learning models using these data, it is desired to create a frictional
regime that produces irregular stick-slips. To that end, an acrylic
spring is placed in series between the vertical piston and the central
block to reduce the overall stiffness of the loading apparatus (K), and
experiments are conducted close to the stability boundary producing
both regular and irregular stick-slip cycles55. In this study, we use data
collected in two separate experiments41 namely, p5270 and p5271. The
only difference between the two is the size of the acrylic spring used:
25 cm2 for experiment p5270 and 20.25 cm2 for p5271 resulting in dif-
ferent recurrence intervals andmagnitudes of the lab quakes as shown
in Supplementary Figs. S1 and S2. In p5270, the cycles become larger
much earlier in the experiment. On the contrary, in p5271 they become
larger later in the experiment. Throughout the experiment, all the
stresses and displacements (including shear stress and slip rate) are
recorded at a rate of 10 kHz. Additional details about these experi-
ments can be found in refs. 40,41.

The friction experiment is coupled with active source ultrasonic
monitoring. A pair of p-wave ultrasonic transducers are used to reg-
ularly probe the faults throughout the experiment. The two identical
piezoelectric disks, used as transmitter and receiver, are 12.7mm in
diameter, 4mm thick (corresponding to a center frequency of
500 kHz) made of material 850 from American Piezo Ceramics (APC
International). The piezoelectric transducers are epoxy-glued at the
bottom of blind holes inside steel platens that hold the DDS assembly.
The transmitter T imparts a series of half-sine pulses at 500 kHz every
1ms throughout the experiment (Fig. 1b). The response is recorded by
the receiving transducer R at a sampling rate of 25MHz (Fig. 1c). For
experiments p5270 and p5271, the recorded ultrasonic data consist of
132,399 and 75,999 signals recorded during 387 and 237 stick-slip
cycles, respectively.

Ultrasonic feature extraction
Physics-based features, namely wave speed (vi) and spectral amplitude
(Ai) at time ti, are extracted from each ultrasonic signal (waveform)42.
Figure 2 illustrates the feature extraction process. To calculate the
evolution of wave speed during frictional sliding, we first extract the
time delay Δt by cross-correlating each waveform Si with a reference
waveform S0. The reference waveform is chosen past the peak friction
just before the fault starts its transition from stable sliding to unstable
seismic cycles (thin vertical dashed line at time = 2065 s in Fig. 1a). The
shape of the recorded waveforms Si changes little throughout the
experiment such that the cross-correlation coefficient remains always
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greater than 0.97. The cross-correlation is calculated within a finite
windowof sizeT extending from ti +w1 to ti +w2 as shown in Fig. 2a. The
peak of the cross-correlation between the two waveforms is refined by
fitting a parabola passing through the peak and two adjacent points. For
each signal Si, the total travel time or time-of-flight TOFi is obtained by
adding the hand-picked arrival time of the reference waveform (TOF0)
to the estimated time delay (TOFi =TOF0 +Δti). Finally, the wave speed
is calculated by dividing the sample thickness by the travel time (vi= hi/
TOFi), where hi =h0 + δh and h0 is the thickness measured at the
beginningof the experiment just after applying thenormal stress and δh
is the thickness change measured continuously during the experiment.

The second feature, spectral amplitudeAi, is calculated as the amplitude
of the Fourier transformof each signal Siwithin a finite windowof size T
extending from ti+w1 to ti +w2 at a frequency of 400 kHz close to the
center frequency of transmitted waves as shown in Fig. 2b. To reduce
noise, both feature histories are low-pass filtered using a 10-point
backward-looking moving average.

Performance of data-driven, PINN and transfer learning models
We compare the performance of PINN vs data-driven models
as well as transfer-learned vs stand-alone models for different
training-validation-test splits. The data-driven models are developed

T

Acrylic 
Spring

R

Faults

(a)

(b)

(c)

Fig. 1 | Friction experiment coupled with ultrasonic monitoring: schematic
setup and typical data. a Temporal evolution of shear stress and slip rate in
experiment p5270. The inset shows a schematic of the DDS setup with two ultra-
sonic transducers (transmitter T and receiver R) probing the fault. The thin vertical
dashed line corresponds to the time at which the reference ultrasonic waveform is
chosen (see text for more details). b Schematic representation of active-source

ultrasonic monitoring during the experiment. The ultrasonic waveforms are
recorded every millisecond throughout the stick-slip cycles. Only a small subset of
the waveforms is shown for readability. c An example of a recorded ultrasonic
signal. Input features to themachine learning models are extracted from the initial
portion of the ultrasonic signals (highlighted in brown).
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using the Multilayer perceptron (MLP) neural network with a back-
propagation algorithm56 and Adam optimizer57 to perform the
regression task. The PINN models are built upon the data-driven
models with the loss function modified to include the physics-based
constraints as shown schematically in Fig. 3. Two different PINN
models (PINN #1 and PINN #2) are considered. The PINN #1 model is
constrained by the elastic coupling relation of a fault with the sur-
rounding host rock (see Eq. (1)). The PINN #2 model is constrained
also by the coupling (Eq. (1)) of fault stiffness to the ultrasonic
transmission coefficient relations (Eqs. (2) and (3)). The data-driven,
PINN#1, and PINN#2models share the sameMLP framework (hidden
layers, units, batch size, optimizer, and learning rate) across different
data splits to allow one on one comparison. Transfer learning
(TL) models for p5271 experiment initialize with the pre-trained

p5270 model weights as schematically illustrated in Fig. 4. The per-
formance of the TL models is compared with the standalone data-
driven models for p5271 experiment. A detailed description of the
data-driven models as well as the PINN and transfer learning frame-
works including data selection and normalization is provided in
“Methods”.

All the reported models are developed with Google Colab using
GPU acceleration with 16GB memory. Each model is re-run entirely
with three random seed instances to obtain an estimate of the model
variance. The average R2 score with standard error as well as the
average root mean square error (RMSE) values and training times are
reported for all the models.

Data-driven multi-output MLP models developed using the p5270
experimental dataset serve as a reference for later comparisons with

MLP Model Physics Constraints
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Fig. 3 | Schematic representation of the PINN framework andMultilayer Perceptron (MLP) structure used for shear stress (τi) and slip rate (Vi) prediction. The loss
function includes both data-driven (MSEData−Driven) and physics (MSEPhysics) losses. We explore two PINN models: PINN #1 and PINN #2.
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Fig. 2 | Details of the feature extraction procedure. a Shows the reference
waveform (S0) and a typical waveform during shearing (Si). The inset emphasizes
the time delay between the two signals Δti calculated by cross-correlating the two
signals. The box marks the extent of the cross-correlation window from ti +w1 to
ti +w2withw1 = 20.76μs andw2 = 25.16μs. Thebottomplot shows a sample ofwave
speed and time shift evolution for several lab seismic cycles over a period of 30 s.

b Illustrates the spectral amplitude calculation from the Fourier spectrum of the
windowed signal. The plot at the bottom shows an exemplary evolution of spectral
amplitude. Note that wave speed and amplitude vary systematically with shear
stress, but have a complex nonlinear relationship with shear stress as given
in ref. 42.
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PINN models. The reference model is developed with the training set
size varying from70%down to 5%. The R2 scores of the referencemodel
for predicting the shear stress and slip rate using training, validation,
and testing sets as a function of varying training set sizes are plotted in
Fig. 5 (grey bars). We observe that models trained with more than 20%
of training data result in test R2 scores greater than 0.9 for shear stress
prediction. For slip rate prediction, R2 scores are between 0.75 to 0.87.
In all the cases considered, shear stress is predicted more accurately
than the slip rate. Further reduction in the amount of training data (10%
and less) results in a considerably lower test R2 score, although the
training R2 scores remain reasonably high, a possible indication of
overfitting. In other words, although the models with reduced data fit
the training datawell, they poorlyfit the nonlinear relationship between
the ultrasonic features (input) and shear failure variables (target) in
validation and test sets. These results serve as a baselineperformance to
evaluate the performance of PINN models.

Comparisons of PINN #1 and PINN #2 models with the reference
data-driven model for varying training set sizes are shown in Fig. 5
(brownand yellowbars, respectively). Similar to referencemodels, both
PINNmodels show testR2 scores greater than0.9when trainingdata are
20%ormore. Importantly, for all the considered splits, the PINNmodels
perform equally well or better than their data-driven counterparts.
Furthermore, the performance improvement is most evident when the

training data are scarce (20% and less), especially in slip rate prediction.
The PINN models trained on small sets (20% and less) also show less R2

score variance, which suggests that themodels are stable and result in a
small variation in the prediction of the target data with changes in the
model initialization set by random seeds. Table 1 compares the RMSE
values for the Reference data-driven, PINN #1, and PINN #2 models.
Note that the RMSE values (calculated using normalized data) are
consistently larger for the reference across all training data sizes.
Finally, the training time for all the models is compared in Supple-
mentary Table S1 showing that the PINN models converge faster than
their corresponding data-drivenmodels. Figure 6 visually compares the
predictions by reference data-driven, PINN #1, and PINN #2 models
developedwith 70% and 5% training data shown for one complete shear
stress and slip rate cycles. The superior performance of the PINN
models for prediction of shear rate is visible in both panels and more
pronounced for the smaller training set. In sum, our findings suggest
that adding the physics constraints enhances the model performance
and results in models with reasonable performance even when the
training set is very small. Comparing PINN #1 and PINN #2 model per-
formances for shear stress prediction, both PINN models show similar
test scores except for the 50%and5%caseswhere PINN#2outperforms
PINN #1. The performance difference becomes more significant in the
case of slip rate prediction with PINN #2 providing better predictions
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Fig. 4 | Proposed transfer learning approach. Best performing data-driven & PINNmodel’s weights developed using the p5270 dataset are transferred and fine-tuned to
build TL data-driven & TL PINN models for predicting shear stress and slip rate in the p5271 dataset.
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when ≤ 50% of the data are used for training. This highlights the
importance of the constraint relating fault stiffness and ultrasonic wave
transmission for improving prediction accuracy.

Finally, we examine how well the two PINN models have learned
the experimental parameters and material properties in physics con-
straints (Eqs. (1)–(3)), which we treat as learnable constants. These
weights are extracted from the learning layers of the fully trained
models (early stopping enabled) and converted back to the original
scale using the scaling used during data normalization. The learned
values by PINN #1 & PINN #2 are then compared against the known
values (when applicable) in Table 2. The PINN #1 model provides
estimated normal stress (σ), system stiffness (k), and shear loading
velocity (vl) values with the percentage errors ranging from 2 to 14%
compared to the true experimental values across all the varying
training dataset sizes. Similarly, the PINN #2 model estimates the
normal stress (σ), shear loading velocity (vl), loading stiffness (K), and
density (ρ) constants with smaller errors that range from 1 to 8%. In
both cases, the error generally increases as the training set size
decreases. The percent error for AIntact is not reported because its true

value is not available. As expected from the performance comparison
analysis above, constants estimated by PINN #2 models are more
accurate than those estimated by PINN #1 models.

Transfer learningmodels are developed by fine-tuning data-driven
and PINN models pre-trained on the p5270 dataset (70%–10%–20%
split) to make predictions for the p5271 experiment. In addition, stan-
dalone data-driven models for p5271 experiment are trained, validated,
and tested to serve as baseline. The training set size for the standalone
and TL p5271 models is varied from 70% of the total data down to 10%
while maintaining the same validation and testing sets of size 10% and
20%, respectively. Figure 7 compares the performance of the standa-
lone and different TL models for all the considered data splits. Like for
p5270, we see a generally decreasing R2 score trend for standalone
p5271 models when training data are reduced from 70% to 10%. We
observe that all the TL models outperform standalone data-driven
models. Inmost cases, the TL Data-driven and TL PINN #2models show
similar performances except for the 10% case, where the TL PINN #2
significantly outperforms the TL Data-driven. On the contrary, the TL
PINN #1 models consistently outperform all the other models irre-
spective of data split. Further model tuning with cosine decay schedule
and fine-tuning (freezing one or more layers) show that the TL PINN #1
models consistently outperform the TL PINN #2 models in predicting
shear stress and slip rate in all scenarios. One possible reason behind
this observation could be that the PINN #1models are constrained only
by the simplified elastic coupling relation (Eq. (1)) unlike PINN #2 which
also incorporates the ultrasonic transmission involving ultrasonic
attributes (Eqs. (1)–(3)) that vary from experiment to experiment. This
couldbewhyPINN#1modelmay generalize better thanPINN#2.Unlike
p5270, we do not observe any consistent trends in themodel variances.
In general, all the TL and standalonemodels show a high variance in slip
rate prediction compared to the shear stress prediction. In addition to
R2 score, the RMSEs for the standalone and TLmodels are compared in
Supplementary Table S2. These corroborate the previous observations;
all the TL models show smaller RMSE values compared to the standa-
lone models with PINN #1 models having the smallest errors for each

Table 1 | RMSE comparison between the reference, PINN #1,
and PINN #2 models for experiment p5270

Model Train-val-test RMSE

# (%) Reference PINN #1 PINN #2

1 70-10-20 0.0923 0.0920 0.0900

2 60-10-20 0.0964 0.0943 0.0863

3 50-10-20 0.0986 0.0967 0.0880

4 40-10-20 0.0948 0.0938 0.0909

5 30-10-20 0.1080 0.1031 0.1030

6 20-10-20 0.1450 0.1269 0.1220

7 10-10-20 0.1480 0.1336 0.1227

8 5-10-20 0.1835 0.1654 0.1487
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Fig. 5 | Performance of the Reference data-driven, PINN#1, and PINN#2models
for experiment p5270. a–c Shear stress (τ) prediction R2 scores in training, vali-
dation, and testing as a function of varying training set sizes. d–f Slip rate (V)
prediction R2 scores in training, validation, and testing datasets as a function of

varying training set sizes are plotted. For both shear stress and slip rate, the PINN
models outperform the reference data-driven models in testing and the improve-
ment increases inverselywith training data size. Theminimumandmaximumof the
error bar represent the one standard error from the mean.
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split. Comparing the time required for training in Supplementary
Table S3, the TL models are shown to converge faster, indicating that
the initial weights from the p5270 model provide a good starting point
for training p5271 models. Finally, the experimental constants learned
by TL PINN #1 and TL PINN #2 frameworks are compared against their
known values in Supplementary Table S4. In sum, TL improves model
prediction.Moreover,when the trainingdata are scarce (representedby
10%of trainingdata) theTLPINNmodels outperformstandalone andTL
data-driven models by a large margin.

Relevance to field studies
This study demonstrates that adding physics-based constraints to ML
models is greatly beneficial for failure prediction, especially when
datasets are scarce. On the other hand, we recognize that the model

developed here cannot be directly applied to field data, because shear
stress and slip rate data at depth are not accessible in the field.
Moreover, very few active seismic surveys performed continuously
over extended periods of time are available58. Nonetheless, we believe
this work represents a step toward failure prediction in the field for the
following reasons. First, an approach similar to the one presented here
still using lab data might be followed to better constrain the rate and
state frictional models and associated parameters that are used in
geodetic studies to infer fault slip distribution at depth59–67. Second,
stress and slip rate data might be inferred in the field with ML models
using earthquake recurrence as input data, and possibly pre-training
on lab data.

We build a PINN framework to predict laboratory earthquakes
from active-source ultrasonic monitoring data and demonstrate that
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Fig. 6 | A comparison of one shear stress (τ) & slip rate (V) cycle predicted by
Reference (data-driven), PINN #1, and PINN #2 models. a, b 70% of the data are
used for training. c, d 5% of the data are used for training. The insets show that the

PINNmodels performbetter in predicting the slip rate compared to the data-driven
models. The performance improvement is noticeable especially when the training
data is scarce (5%).

Table 2 | Experimental constants andmaterial properties pertaining to p5270 experiment learned by: PINN #1 models & PINN
#2 models

Train PINN #1 PINN #2

(%) σ k vl σ K vl ρ AIntact

70 10.82 (+8%) 0.0108 (−11%) 8.50 (−5%) 10.48 (+5%) 0.0463 (−7%) 8.7 (−3%) 2619 (+1%) 19893

60 10.93 (+9%) 0.0107 (−13%) 8.18 (−8%) 10.63 (+6%) 0.0463 (−7%) 8.8 (−1%) 2629 (+1%) 19893

50 10.78 (+8%) 0.0105 (−14%) 8.60 (−3%) 9.65 (−4%) 0.0463 (−7%) 8.8 (−1%) 2625 (+1%) 19893

40 10.44 (+4%) 0.0110 (−10%) 9.01 (+2%) 9.89 (−1%) 0.0463 (−7%) 9.3 (+4%) 2637 (+1%) 19893

30 10.42 (+4%) 0.0111 (−9%) 9.17 (+3%) 9.74 (−3%) 0.0461 (−8%) 8.7 (−3%) 2639 (+2%) 19893

20 10.46 (+5%) 0.0110 (−10%) 8.13 (−9%) 9.85 (−2%) 0.0461 (−8%) 8.5 (−4%) 2637 (+1%) 19893

10 10.30 (+3%) 0.0110 (−10%) 8.19 (−8%) 9.86 (−1%) 0.0465 (−7%) 8.8 (−1%) 2683 (+3%) 19893

5 10.36 (+4%) 0.0110 (−10%) 7.89 (−11%) 9.94 (−1%) 0.0461 (−8%) 8.7 (−2%) 2643 (+2%) 19893

Actual value 10 ±0.01 0.0122 8.9 10 ±0.01 0.050 8.9 2600 N/A

The numbers in parentheses show the percentage deviation of the learned constants from the known corresponding values. In allmodels, the validation and testing dataset is set to 10% and 20% of
the entire dataset. Parameters and their units: σ (MPa), k (MPa/μm), vl (μm/s), K (MPa/μm), ρ(kg/m3) & AIntact (arb. units).
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it outperforms models based only on data-driven loss especially
when training data are limited. This framework incorporates two
physical constraints that describe the elastic coupling of faults with
their surroundings as well as ultrasonic transmission across the
frictional interface. We compare the PINN predictions of laboratory
earthquakes (shear stress history) and slip rate evolution to those
from the purely data-driven models for varying amounts of training
data. A key result is that incorporating the physics constraints
improves the model performance; the improvement is most sig-
nificant when training data are scarce. The modeling results for one
dataset (p5270) suggest that the PINN #2 framework (constrained by
both elastic coupling and ultrasonic transmission relations) outper-
forms the PINN #1 framework (incorporating only elastic coupling of
faults with their surroundings). Furthermore, a TL study carried out
using a distinct second dataset (p5271) shows that TL models out-
perform standalone models and that with transfer-learned PINN, it is
possible to develop reasonably well-performing prediction models
using a small amount of training dataset (using 10% in this study). In
sum, our findings suggest that incorporating simplified laws of phy-
sics results in accurate and transferable predictions even when the
training data size is small. This finding has important implications for
seismicity monitoring and prediction in CO2 storage sites, geother-
mal and unconventional reservoirs using the time-lapsed active
source monitoring with limited available field data.

Methods
Our objective is to predict shear stress (τi) history (model output)
given the time evolution of the extracted ultrasonic features, vi and Ai

(input features). In addition to (τi), we also predict slip rate (Vi) to
formulate one of the physics constraints. Dual-output data-driven DL
and PINNmodels are developed to simultaneously predict shear stress
τi and slip rate Vi histories, using the time-evolution of wave speed vi
and amplitude Ai features as input. For both sets of models, we
implement MLP which is a deep fully connected neural network
structure to perform the regression task. Note that time to failure
(TTF) is not directly predicted here as it is not independent of shear
stress (τi). If desired, the TTF for each stick-slip cycle can be readily
estimated from the predicted τi history.

Training-validation-testing splits
To build the models, the dataset from each experiment is divided
into distinct training, validation, and testing sets. The models are
trained on the training dataset; hyperparameter tuning is carried
out on the validation dataset while the unseen testing dataset is
used to evaluate the reported performance of the models. Because
we use time series of continuous data, the data are not randomly
sampled or shuffled during training, validation, or testing preser-
ving the sequence of stick-slip cycles. To investigate the prediction
performance of the models with limited training data, the amount
of training data used is varied from 70% (equivalent to about
273 seismic cycles) down to 5% (equivalent to about 15 seismic
cycles) of the entire dataset, whereas the same validation and
testing datasets are used across the models. The validation and
testing sets constitute the final portion of the data and amount to
10% and 20% of the dataset, respectively. Note that we choose the
training, validation, and testing sets in a sequence i.e., the training
dataset immediately precedes the validation set, which is followed
by the testing set as shown in Fig. 8.

Normalization
Prior to building the models, all the data are scaled using min-max
normalization. This is achieved by first normalizing the training data
followed by normalizing the validation and test datasets using the
same training data min-max values.

Data-driven models
Data-drivenMLPmodels are developed as referencemodels for all the
training-validation-test splits. AnMLPmodel consists of an input layer,
one or more hidden layers, and an output layer. The data are propa-
gated forward from the input layer to the output layer and the neurons
are trained with the backpropagation learning algorithm56. Through
grid search, we explored a series of MLP models with a different
number of layers, nodes, batch sizes, and learning rates to find the best
hyperparameters based on the performance on the validation dataset.
Our best-performing data-driven MLP model has five hidden layers
with 128, 64, 32, 16, and 8 nodes, respectively. A batch size of 32 and a
learning rate of 0.001 is used following hyperparameter tuning.
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Fig. 7 | Performance of the Standalone, TL: data-driven, TL PINN #1 and TL:
PINN#2models for experiment #p5271.TLmodels are initialized using the p5270
dataset. a–c Shear stress (τ) prediction R2 scores in training, validation, and testing
datasets as a function of varying training set sizes are plotted. d–f Slip rate (V)
prediction R2 scores in training, validation, and testing datasets as a function of

varying training set sizes are plotted. TL improves model prediction and the TL
PINN models significantly outperform standalone and TL data-driven models for
small size training sets. Theminimum andmaximum of the error bar represent the
one standard error from the mean.
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Following ref. 42, the input features are provided with 3 s of data his-
tory before the current time to predict shear stress and slip rate at the
current time. The 3 s correspond roughly to the average duration of a
seismic cycle in our datasets. We use mean squared error (MSE) loss,
rectifier linear unit (ReLU) activation for each hidden layer, and linear
activation for the output layer. The number of epochs is set to 100with
early stopping (patience = 20) enabled to prevent overtraining. Finally,
we use the Adamoptimizer57 and theR2 scoremetric to evaluatemodel
performance.

PINN modeling framework
The proposed PINN framework builds upon the data-driven MLP
model discussed above. We modify the loss function to include
physics-based constraints as illustrated schematically in Fig. 3. We
consider two constraints. The first describes elastic coupling between
a fault and its surroundings.Wemodel the lab setup as a single-degree-
of-freedom spring slider system neglecting inertia52:

dμ
dt

=
d τi

σ

� �

dt
= k V l � Vi

� � ð1Þ

where μ( = τi/σ) is the coefficient of friction and k is the overall system
stiffness. Shear stress τi and slip rate Vi are themodel outputs while the
applied normal stress σ and shearing rate Vl are known experimental
constants. The system stiffness k combines the fault stiffness kf and the
stiffness K of the rest of the deformation machine and host rock
loading the fault (a measurable experimental parameter), which act in
parallel:

1
k
=

1
K

+
1
kf

: ð2Þ

The fault stiffnesskf is related to theultrasonic transmission coefficient
T across the fault interface through the displacement discontinuity
model54:

T =
Ai

AIntact
=

2kfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πf0ρvi
� �2 + 4k2

f

q ð3Þ

where Ai is the transmitted wave amplitude history, Aintact is the
transmitted wave amplitude through the intact granite blocks i.e., in
the absence of the faults, f0 is the center frequency of the received
wave (400 kHz), ρ is the mass density of the material surrounding the
fault (granite), and vi is the wave speed history. Among these, Ai and vi
are the input features of themodel while Aintact and ρ are experimental
constants. The center frequency history f0 could have been extracted
from the ultrasonic signals and used as an input, but here, we opt to
treat it as a given constant f0. Note that Eq. (2) couples Eqs. (1) and (3)
through kf.

In this study, we consider two different PINNmodels: PINN #1 and
PINN #2. The first one (PINN #1) is only constrained by the elastic
coupling relation (Eq. (1)) that includes a relation between the two
output variables τi and Vi (but no input features) rewritten as:

f1 :
d τi

σ

� �

dt
� k V l � Vi

� �
=0 ð4Þ

The second PINNmodel (PINN #2) is constrained by Eqs. (1) to (3) and
therefore, also includes the constraint involving input features wave
speed vi and wave amplitude Ai. To build the PINN #2 model, all three
equations are combined to produce the following constraint added to
the loss function:

f2 :
d τi

σ

� �

dt
� πf0ρviTK

πf0ρviT +K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

p Vl � Vi

� �
=0 ð5Þ

Given that shear stress τi and slip rate Vi are themodel outputs, we
denote that the predicted shear stress and slip rate as τ̂i and V̂ i,
respectively. We can view these predictions as functions of a time-
dependent input feature vector (ui =Ai, vi) and θ, which are a collection
of weightmatrices and bias vectors used by themodel. By substituting
the neural network approximations into the governing equations
(Eq. (4)) and (Eq. (5)), we obtain the constraint functions f̂1 (Eq. (6)) and
f̂2 (Eq. (7)) below:

f̂1 =
d τ̂iðui ;θÞ

σ

� �

dt
� k V l � V̂ iðui;θÞ

� � ð6Þ
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Fig. 8 | Data from experiment p5270 showing shear stress history and two
different training-validation-test splits. a 70% of the data (equivalent to
273 seismic cycles) are used for training. b 5% of the data (equivalent to 15 seismic
cycles) are used for training. Note that in both cases, the validation and test sets do

not vary and consist of 10% and 20% of the data equivalent to 36 and 78 cycles,
respectively. Therefore, the total amount of data used for developing the model is
varied from 100% (= 70 + 10 + 20) down to 35% (= 5 + 10 + 20) corresponding to the
respective splits shown in (a, b).
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f̂2 =
d τ̂iðui ;θÞ

σ

� �

dt
� πf0ρviTK

πf0ρviT +K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

p Vl � V̂ iðui; θÞ
� �

ð7Þ

Finally, the composite cost functions for PINN #1 and PINN #2
framework are written in Eqs. (8) and (9), respectively.

L1ðθÞ=
1
N

XN

i= 1

τiðuiÞ � τ̂iðui; θÞ
� �2 + 1

N

XN

i= 1

ViðuiÞ � V̂ iðui; θÞ
� �2

+
1
N

XN

i = 1

f̂1ðui;θÞ
� �2

ð8Þ

L2ðθÞ=
1
N

XN

i= 1

τiðuiÞ � τ̂iðui;θÞ
� �2 + 1

N

XN

i = 1

ViðuiÞ � V̂ iðui;θÞ
� �2

+
1
N

XN

i= 1

f̂2ðui; θÞ
� �2

ð9Þ

The cost function combines the data-driven and physics costs
using a regularizer value of 1. For both models, the first two terms
represent the MSE in predicting the shear stress (τi) and slip rate (Vi)
histories. The f̂ terms represent the penalty added to the cost function
for violating the physics constraint defined using Eqs. (1)–(3). The
other experimental parameters in the physics equations (i.e., σ, K, Vl, ρ,
AIntact) are neithermodel inputs nor the target outputs. Although these
parameters are either known (σ, Vl, ρ, k) ormeasurable (AIntact could be
measured by testing an intact granite block of the same thickness as
the cumulative thickness of the blocks used in the friction experi-
ment), we treat them as trainable neural network weights in the PINN
framework. This approach is used to avoid errors due to unitmismatch
between features, outputs, and these constants in the constraints.
Theseweights are extracted from the layers of the fully trainedmodels
and converted back to the original scale to undo the effect of data
normalization (see implementation details in https://github.com/
prabhavborate92/PINN Paper.git ). A comparison of the scaled
learned weights with the known parameter values gives us the
opportunity to examine the PINN model by determining how well the
models are able to learn the values of parameters measured
experimentally.

Transfer learning
As a way to assess the models’ generalizability, we use a transfer
learning approach i.e., apply each of the three models (purely data-
driven, PINN 31, and PINN 62) trained on the p5270 (reference model)
to a new experiment: p5271. Figure 4 illustrates the proposed transfer
learning approach. Transfer learning is carried out by using the same
neural network architecture but fine-tuning (further training) of all the
pre-trained reference model weights (trained and validated on the
p5270 dataset) as well as the learning rate and batch size using only a
small training set from experiment p5271. In other words, instead of
random initialization, the weights of the new model are initialized
using what has been learnedwhen training the referencemodel. These
initial weights and hyperparameters provide a good starting point for
building a model on the new dataset and lead to faster convergence
and smaller training set sizes. For all the transfer-learned (TL) models,
hyperparameter tuning resulted in a learning rate of 1e-3 andbatch size
of 32. Similar to the data-drivenmodels the TLmodels are trained with
the number of epochs set to 100 and using Adam as an optimization
algorithm.

We compare the performance of the models after transfer learn-
ing with that of the standalone data-drivenmodel trained solely on the
p5271 dataset with the training dataset size varied between 70 and 10%
of the entire dataset (similar to that explained for standalone models
trained on p5270 experimental dataset). Finally, the performance of

the standalone and transfer-learned (data-driven, PINN 91, and PINN
32) models are compared in terms of R2 scores (as the performance
metric), RMSE and required training time for each model.

Data availability
The experiment p5270 and p5271 data used for training, validation,
and testing can be found at: https://github.com/prabhavborate92/
PINN Paper.git .

Code availability
The source codes andmodels developed in this paper can be accessed
at https://github.com/prabhavborate92/PINN_Paper.git. When using
the codes and models available in the GitHub repository, please cite
Borate et al.68.
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