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Deep learning-based incoherent holographic
camera enabling acquisition of real-world
holograms for holographic streaming
system

Hyeonseung Yu 1,5, Youngrok Kim 2,5, Daeho Yang 1,4, Wontaek Seo1,
YunheeKim1, Jong-YoungHong1, HoonSong1, Geeyoung Sung1, Younghun Sung1,
Sung-Wook Min 2 & Hong-Seok Lee 3

While recent research has shown that holographic displays can represent
photorealistic 3D holograms in real time, the difficulty in acquiring high-
quality real-world holograms has limited the realization of holographic
streaming systems. Incoherent holographic cameras, which record holograms
under daylight conditions, are suitable candidates for real-world acquisition,
as they prevent the safety issues associated with the use of lasers; however,
these cameras are hindered by severe noise due to the optical imperfections of
such systems. In this work, we develop a deep learning-based incoherent
holographic camera system that can deliver visually enhanced holograms in
real time. A neural network filters the noise in the captured holograms,
maintaining a complex-valued hologram format throughout the whole pro-
cess. Enabled by the computational efficiency of the proposed filtering strat-
egy, we demonstrate a holographic streaming system integrating a
holographic camera and holographic display, with the aim of developing the
ultimate holographic ecosystem of the future.

For several decades, holographic displays have been considered
primary candidates for future 3D displays, as they provide natural
viewing experiences that support physically accurate 3D cues,
including accommodation cues1. Moreover, holographic displays can
be realized in both slim-panel displays and augmented reality (AR)
and virtual reality (VR) near-eye displays2,3. Low image quality and
narrow eye boxes have long been major issues in holographic dis-
plays; however, considerable progress has been achieved in recent
studies2,4–7. In contrast to the significant advancements in holo-
graphic displays, their counterpart, namely, the acquisition of holo-
grams of the real world, has been less explored. Moreover, little

effort has been devoted to establishing a connection between holo-
gram capture and display.

As holographic displays require hologramdata as input, twomain
approaches are available for generating holograms of real-world
scenes. The first approach involves capturing RGB-D images and cal-
culating computer-generated holograms (CGHs)8; however, this
method is heavily dependent on the accuracy of the depth map
extraction process9–11 or depth map measurements12. Improving the
accuracy of a depth map typically requires extensive measurements
and complex computations, which hinder the acquisition of high-
quality depth maps in real time13. The second approach involves
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directly capturing real-world holograms using holographic cameras.
Holograms are typically captured using coherent laser light sources14;
this approach has been particularly successful in biomedical imaging15.
However, to capture real-world objects, the use of laser light is not
practical as lasers present significant safety issues, especially when
capturing human faces. Therefore, the development of an incoherent
holographic camera16,17 that captures real-world holograms using safe
daylight is a promising path for the acquisition of real-world
holograms.

Self-interference incoherent digital holography (SIDH) has been
studied for decades following the incoherent hologram capture
method proposed in ref. 18. The basic working principle of SIDH is to
divide the light which is emitted or reflected from a single point into
two waves using a wavefront division device and to modulate them
differently to ensure that they can interfere at the image sensor plane.
This concept is based on the fact that two split waves remain mutually
coherent even under incoherent illumination because they originate
from the same object point. SIDH has been implemented in various
system configurations based on a polarization division approach17,19 or
the spatial division approach16,20–22. The polarization division-based
approaches represented by Fresnel incoherent correlation holography
(FINCH)19,23,24 have been actively studied in biomedical imaging, and
the recent developments have led to the commercialization of the
system25. In contrast, extending the usage of SIDH systems to daily-use
cameras, which is themainmotivation of our work, has been relatively
unexplored due to the difficulty of achieving a similar field of view
(FoV) to general-purpose 2D cameras. We note that the SIDH systems
optimized for imaging microscopic samples cannot be simply trans-
formed into systems for imaging life-sized objects because the two
systems have different optimal configurations: the former is designed
to achieve high lateral resolutions26 while the latter requires a mod-
erately large FoV. Moreover, satisfying both requirements is challen-
ging due to the trade-off between lateral resolution and FoV; a gap
between thewavefront division device and the image sensor should be
reduced to increase FoV, however, such a modification leads to the
decreased lateral resolution26.

Even if we consider only the system design choice of optimizing
FoV at the expense of the lateral resolution, reducing the lateral
resolution does not immediately lead to practical FoV in SIDH systems
because the maximum FoV is limited by the minimum achievable gap
between the wavefront division device and the image sensor. Con-
ventional wavefront division devices such as liquid crystal on silicon
(LCoS) spatial light modulators (SLMs)27 or a combination of a sphe-
rical mirror and beam splitter16 are implemented with the reflection
geometry; therefore, the minimum possible gaps are still on the order
of few centimeters due to the physical limitation of placing the optical
components. Thus, some attempts to capture macroscopic 3D
scenes16,21 beyond the microscopic regime have been investigated;
however, the FoV is limited to less than 3 degrees, mainly due to the
large gap between the wavefront division device and image sensor.

Considering that a large FoV is essential for capturing life-sized
objects, the recent development of SIDH systems based on
geometric-phase (GP) lenses28,29 appears to be the most promising
direction for realizing general-purpose 3D cameras because the wide
aperture of the GP lens and its compatibility with the transmission
geometry enables an increased FoV. Furthermore, the negative and
positive focal length pair induced by the GP lens supports reasonable
lateral and axial resolutions (see Supplementary Information Sec-
tion 2.3). However, optical imperfections in the GP lens introduce
severe image degradation issues. Furthermore, correcting optical
aberrations and imbalanced color weights at the system level is dif-
ficult because the GP lens is a passive component. Therefore, the
computational approaches to overcome the image degradation issue
should be developed to employ the GP lens-based SIDH systems for
capturing daily 3D scenes.

In this work, we demonstrate a fully holographic streaming sys-
tem, leveraging an incoherent holographic camera to acquire high-
quality 3D holograms for holographic displays. Our work proposes a
high-quality real-time holographic camera system that overcomes the
poor image quality problem of incoherent holographic cameras that
are designed for large FoVs by using a deep learning-based filtering
technique.We consider GP-SIDH as the baseline system for the camera
hardware and demonstrate that the employed neural network effi-
ciently removes noise and enhances the image quality of incoherent
holograms of various real-world scenes, including human faces. The
proposed network is designed to operate with the complex-valued
hologram data format throughout the processing pipeline, thus
ensuring that the final outputs can be readily shown on holographic
displays without any further CGH calculations. As the neural network
handles single-shot holograms,multishotmeasurements for denoising
via temporal averaging are not necessary. It should be noted that
despite the development of single-shot capture systems30–33, denoising
has typically been performed via multishot measurements in SIDH
systems34–36. Thus, by exploiting the real-time capture and processing
capabilities and incorporating the high visual quality of the proposed
deep learning-based incoherent holographic camera system, we rea-
lize a real-time holographic streaming system that acquires and dis-
plays real-world scenes on a holographic display based solely on
hologram data. Our demonstration presents possibilities for devel-
oping practical holographic streaming systems or holographic tele-
conferencing systems.

Results
Deep learning-based incoherent holographic camera
As a key component in holographic streaming systems, we first
demonstrate a deep learning-enabled, high-quality incoherent holo-
graphic camera system, i.e., DeepIHC. Our incoherent holographic
camera system consists of GP-SIDH hardware28 and a hologram filter-
ing module, as shown in Fig. 1a. The GP-SIDH, in which the recording
plane matches the sensor plane, is used to capture a raw hologram as
shown in Fig. 1b. To reconstruct the object image, we propagate the
raw hologram to the object plane using the angular spectrummethod,
as shown in Fig. 1c, and compute the intensity image, as shown in
Fig. 1e. The poor image quality of the reconstructed image suggests
that the raw hologram (Fig. 1b) captured with the GP-SIDH system
alone cannot provide practically usable 3D data (see Supplementary
Information Section 1 for more details on this system). The degraded
image quality can be attributed to the hologram formation model.
Captured incoherent holograms can be described as incoherent
summations of impulse response functions from individual points in
the captured 3D object. However, the impulse response functions in
GP-SIDH systems have spatial and depth dependencies, which are
highly challenging to characterize experimentally (see Supplementary
Information Section 1.2). Moreover, even if we can acquire this infor-
mation, 3D information about the target 3D object is required in the
inverse correction of the optical aberrations, and this information is
difficult to obtain. In addition to the image degradation introduced by
the spatial variance in the impulse response functions, we observe that
the signal-to-noise ratio (SNR) significantly decreases as the scene
complexity increases (see Supplementary Information Section 1.2). To
address the image degradation issue faced by existing incoherent
holographic cameras, we propose a deep learning-based hologram
filtering method as a postprocessing module of DeepIHC. Our main
goal is to generate complex-valued holograms based on the captured
holograms by using the neural network such that the focal images
reconstructed from the generated holograms produce high-quality
images while accurately reproducing the depth information. The
proposed neural network outputs a noise-filtered hologram, as shown
in Fig. 1d, and the image reconstructed from the filtered hologram
shows a dramatically improved image quality, as shown in Fig. 1f.
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Furthermore, while the identity of the human face in the focal image
reconstructed from the raw hologram is almost unrecognizable in
Fig. 1g, the face in the image obtained using the DeepIHC system is
clear, as shown in Fig. 1h. Considering that the quality of the holograms
acquired with the previous GP-SIDH system alone does not meet the
practical requirements of 3D cameras, we can claim that the deep
learning-based hologram filtering method enables the acquisition of
practical 3D data that were not previously accessible.

Our proposed network architecture for hologram filtering is
shown in Fig. 2a. The neural network is specifically designed to operate
in a hologram-in hologram-out manner; the data formats of the input
and output are both set to 6-channel 2D images, which consist of
stacks of the real and imaginary parts of 3-channel color holograms.
Whereas most denoising algorithms are applied to reconstructed 2D
focal images37–41 or intermediate light field representations42, the pro-
posed fully holographic processing pipeline provides two notable
advantages: (1) the filtered output is a complex-valued hologram,
which can be readily shown on holographic displays, and (2) pure
holographic processing removes the need for intermediate repre-
sentations such as RGB-D or light fields, thus reducing the computa-
tional complexity. To the best of our knowledge, our denoising
algorithm is the first neural network proposed for denoising inco-
herent holograms that are acquired by incoherent holographic
cameras.

We train the neural network via supervised learning, and we
employ 2D images displayed on a 2D tablet as the reference 3D objects
to acquire the dataset. Given that depth map acquisition is a challen-
ging task that is actively being studied11,43, our approach enables access
to both the precise depth information of the given object and the
ground-truth focal images required to compute the loss function, as
the depth profile of the scene can be varied by simply placing the 2D
tablet at different depth positions. It should be noted that employing

holographic displays to generate reference 3D images is not a viable
option because most holographic displays operate under coherent
illumination conditions, which contradicts the working principle of
incoherent holographic cameras. Onemajor drawback of using fronto-
parallel images is that the captured objects in the dataset contain only
simple, flat depth profiles, which can lead to inaccurate results when
handling occluded boundaries or multidepth scenes. However, the
results indicate that this simplified approach can be extended to real-
world scenes with complex depth profiles.

Figure 2b illustrates the proposed training procedure. When the
target depth range is set to [30 cm, 48 cm] from the camera, a
1024 × 1024 hologramHcapture of a target image displayed at a distance
di is captured and propagated to the central plane (dc = 39 cm) using
the depth-corrected angular spectrummethod (d-ASM, see Methods).
It should benoted that thehologram ispropagated to the central plane
regardless of the object depth. We chose this strategy because we
cannot access the depth information of the captured objects during
the validation stage.

Hcenter = f d�ASM ðHcapture,z =dcÞ: ð1Þ

This approach significantly reduces the receptive field size
required by the neural network8 and resolves the depth mismatches
among the color channels. Then, a 720 × 720 subregion is cropped
from the full hologram to obtain Hcenter. This cropping process con-
siders two factors: the effective region of interest (ROI) of the system,
which is limited to ~600× 600 (as shown in the later sections), and the
sufficient margin of 120 pixels, which is set to prevent boundary arti-
facts that may occur during ASM propagation when diffracted beams
diverge and contribute to nearby pixels. For the propagation within
the [30 cm, 48 cm] range, the maximum expansion corresponds to 30
pixels in our system; however, we set themargin rather aggressively to

Fig. 1 | Principle of the deep learning-based incoherent holographic camera
(DeepIHC). a Schematic of the deep learning-based incoherent holographic cam-
era system. A hologram acquired by the geometric-phase self-interference inco-
herent digital holography (GP-SIDH) hardware is filtered by the proposed neural
network. The filtering process operates in real time, and the output filtered holo-
grams provide dramatic visual quality enhancements. b Raw hologram acquired by
the GP-SIDH system. c Rawhologrampropagated to the central plane of the object.

d Filtered hologram inferred by the neural network. The real and imaginary parts
are shown for only the green channel in b-d. Re: real, Im: imaginary. e Image of a
bear doll reconstructed from the raw hologram in c. f Image of a bear doll recon-
structed from the filtered hologram in d. The proposed system can capture human
face holograms. g Image of a human face reconstructed from the raw hologram.
h Image of a human face reconstructed from the filtered hologram.
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show thatDeepIHC can handle a resolution of 720 × 720 in real time, as
most high-qualitymedia files support at least 720p resolution. The real
and imaginary parts of the cropped Hcenter are then stacked and fed
into the neural network as input. The network outputs a hologramHout

with the same format as the input hologram, andHout is propagated by
an additional distance do = di − dc to generate Hrecon, which represents
the optical field at di.

Hrecon = f ASM ðHout , z =doÞ ð2Þ

It should be noted that we propagate Hout using the conventional
ASM in this step, and all the color channels have the common propa-
gation depth of do. Finally, we compute the perceptual loss44 between
the target image and the focal image Irecon = ∣Hrecon∣

2 reconstructed at
depth di.

lpcp =
1

Wj,kHj,k

XWj,k

x = 1

XHj,k

y= 1

ϕj,k Itargeti

� �
x,y

� ϕj,kðIreconÞx,y
� �2

: ð3Þ

where ϕj,k is the feature map obtained by the k-th convolution layer
before the j-th maxpooling layer in the VGG-19 network44. Wj,k and Hj,k

denote the dimensions of the featuremaps.We use the activation from
the VGG3,3 convolutional layer. Please refer to Supplementary
Information Section 1.3 for the detailed procedure involved in
matching the target image and Irecon. The neural network is trained
for 120 hwith 400epochsusing theAdamoptimizer, and thebatch size
is set to 1.

To validate the trained neural network, we first test DeepIHC on a
validation dataset consisting of planar images, as shown in Fig. 3. The
images displayed on the tablet at various depths are presented in
Fig. 3a, d, m and p, and their depths are indicated in the upper left
corners of the images. Figure 3b, e, n, q presents the images recon-
structed from the raw holograms at the corresponding depths using

d-ASM. Each color channel is separately renormalized to the range
[0, 1] to balance the color channels. Compared with the target images,
the reconstructed images from the raw holograms have poor image
contrast and speckle noise, increasing the difficulty of perceiving fine
details.

Figure 3c, f, o, r presents the images reconstructed from the
filtered holograms acquired by DeepIHC. The proposed deep
learning-based filtering method successfully restores the color
appearance and drastically increases the image contrast in each
image. The peak signal-to-noise ratio (PSNR) and structural simi-
larity index measure (SSIM) also indicate that significant
improvements are achieved over the method of reconstructing
images according to the raw holograms. Although DeepIHC pro-
vides exceptional image enhancements, we observe that the
quality of the image boundaries is inferior to that of the central
region and that some details are removed. For example, the boat
in the upper left corner of the ocean image in Fig. 3m is not pre-
sent in the output of the proposed method in Fig. 3o. Since this
detail is also missing the raw holograms in Fig. 3n, this tendency
indicates that some information must be physically captured for
the network to generate meaningful information. Moreover, the
spatial resolutions of the images reconstructed using DeepIHC are
slightly inferior to those of the ground-truth images. This result
can be explained by the fact that the original holograms do not
capture the target objects at high resolution due to the resolution
limit of the GP-SIDH system (see Supplementary Information
Section 2.1 and 2.2), which suggests that high spatial frequency
signals must be physically captured for the neural network to
restore fine details. In addition, the neural network should not rely
heavily on image features for denoising because the captured
holograms contain diffraction patterns rather than exact image
features, and the main role of the neural network is to remove
noise as opposed to generating images. Thus, we evaluate whe-
ther the neural network shows good denoising performance when

Fig. 2 | Hologram filtering neural network. a Neural network architecture for
filtering holograms. The network contains one strided convolution block, nine
residual blocks and one transposed convolution block. b Training procedure of the
neural network. The real and imaginary parts of the holograms are presented only
for the green channel. GPGP lens, P linearpolarizer,dcdistancebetween the central

plane and GP, di distance between the target image and GP, ASM angular spectrum
method, d-ASM depth-corrected ASM. c, d Training dataset examples. c Reference
target images displayed on a 2D display at various depth positions and d the cor-
responding captured holograms.
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the validation image contains image features that did not appear
during training, and we observe a similar improvement in the
PSNR (see Supplementary Information Section 3.2).

In addition to the enhanced image quality, the essential and most
important feature that DeepIHC should provide is the accurate
reproduction of the depth information of the input hologram. To
verify this capability, we test the focal stack computed from the
holograms output by DeepIHC, as shown in Fig. 4d and h. For the

target image placed at d = 48 cm in Fig. 4a, the propagated raw holo-
gram is shown in Fig. 4b and the filtered hologram obtained using
DeepIHC is shown in Fig. 4c. Then, the images are reconstructed from
thefiltered hologramat three different depths, as shown inFig. 4d. The
image is best focused at the same depth as the target image, namely, at
d = 48 cm (Fig. 4a), and the image gradually becomes blurred as the
distance between the focus and image depth increases. Similarly, for
the target image placed at d = 30 cm in Fig. 4e, the propagated raw

Fig. 3 | Validation results of the hologram filtering neural network.
a, d, m, p Target 2D validation images displayed at various depths. The object
depths are specified in the upper left corner of each image. g, j, s, v Captured raw
holograms. h, k, t, w Raw holograms propagated to the common depth dc.
i, l, u, x Filtered hologram obtained using the neural network. b, e, n, q Images

reconstructed from the raw holograms at the target object depths. c, f, o, r Images
reconstructed from the filtered holograms, which demonstrate exceptional quality
advantages over the images directly reconstructed from the raw holograms. The
resolution of each image is 600 ×600. The real and imaginary parts of the holo-
grams are shown for the green channel only.
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hologram and filtered holograms are shown in Fig. 4f and g, respec-
tively. Among the reconstructed images at three different depths
shown in Fig. 4h, the best focus is observed at the same depth as the
imaging target, namely, d = 30 cm (Fig. 4e). This result confirms that

DeepIHC accurately reproduces the depth information of the target
object. It should be noted that we do not provide any explicit depth
informationduring the network inference stage. This indicates that the
network preserves the phase information; the depth-dependent sig-
nals remain intact while the noise signals are effectively removed.

Capturing real-world holograms
We capture several real objects with the DeepIHC system to test
its generalizability beyond planar objects, and we find that our
system produces visually enhanced holograms for nonplanar
objects and multidepth scenes as well. Figure 1a shows our cap-
ture configuration; the real objects are placed within the [30 cm,
48 cm] depth range inside the FoV of the camera, and the objects
are illuminated using a desk lamp. Figure 5 presents the testing
results obtained for complex objects. For the mini statue scene
(Fig. 5a) and miniature house scene (Fig. 5h), the captured raw
holograms are propagated to the middle focus plane, and the
focal images to which only simple normalization was applied are
presented in Fig. 5e and l, respectively. The color reproduction in
the mini statue scene is very poor, and only a few objects are
observable in the miniature house scene. Figure. 5f and m present
the reconstructed images derived from the DeepIHC holograms at
the front, middle, and back focus. The front statue and back-
ground wall are separated by 15 cm in the mini statue scene, and
the dog and back wall are separated by 8 cm in the miniature
house scene. As the two scenes have different depth configura-
tions, the depth values used in the focal image reconstruction
process are indicated in the upper right corners of the images. For
the mini statue scene, the neural network successfully handles the
multidepth configuration without noticeable artifacts (Fig. 5f).
Furthermore, the color information in the colored checker back-
ground is considerably better than that in the raw hologram. The
enlarged views (Fig. 5g) exhibit clear defocus effects for the sta-
tues and the background. The neural network also successfully
handles a scene with a more complex depth profile in a shorter
depth range, as demonstrated by the miniature house scene
(Fig. 5m). The enlarged views (Fig. 5n) show that the dog (front),
ceiling light (middle) and round photo frame (back) are all accu-
rately reproduced at their corresponding depths. It can be stated
that DeepIHC reasonably accurately reproduces the color infor-
mation in real-world scenes by considering the fact that even
commercial 2D cameras produce different color appearances, and
that the neural network is trained on only the color profile of the
tablet screen.

Real-time holographic streaming system and its applications
Based on the developed DeepIHC system, we demonstrate a real-
time holographic streaming system that integrates DeepIHC and a
holographic display prototype and operates with a refresh rate of
21 Hz. To the best of our knowledge, this is the first time that real-
time acquisition and display of real-world holograms has been
demonstrated. Figure 6a, b presents a schematic and photograph
of the holographic streaming prototype, respectively. In our
holographic streaming system, high-quality holograms acquired
by DeepIHC are presented on the holographic display in real time.
A validation camera with a variable focus is placed at one of the
viewing positions of the holographic display to capture the dis-
played 3D scenes. Since the viewing area of the holographic dis-
play is limited to 5 mm, the displayed hologram is observed only
by the validation camera in the viewing zone; therefore, it looks as
if no image is displayed on the panel in the current photograph.
Figure 6d, e presents the validation images of a merry-go-round
music box scene that is captured by DeepIHC and shown on the
holographic display. The front horse figure is focused in the front
focal image, whereas the colored checker background is focused

Fig. 4 | Validation of the depth reproduction results of the hologram filtering
neural network. Target images at a 48 cm and e 30 cmwere captured by DeepIHC
to produce the raw holograms inb, f and filtered holograms in c, g, respectively. All
holograms are shown for the green channel only. d, h Images reconstructed from
the filtered holograms in c, g at different reconstruction depths. The night river
view is best reconstructed at 48 cm, and the sunflower scene is best reconstructed
at 30 cm, indicating that the object depths are accurately reproduced.
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Fig. 5 | Hologram filtering results for complex real objects. a, h Reference
photographs of the mini statue scene and miniature house scene, respectively.
b, i Captured holograms and c, j propagated raw holograms at dc. d, k Filtered
holograms output by DeepIHC. e, l Images reconstructed from the raw holograms

at the central object plane. f,m Front, middle, and back focal images reconstructed
from the filtered holograms and g, n their corresponding enlarged views. All
holograms are shown for the green channel only.
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in the back focal image. A reference photograph of the music box
is shown in Supplementary Fig. S16. Supplementary Video 1 shows
the real-time acquisition of the holographic images of the static
music box with a variable focus. The frame rate of the validation
camera was set to 2 Hz to ensure a sufficient exposure time due to
the limited luminance of the holographic display. The accurate
reproduction of the focal information on the holographic display
is also observed in the video. Supplementary Video 2 shows the
real-time acquisition of the holographic images for the moving
music box. The camera frame rate was set to 30 Hz by increasing
the gain level to demonstrate the real-time acquisition ability of
the proposed system. Time-dependent noise signals are clearly
observed in this case. The noise signals mainly originate from
DeepIHC; however, noise is also induced by the high gain level.
The lower noise level in Supplementary Video 1 than in Supple-
mentary Video 2 suggests that the application of time-consistent
denoising approaches45,46 might reduce the flickering noise in the
real-time streaming system.

After successfully demonstrating the proposed holographic
streaming system, we explored possible applications of our pro-
posed system. We note that teleconferencing is one of the most
exciting applications of DeepIHC, as teleconferencing involves
incoherent illumination conditions. Despite their practical
importance, teleconferencing applications have not been exten-
sively investigated in the context of holographic imaging due to

safety issues regarding the use of laser lights in coherent holo-
graphic imaging systems. As the DeepIHC system does not have
these safety concerns, we demonstrate the real-time acquisition
of human face holograms, as shown in Fig. 7. Supplementary
Video 3 shows the video footage of this real-time acquisition. The
details of the model’s face are clearly resolved in the DeepIHC
results, whereas the identity of the model is difficult to recognize
based on the raw hologram results. In addition to the time flick-
ering, which is similar to that observed in Supplementary Video 2,
another aspect of DeepIHC is present: the image quality notably
decreases as the face moves farther from the camera. This quality
reduction occurs because the amount of light reflected from the
face decreases as the distance between the face and the lighting
increases. It should be noted that the target objects in our training
dataset maintain the same brightness regardless of the object
depth. Therefore, this trend indicates that the neural network
must be trained on various lighting and capture conditions in the
future. The raw holograms acquired in Supplementary Video 3 are
also saved to a disk in parallel with the real-time streaming. By
using the recorded hologram video, the videos of the focal images
at three different focal depths are reconstructed for Supplemen-
tary Video 4. We observe that the in-focus plane changes as the
face moves toward and away from the camera.

When the captured holograms are employed in AR applica-
tions, the introduction of editing can greatly expand their use,

Fig. 6 | Holographic streaming system. a Schematic of the holographic streaming
system. P polarizer, GP geometric phase lens, CL collimating lens, FL field lens.
b Photograph of the holographic streaming system prototype. c Real-time holo-
gram processing pipeline. The validation camera is placed in the viewing zone to

capture the d front and e back focal images of the displayed hologram. Enlarged
views of the horse figure and colored checker background are presented below the
focal images.
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Fig. 7 | Real-time face capture demonstration. a Photograph of the real-time
capture demonstration. b, g Captured holograms and c, h propagated raw holo-
grams of the human face at the near and far positions, respectively.d, i Face images
reconstructed from the raw holograms in c, h. e, j Filtered holograms obtained by
using the neural network and f, k the corresponding reconstructed human face

images at the near and far positions, respectively. l Hologram editing process. The
filtered hologram output by DeepIHC is propagated to 25 cm in front of the face,
and an artificial letter image is superimposed. m Resulting edited hologram. The
images reconstructed from the edited hologram when the focus is set at n the
letters and o the face. All holograms are shown for the green channel only.
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such as in face augmentation, subtitle display and user interface
presentation tasks. While the mixing of captured real-world
holograms and artificial 3D objects requires in-depth investiga-
tions and is beyond the scope of this paper, we present a pre-
liminary result of modifying the captured holograms with a simple
text overlay. We propagate the hologram to 25 cm in front of the
face and place the precomputed artificial letter images so that
they occlude the face, as illustrated in Fig. 7l. This process does
not violate the hologram formation model, as the contributions
from point sources are incoherently summed. The images recon-
structed from the edited hologram (Fig. 7m) at the text plane
(Fig. 7n) and face plane (Fig. 7o) show that the captured hologram
and artificial images are seamlessly blended.

Discussion
In this work, we demonstrate a holographic streaming system as a step
toward developing the ultimate holographic ecosystem in the future.
As the key component in the streaming system, we propose a deep
learning-based incoherent holographic camera system that filters noise
and enhances the visual quality of incoherent holograms at a refresh
rate of 21 Hz. We validate the enhanced visual quality of the images
produced by this system for various 3D scenes, including planar pho-
tographic images placed at various depths and sceneswithmulti-depth
objects. Since the proposed system is designed to output complex
holograms, the filtered holograms can be shown on holographic dis-
plays with a simple encoding step. Moreover, we demonstrate the
capture-to-display pipeline in real time, and the use of incoherent
illumination allows for the acquisition of human face holograms.

Several interesting issues should be considered to improve the
performance of the holographic streaming system. Although we
drastically improve the image quality of the incoherent holographic
camera, the hardware system should be enhanced so that it can be
widely applied as a practical 3D camera. The low spatial resolution of
the system due to the limited aperture and sensor pixel density
reduces the resolution of the fine details in the acquired 3D scenes. To
address these issues, we can employ multiple cameras to increase the
effective aperture34 because the sensor area defines the aperture size
in the GP-SIDH system. Complementary metal-oxide semiconductor
(CMOS) cameras with higher pixel densities are also highly desirable,
as they prevent aliasing effects and can capture the high spatial fre-
quency components of incoherent holograms. To expand the current
depth range of [30 cm, 48 cm], a training dataset at an extended depth
range should be collected, and the low light collection efficiency of
the GP-SIDH system should be increased. Extending the depth range
requires a neural network with a larger receptive field; therefore, large
propagation kernels47 beyond those standard convolution layers used
in DeepIHC should be investigated. We also found that the diverse
depth configurations in real-world scenes are challenging to incorpo-
rate during neural network training due to the difficulty of extracting
precise depth information in arbitrary 3D scenes. Therefore, a new
strategy for collecting fully 3D real-world datasets with appropriate
RGB-D reference data should be devised.

In relation to holographic displays, several considerations should
be examined when implementing practical holographic streaming
systems. To support wide viewing angles or eye boxes in holographic
displays, spatial light modulators with high pixel densities must be
developed. These devices would require more dense information
about incoherent holograms, therefore the required amount of infor-
mation in practical settings and the handling of such data in streaming
systems should be investigated. This issue also motivates the further
optimization of the computational time of the neural network, as the
system is still slow considering that the neural network produces
720 × 720 holograms. Extending the proposed network to higher
resolution holograms is straightforward, as it is a fully convolutional
network. However, the inference time typically increases with the

input image size. Therefore, an optimal neural network architecture
must be developed to support the generation of full high-definition
(FHD) or ultra HD (UHD) holograms in real time. Although our work is
inspired by the recent development of learned hologram generation
methods5,6, we did not consider optimizing the filtered holograms for
specific holographic displays and instead focused on the different
goal; the acquisition of high-quality holograms of real-world scenes. In
future works, it would be interesting to explore how to optimize the
holograms output by DeepIHC for actual holographic displays. This
research direction poses a new challenge because the basic assump-
tion of the learned hologram generation method, namely, that the
depth information is already known, does not hold for incoherent
holographic cameras, as the depth information is implicitly encoded in
incoherent holograms.

Despite these challenges, we believe that our work demonstrates
an important milestone in holography research: the realization of a
holographic streaming system, showing that the existing 2D video
streaming systems can be realized in a fully 3D holographic manner.
Our work paves the way toward the ultimate holographic ecosystem
and would inspire the development of holographic broadcasting sys-
tems or holographic teleconferencing systems in the future.

Methods
GP-SIDH
The system configuration is shown in Supplementary Fig. S1. Our sys-
tem employs a custom-madeGP lens (ImagineOptix)with focal lengths
of fp = 1000 mm and fn = − 1000 mm, and ds is set to 6 mm. All holo-
grams are captured with single-shot measurements, while the original
GP-SIDH system in the reference28 averages multiple images to
increase the SNR.

Image reconstruction
The captured hologram H can be optically propagated similarly to a
conventional CGH, and the ASM48 is selected as the propagation
algorithm in our study. One notable difference between the holograms
captured by the GP-SIDH system and conventional CGHs is that each
color channel has a different propagation depth due to the chromatic
characteristic of the GP lens49–51. Therefore, we perform the d-ASM to
reconstruct a focal image at depth z as follows:

f d�ASM ðH, z; λÞ=
Z Z

F ðaðx, y, λÞeiϕðx,y,λÞHðx, yÞÞ

�Kðf x , f y, λ, zλðzÞÞei2πðf xx + f yyÞdf xdf y
ð4Þ

where

Kðf x , f y, λ, zλðzÞÞ= ei
2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðλf x Þ2�ðλf yÞ2

p
zλ , if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x + f

2
y

q
< 1

λ ,

0 otherwise

8<
:

and

zλr = z
λg
λr

, zλg = z, zλb = z
λg
λb

:

Here fd−ASM denotes the depth-corrected propagation operator; fx
and fy represent the spatial frequencies; F denotes the Fourier trans-
form operator; K denotes the transfer function. a(x, y) represents a
constant function; and λr, λg and λb denote the red, green and blue
wavelengths, respectively. The propagation distances are calibrated
with respect to the green wavelength. For the holograms in which the
depth mismatches between different color channels are already
compensated, the same propagation lengths should be used for each
color channel. In this case, we perform the conventional ASM, denoted
by fASM(H, z), where zλr = zλg = zλb = z.
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Dataset
Some example images in the training dataset are shown in Fig. 2c. In
our dataset capture process, we consider seven equally spaced
depth planes spanning 18 cm corresponding to d∈ [30 cm, 48 cm],
where d denotes the distance between the object and the GP lens.
Three sets of 250 holograms were acquired at each depth dk. Set 1
was collected by displaying 250 images Ii, i∈ [1, 250], from the
DIV2K dataset52 by applying only a simple cropping process and
capturing the corresponding holograms: Hð1Þ

i ðd =dkÞ. Set 2 is the
augmented dataset, which simulates a multidepth scene dataset
that was generated without capturing additional images. For each
hologram Hð1Þ

i ðd =dkÞ in Set 1, a subpatch is randomly selected from
the 5 × 5 grid; the remaining region is then replaced by a randomly
selected Hð1Þ

j ðd =djÞ, where i ≠ j and dk ≠ dj with a margin of 20 pixels
are used to obtain Hð2Þ

i ðd =dkÞ. The loss function is computed for
only the selected subpatch region in this case. The holograms in Set
3 are captured for images, Ii, i∈ [251, 500], in the DIV2K dataset.
These images contain null regions that help the network to effi-
ciently learn dark backgrounds. The height and width are inde-
pendently and randomly selected between 0.25 and 0.5, assuming
an image size of 1, to maintain reasonably sized dark regions. Var-
ious depths share the same set of target training images to ensure
that the network effectively learn the differences in images acquired
at various depths. The 2D images are displayed using a 12.9-inch
tablet screen. The total time required to capture the training
dataset was 12 h. The authors affirm that human research partici-
pants provided informed consent for publication of the images in
Figs. 1 and 7.

Holographic display system
Figure 6a presents a schematic diagram of the proposed holographic
streaming system.Theholographicdisplay systemwasbuilt basedona
flat-panel display type53. The lights from two LEDs (Doric Lenses Inc.
w55) was collimated by a custom lens (f = 50 cm) and focused by using
a custom field lens (f = 1 m). A commercial 10.1-inch LCD panel (BOE,
TV101QUM-N00-1850) with a resolution of 3840 × 2160 and a pixel
pitch of 58.05μmwas used to encode the complex hologram through
amplitude-only modulation54. For the given complex hologram Hproj,
the corresponding pattern Pproj to be shown on the holographic dis-
play was calculated as follows:

Pproj =ReðHprojÞ+ ∣Hproj ∣: ð5Þ

The viewing distance was set to 1 m, which is equal to the focal
length of the field lens. The two waves that originate from the two
LEDs were projected onto the left and right eyes, and the inter-
pupillary distance was adjusted by changing the separation between
the two LEDs. Although our display supports stereoscopic views, we
projected the hologram onto only a single viewpoint in our
demonstration.

Real-time processing
Figure 6c depicts the real-time hologram processing pipeline. The
camera (Lucid Vision Labs PHX050S-QNL) operates at 21 Hz, and
each frame is continuously acquired via the acquisition thread. The
raw data are uploaded to the GPU at this stage to reduce the pro-
cessing time. The hologram data are then retrieved using the
OpenCV CUDA module, which requires the deinterleaving compu-
tation shown in Eq. 9 in the Supplementary Information and bilinear
demosaic processing. The d-ASMoperation is then performed using
the cuFFT library to compute the hologram at the central plane. The
ASM computation process requires Fourier transformations, mul-
tiplication with the precomputed ASM kernels, and inverse Fourier
transformations. The next step involves the computation of the
filtered hologram using the neural network. The network inference

process uses the TensorRT module with fp16 precision, and the
execution time is 37 ms. Finally, the output hologram is encoded as
a suitable display format. The amplitude encoding of the complex
hologram is computed in the proposed holographic streaming
demonstration based on Eq. (5), and the focal image at the central
plane is computed for the face video capture demonstration. Both
encoding methods present negligible execution times of less than 1
ms. The final output images are displayed using the OpenCVmodule
with OpenGL support in the main thread. The overall data transfer
and processing time is ~40 ms, which is less than the acquisition
time interval of the camera (48ms). Therefore, the proposed system
operates at 21 Hz and is limited only by the frame rate of the camera.
Although the system latency is not exactly calibrated, a latency of
less than 100 ms is expected according to the time profile. The
system is implemented in C++ based on the interoperability
between TensorRT, CUDA, and OpenCV on a GPU, and all execution
times are measured on an NVIDIA RTX3080.

Data availability
All relevant data that support the findings of this work are available
from the corresponding author upon reasonable request.

Code availability
All relevant codes that support the findings of this work are available
from the corresponding author upon reasonable request. See Sup-
plementary Information Section 4 for pseudocodes.
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