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Predictive neural representations of
naturalistic dynamic input

Ingmar E. J. de Vries 1,2 & Moritz F. Wurm 1

Adaptive behavior such as social interaction requires our brain to predict
unfolding external dynamics. While theories assume such dynamic prediction,
empirical evidence is limited to static snapshots and indirect consequences of
predictions. We present a dynamic extension to representational similarity
analysis that uses temporally variable models to capture neural representa-
tions of unfolding events. We applied this approach to source-reconstructed
magnetoencephalography (MEG) data of healthy human subjects and
demonstrate both lagged and predictive neural representations of observed
actions. Predictive representations exhibit a hierarchical pattern, such that
high-level abstract stimulus features are predicted earlier in time, while low-
level visual features are predicted closer in time to the actual sensory input. By
quantifying the temporal forecast window of the brain, this approach allows
investigating predictive processing of our dynamic world. It can be applied to
other naturalistic stimuli (e.g., film, soundscapes, music, motor planning/
execution, social interaction) and any biosignal with high temporal resolution.

In dynamic environments such as social interaction (e.g., traffic or
sports), our brain is faced with a continuous stream of changing sen-
sory input. Effective and prompt interaction with such an environment
requires our brain to continuously generate predictions of unfolding
external dynamics. Although theories assume such dynamic
prediction1–3, empirical research has focused on static snapshots and
indirect consequences of predictions, often using simple static stimuli
of which predictability is manipulated4–8. It is unclear how these find-
ings generalize to our complex dynamic world. For example, to plan
appropriate motor commands for catching a ball, the brain needs to
estimate its future trajectory based on the opponent’s intentions, the
throwing movement, and the ball’s initial trajectory. While this clearly
demonstrates the brain’s ability to predict, previous analytic frame-
works preclude investigating what the brain predicts at which point in
time, particularly across hierarchical levels of stimulus complexity in
such naturalistic dynamic environments, thus leaving several funda-
mental questions unanswered. For instance, while observed actions
have been shown to be represented at distinct, hierarchically orga-
nized levels9,10, it is unclear at what hierarchical level the brain makes
predictions, what the causal relationship is amongst predictions at
different levels, and how these predictions temporally relate to each

other. While predictive processing theories suggest that higher-level
predictions act on, and therefore must precede lower-level
predictions11–13, low-level prediction of simple moving objects is also
possible without high-level prediction14, suggesting (partly) indepen-
dent prediction streams. Another unsettled theoretical debate regards
prediction errors. According to predictive coding theory, post-
stimulus neural representations should solely reflect the difference
between prediction and sensory input (i.e., unpredicted input or pre-
diction errors)15. As such, accurate predictions effectively silence (or
explain away) all sensory input, and no post-stimulus representation is
expected. In contrast, related theories such as adaptive resonance16, or
Bayesian inference without predictive coding17, hypothesize that top-
down prediction and sensory input combine to provide the most
accurate possible post-stimulus representation. Here we present a
framework that allows investigating these unresolved questions by
quantifying how representations in the brain temporally relate to (i.e.,
follow or precede) actual events across hierarchical levels of com-
plexity in naturalistic dynamic stimuli.

This framework builds on representational similarity analysis (RSA),
a powerful approach to investigating neural representations18, which
quantifies the similarity between neural and model representations.
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RSA has beenmainly used to investigate neural representations of static
stimuli (e.g., pictures of objects), using static models (e.g., for shape or
category)19. To investigate representational dynamics of temporally
changing stimuli, we developed a dynamic extension to RSA that uses
temporally variable models to capture neural representations of
unfolding events (Fig. 1). In dynamic RSA, the similarity between neural
and model representations is computed at all neural-by-model time
points. Hereby, dRSA allows investigating thematch between amodel at
a given time point and the neural representation at the sameor different
time points (i.e., earlier, or later). In the case of pure bottom-up pro-
cessing, one expects a lag between a time point-specific visual model
state and the best-matching neural representation (i.e., the time needed
for information to pass from the retina to e.g., V1). In contrast, a negative
lag should be observed for predictive neural representations, in which
case neural representational content predicts the future model state.
However, note thatwhile a negative dRSApeak latency clearly evidences
prediction, a positive latency precludes inferring that a representation is
solely activated in a bottom-up manner. That is, even post-stimulus
representations are likely to be modulated by top-down expectations2,
for instance by sharpening the representation20, or by shortening the
processing latency8,21. Further note that asmoment-by-moment stimulus
predictability is determined by stimulus-specific feature trajectories and
event boundaries, the resultingdRSApeak reflects the average latency at
which a feature is representedmost strongly for these stimuli. It doesnot
mean this feature is exclusively represented at that exact latency.

Here we applied dRSA to source-reconstructed magnetoence-
phalography (MEG) data of healthy human subjects observing dance
videos that were modeled at various levels of abstraction across the
visual processing hierarchy, from low-level visual (i.e., pixelwise
grayscale) to higher-level, perceptually more invariant (i.e.,
3-dimensional view-dependent and -invariant body posture and
motion), as to capture a comprehensive characterization of the dance
sequences. Attention to the unfolding actions was confirmed by high
performance on occasional test trials, inwhich subjects were tested on

the dancer’s motion, whereas eye fixation was ensured by subjects’
successful detection of an occasional subtle color change of the fixa-
tion cross displayed in the center (see subsection “Experimental
design” in the “Methods” section). Using dynamic RSA, we reveal the
peak latency and spread of both lagged and predictive neural repre-
sentations of naturalistic dynamic input, at several hierarchical levels
of processing. By quantifying the temporal forecast window, dynamic
RSA represents a methodological advancement for studying when our
brain represents and predicts the dynamics of the world.

Results and discussion
Hierarchical motion prediction
Dynamic RSA revealed distinct types of dynamic representations with
unique characteristics (Fig. 2a): Most importantly, body motion was
represented in a broad temporal window preceding the actual input by
~500ms for view-invariant body motion, and ~200ms for view-
dependent body motion (Fig. 2a and Table 1), indicating that these
neural representations predicted future body motion. A computer
visionmodel capturing low-levelmotion as optical flowvector direction
at each pixel was represented predictively at ~110ms. Predictive repre-
sentationswere present in all regions of the action observation network
(AON), albeit strongest in visual areas, whichwas confirmed by a whole-
brain analysis (Fig. 2b). While several previous studies revealed the
consequence of motion prediction in early visual cortex5,22, our results
provide a first characterization of how neural prediction of future
motion in naturalistic stimuli continuously unfolds at several timescales
along the visual processing hierarchy. Specifically, peak latencies of
predictive motion representations reflected the order along the pro-
cessing hierarchy, such that view-invariant body motion was predicted
earliest in time, followed by view-dependent body motion and optical
flow vector direction (Table 1; main effect of the model on retrieved
jackknifed peak latencies23,24 in a post-hoc ANOVA with factors model
and ROI; F(2) = 19.9, p =8.3e−7, ηp

2 = 0.49, 95% CI of condition
contrasts = −0.092–0.240, 0.229–0.562, and 0.155–0.488 for optical
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Fig. 1 | Dynamic representational similarity analysis (dRSA). a Subjects observed
~36 repetitions of 14 unique 5-sec dancing videos (Table 2 and Fig. 4a) during MEG.
b Stimuli were characterized at different levels using dynamic stimulus models
(e.g., body posture; see Fig. 5 for all models). c Individual-subject source-recon-
structed MEG signals within regions of interest (ROI; see Fig. 6 for ROI definitions)
were used as features for subsequent steps. d Temporal subsampling and rea-
lignment were used to attenuate idiosyncratic temporal heterogeneity in dRSA
results caused by arbitrary pairwise alignment specific to these 14 stimuli (see
subsection “Temporal subsampling” in the “Methods” section). In short, across
1000 iterations, a 3-s segment was randomly extracted from each of the 14 5-s
stimuli (orange box), after which these new 14 subsampled 3-s segments were
realigned. Crucially, while a different random 3-s window was selected for each of
the 14 stimuli, for a given stimulus the temporal alignment between neural signal
and models remained intact. e Subsequently, on each iteration, neural and model

representational dissimilarity matrices (RDM) were created at each time point in
the realigned 3-s segments, based on pairwise dissimilarity in neural responses to
the 14 stimuli and pairwise dissimilarity in stimulus feature models, respectively
(here shown for 5-time points). f Last, similarity between neural and model
RDMs was computed for each neural-by-model time point (lower panel), using
regression weights to test a specific model RDM, while regressing out other cov-
arying model RDMs. This approach was validated through simulations (see sub-
section Simulations and Fig. 8). Last, the 2-dimensional dRSA matrix was averaged
along the diagonal to create a lag-plot (i.e., the lag between neural and model
RDM; upper panel), in which peaks to the right or left of the vertical zero-lag
midline reflect lagged or predictive neural representations, respectively. These
dRSA lag plots are computed within each subsampling iteration, after which
they are averaged over iterations separately for each subject, ROI, and model,
and statistically tested.
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flow direction vs. view-dependent motion, optical flow direction vs.
view-invariant motion, and view-dependent vs. view-invariant motion,
respectively). Note that this does not evidence a strict serial cascade of
prediction, such that low-level prediction is only enabled by earlier
higher-level prediction. Instead, some low-level prediction likely
remains even without any high-level prediction, as is apparent from the
exclusively low-level prediction of simple motion stimuli that do not
have a complex naturalistic hierarchical structure6,14. The three levels of
prediction might therefore partly reflect independent streams. How-
ever, the temporal order of predictive representations observed here is

in line with hierarchical Bayesian brain theories such as predictive
coding that postulate that higher-level predictions act on, and therefore
must precede lower-level predictions11,12,25. Furthermore, such hier-
archical prediction is also suggested by empirical findings from differ-
ent sensory modalities26–29 and complex contexts such as social
perception and action observation30,31. In complex naturalistic stimuli as
utilized here one would similarly expect a causal relationship amongst
the partly independent prediction streams, such that high-level
prediction affects low-level prediction. It may be that predictions
originating at a higher, perceptually invariant level, as best captured by

pixelwise optical flow magnitude optical flow direction view-dependent body posture

view-invariant body posture view-dependent body motion view-invariant body motion eye position

dR
S

A
 [b

et
a]

lag [sec]

-0.02

0

0.02

0.04

-0.02

0

0.02

0.04

-0.02

0

0.02

0.04

-0.02

0

0.02

0.04

-0.02

0

0.02

0.04

dR
S

A
 [b

et
a]

-0.02

0

0.02

0.04

-0.1

0

0.1

0.2

-0.05

0

0.05

0.1

a ROI-based dRSA results

b Whole-brain dRSA on cortical surface

rig
ht

le
ft

po
st

er
io

r

pixelwise

110 msec

optical flow
magnitude
70 msec

optical flow
direction

view-dependent
body posture

200 msec

view-invariant
body posture

70 msec

view-dependent
body motion
-200 msec

view-invariant
body motion
-500 msec

eye
position
60 msec-120 msec 250 msec

-1 0 0.5 1-0.5

V1
V2
V3V4
LOTC
aIPL
PMv

-1 0 0.5 1-0.5 -1 0 0.5 1-0.5 -1 0 0.5 1-0.5 -1 0 0.5 1-0.5

dRSA [beta]
0.200 0.120 0.0430 0.0260 0.0330 0.0210 0.0190 0.0460

Fig. 2 | Dynamic representational similarity analysis (dRSA) results. a Region of
interest (ROI)-based analysis, with dRSA regression weights illustrated as lag plots
(see Supplementary Fig. 1 for 2D dRSAplots). Light-to-dark colors reflect posterior-
to-anterior ROIs (see subsection Source reconstruction and ROI selection).
Stimulus-featuremodels are plotted in separate subplots, with pixelwise capturing
low-level visual information, optical flow magnitude and direction capturing low-
level visual motion in each of the pixels, and body posture and motion models
capturing 3D position and motion of 13 kinematic markers placed on the dancer
(see subsection Stimulus models). Additionally, while subjects were instructed to
keep fixation, an eye-position-based RDM was included to control for any
remaining oculomotor activity (e.g., micro-saccades). Lines and shaded areas
indicate subject average and SEM, respectively, with n = 22 independent human

subjects. Source data are provided as a Source Data file. Horizontal bars indicate
beta weights significantly larger than zero (one-sided t-test with p <0.01 for each
time sample), corrected for multiple comparisons across time using cluster-based
permutation testing (p <0.05 for cluster-size), with colors matching the respective
ROI line plot. Black or white horizontal bars inside colored bars indicate the same
but with significance at a stricter statistical threshold (i.e., p <0.001 for single
sample tests and p <0.01 for cluster-size). b Subject average whole brain dRSA on
the cortical surface (FDR corrected at p <0.05), with n = 22 independent human
subjects. Source data are provided as a Source Data file. Peak timingswere selected
per model based on the ROI analysis illustrated in (a). See Fig. 6 for a comparison
with the ROIs used in (a). LOTC = lateral occipitotemporal cortex, aIPL = anterior
inferior parietal lobe, PMv = ventral premotor cortex.
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view-invariant body motion, subsequently modulate more concrete
predictions, to which eventually the sensory input can be compared.
Such causal relationship between different levels of prediction in nat-
uralistic dynamic stimuli remains to be demonstrated in future
research, for instance by selectively perturbing high-level stimulus
predictability. Two expectations would be a shortening of the temporal
forecast window for lower-level features (i.e., a less predictive dRSA
peak), and a decrease in the strength of prediction.

Interestingly, for low-level motion (i.e., optical flow direction)
we did not only observe a predictive, but also a lagged post-stimulus
representation. According to predictive processing theories, post-
stimulus representations should reflect the difference between
prediction and sensory input (i.e., unpredicted input or prediction
errors)11,12,15,32,33. As such, it may be surprising that such post-stimulus
representation is absent for high-level (view-dependent and -invar-
iant) body motion. However, predictive processing theories hypo-
thesize that accurate predictions effectively silence (or explain
away) all sensory input11,12,15,32,33. Albeit speculative, it may thus be
that due to the highly predictable nature of smooth biological
motion as in the ballet stimuli used here, motion information is
effectively silenced after the initial comparison at the lowest level,
thus explaining the absence of lagged representation of high-level
motion models. Such efficient silencing of redundant stimulus
information might be particularly important in dynamic stimuli, as
new potentially relevant input is continuously incoming. However, if
accurate prediction has indeed silenced all sensory input in terms of
high-level motionmodels, it is unclear why this does not hold for the
posture models that clearly have lagged post-stimulus representa-
tions (see next section). Additionally, even for high-level motion
information perfect prediction seems unlikely, and it is worth con-
sidering why dRSA might fail to pick up any remaining unpredicted
information for high-level motion models. Note that dRSA reflects
an average representation across stimulus time, stimuli, and sub-
jects, rather than a single exclusive representation (latency). The
little remaining unpredicted information may therefore simply be
too variable in latency to be picked up in the average representation.
Also, the signal-to-noise ratio (SNR) might generally be lower for
bottom-up representations, as the visual cortex receives a much
denser network of feedback relative to feedforward projections33,34.
In any case, these results do not provide conclusive evidence for
predictive processing/coding theory (i.e., that accurate predictions
silence all sensory input33) but leave the door open for related the-
ories that do hypothesize lagged post-stimulus representations
even after accurate predictions such as adaptive resonance16, or
Bayesian inference without predictive coding17. Future research
using dRSA should selectively perturb stimulus predictability at
different hierarchical levels as described above to arbitrate between
these theories.

Prediction modulates body posture representation
We observed lagged representations of view-dependent (~200ms; V3/
4) and view-invariant (~60ms for LOTC and ~100ms for aIPL) body
posture, which might suggest bottom-up activation. However,
remember that a positive latency precludes inferring that a repre-
sentation solely reflects bottom-up activation, as top-down expecta-
tions might very well modulate its veridity20 and processing latency21.
In fact, we argue that the latency of the view-invariant body posture
representation observed here is indeed modulated by top-down pre-
diction. That is, in the case of pure bottom-up processing along the
visual hierarchy, one would expect a high-level representation such as
view-invariant body posture in LOTC and aIPL to have a larger pro-
cessing latency compared to low-level representations—which is not
what we observed. Instead, the dRSA peak latency for view-invariant
body posture in LOTC (~60ms) is shorter than the peak latency for the
view-dependent body posture and pixelwise models (~200 and
~110ms, respectively; Fig. 2a andTable 1), suggesting that the observed
neural representation of view-invariant body posture is at least partly
shifted ahead in time by top-down prediction. This interpretation is in
line with the observation that prediction shifts the neural representa-
tion of the position of simple (apparently) moving objects closer to
real-time8,14, and could explain the subjective experience of perceiving
our dynamic environment in real-time rather than lagged3,14. While this
interpretation might seem intuitive regarding our conscious experi-
ence of the world, a real-time position representation fails to explain
how we are able to act promptly (e.g., catch a ball), as we would need
some representation of the stimulus trajectory to reach the motor
cortex clearly well ahead of real-time. Albeit speculative, it may
therefore be that the close-to-real-time body posture representation
serves our conscious experience, while in contrast, the clearly pre-
dictive motion representations serve prompt behavior. Additionally,
the exact prediction latencies as identified here, as well as those
observed in previous studies, likely depend on stimulus and task
characteristics. Future work is needed to identify which factors (e.g.,
speed, predictability, prior knowledge, attention) determine predic-
tion latencies, and to clarify the apparent difference in representa-
tional latency between body posture (i.e., close to real-time) and body
motion (i.e., clearly predictive).

Temporal spread of neural representations
Interestingly, most neural representations were not exclusive to an
exact latency, but spread over time, as quantified by comparing the
amount of information spread in the neural signal surrounding a dRSA
peak with the amount that can be expected based on model auto-
correlation alone (i.e., representational spread or RS; Fig. 3a, b). Such
spread could be caused by representations themselves being tempo-
rally sustained, or by variability in predictive latency across timepoints
within a stimulus, across stimuli, or across subjects. One would expect

Table 1 | Peak latencies

Pixelwise Optical flow
magnitude

Optical flow
direction
predictive

Optical flow
direction lagged

View-dependent
body posture

View-invariant
body posture

View-dependent
body motion

View-invariant
body posture

V1 100 70 −120 270 – – −160 −440

V2 110 70 −120 270 – – −180 −440

V3 +V4 110 70 −110 230 200 – −190 −640

LOTC 110 70 −90 270 – 60 −200 −520

aIPL 200 – – – – 100 −320 –

PMv – – – – – – −180 −650

Peak latencies in msec of the subject-average (n = 22 independent human subjects) dRSA curves are displayed in Fig. 2. Note that as we observed both a predictive (negative) and lagged (positive)
peak for opticalflowdirection (Fig. 2a),we computedpeak latency separately for negative andpositive peaks. Results are shown only for ROI-model combinationswith a significantmain dRSA result
(Fig. 2). Note that because peak latencies of the dRSA curves are difficult to estimate on a single-subject level, we performed statistics on the retrieved jackknifed peak latencies23, 24 (see the
subsection “Peak latency” under the “Methods” section).
LOTC lateral occipitotemporal cortex, aIPL anterior inferior parietal lobe, PMv ventral premotor cortex.
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more spread for higher-level predictions (i.e., of features changing at a
longer timescale), andmore precise timing (i.e., sharper peak) for low-
level models with predictions close in time to the actual sensory input.
This is indeed what we observe (Figs. 2a and 3b), i.e., while view-
invariant body motion shows the most representational spread on
both sides of the peak, this is less so for view-dependent bodymotion.
If in fact representational spread partly reflects a sustained repre-
sentation, this might be explained by gradually, rather than abruptly,
emerging predictions.

For lagged representations, this could indicate that representa-
tions were not immediately overwritten by new incoming visual input
but remained partly activated. The fact that lagged stimulus informa-
tion is not immediately overwritten may provide a basis for neural
predictions; that is, predicting the future requires the integration of
past information across an extended period for extrapolation3. As
such, the sustained nature of representations might be necessary for
creating and updating predictions based on constantly changing
dynamic input. An alternative function of sustained representations
might be the integration of features to form coherent higher-level
representations. As different features have different processing times,
an overlapping temporal window of representation is needed for their
integration3. Future research should investigate how, and which past
information is integrated to formpredictions, e.g., as shown for simple
tone sequences35, or by investigating the temporal characteristics of
predictive representations after feature-specific perturbations. When
additionally considering the peak latencies, representations of pixel-
wise vs. optical flow vector magnitude point towards a dissociation
between representations drawing on parvocellular vs. magnocellular
pathways, respectively: Pixelwise information was represented later
(Table 1; ~110ms) and more sustained (Fig. 3b), whereas optical flow
vector magnitude was represented faster (Table 1; ~70ms) and more
transient (Fig. 3b). The difference in peak latencies was confirmed by a
main effect of model on retrieved jackknifed peak latencies23,24 in a

post-hoc ANOVA with factors model and ROI (F(1) = 13.3, p = 1.5e−3,
ηp

2 = 0.39, 95% CI of condition contrast = 0.02–0.06). Such dissocia-
tion is in line with findings suggesting that the parvocellular pathway
processes visual information at high spatial resolution with a slow
and sustained response pattern, whereas the magnocellular pathway
processes motion information with a faster and transient response
pattern36.

The temporal forecast window of the brain
Taken together, dynamic RSA allows for quantifying the temporal
forecast window of the brain. As such, it represents a methodolo-
gical advancement for studying when our brain represents and
predicts the dynamics of the world. It reveals both the peak latency
and spread of neural representations of naturalistic dynamic input
and does so at several hierarchical levels of processing. The current
results go beyond recent evidence for the prediction of simple
(apparently) moving stimuli in early brain regions6,7,14,37, by showing
that (1) dRSA reveals prediction at both low and high levels of
abstraction in complex naturalistic stimuli and (2) dRSA enables
distinguishing these different levels in the same stimulus, thus
revealing multiple feature-dependent temporal forecast windows in
the brain. The current dataset, reveals hierarchical predictive
representations of the future motion of an observed action and an
absence of post-stimulus motion representations at higher levels at
which sensory input is possibly explained away by accurate predic-
tion. While both these observations support predictive processing/
coding theories11,12,25, future research using dRSA is needed to
exclude related theories such as adaptive resonance16, or Bayesian
inference without predictive coding17.

In principle, dRSA can be applied to any (naturalistic and con-
trolled) dynamic stimulus (e.g., film, soundscape, music, language,
motor planning/execution, social interaction) and any biosignal with
high temporal resolution (e.g., M/EEG, EcoG, animal electrophysiology,
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Fig. 3 | Representational spread. Results are plotted for ROI-model combinations
with a significant dRSA result (Fig. 2). a Representational spread (RS), which indi-
cates temporal information spread surrounding the dRSA peak, above and beyond
what can be explained by model autocorrelation. To compute RS, we normalized
both the observed dRSA curve and the model autocorrelation (i.e., what remains
after PCR; Fig. 8b) by their peak value, aligned the curves, and subtracted model
autocorrelation from observed curves. RS of 1 and 0 indicate maximally sustained
and not sustained representation, respectively. The horizontal axis indicates the
temporal distance from the corresponding peak, with distance = 0 coinciding with
the peak latency. Positive and negative temporal distances reflect representational
spread on the right and left sides of the dRSA peak, respectively. Since the dRSA
peak latency determines the temporal window at which the RS can be computed,

different RS lines end at different distances. b Representational spread results.
Lines and shaded areas indicate jackknifed subject averages and SEM, respectively,
withn = 22 independent humansubjects. Source data are provided as a SourceData
file. Same color conventions as Fig. 2a. Horizontal bars indicate representational
spread significantly different from zero (two-sided t-test with p <0.001 for each
time sample), corrected for multiple comparisons across time using cluster-based
permutation testing (p <0.01 for cluster-size), with colors matching the respective
ROI line plot. Note that as we observed both a predictive and lagged peak for
optical flow direction (Fig. 2a), we computed RS separately for each peak. LOTC
lateral occipitotemporal cortex, aIPL anterior inferior parietal lobe, PMv ventral
premotor cortex.
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EMG, eye-tracking). Several recent studies investigated the dynamics of
neural representations using related approaches. For instance, the
temporal generalization approach investigates how neural activity
patterns that discriminate between experimental conditions generalize
across time38. Other approaches used RSA to study top-down proces-
sing by computing representational similarity between different brain
regions at different time points to estimate the directionality of infor-
mation flow39 or used RSA to distinguish words prior to their pre-
sentation during naturalistic reading40. Importantly, all these
approaches have in common that they use staticmodels and/or stimuli.
DynamicRSAextends representational analysismethods to the studyof
dynamic events, thus paving the way for investigating the neural
mechanisms underlying the representation and prediction of informa-
tion across a wide range of processing levels in naturalistic dynamic
scenarios.

Methods
Subjects
Twenty-two healthy human volunteers (mean age, 30 ± 7 years) parti-
cipated in the experiment for monetary compensation. All subjects
were right-handed, had a normal or correct-to-normal vision, andwere
naive with respect to the purpose of the study. As we did not have any
hypotheses pertaining to differences in sex or gender, we tried to
recruit a balanced dataset, in which 13 out of 22 participants identified
themselves as female. Sex or gender information was not collected
otherwise. We aimed for our findings to be generalizable to the whole
population, and therefore combined all subjects irrespective of sex/
gender in the group-level statistical analyses. No sex- or gender-based
analyses were performed. All experimental procedures were per-
formed in accordance with the Declaration of Helsinki and were
positively reviewed by the Ethical Committee of the University of
Trento. Written informed consent was obtained. The entire session
including preparation lasted ~3 h, of which 1.5 h was spent in the MEG
scanner.

Stimuli
The stimulus set consisted of videos of 14 unique ballet dancing
sequences, each consisting of four smoothly connected ballet figures
selected from a pool of five unique figures (i.e., passé, pirouette,
arabesque, bow, and jump; see Table 2 for the structure of each unique
sequence). We selected naturalistic bodymovements, rather than e.g.,
moving dots because they are rich and evolutionary salient stimuli that
are likely to evoke strong neural responses and that can be modeled
across a wide range from low visual to view-dependent and view-
invariant levels of processing. Ballet dance was chosen to ensure

comparably smooth body movements without abrupt action bound-
aries. All ballet figures were presented from multiple viewpoints, to
allow for studying view-dependent body posture and motion sepa-
rately from view-invariant body posture and motion (i.e., orientation
and position invariant). The pirouette could start and end at different
angles and was always performed counterclockwise. The rationale for
this stimulus design was that (1) at each point in time there should be
enough stimuli similar and enough stimuli dissimilar to eachother (i.e.,
enough variance within a model RDM at a single time point), and that
(2) the model RDMs should be sufficiently dynamic (i.e., minimal
temporal autocorrelation) for testing lag differences between model
and neural RDMs. We recorded the dancing videos with a Canon
PowerShotG9XMark II at a frame rate of 50Hz (i.e., 250 frames per 5 s
video). Video frames were cropped to 400 × 376 [height ×width] pix-
els. Additionally, we recorded 3-dimensional positions of 13 passive
(infrared reflecting) markers placed on the ankles, knees, hips,
shoulders, elbows, wrists, and head of the dancer. Marker positions
were recorded at 100Hz using a Qualisys motion capture system
(infrared-based marker capture). Markers were small silver balls, and
nearly invisible in the video stimuli presented to the subjects. See
https://github.com/Ingmar-de-Vries/DynamicPredictions for all 14
unique videos and temporally aligned 3D kinematic data.

Experimental design
The experimentwas created using the Psychophysics Toolbox (version
3) in MATLAB (version 2012b; MathWorks). Trials consisted of 5 s
dancing videos (Fig. 4a) that were separated by blank screens with a
white fixation cross presented for 1.8–2.2 s (uniform distribution). The
fixation cross was also presented throughout the video, and subjects
were instructed to keepfixationwhile covertly attending to the dancer.
A single run in the MEG scanner lasted ~12min and consisted of 90
randomly ordered sequences with the only constraint that the exact
same sequence was never directly repeated (i.e., there was always at
least one different sequence in between).

To ensure attention to the dance sequences, 20 trials in each run
of 90 trials were two types of catch trials (Fig. 4b). In type 1 (15 trials)
the sequence was interrupted at a random time between 0.5 and 5 s
after onset, and subjects were asked with a yes or no question (2
response buttons) about the particular motion currently being per-
formed (e.g., armsmoving up? or pirouette?), and had to respondwith
a button press within 3 s. In type 2 (5 trials) the fixation cross changed
from white to light purple (RGB=[117 112 179]) for 200ms at a random
time between 0.4 and 4.8 s after onset, in response to which subjects
had to press a button. The color was chosen such that the change was
only visible when fixating, but not from the periphery, thus stimulating

Table 2 | Ballet figures per stimulus

Stimulus Ballet figures

1 Bow left Arabesque left Pirouette Passé back

2 Bow left Passé left Jump right Pirouette

3 Bow front Jump back Passé front Arabesque front

4 Pirouette Bow front Passé front Jump right

5 Pirouette Passé right Bow front Jump back

6 Passé right Bow right Arabesque right Pirouette

7 Passé right Pirouette Jump left Arabesque front

8 Passé front Arabesque front Bow left Jump right

9 Jump left Bow right Arabesque front Passé left

10 Jump right Pirouette Passé front Arabesque right

11 Jump back Arabesque front Pirouette Bow front

12 Arabesque left Pirouette Jump back Passé front

13 Arabesque right Passé right Pirouette Bow front

14 Arabesque right Jump left Bow right pirouette
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subjects’fixation. Subjects received immediate feedbackon each catch
trial. In 5 out of the 15 type-1 catch trials, the question appeared only at
the offset of the video (i.e., at 5 s), and these trials were therefore
included in the analyses, thus leaving 75 to-be-analyzed trials per run.
The remaining catch trials were excluded from all further analyses. To
ensure continuous attention to the task, two subsequent catch trials
were never separated by more than 8 normal trials. Subjects per-
formed one practice run outside of the MEG scanner, in which 30% of
trials were catch trials to ensure enough practice with the task. During
MEG, subjects performed the behavioral task well, indicating that they
attended the dancer and generally kept fixation (mean/min–max: 80/
63–93% correct and 95/80–100% detection for the dancer and fixation
catch trials, respectively; see Fig. 4c). Subjects performed 6.8 runs on
average depending onattentional fatigue, which resulted in an average
of 510 trials per subject for further analyses, with an average of 36.4
repetitions of each of the 14 unique sequences. With so many repeti-
tions, one might expect stimulus familiarization throughout the
experiment to improve prediction. However, in a post hoc dRSA ana-
lysis,wedid notobserve robustdifferences between thefirst and last 1/
3 of the experiment (see Supplementary Discussion and Supplemen-
tary Fig. 6).

Stimulus models
All data analyses were performed in MATLAB (version 2020a; Math-
Works). We selected a total of 9 stimulus-feature models described in
detail below (Fig. 5), plus a tenth subject-specific model capturing the
eye position. The reason for selecting these stimulus-feature models
was to capture a comprehensive characterization of the dance
sequences that encompass several hierarchical levels of complexity/
abstraction from low-level visual information (pixelwise) up to higher-
level, perceptually more invariant information (view-invariant body
posture and motion). Models based on video data (pixelwise and
optical flow vectors) had a sampling frequency of 50Hz and were
therefore first interpolated to 100Hz to match the kinematic data,
using shape-preserving piecewise cubic interpolation.

Pixelwise (Fig. 5b): For each video frame, the RGB values at the
400 × 376 pixels were converted to grayscale (i.e., luminance
values), smoothed (i.e., spatially low-pass filtered) using a Gaussian
kernel with sigma = 5 (i.e., roughly 11.75 pixels full width at

half max18), as implemented in MATLAB’s imgaussfilt.m function,
and vectorized (i.e., 150,400 feature vector per frame). For each
frame separately, these vectors were then correlated between two
different videos, to generate a single entry in the model RDM, where
dissimilarity was defined as 1-Pearson correlation. This operation
was repeated for each of the possible stimulus pairs to generate a
14 × 14 RDM at a single frame and subsequently repeated over
the 500 frames to generate 500 model RDMs (see Fig. 1e for an
example).

Optical flow vectors (Fig. 5c): We converted videos to grayscale
and used MATLAB’s estimateFlow.m implementation of the Farne-
bäck algorithm41 to compute optical flow vectors, which capture the
apparent motion between subsequent frames at each pixel. These
optical flow vectors were spatially smoothed using a Gaussian kernel42,
with the same settings as for the pixelwise grayscale model, and sub-
sequently divided into magnitude and 2D direction, and vectorized
(i.e., 150,400 and 300,800 feature vectors for magnitude and direc-
tion, respectively). Model RDMs were computed as described for the
pixelwise model.

View-dependent body posture (Fig. 5d): We defined view-
dependent body posture as the 3D positions of the 13 kinematic
markers (i.e., 39 feature vector), relative to a coordinate system with
origin placedon thefloor in the center of the video frame.Model RDMs
were computed as described for the pixelwise model.

View-invariant body posture (Fig. 5d): For the view-invariant body
posture model, before computing the dissimilarity between two pos-
tures in two different stimuli, we used a modified version of MATLAB’s
procrustes.m function to align the 3D marker structure of one sti-
mulus with themarker structure of the other stimulus, while keeping its
internal structure intact, by using translation, and rotation along the
vertical axis only, to minimize the sum of squared differences between
the two 3D marker structures. For instance, if in two to-be-compared
videos the exact same ballet figure is performed but in opposite direc-
tion, this would result in high dissimilarity in terms of view-dependent
body posture, but high similarity in terms of view-invariant body pos-
ture. Since the direction of alignment matters for dissimilarity (i.e., dis-
similarity(frame1,frame2aligned)≠dissimilarity(frame1aligned,frame2)),
we computed dissimilarities after alignment in both directions, and
subsequently averaged over them.
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Fig. 4 | Experimental design and behavioral results. a Trial sequence. A run
consisted of 90 sequences of 5 s alternated by blank screens with a fixation cross
presented for 1.8–2.2 s (uniformdistribution).b To ensure attention to the dancer,
15 trials per run were randomly interrupted between 0.5 and 5 s after onset, and
subjects were asked to (dis)confirm (2 response buttons) a statement about the
particular motion currently being performed (left panel). To stimulate fixation, on

5 trials per run the fixation cross changed color for 200ms between 0.4 and 4.8 s
after onset, and subjects had to press a button upon detection (right panel).
c Behavioral results. Percentage correct and trial-averagedRTon catch trials in top
and bottom panels, respectively. Dots represent single-subject data. Horizontal
thick lines represent the group mean. ITI inter-trial interval.
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View-dependent body motion (Fig. 5d): View-dependent body
motion was operationalized as the first derivative of view-dependent
body posture, i.e., the difference in the 3D marker positions between
two subsequent frames: vmðiÞ= xm ið Þ � xmði� 1Þ, where v is themotion
of marker m in frame i, and x is the marker position. Body motion
vectors, therefore, had a magnitude and a 3D direction. Motion time
series were shifted and interpolated such that themotion calculated in
the formula above for frame iwas placed in between frame i and frame
i−1. Model RDMswere computed as described for the pixelwisemodel.

View-invariant bodymotion (Fig. 5d): View-invariant body motion
was computed the same way as view-dependent body motion, but
after aligning one body posture to the other as described above for
view-invariant body posture. Model RDMs were computed as descri-
bed for the pixelwise model.

Eye position: Since eye movements are a common problematic
covariate in neuroimaging studies using multivariate approaches43,
even if like here afixation task is used (e.g.,micro-saccades remain), we
added individual-subject RDMs based on eye-position as a control to
ensure that the dRSA results for ourmodels of interestwere not due to
eyemovements. The raweye tracker signalswerefirst downsampled to
100Hz, after which trials in which the eye tracker lost the eye formore
than 10% of the samples were removed (a total of 1.0% of trials was
missing; min–max across subjects = 0–5.9%), and the remaining miss-
ing samples were interpolated (e.g., due to blinks; a total of 0.3% of
samples; min–max across subjects = 0–2.1%). Finally, signals were
averaged over all remaining repetitions of the same unique stimulus.
Eye position models were subject-specific. Model RDMs were com-
puted as described for the pixelwise model, except that dissimilarity
between eye positions was defined as the Euclidean distance between
the four eye position values (i.e., x-, and y-position for the left and right
eye), as four values are too low for a reliable correlation estimate. Note
that while there was a representation of eye position present in the
neural signal (Fig. 2), this was successfully regressed out when testing
each of the other models (as confirmed by the simulations; see sub-
section Simulations). Therefore, eyemovements could not explain any
of the findings for the other models.

View-dependent and view-invariant body acceleration were
operationalized as the second derivative of marker position (i.e., the
first derivative of marker motion). These models only explained a
minimal amount of variance in the neural data and are therefore not
illustrated in the main results. However, because these models did
correlatewith some of the testedmodels (see subsection Simulations),
we regressed them when testing each of the other models (see sub-
section Dynamic representational similarity analysis for details on
regression).

MEG data collection and preprocessing
We obtained whole-head MEG recordings at a sampling rate of
1000Hz using a 306-channel (204 first-order planar gradiometers, 102
magnetometers) VectorViewMEG system (Neuromag, Elekta) in a two-
layer magnetically shielded room (AK3B, Vacuum Schmelze). A low-
pass antialiasing filter at 330Hz and a DCoffset correction was applied
online. Importantly, no online or offline high-pass filter was applied,
since high-pass filtering can temporally spread multivariate
information44. Before the MEG recording, we digitized the individual
head shape with an electromagnetic position and orientation mon-
itoring system (FASTRAK, Polhemus) using the positions of three
anatomic landmarks (nasion and left and right preauricular points),
five head position indicator coils and 300+ additional points evenly
spread on the subject’s head. Landmarks and head-position induction
coils were digitized twice to ensure a localization error of <1mm. To
co-register the head position in the MEG helmet with anatomic scans
for source reconstruction, we acquired the head positions at the start
of each run by passing small currents through the coils. Binocular eye
movements were recorded at 1000Hz using an SR-Research Eyelink
Plus eye tracker. In addition, horizontal and vertical EOGs were
recorded from 2 electrodes located 1 cm lateral to the external canthi
and 2 electrodes located 2 cm above and below the right eye, respec-
tively. Stimuli were presented in full color using a VPixx PROPixx
projector. All hardwarewas connected to a DataPixx input/output hub
to deliver visual stimuli and collect MEG data, eye-tracker data, and
button presses in a critical real-timemanner (VPixx Technologies), and
stimulus-onset triggers were directly stored together with the MEG
data. In addition to these triggers, we also placed a photodiode in the
top right of the screen (i.e., outside of the video stimulus frame), and
changed a square on the screen underneath the photodiode from
black towhite at theonset of each single video frame, as to realignMEG
signals to these photodiode signals offline.

MEG data were preprocessed offline using a combination of the
Brainstorm (version 3)45, Fieldtrip (version 20191113)46 and CoS-
MoMVPA (version 1.1.0)47 toolboxes in MATLAB (version 2020a;
MathWorks), as well as custom-written MATLAB scripts (shared at
https://github.com/Ingmar-de-Vries/DynamicPredictions). Con-
tinuous data from each run were visually inspected for noisy sensors
and system-related artifacts (e.g., SQUID jumps), and amaximumof 12
noisy sensors were removed and interpolated. Next, we applied the
Neuromag MaxFilter (version 2.2) implementation of Signal Source
Separation (SSS48) for removing external noise from each individual
run and spatially aligned the head position inside the helmet across
runs. After these initial steps, data were loaded into Brainstorm, where
consecutively spatial co-registration between anatomical MRI and

a Example frames for two videos 

magnitude direction
view-dep.

body posture
view-invar.

body posture
view-dep.

body motion
view-invar.

body motion

...

...

b Pixelwise c Optical flow vector d Models based on kinematic markers

Fig. 5 | Illustration of stimulus models. a Example frames of two videos (rows) to
be correlated for creating the model representational dissimilarity matrices
(RDMs). From left to right; b the pixelwise smoothed grayscale of the video frame,
c themagnitudeof the opticalflowvectors (brighter color is highermagnitude) and
the direction of the optical flow vectors (as indicated by blue arrows, which are
scaled 10 times here for illustrative purposes), and d view-dependent body posture

(as defined by 3D kinematic marker positions), view-invariant body posture (i.e.,
after aligning the kinematic markers of the second video with those of the first
video without changing the internal structure, through translation and rotation
along the vertical axis), view-dependent bodymotion as indicated byblue lines (i.e.,
difference in kinematic marker position between two subsequent frames), and
view-invariant body motion.
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head position in the MEG helmet was refined using the 300+ addi-
tionally registered points on the head (see subsection Source recon-
struction), datawerefiltered for line noise using a band-stopfilter at 50
and 100Hz (0.5Hz bandwidth), data were down-sampled to 500Hz,
and independent component analysis (ICA) was applied separately for
magneto- and gradiometers in order to detect and remove an average
of 1.2 blink and eye movement components and 0.6 cardiac compo-
nents. Blink and eye movement components were confirmed by
comparing their time series with the EOG channels. ICA was applied to
a temporary version of the data that was first down-sampled (250Hz)
and band-pass filtered (0.1–100Hz) to reduce computation time and
improve ICA, respectively. The ICA weight matrix was subsequently
applied to the original data. Note that the maximum number of ICA
components to be extracted was determined by the residual degrees
of freedom after SSS rank reduction during MaxFiltering. Continuous
data were then segmented in epochs from −1.5 to 6.5 s locked to the
onset of the video stimulus, according to the triggers stored with the
MEG data, and single epochs wereDC offset corrected using a baseline
window of −500 to 0 msec relative to stimulus onset. Each epoch was
visually inspected, and those containing artifacts (e.g., muscle activity,
SQUID jumps, etc.) were discarded from further analyses, which
resulted in a rejection of 7.2% of all trials. After these steps, data were
exported from Brainstorm into the Fieldtrip data format, epochs were
realigned to the photodiode onset for higher temporal precision, data
were temporally smoothed using a 20ms boxcar kernel as imple-
mented in Fieldtrip’s ft_preproc_smooth.m, downsampled to
100Hz, and finally averaged over all ~36 repetitions of the same video
stimulus. Note that we opted for transforming MEG signals to source
space (see next section), but if one would opt to stay in sensor space
instead, we recommend applying multivariate noise normal-
ization (MNN49).

Source reconstruction and ROI selection
For the construction of 3D forward models, we first acquired pre-
viously recorded anatomical 3D images if available (13 subjects) and
used the ICBM152 standard brain for the remaining 9 subjects. Indivi-
dual anatomical images were obtained using a Siemens Prisma 3T,
actively shielded, whole body 3 T magnet. A few older individual ana-
tomical scans already present at the facility were collected with the
former scanner, i.e., 4 T MRI scanner (Bruker Biospin). Fiducial points
were marked automatically (MNI) and inspected, after which the ana-
tomical scans were 3D reconstructed using CAT12 (version 2170), a
computational anatomy toolbox50. For the 9 subjects without indivi-
dual anatomy, the standard anatomy was warped to the subject’s head
volume as estimated from the +300 digitized head points. Next, head
models were computed by coregistering the subjects head shape with
the reconstructed MRI brain volumes using Brainstorm’s default set-
tings and using overlapping spheres, after which we performed source
reconstruction using minimum-norm estimates (MNE) for a source
space of 15,000 vertices51, as implemented in Brainstorm. We used
both gradio- and magnetometers. For MNE, the first noise covariance
matrices were computed after single-trial DC offset correction and
using the time window from −1000 to 0ms relative to stimulus onset.
Second, the data covariancematrices were computed using the −1000
to 0ms interval for baseline correction, and the 0 to 5000ms interval
(i.e., stimulus presentation) as data interval. Last, we computed non-
normalized current density maps as a measure of source activity, with
source direction constrained to be normal to the cortex (i.e., a single
source activity value at each vertex).

The 15,000 vertices were parcellated into 360 parcels according
to the cortical atlas from the Human Connectome Project (HCP52),
which provides the most precise parcellation based on the structural
and functional organization of the human cortex to date. We a priori
selected six regions of interest (ROIs; Fig. 6) that consisted either of a
single parcel from the atlas (in case of V1 and V2), or a combination of

several parcels (in case of V3 + V4, the lateral occipitotemporal cortex
(LOTC), the anterior inferior parietal lobe (aIPL), and the ventral pre-
motor cortex (PMv)). Besides the purely visual areas, we selected the
LOTC, aIPL andPMvbecause they form the actionobservationnetwork
(AON53) and were expected to be important for processing and pre-
dicting these specific stimuli31,54. This selection resulted in comparably
sized ROIs with on average 484 vertices (min–max = 403–565), of
which the vertex signals were used as features for computing the
neural RDM for a given ROI. The neural RDM was computed as
implemented in cosmoMVPA47, on the centered data, using 1-Pearson
correlation as a dissimilarity measure.

Dynamic representational similarity analysis
As afirst step, neural andmodel representational dissimilaritymatrices
(RDMs) were computed for each time point as described above (see
also Fig. 1), resulting in neural and model RDMs of 91 features (14 × 14
stimuli gives 91 unique values) by 500 time points. To improve the
SNR,neural andmodelRDMswere temporally smoothedusing a 30ms
boxcar kernel as implemented in Fieldtrip’s ft_preproc_smooth.m.
To compute the dRSA, the similarity between neural and model RDMs
was estimated at each neural-by-model time point, thus resulting in a
2-dimensional dRSA matrix (Fig. 1f; lower panel). This 2D dRSA matrix
was further averaged over time for each neural-to-model time lag (i.e.,
time-locked to the on-diagonal) within the range of −1 to 1 s, thus
resulting in a lag-plot (Fig. 1; upper panel), in which a peak on the right
of the vertical zero-lag line indicates that the neural RDM is most
similar to a model RDM earlier in time (i.e., it is lagging behind the
stimulus information), whereas a peak on the left of the vertical zero-
lag line indicates that the neural RDM is predicting a future model
RDM. One problem with using a simple correlation as a similarity
measure for RSA is that different stimulusmodelsmight share variance
(e.g., view-dependent and invariant body posture will inevitably share
some variance), making it impossible to unambiguously assign an RSA
result to one specific model. Additionally, specific to dynamic RSA,
model RDM X at t1 might share variance with model RDM Y at t2 (e.g.,
body motion will correlate with body posture at an earlier and later
time point), and model RDM X might additionally share variance with
itself at distant time points due to temporal autocorrelation. These
problems are illustrated below for simulated data (see subsection
“Simulations” in the “Methods” section). For completeness, the dRSA
results using simple correlations are illustrated in Supplementary
Fig. 2.While these results (Supplementary Fig. 2) do reflect truly shared
variance between neural and model RDMs, caution is warranted with
their interpretation as it is difficult to separate the contribution of
different model RDMs. Note that both shared variance between
models and temporal autocorrelationwithinmodels are not a problem
with the dRSA approach per se, but rather inherent to naturalistic
(dynamic) stimuli. We argue that our followed approach explained in
the next paragraph offers a solution to separate the contribution of
different model RDMs.

In order to extract variance from the neural data uniquely
explained by a specific stimulus model, while disregarding variance
better explained by other models, we used linear least-squares
regression to estimate similarity. Here, the neural RDM at a certain
time point ty was the response variable Y (size 91 × 1), our model RDM
of interest at a certain time point tx was one predictor variable Xtest
(size 91 × 1), and all to-be-regressed out RDMs were other predictor
variables Xregressout (size 91 xN), with our measure of similarity being
the regression weight for Xtest. As to-be-regressed out RDMs we
selected the other 9model RDMs at each time point (i.e., size 91 ×Ntime

permodel), plus themodel RDMof interest itself at distant time points
(i.e., at aminimumdistance from tx atwhich themodel shared less than
10% variance with itself at tx; determined by simulations; see subsec-
tion “Simulations” in the “Methods” section). This would result in
>1800 predictor variables in Xregressout (i.e., size 91 × 1800). However,
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the amount of predictor variables in linear least-squares regression is
limited by the number of features (also called observations; here a
maximum theoretical value of 91, but one should stay below this
maximum to prevent overfitting). We, therefore, used principal com-
ponent analysis (PCA) across two steps to reduce the dimensionality of
Xregressout. First, we ran PCA separately per to-be-regressed out model
(size 91 ×Ntime) and selected only those principal components cap-
turing at least 0.1% of total variance from the Ntime input variables.
Next, the new Xregressout, now consisting of principal components, was
combined with Xtest, after which a second PCA was run over this
combination. From this second PCA, only the first 75 components
(ordered by total explained variance) were selected (limited by the
maximum of 91 predictors), and these components were used as
predictor variables in the linear least-squares regression. Subse-
quently, the principal component regression weights were projected
back onto the original predictors using the PCA loadings, in order to
specifically extract the regression weight for Xtest. This approach,
termed principal component regression (PCR), has the advantage that
it strongly reduces the number ofpredictorswhilemaintainingmostof
their total variance, and the advantage that the PCA components
entered into the regression are decorrelated, hence preventing mul-
ticollinearity. Before each PCA, individual model RDMs and the neural
RDM were rescaled (to min-max: 0–2) at once for all time points, to
equalize scales between RDMs, while keeping the temporal changes in
scale intact that are inherent to a certain model. A large difference in
scale between models could cause early PCA components to simply
pick up the model with the largest scale, which arbitrarily depends on
dissimilarity measure (i.e., Euclidean distance used for the eye-tracker
RDM has a much larger scale than corr-1 used for the other model
RDMs). Additionally, the RDM was centered per individual time point
before each PCA and regression. Importantly, PCR was effective at
extracting a model representation of interest while regressing out
other model representations with which it might share variance, as
confirmed by simulations (see subsection Simulations).

Temporal subsampling
Our dRSA pipeline involved one additional important step to increase
the generalizability of the results as well as the SNR. Imagine that at a
given time point tx, in all 14 videos, the ballet dancer is in themiddle of
afigureandmoving relatively slowly andpredictably.At txprediction is

possible far in advance, resulting in an early predictive dRSA peak. In
contrast, if at ty there is a transition between ballet figures in all 14
videos, prediction is not possible very far in advance, resulting in a
later (or no) predictive dRSApeak. Last, if at tz stimulus predictability is
different for each of the 14 videos (likely themost occurring scenario),
the predictive peak reflects an average thereof. In other words,
stimulus-specific feature trajectories influence how far in advance a
stimulus can be predicted, and thus the structure of the neural and
model RDMs depends on the exact arbitrary pairwise alignment of the
14 ballet dancing sequences (and the alignment of event boundaries at
different timescales55, such as onsets and offsets of individual ballet
figures, subfigures, smaller motions, etc.). Consequently, the pattern
across stimulus time in the 2-dimensional dRSAmatrix is idiosyncratic
and heterogeneous. If videos would have started a little earlier or later
into the first ballet figure, the structure of RDMs, and therefore of the
dRSAmatrix,would look completelydifferent at all time points.We are
not interested in these specific 14 stimuli and their pairwise temporal
alignment per se, but rather in dynamic prediction more generally.
Ideally one would have an infinite number of stimuli, i.e., infinitely
large RDMs.

To mimic an infinite number of stimuli, and thus minimize the
idiosyncrasy of our dRSA results and increase SNR, we applied a
temporal subsampling and realignment approach. Specifically, across
1000 iterations, a 3-s segment was randomly extracted from each of
the 14 5-s stimuli (Fig. 7a; orange boxes). Next, these 14 new 3-s seg-
ments were realigned to each other, and RDMswere computed at each
realigned time point tR (Fig. 7b, c). Last, the similarity between neural
and model RDMs was computed for each realigned neural by model
time, resulting in the 2-dimensional dRSA matrix. Crucially, within a
single iteration, while a different random 3-s window was selected for
each of the 14 stimuli, for a given stimulus the temporal alignment
between neural and model data remained intact (Fig. 7a; dotted ver-
tical orange lines). This subsampling approach accomplishes a differ-
ent pairwise alignment of the 14 stimuli on each iteration, thus creating
completely new RDMs and temporal structures in the dRSA results.
This is illustrated in Fig. 7d: First, the dashed black line illustrates the
results for V1without the temporal subsampling step (taking thewhole
5-s videos; see Supplementary Fig. 3 for the complete results). Second,
the light gray lines illustrate the dRSA results on an example of 10
iterations. There is quite some variability in the shape of the curves, as
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ra

l
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ed
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l

visual areas action observation network

po
st
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r

Fig. 6 | ROI definitions. Cortical regions of interest for main ROI analysis (Fig. 2),
based on combinations of parcels as defined according to the HumanConnectome
Project (HCP) atlas52. Here ROIs were a priori defined as follows (ROI name = atlas
parcels): V1 = V1 [487 vertices]; V2 = V2 [491 vertices]; V3 + V4= V3 and V4 [490
vertices]; LOTC=V4t, FST,MT,MST, LO1, LO2, LO3, PH, PHT, TPOJ2 and TPOJ3 [565
vertices]; aIPL = PF, PFt, AIP and IP2 [403 vertices]; PMv = IFJa, IFJp, 6r, 6 v, PEF, IFSp,
44 and 45 [466 vertices]. Note that these vertex amounts are based on the ICBM152

template cortical surface, exact amounts differ slightly between individual subjects.
MEG responses at all vertices from both hemispheres were combined into a single
vector to compute the neural RDM at a single time point (i.e., pairwise dissimilarity
in the MEG response to the 14 sequences). For visualization, all vertices within a
single ROI are given the same color, whichmatches the color for each ROI in Fig. 2.
LOTC lateral occipitotemporal cortex, aIPL anterior inferior parietal lobe, PMv
ventral premotor cortex.
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well as the peak timings,which are dependent on the arbitrary pairwise
stimulus alignment on that given iteration. Last, the full black lines
indicate the dRSA results after averaging the 1000 iterations. Note that
this whole procedure is done on an individual subject level, and the
averaged dRSA values are subsequently used for statistical analysis
(see subsection Statistical analysis). To summarize, this approach
mimics having many more video stimuli that are differently aligned to
each other, increasing SNR, and making the results become more
generalizable (at least to other sets of ballet dancing videos).

Note that to successfully apply dRSA, it is worth considering a few
criteria that the model RDMs ideally fulfil. Specifically, they need to be
sufficiently large (i.e., have enough unique stimuli) to allow for enough
regressors to be included in the PCR, sufficiently large such that results
are generalizable rather than specific to the stimulus set (which we
solved here with the temporal subsampling and realignment proce-
dure), and dynamic enough that the structure of the RDM at different
time points is distinguishable (i.e., stimulus pairs need to be similar at
some times while dissimilar at other times).

a random 3-sec segment selection for single subsampling iteration
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Fig. 7 | Temporal subsampling and realignment. a On each subsampling itera-
tion, a 3-s segment is randomly selected independently for each of the 14 stimuli
(orange boxes). For a given stimulus, the same 3-sec window is selected for both
neural and model data, thus keeping temporal alignment between those intact
(indicated by vertical orange dotted lines). b and c Next, the 14 new 3-s segments
are realigned, after whichmodel and neural representational dissimilarity matrices
(RDMs) are computed at each realigned time point tR. Last, similarity is computed
for each combination of realignedmodel time (x) and neural time (y). Note that the
steps in a–c, as well as the last step to compute the dynamic representational

similarity analysis (dRSA) plot, are all done within a single subsampling iteration.
After 1000 subsampling iterations, dRSA results are averaged over iterations.
dRegionof interest (ROI)-baseddRSA results for V1. Thedashedblack line indicates
dRSA results for the exact same analysis as presented in Fig. 2a, but without the
temporal subsampling and realignment steps, i.e., dRSA analysis was performed
directly on the original 5-s stimuli (see Supplementary Fig. 3 for other ROIs and
statistical significance). The gray lines indicate single 3-s subsampling iterations,
while the full black line indicates the average over 1000 subsampling iterations
(equal to V1 in Fig. 2a).
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Statistical analysis
Before group-level statistics (and plotting), we Fisher Z-transformed all
beta weights to get normally distributed values56. Because statistical
testing of the dRSA lag-plots involves many comparisons (at each lag
time-point), we performed group-level nonparametric permutation
testing with cluster-based correction for multiple comparisons57, as
implemented in Fieldtrip’s ft_timelockstatistics.m function,
with themethodparameter set to “montecarlo”.Weused t-values from
a one-sided t-test as test statistic (i.e., to test whether beta weights are
significantly larger than zero), we used the sum over the t-values
belonging to a cluster of significant time points as ameasure of cluster
size, and we ran the permutation 25,000 times for each analysis. We
selected a lenient and strict threshold for significance, with a single-
sample threshold at p < 0.01 or p < 0.001, combined with a cluster-size
threshold at p <0.05 or p < 0.01, respectively. In the main results
(Fig. 2a), lenient significant intervals are indicated by thick horizontal
bars with colors matching the respective ROI line plots, while strict
significant intervals are indicated with thin black or white horizontal
bars inside the colored bars. Only significant clusters larger than what
can be expected by chance survive this procedure.

Simulations
The goal of the simulations was to find a dRSA pipeline that was
effective at testing only a singlemodel of interest while regressing out
other models with which the model of interest might share variance,
and while regressing out the model of interest itself at distant (future
or past) time points (i.e., to reduce effects of temporal autocorrela-
tion). Principal component regression (see subsection Dynamic
representational similarity analysis) appeared most effective at
achieving this goal. Note that to prevent double-dipping58, we firstfine-
tuned the dRSA pipeline described above on the simulated data,
before subsequently applying the exact same pipeline to the real
neural data.

Each simulated neural RDM consisted of a single model RDM at
zero lag. We first ran dRSA using a simple correlation for each tested
model, i.e., the correlation coefficient was used as a similarity measure
(Fig. 8a, see also Supplementary Fig. 5 for shared variance, i.e., corre-
lation squared). Note the nonzero off-midline correlations, which
confirm a complex relationship between and within models across
time. This complex structure of shared variance limits unambiguous
inference if the simple correlation is used for dRSA. Subsequently, the
exact dRSApipeline as described above using PCRwas applied on each
of the simulated neural RDMs (Fig. 8b), which indicated that PCR is
effective in extracting only the model of interest from the simulated
neural RDM, while largely regressing out the other models. Note that
not all models are completely regressed out, which is most obvious
when motion models are tested on simulated data in which accelera-
tion models are implanted. However, it is important to note that
shared variance with another model is only problematic if that other
model itself explains variance in the neural data. In other words, if
modelX explains variance in the neural data, andmodel Ydoes not, the
observed results for model X cannot be explained by it sharing var-
iance with model Y. Importantly, any of the remaining variance of a to-
be-regressed out model Y that we observed while testing another
model X (e.g., acceleration when testing motion; Fig. 8b), could not
explain the main results for model X (e.g., motion; Fig. 2), as model Y
itself did not explain enough of the neural data (this is the case for all
models that have not been fully regressed out).

We performed two additional simulations to further test the
effectiveness of PCR. First, we combined the first 3 models (pixel-wise,
optical flow magnitude, and optical flow direction) with a random
dynamic neural RDM (weight ratio 1:1:1:3) to create a single simulated
neural RDM (Fig. 8c). The random neural RDM consisted of 91 ×Ntime

random values drawn from a uniform distribution, such that there was
no temporal autocorrelation. As in the main dRSA pipeline, we tested

each of the models separately, while regressing out the other 9 using
PCR. The rationale for selecting the first 3models was that the first two
models (pixel-wise and optical flow magnitude) have a stronger
representation in the real neural signal (Fig. 2), whereas the third
model (optical flow direction) shows a predictive representation.
Additionally, as all three are based on video data, they might be more
likely to share variance. We wanted to ensure that the predictive
representation in the real neural signal for optical flow direction could
not be caused by the presence of a representation for the first two
models in the neural signal. Importantly, this analysis confirmed that
PCR is effective in extracting a single model from the combined
simulation while regressing the other two. Second, we ran dRSA on
optical flow direction as a simulated and tested model, but with dif-
ferent levels of added random noise (1:0, 1:1, 1:5, and 1:10) to create the
simulated neural RDM (Fig. 8d). This analysis showed that simply
adding more noise (i.e., variance unrelated to the model RDM of
interest), can explain the values typically observed in the real neural
data (Fig. 2).

Additionally, using the simulated data we explored several, per-
hapsmore tractable, alternative approaches such as partial correlation
to deal with the large amount of (covarying) predictor RDMs. Two
example alternatives are illustrated in Supplementary Fig. 4. For the
first approach based on partial correlation, peak latencies of the cross-
model correlations were extracted from Fig. 8a, after which a partial
correlation that included themodel of interest at a certain timepoint tx,
as well as all other models at their respective peak latencies in the
cross-correlation with the model of interest (Supplementary Fig. 4b).
Since some cross-model correlations displayed two peaks (e.g., view-
invariant body posture and motion; see Fig. 8a), a maximum of 2 peak
latencies were selected for each to-partial-out model. The second
approach based on partial correlation included besides the model of
interest all other models after downsampling (250ms; Supplementary
Fig. 4c). The simulations illustrated in Supplementary Fig. 4 indicate
that both alternatives perform worse at attenuating effects of co-
varying models, and in some cases, they produce quite extreme
(spurious) negative values, likely due to multicollinearity.

Peak latency
Peak latencies were defined as the timing of the highest peak in the
dRSA curves (Fig. 2a), separately for the negative (−1 to 0 s) and posi-
tive (0 to −1 s) intervals for the optical flow direction model (as we
observed two distinct peaks), or at once for the whole −1 to 1 s time
interval for all other models. Given that peak latencies of the dRSA
curves are difficult to estimate on a single-subject level (i.e., due to
noise causing multiple peaks, similar to ERP/ERF analyses), we report
the peak latencies of the subject-average dRSA curves in Table 1 and
used retrieved jackknifed peak latencies for statistical analyses23,24.
Specifically, across 22 iterations we excluded one subject from the
dataset, averaged dRSA curves over the remaining 21 subjects, and
estimated the peak latency for this average dRSA curve, until each
subject was excluded once, thus resulting in 22 jackknifed peak
latencies. A problem with jackknifing is that because each jackknifed
value now represents the average over n−1 subjects, the standard
deviation across these values is artificially small. In order to use these
jackknifed values in standard parametrical tests, we retrieved single-
subject latency estimates by subtracting each individual jackknifed
value multiplied by n−1, from the grand average jackknife value mul-
tiplied by n24. Essentially, rather than representing true individual
subject dRSA peak latencies, these individual jackknifed values are a
measure of how much a given subject’s dRSA curve influenced the
subject-average peak latency, while their average is a good estimate of
the subject-average peak latency (Table 1). Based on visual inspection
of the main dRSA curves (Fig. 2a), we performed two sets of posthoc
analyses on these jackknifed peak latencies. First, to test for a differ-
ence between pixelwise and optical flowmagnitude, we performed an
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ANOVAwith factorsmodel (2) and ROI (4), wherewe included only the
first 4 ROIs for which dRSA values were significant in the main analysis
(Fig. 2a), as one could argue that peak latencies are unreliable if the
dRSA curve itself is not significant. Second, we performed a similar
ANOVA with factors model (3) and ROI (4), to test for a difference in
predictive peak latency for optical flow direction, view-dependent
body motion, and view-invariant body motion. Effect sizes were
computed as partial eta squared (ηp

2).

Representational spread (RS)
The pyramidal shape of dRSA curves (Fig. 2a) could suggest a tem-
porally extended (i.e., sustained) neural representation that is not
completely overwritten by new visual input from subsequent video
frames. However, this shape is partly explained by the temporal
autocorrelation of models (Fig. 8a), which also affects the shape of the
dRSA curve resulting from the PCRmethod (Fig. 8b).We quantified the
relative amount of information spread surrounding a dRSA peak,
above and beyond what can be accounted for by the model auto-
correlation, bymeans of a representational spread index (hereafter RS;
Fig. 3a). Specifically, we first normalized for each model both the
observed and the simulated dRSA curves by dividing each by its
maximum (i.e., peak) value. Next, we aligned the curves such that they

both had a peak latency of zero and a peak value of 1. Last, we sub-
tracted the simulated curve fromtheobserved curve to retrieve theRS.
As the RS relies on an accurate estimate of dRSA peak, we followed the
exact same jackknife procedure described above for peak latencies.
For this analysis, the simulated dRSA curve was computed using the
PCR pipeline as for Fig. 8b, thus capturing the pure effect of themodel
autocorrelation in terms of temporal information spread in the dRSA
curve. Note that there is another source of autocorrelation, i.e., in the
neural data. However, one needs to remember that the neural RDM is
computed by first averaging ~36 trials of the exact same video, before
computing pairwise dissimilarity between all 14 stimuli. By averaging
over ~36 trials any neural autocorrelation that is not stimulus-related is
canceled out. Any remaining neural autocorrelation is thus related to
the stimuli, which is exactly what we are interested in. That is, if this
stimulus-related neural autocorrelation is stronger than can be
explainedby themodel autocorrelation, then itmust be that theneural
signal contains a spread-out representation of the model.

Searchlight on cortical surface
To explore the spatial dRSA pattern across the cortical surface, we
performed a whole-brain analysis. For this analysis, we parcellated the
15,000 sources in 400 parcels according to the Schaefer atlas59, for
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Fig. 8 | Simulations. a Correlation as similarity measure for dynamic representa-
tional similarity analysis (dRSA). Colors indicate separate neural simulations of
individual model representational dissimilarity matrices (RDMs). Columns indicate
which model was tested. These results illustrate the effect of shared variance
between various models and the effect of temporal autocorrelation within a given
model. b Regression weight as similarity measure for dRSA using principal compo-
nent regression (PCR; see the “Methods” section for details). In short, simulated
neural RDMs are exactly the same as in (a), but at the final step in dRSA (i.e., com-
paring neural and model RDMs) all models are included in a single regression, and

only the beta weight of the testedmodel (columns) is illustrated. Importantly, these
results indicate that PCR is effective at extracting only themodel of interest from the
simulated neural RDM, while largely regressing the other models. c The first 3
models (pixel-wise, optical flowmagnitude, and direction) are combined to create a
single simulated neural RDM. In each dRSA analysis, only a single model is tested
(colors), while the others are regressed out using PCR (as in b). Importantly, PCR is
effective in extracting a single model while regressing the other two. d Same PCR
analysis as (b) and (c), with optical flowdirection as simulated and testedmodel, but
with different implant-to-random noise ratios to create the simulated neural RDM.
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which the parcels aremore similar in the number of vertices compared
to the HCP atlas (i.e., average ± std for HCP and Schaefer400 are
40 ± 33 and 36 ± 17, respectively). For each parcel, we computed dRSA
as described above. To reduce computation time, we only computed
dRSA at the neural-to-model time lag at which we observed a peak in
themain ROI-based results (Fig. 2a), resulting in 9 separate searchlight
analyses (i.e., 2 peaks for optical flow direction, and 1 peak for all other
models; see Fig. 2b). For creating the cortical sourcemaps, all vertices
belonging to a certain parcel were given the same dRSA beta weight,
hence giving each of 15,000 sources a dRSAweight. These values were
subsequently loaded into the Brainstorm GUI database and spatially
smoothed using a Gaussian kernel with a full width at half maximumof
2mm. We tested whether the dRSA beta weight at each of the 400
parcels was significantly larger than zero using one-sided t-tests and
used FDR correction at p < 0.05 to correct for multiple comparisons
across the 400 parcels. Figure 2b illustrates the FDR-corrected
source maps.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processedMEGdata are available under restricted access,
as the authors are still using this MEG dataset for a successive project.
Access can be obtained by request to the corresponding author. As
soon as the authors are finished with the dataset, it will be made
publicly available. However, note that a complete dataset of a single
subject is already available atOSF such that the analysis pipeline canbe
tested (https://doi.org/10.17605/OSF.IO/ZK42F). Source data are pro-
vided with this paper, and available on the OSF at https://doi.org/10.
17605/OSF.IO/ZK42F. Last, this study made use of two open-source
atlases implemented in Brainstorm: The Human Connectome Project
(HCP) atlas52 and the Schaefer atlas59. Source data are provided with
this paper.

Code availability
All custom-written analysis scripts, the experiment script, and the sti-
muli used for the here presented results are freely available at https://
doi.org/10.5281/zenodo.794121260.
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