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All-ferroelectric implementation of reservoir
computing

ZhiweiChen1,Wenjie Li1, ZhenFan 1 , ShuaiDong1, YihongChen1,MinghuiQin1,
Min Zeng1, Xubing Lu 1, Guofu Zhou2, Xingsen Gao 1 & Jun-Ming Liu 1,3

Reservoir computing (RC) offers efficient temporal information processing
with low training cost. All-ferroelectric implementation of RC is appealing
because it can fully exploit the merits of ferroelectric memristors (e.g., good
controllability); however, this has been undemonstrated due to the challenge
of developing ferroelectric memristors with distinctly different switching
characteristics specific to the reservoir and readout network. Here, we
experimentally demonstrate an all-ferroelectric RC system whose reservoir
and readout network are implemented with volatile and nonvolatile ferro-
electric diodes (FDs), respectively. The volatile and nonvolatile FDs are derived
from the same Pt/BiFeO3/SrRuO3 structure via the manipulation of an imprint
field (Eimp). It is shown that the volatile FD with Eimp exhibits short-term
memory and nonlinearity while the nonvolatile FDwith negligible Eimp displays
long-term potentiation/depression, fulfilling the functional requirements of
the reservoir and readout network, respectively. Hence, the all-ferroelectric RC
system is competent for handling various temporal tasks. In particular, it
achieves an ultralow normalized rootmean square error of 0.017 in the Hénon
map time-series prediction. Besides, both the volatile and nonvolatile FDs
demonstrate long-term stability in ambient air, high endurance, and lowpower
consumption, promising the all-ferroelectric RC system as a reliable and low-
power neuromorphic hardware for temporal information processing.

Deep learning is progressing rapidly and plays an increasing role in
industry and daily life. It mainly relies on two types of neural network
algorithms: feedforward neural network (FNN) and recurrent neural
network (RNN), which are adept at handling static spatial and dynamic
temporal tasks, respectively. Reservoir computing (RC) is a simple yet
efficient type of RNN well suited for processing temporal
information1–3. An RC system typically consists of a reservoir that
nonlinearly maps the time-varying inputs into a high-dimensional
feature space, and a readout network that performs further processing
through a linearly weighted summation of the reservoir outputs
(see Fig. 1a)3. During training, only the readout network needs to be

trained while the reservoir does not. The training cost can thus be
significantly reduced, which represents the most outstanding advan-
tage of RC over other RNNs.

Recently, emerging hardware-based RC systems have attracted
great attention, not only because they have achieved prediction per-
formance comparable to that of the software-based counterparts in
many tasks (e.g., patternclassification4,5, speech recognition6–8, chaotic
system forecasting6,7,9, and others10–12), but also because of their
boosted energy efficiency6,13. For the hardware implementation of an
RC system, the constituent reservoir and readout network need to be
implemented on memory devices with distinctly different switching
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characteristics, i.e., volatile and nonvolatile switching characteristics,
respectively. Most previous studies have focused on the hardware
implementation of the reservoir by using (volatile) diffusive
memristors6,7,10,14–22, nanomagnetic systems23 (including spintronic
oscillators24, magnetic nanorings25, spin ices26, and magnonic
systems27), self-organized nano-networks9,28, electrochemical
transistors8,12,29, and so on. Among these devices, the diffusive mem-
ristors stand out because they possess intrinsic nonlinearity and short-
term memory which are the two essential properties required by the
reservoir3, as well as high speed and excellent scalability. On the other
hand, despite being less studied, the hardware implementation of the
readout network has been demonstrated with (nonvolatile) drift
memristors9,13,21,30, whose nonvolatile conductances are utilized tomap
the weights in the readout network.

Notably, both the diffusive and drift memristors were mainly
based on a filamentary mechanism, which can, however, lead to rela-
tively large variations and low endurance due to the stochasticity of
filament formation/rupture processes. This limits the prediction
accuracy and reliability of the filamentarymemristor-based RC system.
Compared with filamentary switching, ferroelectric polarization
switching is amore deterministic switchingmechanism31. Ferroelectric
memristors, which use polarization switching to tune the
resistance31,32, can thus exhibit highly reproducible memristive
responses and potentially unlimited endurance33–37. Besides, they also
show high switching speed and low-power consumption38–40. Using
ferroelectricmemristors as building blocksmay therefore facilitate the
development of highly reliable, accurate, fast, and energy-efficient
ferroelectric-based RC systems.

However, the use of ferroelectric memristors in RC systems is
currently scarce and mainly restricted to the reservoir11,30,41–45, as
summarized in Supplementary Table S1. All-ferroelectric imple-
mentation of a whole RC system still remains undemonstrated. The
reason for this is probably because the ferroelectric memristors used

hitherto in RC systems—ferroelectric tunnel junction (FTJ)30 and fer-
roelectric field-effect transistor (FeFET)11,43,45—possess inherently large
depolarization fields (Edps) arising from ultra-small ferroelectric film
thickness46,47 and poor screening at ferroelectric/semiconductor
interface48, respectively. This makes them voluntary to exhibit volatile
characteristics while difficult to be engineered into nonvolatile mem-
ristors to implement the readout network.

To construct an all-ferroelectric RC system, alternative ferro-
electricmemristors capable of being engineered into both volatile and
nonvolatile memristors (for the reservoir and readout network,
respectively) are demanded. A promising candidate is a ferroelectric
diode (FD) which operates by using polarization to modulate the
interfacial Schottky barrier49–51. FD is inherently subjected to a much
smaller Edp compared with FTJ and FeFET, because it comprises a
relatively thick ferroelectric film (several tens to hundreds of nan-
ometers) sandwiched between two metal electrodes with good
screening ability. Consequently, FD can readily function as a non-
volatile memristor32,50,51. In addition, FD can also be engineered to be
volatileby judiciously introducing certainmechanisms for polarization
back-switching52–54. Therefore, it is quite promising to use appro-
priately engineered FDs to implement both the reservoir and readout
network, thus realizing an all-ferroelectric RC system in hardware
(Fig. 1b–d).

In this work, we experimentally demonstrate an all-ferroelectric
RC system consisting of a volatile FD-based reservoir and a nonvolatile
FD-based readout network. The FDs with distinctly different volatile
and nonvolatile switching characteristics are derived from the same
capacitor-like structure of Pt/BiFeO3 (BFO)/SrRuO3 (SRO), which has
not been realized yet for other types of ferroelectric memristors. The
key to realizing this is purposely introducing an imprintfield (Eimp) into
the volatile FD while avoiding it in the nonvolatile FD. Owing to the
Eimp, the volatile FD exhibits spontaneous polarization back-switching
and consequent conductance decay, based on which short-term
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Fig. 1 | Concept of all-ferroelectric RC system. a Schematic of an RC system
consisting of a reservoir with internal dynamics and a readout network. The inputs
are projected into a high-dimensional feature space through the reservoir and then
analyzed by the readout network. Only the weights in the readout network, i.e.,
Wout, need to be trained. b Schematic of an all-ferroelectric RC system, where the

inputs are encoded as pulse trains while the reservoir and readout network are
implemented with the volatile and nonvolatile FDs, respectively. Schematics of
c volatile FD with Eimp and d nonvolatile FD without Eimp. The Eimp can cause
polarization back-switching and consequent conductance decay. “TE”, “FE” and
“BE” denote the top electrode, ferroelectric, and bottom electrode, respectively.
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memory and nonlinearity are further demonstrated. On the other
hand, the nonvolatile FD with negligible Eimp exhibits good polariza-
tion stability and consequent nonvolatilememristive switching, aswell
as long-term potentiation/depression (LTP/LTD). With these distinctly
different device characteristics, the volatile and nonvolatile FDs are
thus suitable building blocks of the reservoir and readout network,
respectively. We then experimentally integrate them to build an all-
ferroelectric RC system. Various tasks including curvature dis-
crimination, digit recognition, waveform classification, and Hénon
mapprediction, are successfully implementedwith the all-ferroelectric
RC system, demonstrating competitive performance compared with
the existing RC hardware systems. In particular, an ultralow normal-
ized rootmeansquare error (NRMSE) of0.017 is achieved in theHénon
map prediction. Besides, long-term stability in ambient air, high
endurance, and low-power consumption are proven in both the vola-
tile and nonvolatile FDs, which can endow the all-ferroelectric RC
systemwith high reliability and power efficiency. Our study showcases
the development of application-specific neuromorphic devices based
on ferroelectrics by manipulating the polarization dynamics and also
highlights the great potential of ferroelectrics for use in hardware-
based neuromorphic computing.

Results
Device structures
Two FDs with the same vertically stacked structure of Pt/BFO/SRO
were fabricated, as schematically illustrated in Figs. 2a, 3a, respec-
tively. All the deposition conditions for the BFO, SRO, and Ptfilmswere
kept the same, except that the BFO film in the nonvolatile FD was
grown under an oxygen pressure of 15 Pa while that in the volatile FD
was grown under 19 Pa (see the “Methods” section). Both the 15 and
19 Pa BFO films are phase-pure (Supplementary Fig. S1) and exhibit
relatively flat surfaces (Supplementary Fig. S2). The ferroelectric and
resistive switching properties of the two BFO-based FDs were investi-
gated, where the voltages were applied to the Pt electrodes while the
SRO electrodes were grounded.

Electrical characteristics of nonvolatile FD
Figure 2b shows the ferroelectric polarization–voltage (P–V) hysteresis
loop of the FD with the 15 Pa BFO film. A square P–V loop with almost
symmetric coercive voltages (~±2.5 V) is observed, suggesting that
negligible Eimp exists in this device. The absence of Eimp in this film is
further evidenced by the piezoresponse force microscopy (PFM)
results (Supplementary Fig. S3). Thanks to the absence of Eimp, both
polarization up and down (Pup and Pdown, respectively) states are
observed to be considerably stable (Supplementary Fig. S4). Such
nonvolatile polarization may lead to nonvolatile memristive behavior
given the polarization control of conduction in the FD, as demon-
strated below.

Figure 2c shows the hysteretic current–voltage (I–V) character-
istics of the FD with the 15 Pa BFO film. Typical switchable diode-type
resistive switching behavior is observed. The critical voltages where
the high resistance state (HRS) switches to the low resistance state
(LRS) correspond well to the low-frequency coercive voltages (Sup-
plementary Fig. S5), suggesting that the resistive switching is triggered
by polarization switching. Such ferroelectric origin for the resistive
switching can be attributed to the polarization modulation of inter-
facial Schottky barriers (Supplementary Figs. S6 and S7)50,55.

The memristive behavior was further characterized using the
pulse writing method. As shown in Fig. 2d, when applying a positive
pulse train (amplitude: from 1.4 to 1.35 V in increments of 50mV;
width: 0.05 s) to the device, its conductance increases gradually from
~10 to ~36 nS. Moreover, all the conductance states (>4 bits) are con-
siderably stable (Fig. 2e), which can be associated with the non-
volatility of polarization andpolarization-controlled conduction in this
device. Notably, the gradual increase of nonvolatile conductance well
mimics the long-termpotentiation (LTP) behavior of a bio-synapse. On
the contrary, applying a negative pulse train (amplitude: –0.6 to –2.2 V
in increments of 100mV;width: 0.1 s) to the device results in long-term
depression (LTD) behavior (Fig. 2d, f). Moreover, the LTP and LTD
processes can be repeated for many cycles (Supplementary Fig. S8).
Being capable of implementing the LTP and LTD functions, our FDwith
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the 15 Pa BFO film (hereafter termed the nonvolatile FD) can be used as
the building block of the readout network (to be demonstrated later).

Electrical characteristics of volatile FD
Compared with those of the nonvolatile FD, however, the ferroelectric
and resistive switching behaviors of the FD with the 19 Pa BFO film
become distinctly different. As shown in Fig. 3b, the P–V loop of this
device is shifted along the negative voltage axis, signifying the pre-
sence of a downward Eimp. In addition, there is a gap in the P–V loop,
which may originate from the back-switching of the upward polariza-
tion under the effect of the downward Eimp during the delay period
between the preset and measurement pulses (see inset in Fig. 3b). To
further probe the polarization back-switching behavior, the polariza-
tion retention measurement was performed. As shown in Supple-
mentary Fig. S9, the upward polarization decays over time while the
downward polarization is considerably stable, pointing to the fact that
the downward Eimp exists and it induces the back-switching of only the
upward polarization.

The finding of a downward Eimp in the 19 Pa BFO film is further
supported by the PFM results (Supplementary Fig. S3). Moreover, the
Eimp is observed to be stable against applied electric field and time at

room temperature (Supplementary Figs. S10–S12), and hence the Eimp-
enabled functions (e.g., conductance volatility) are expected to work
well. Prior to demonstrating this, it is necessary to understand why the
19 Pa film exhibits a downward Eimp while the 15 Pa film does not. A
depth-dependent X-ray photoelectron spectroscopy (XPS) study was
therefore conducted. Supplementary Fig. S13 reveals that the oxygen
vacancies are preferably distributed near the surface of the 19 Pa film,
which may be the origin of the downward Eimp

51,52,56. By contrast, it is
revealed that although the amount of oxygen vacancies becomes lar-
ger in the 15 Pa film, they are relatively uniformly distributed
throughout the film (Supplementary Fig. S13), accounting for the
absence of Eimp.

The Eimp and associated polarization back-switching have sig-
nificant impacts on the resistive switching behavior, as demonstrated
as follows. Figure 3c shows the hysteretic I–V characteristics of the FD
with the 19 Pa BFO film. The device exhibits one-side diode-type
resistive switching behavior. Specifically, the HRS→ LRS switching
occurs only in the negative voltage region, which is associated with
down-to-up polarization switching that lowers the height of the BFO/
SRO barrier, i.e., the current-limiting barrier at negative voltages (see
Supplementary Figs. S14–S16). However, negligible resistive switching
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occurs in the positive voltage region, whichmay be due to two factors.
First, some upward polarization already rotates in the downward
direction before entering the positive voltage region because of the
polarization back-switching, thus lowering the driving force for the
resistive switching. Second, the Pt/BFO barrier, i.e., the current-
limiting barrier at positive voltages, may be pinned at a high level
because of the oxygen vacancies accumulated near the top interface
(Supplementary Fig. S13), further suppressing the resistive switching in
the positive voltage region (Supplementary Fig. S16)51,52,57.

Besides the one-side diode-type resistive switching behavior,
conductance volatility shall be another feature exhibited by the FD
with the 19 Pa BFO film as a consequence of the Eimp and associated
polarization back-switching. To demonstrate it, the temporal con-
ductance dynamics of the device were investigated. The device was
first initialized to an intermediate state close to LRS by applying a
0→ −3 V→0 sweep to it and subsequently leaving it unbiased for 3min
(hereafter unless otherwise specified, the device was always initialized
to this intermediate state). Then, the devicewas stimulatedwith awrite
pulse (amplitude: −2.5 V; width: 2ms). Immediately after this, the
current of the device was monitored with a read voltage stress of
−1.2 V. As shown in Fig. 3d, the read current decays over time, and the
decay rate becomes slowerwith increasing time. The current decay can
be well attributed to the polarization back-switching induced barrier
height increase (Supplementary Fig. S17)52. The current decay curve
can be further fitted to a double-exponential function (see inset in
Fig. 3d), where two characteristic time constants t1 = 12ms and
t2 = 280ms, describing the fast and slowdecayprocesses, respectively,
are obtained.

Then, multiple write pulses with a short interval of 10ms (shorter
than t1) were applied to the device. It is clearly seen from Fig. 3e that
the read current after each write pulse is higher than that after its
previous write pulse, mimicking the paired-pulse facilitation in a bio-
synapse58,59. However, when the interval between write pulses is suffi-
ciently long (e.g., 1 s, which is longer than t2), the read current does not
increase with the number of write pulses anymore (Supplementary
Fig. S18). The write pulse interval dependence of read current is well
correlated with the competition between the history-dependent
polarization switching driven by the write pulse and the polarization
back-switching during the interval induced by Eimp. Combining the
results of Fig. 3e and Supplementary Fig. S18, it is demonstrated that
the device with the 19 Pa BFO film (hereafter termed as the volatile FD)
exhibits short-term memory, i.e., its conductance state depends not
only on the current input but also on the recent-past inputs.

In addition, the nonlinear I–V characteristics (Fig. 3c) and the
slowdown of the increasing rate of the read current with the write
pulse number (inset in Fig. 3e) suggest the nonlinearity of our volatile
FD. The nonlinear dynamics of the device can be further demonstrated
through harmonic generation. Sinusoidal voltage waves with 6 differ-
ent frequencies (30, 50, 80, 200, 500, and 1200Hz) were sent to the
device, and the output currents were recorded and are shown in
Supplementary Fig. S19. Figure 3f shows the fast Fourier transform
(FFT) spectra of the output current signals. For each input frequency,
multiple higher harmonics are generated, validating the strong non-
linearity of the volatile FD.

Combining nonlinearity and short-term memory, the volatile
FD can be exploited for the hardware implementation of the
reservoir. Prior to demonstrating this, we note that both the
nonlinearity and short-term memory of the volatile FD are asso-
ciated with its complex polarization dynamics. The short-term
memory is a result of both the history dependence of polarization
switching44 and the spontaneous polarization back-switching
induced by Eimp. On the other hand, nonlinearity mainly origi-
nates from both the nonlinear polarization switching and the
nonlinear polarization-controlled conduction behavior. Notably,
polarization switching typically involves two microscopic

processes: domain nucleation and domain growth, both of which
have strong nonlinear dependencies on the applied voltage.

All-ferroelectric RC system and its application in curvature
discrimination
We can now construct an all-ferroelectric RC system by using the
volatile and nonvolatile FDs as the building blocks of the reservoir and
readout network, respectively. A simple task of curvature discrimina-
tion was first performed to demonstrate the capability of the all-
ferroelectric RC system. 138 curves, half of which have positive cur-
vature while the rest have negative curvature, are generated from a
quadratic function (Supplementary Note 1). These curves are grouped
into a training set (102 curves) and a test set (36 curves), as shown in
Supplementary Fig. S20.

This task aims to determine whether the curvature of an input
curve is positive or negative. As illustrated in Fig. 4a, each curve is first
chopped into three sections, and each section is converted to a
3-timeframe pulse train. In each timeframe, the pulse amplitude is
proportional to the relative height of the corresponding point on the
curve, while the pulse width is fixed at 10ms. The 3 pulse trains, as
converted from one curve, are fed to a reservoir consisting of N (N = 3
for this experiment) volatile FDs which work independently and in
parallel, with each device processing one pulse train (see Fig. 4a).
Different volatile FDs can exhibit different conductance states due to
the different pulse histories, which is the key to extract the temporal
information encoded in the pulse trains. The collective conductance
states of all volatile FDs represent the reservoir state. To obtain the
reservoir state, there are typically two approaches: (1) measuring the
current responses of the volatile FDs to input write pulses and directly
using them as the reservoir state7 and (2) applying read pulses after
input write pulses and using the read currents as the reservoir state6,14.
The latter approach is used in this experiment.

The current signals output by the reservoir are converted to vol-
tage signals, which are then fed to a readout network consisting of M
output neurons and N ×M weights (M = 1 and N ×M = 3 for this
experiment), as illustrated in Fig. 4a. The 3 weights and 1 bias are
stored in 4 nonvolatile FDs (note: a pair of nonvolatile FDs can be used
to represent a signedweight if needed). The readout networkperforms
the dot product of the inputs (i.e., the reservoir outputs) and the
weights connected to each output neuron, after which a sigmoid
activation function is applied to generate the final neuronal output.
The readout network is trained offline via logistic regression (see the
“Methods” section), using the reservoir outputs fromthe training set as
the inputs.

Figure 4b shows the photo of the experimentally constructed all-
ferroelectric RC system for the curvaturediscrimination task. Figure 4c
displays the reservoir states, as represented by the collective final
conductance states of the 3-volatile FDs, after presenting 10 typical
curves from the test set to the reservoir. The reservoir states corre-
sponding to the positive and negative curvatures are clearly different.

These reservoir states, after being converted to voltage signals,
are applied to the trained readout network. The resulting currents
produced by the output neuron are shown in Fig. 4d and Supple-
mentary Video 1. It is seen that the output currents corresponding to
the negative curvature are apparently larger than those corresponding
to the positive curvature. Feeding the output currents to the sigmoid
activation function, the neuronal outputs are obtained and shown in
Fig. 4e. One can observe that the neuronal outputs of the curves with
negative curvature are all close to 1 while those of the curves with
positive curvature are all close to0. Besides these 10 typical curves, the
rest curves in the test set are also correctly distinguished, giving rise to
an overall accuracy of 100% (see Fig. 4f).

As comparisons, two control RC systems were designed and tes-
ted. In the first (second) control system, the volatile FDs in the reser-
voir are replaced with linear resistors (sigmoid functions), while the
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pre-/post-processing processes remainunchanged. As shown in Fig. 4f,
both the linear resistor- and sigmoid-based RC systems achieve
apparently lower accuracies than the all-ferroelectric RC system. This
confirms that the volatile FD offering both nonlinearity and memory
effect is the key to the reservoir, and the volatile FD-based reservoir is
more critical than the pre-/post-processing60 for our RC system’s
capability of curvature discrimination (see Supplementary Fig. S21 and
Note 2 for more detailed discussion).

Digit recognition
Then, a more complex task of 10-class digit recognition was car-
ried out. Figure 5a shows the 10 digits represented by the 5 × 3

images used for training. As seen from Fig. 5b, the input image is
first divided into 5 rows, and each row is converted to a
3-timeframe pulse train. In each timeframe, either a −2.5 V/2 ms
write pulse (corresponding to the white pixel ‘1’) or zero voltage
(corresponding to the black pixel ‘0’) is applied. In this way, the
original spatial features of the image are now encoded as tem-
poral information in the pulse trains. The 5 pulse trains are then
fed to a reservoir consisting of 5-volatile FDs in parallel.

For the 10-digit images used here (Fig. 5a), there are 7 dif-
ferent possible pixel arrangements along the row: “111”, “110”,
“101”, “100”, “011”, “010”, and “001”, corresponding to 7 different
pulse trains. When the 7 different pulse trains are applied to a
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typical volatile FD in the reservoir, the corresponding con-
ductance evolutions are shown in Fig. 5c. The other 4 FDs in the
reservoir exhibit similar conductance evolutions, as demon-
strated in Supplementary Fig. S22. Thanks to their nonlinearity
and short-term memory, all the devices exhibit clearly separated
final conductance states when subjected to the different pulse
trains, indicating their capability to distinguish these input pulse
trains. This in turn renders the reservoir capable of generating
separable reservoir states when fed with different images. Fig-
ure 5d shows the reservoir states after the stimulations with dif-
ferent images, as represented by the combination of the final
conductance states of all the 5 volatile FDs. These reservoir states
are apparently different, demonstrating the good separation
property of the volatile FD-based reservoir. However, the reser-
voir’s separation property becomes much poorer after replacing
the volatile FDs with linear resistors (Supplementary Fig. S23),
verifying the critical role played by the volatile FDs.

The reservoir states produced by the volatile FD-based
reservoir were subsequently used as inputs to the readout net-
work. However, due to the relatively large size of the readout
network (6 × 10; including biases), it was difficult to implement it
with the nonvolatile FDs using the wiring method (see the
“Methods” section). The readout network was therefore

simulated. Nevertheless, the software-computed floating-point
weights were not directly used; instead, the weights were mapped
onto the experimentally measured conductance values of non-
volatile FDs (Fig. 2d). Hereafter unless otherwise specified, the
readout network was always simulated in this way, but the
reservoir was still experimentally implemented with volatile FDs.

Supplementary Fig. S24 shows that 100% accuracy is achieved
after fewer than 50 epochs of training, evidencing accurate and fast
training. After training, 12 noisy digits (Fig. 5e), which were not inclu-
ded in the training set, were presented to the all-ferroelectric RC sys-
tem for the test. The all-ferroelectric RC system correctly recognizes 11
out of 12 digits, realizing an accuracy of 91.7%. Only the noisy “9” is
incorrectly recognized as “8”, which is not unacceptable because there
is only 1-pixel difference between the noisy “9” and the original version
of “8” (see comparisonbetweenFig. 5a, e). Note that the91.7% accuracy
achieved by the all-ferroelectric RC system on the test set is the same
as that achieved by an ideal fully connected neural network (FCNN).
However, the number of weights needing to be trained in the all-
ferroelectric RC system is only 60 (6 × 10), while that increases to 160
(16 × 10) in the FCNN. This highlights the low training cost of the all-
ferroelectric RC system.

Besides, the MNIST handwritten digit recognition was also
implemented (Supplementary Figs. S25, S26). The all-ferroelectric RC
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system achieves an accuracy of 89.5%, which is 6.5%higher than that of
a pioneering diffusive memristor-based RC system21.

Waveform classification
For the above curvature discrimination and digit recognition tasks, the
original input data are indeed not time-dependent and they are artifi-
cially converted to temporal data. More native applications of RC
systems may be processing original temporal data directly. One
representative exampleof such applications iswaveformclassification,
which was implemented with our all-ferroelectric RC system. In this
experiment, the input sequence is composed of randomly generated
sine and square waveforms. Each data point in the input sequence is
multiplied by a mask which is a 1D vector with a length of 6 composed
of randomly assigned binary values of 0 and 1, and then converted to a
6-timeframe pulse train containing only write pulses with no read
pulses (see Fig. 6a). The write pulse has an amplitude in the range of
−2.3 to 0V as linearly scaled from the masked input. Both the pulse
width and interval are 3ms, making the total length of the pulse train
(τ) equal 36ms.As 8masks are usedhere, one inputdata point can thus
generate 8 pulse trains, which are, respectively, applied to the 8 par-
allel volatile FDs in the reservoir. For each volatile FD, 6 virtual nodes
are created due to the application of the 6-timeframe pulse train, and
the current responses to thewrite pulses are directly used as the virtual
nodes’ states. The combination of the virtual-node states of all volatile
FDs forms the reservoir state, and hence the reservoir size is expanded
from8 to 48 (6 × 8). The reservoir state is then fed to a 49 × 1 (including
a bias) readout network to perform the classification. The readout
network is trained with linear regression, and the target output is a
binary sequence with −1 and 1 representing sine and square wave-
forms, respectively.

As shown in Fig. 6b, the trained all-ferroelectric RC system can
correctly classify the sine and square waveforms into their corre-
sponding categories with an NRMSE of 0.13. This NRMSE value is suf-
ficiently low, even lower than the value of 0.2 reported recently in an
α-In2Se3 FeFET-based RC system11 which used high-precision floating-
point weights for the readout network (note: in our work, the readout
weights are mapped onto the measured conductances of nonvolatile
FDs). Such low NRMSE of our all-ferroelectric RC system is attributed
to the capability of the volatile FD-based reservoir to produce suffi-
ciently high feedback strength and state richness (Supplementary
Fig. S27).

Hénon map prediction
To further evaluate the performance of our all-ferroelectric RC system
on temporal signal processing, a benchmark task for time-series pre-
diction, i.e.,Hénonmappredictionwas demonstrated. TheHénonmap
is a typical discrete-time dynamic systemexhibiting chaotic behavior61.
It takes a point (x(n), y(n)) in the 2D plane and maps it to a new point
(x(n + 1), y(n + 1)) through the equations below:

xðn+ 1Þ= yðnÞ � 1:4xðnÞ2, ð1Þ

yðn + 1Þ=0:3xðnÞ+wðnÞ, ð2Þ

where w(n) is a Gaussian noise whose mean value and standard
deviation are 0 and 0.05, respectively. The task is to predict (x(n + 1),
y(n + 1)), given the (x(n), y(n)) values up to the time step n. Substituting
Eq. (2) into Eq. (1) results in an equation containing only x, and hence
the taskbecomes thepredictionof x(n + 1) basedon the x(n) and x(n–1)
values.

When implementing this task with the all-ferroelectric RC
system, a dataset of an x(n) series with a length of 500 is gener-
ated through iterations with Eqs. (1), (2), where the first 300 data
points are used for the training while the rest are used for the

test. An input x(n) value is converted to pulse trains through a
mask process similar to that used for the waveform classification.
However, the mask length and the number of masks become 3
and 8, respectively. Correspondingly, each pulse train has 3 write
pulses (amplitude: from –2 to 0 V as linearly scaled from the
masked input; width: 2 ms, interval: 2 ms), and the number of
pulse trains is 8. Applying these pulse trains to an 8-volatile-FD
reservoir produces 24 virtual-node states (3 × 8) corresponding to
an input x(n) value. Similarly, an input x(n–1) value can also
generate 24 virtual-node states. The total 48 virtual-node states
are combined and fed to a 49 × 1 readout network (including a
bias) to predict the x(n + 1) value, and the readout network is
trained with linear regression.

Figure 6c, e show the time series predicted by the all-ferroelectric
RC system during the training and test processes, respectively, which
agree with their corresponding ideal targets fairly well. Figure 6d, f,
which are the 2D plots of the results in Fig. 6c, e, respectively,
demonstrate that the strange attractor of the Hénon map can be well
reconstructed. TheNRMSE value on the test set is further calculated to
be 0.017, which is an ultralow value among those reported for the RC
hardware systems6,7,9,62. Such good performance can mainly be attrib-
uted to the reservoir’s strong capability to capture temporal features
(Supplementary Fig. S28), which stems from the complex polarization
dynamics of volatile FDs. Other possible factors are analyzed in Sup-
plementary Fig. S29 and Note 3.

Device reliability and power consumption
Good reliability is expected for ferroelectric memristors due to
the polarization control of conductance. For both our volatile and
nonvolatile FDs, the cycle-to-cycle (C2C) variations are observed
to be ≤~8% (Supplementary Fig. S30). In particular, the small C2C
variation of the volatile FD is the key to the accurate temporal
signal transformation through the reservoir. The device-to-device
(D2D) variations of both the volatile and nonvolatile FDs are,
however, relatively large (≤~60%; see Supplementary Fig. S31).
Nevertheless, the D2D variation of the volatile FD is indeed
favorable to expanding the reservoir size, which can help to
improve the RC performance. On the other hand, the D2D varia-
tion of the nonvolatile FD is not a big issue because of the
inherent fault tolerance of the readout network. In addition,
applying a write-and-verify method to the nonvolatile FD can
ensure relatively precise weight programming despite the exis-
tence of C2C and D2D variations. In fact, for the nonvolatile FD,
good retention, as demonstrated in Fig. 2e,f, is of critical
importance for the RC performance. Moreover, both volatile and
nonvolatile FDs have at least 30-day stability in ambient air (see
Supplementary Fig. S32), which is an advantage over some liquid
electrolyte-based devices whose performance may degrade when
exposed to ambient air for a long time63. In terms of endurance,
both volatile and nonvolatile FDs can be switched for at least 106

cycles with little polarization degradation and little resistance
state drift (Supplementary Fig. S33). Last, but not least, the
volatile FD consumes ~11.8 μW per input while the nonvolatile FD
consumes ~140 nW per input (Supplementary Note 4). Such power
consumptions are at least 3 times lower than those of the state-of-
the-art filamentary memristors used for the RC hardware
systems6,7,16, suggesting the potentially high-energy efficiency of
our all-ferroelectric RC system.

Discussion
In summary, we experimentally demonstrate an all-ferroelectric RC
system in which the reservoir and readout network are implemented
with the volatile and nonvolatile FDs, respectively. Both the volatile
and nonvolatile FDs have the same structure of Pt/BFO/SRO, but the
difference is that Eimp is purposely introduced into the former while it
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is absent in the latter. Under the effect of Eimp, the volatile FD displays
spontaneous polarization back-switching and consequent con-
ductance decay. Short-term memory and nonlinearity are further
demonstrated in the volatile FD. These properties enable the volatile
FD to produce well-separable responses to different temporal inputs,
making it a suitable building block of the reservoir. On the other hand,
the nonvolatile FD with negligible Eimp exhibits good polarization
stability and consequent nonvolatile memristive switching. Moreover,
the LTP and LTD functions are implemented in the nonvolatile FD,
qualifying it as the synapse in the readout network. Then, an all-
ferroelectric RC system consisting of the volatile FD-based reservoir
and the nonvolatile FD-based readout network is constructed. The all-
ferroelectric RC system is used to solve various tasks including cur-
vature discrimination, digit recognition, waveform classification, and
Hénon map prediction, and it achieves competitive performance
compared with the existing RC hardware systems. In particular, an
ultralow NRMSE of 0.017 is achieved in the Hénon map prediction.
Besides, both volatile and nonvolatile FDs demonstrate long-term
stability in ambient air, high endurance, and low power consumption,
making the all-ferroelectric RC system a reliable and low-power hard-
ware platform for temporal information processing. We expect that
our encouraging results will stimulate further research on the

ferroelectric implementation of various emerging neuromorphic
computing algorithms, e.g., e-prop64.

Methods
Device fabrication
BFO epitaxial thin films (~130 nm) were grown on (001)-oriented
SrTiO3 substrates with SRO bottom electrode layers (~40 nm) by
pulsed laser deposition using a KrF excimer laser (λ = 248 nm). Laser
energy fluences used to deposit SRO and BFO filmswere ~1.0 and ~1.1 J/
cm2, respectively, while the repetition rates used for both films were
the same, i.e., 5 Hz. The SRO films were first deposited on the STO
substrates, during which the substrate temperature and oxygen pres-
sure were kept at 680 °C and 15 Pa, respectively. The BFO films were
subsequently deposited at an elevated substrate temperature of
690 °C under different oxygen pressures (19 and 15 Pa for volatile and
nonvolatile FDs, respectively). After growth, the samples were cooled
to room temperature at a 10 °C/min rate in an oxygen atmosphere of
1000 Pa. Then, circular Pt top electrodes (~100μm in diameter) were
deposited on the BFO/SRO films by PLD at room temperature through
a shadow mask. The individual Pt/BFO/SRO FDs, including both vola-
tile FDs and nonvolatile FDs, were thus obtained. To construct an all-
ferroelectric RC system, the volatile and nonvolatile FDs were
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mounted on a test board and wired to their corresponding input and
output pads using Pt wires and silver pastes.

Structural, morphological, and elemental characterizations
The crystalline structures of the BFO films were examined by X-ray
diffraction (XRD) using a PANalytical X’Pert PRO diffractometer. The
morphologies and domains were characterized by atomic force
microscopy (AFM) and piezoresponse force microscopy (PFM),
respectively, using an Asylum Research MFP-3D AFM system and Pt-
coated silicon tips (Nanoworld EFM Arrow). X-ray photoelectron
spectroscopy (XPS) was conducted for elemental analysis using a
Thermo Fisher Scientific ESCALAB 250Xi system with Al Kα source
(1486.6 eV). To allow the depth-dependent XPS study, Ar+ ion etching
was performed on the samples.

Electrical measurements
All electrical measurements were carried out on a custom-built probe
station in the air. P–V hysteresis loops were measured with a ferro-
electric workstation (Radiant Precision Multiferroic). DC I–V mea-
surements were conducted with a Keithley 6430 SourceMeter. In the
pulse measurements, an Agilent 33250A function generator was used
to generate voltage pulses while the resultant currents were recorded
using a combination of a LeCory 64Xi-A oscilloscope and amplifier
circuits. Electrical measurements on the RC system were realized with
the test board (containing volatile and nonvolatile FDs and peripheral
circuits), a microcontroller unit (MCU), an 8-channel 16-bit analog-to-
digital converter (ADC), 12-bit digital-to-analog converters (DACs), and
a personal computer (PC). The peripheral circuits on the test board
consisted of trans-impedance amplifiers (TIAs) and second-stage
amplifiers, which were used to first convert currents to voltages and
then amplify the voltage signals. TheMCU used in our experiment was
STM32, which was responsible for generating and reading voltage
signals through DACs and ADCs, respectively. The PC was used to run
the basic loop of the RC algorithm coded in Python, and it commu-
nicated with STM32 via a universal asynchronous receiver/transmitter
(UART). In the curvature discrimination task, a user interface was
coded in Python to load, process, and save the data, and display the
classification results.

Simulations
For the curvature discrimination task, a sigmoid activation function
was used to calculate the output categorical probability, which is
expressed as

ŷi = sigmoidðxiÞ=
1

1 + e�xi
, ð3Þ

where x is the neuronal input scaled from the measured current I:

x =αðI � βÞ, ð4Þ

whereα is a scaling factor andβ is anoffset (α =0.18 nA−1 andβ = 210 nA
in this work). A different sigmoid function was used to replace the
volatile FD to construct a control RC system, and its expression is
presented in the Supplementary Information.

In addition, the readout network was trained via the regularized
logistic regression and the cost function (J) is expressed as

J =
1
m

Xm

i = 1

�yi logðŷiÞ � ð1� yiÞ logð1� ŷiÞ
� �

+ λ
Xn

j = 1

∣wj ∣, ð5Þ

wherem is the number of samples, yi is the desired target, n represents
the number of weights, and λ is the regularization parameter.

For thedigit recognition task, a supervised learning algorithm, i.e.,
softmax regression, was used to fit the weights of the readout layer. A

softmax function was used as the activation function of the readout
network to calculate the probabilities corresponding to the different
possible outputs, which are expressed as

ŷi = softmaxðziÞ=
ezi

PN
j = 1e

zj
, ð6Þ

where zi is the original neuronal output, ŷi is the probability corre-
sponding to zi, and N is the total number of output neurons, i.e., the
number of categories of classification. In the training process, the
categorical cross-entropy loss function (L) was used, which is given by

L= �
Xm

i = 1

yi logðŷiÞ: ð7Þ

In the waveform classification and Hénon map prediction tasks,
the linear regressionwasused to train the readout networkwith a least-
squares method, which is expressed as

W= ðXTXÞ�1
XTY, ð8Þ

where W is the weight matrix of the readout network, X is the input
matrix, and Y is the target matrix.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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