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Evolvability-enhancing mutations in the
fitness landscapes of an RNA and a protein

Andreas Wagner 1,2,3

Can evolvability—the ability to produce adaptive heritable variation—itself
evolve through adaptive Darwinian evolution? If so, then Darwinian evolution
may help create the conditions that enable Darwinian evolution. Here I pro-
pose a framework that is suitable to address this question with available
experimental data on adaptive landscapes. I introduce the notion of an
evolvability-enhancing mutation, which increases the likelihood that sub-
sequent mutations in an evolving organism, protein, or RNA molecule are
adaptive. I search for such mutations in the experimentally characterized and
combinatorially complete fitness landscapes of a protein and an RNA mole-
cule. I find that such evolvability-enhancing mutations indeed exist. They
constitute a small fraction of all mutations, which shift the distribution of
fitness effects of subsequent mutations towards less deleterious mutations,
and increase the incidenceof beneficialmutations. Evolvingpopulationswhich
experience suchmutations can evolve significantly higher fitness. The study of
evolvability-enhancing mutations opens many avenues of investigation into
the evolution of evolvability.

All biological systems are to some extent evolvable. That is, they are
capable of bringing forth variation that is both adaptive and heritable,
and that enables them to respond to natural selection. The causes of
such evolvability are increasingly well-studied1–6. They are also very
broad. At one extreme are global organizational features of living
systems, such as the rate at which they create DNAmutations, or their
ability to buffer the deleterious effects of mutations. Some of these
features, such as the structure of the genetic code, have been in place
since life’s early days, and they no longer change substantially7. At the
other extreme are more ephemeral properties8–11, such as the location
of evolving organisms in a fitness landscape—an analog of a physical
landscape that helps to understand the dynamics of Darwinian
evolution12. Such local properties can change very rapidly in evolution.
For example, single-point mutations can alter the evolvability of bac-
terial populations, and predispose them to adapt more rapidly to a
given environment8–10.

Much less well-studied than the causes of evolvability is their
evolution. Can evolvability itself be a product of adaptive Darwinian
evolution?4, 5 The question is important, because a positive answer

implies that Darwinian evolution can help create the conditions under
which Darwinian evolution becomes possible. Here I address part of
this question from a genetic perspective. That is, I identify and study
DNAmutations that increase evolvability. And I define suchmutations
by how they influence thephenotypic effects of subsequentmutations.

A major challenge in answering the above question is that evol-
vability is a dispositional trait. It refers to the potential of a biological
system to bring forth adaptive variation, for example through DNA
mutations13–15. As opposed to traits that directly affect an organism’s
survival or reproduction, and are thus directly affected by natural
selection, dispositional traitsmaybe subject to amore indirect formof
selection on their future consequences. Such selection has also been
called second-order selection, to distinguish it fromdirect (first-order)
selection. It can enhance evolvability only under restrictive conditions,
such as large population sizes or high mutation rates, which are not
met by all organisms16–19.

This problem can in principle be overcome through DNA muta-
tions that increase not only the evolvability of an organism but also its
fitness20. Such DNA mutation would be able to spread through a
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population via their direct effects on fitness,without requiring second-
order selection. And in doing so, they could also enhance evolvability.
Such “dual effect” mutations—evolvability-enhancing and fitness-
enhancing—do indeed exist21–25. For example, a recent laboratory
evolution experiment aiming to change the color of a fluorescent
protein’s light emission identified mutations that change both the fit-
ness (fluorescence intensity) and the evolvability of the protein. They
did so by increasing the ability of the protein to fold, which increased
its potential to accommodate mutations that can increase fitness even
further25.

Because evolution experiments are not designed to quantify the
incidence of such mutations, I here use different kinds of data to
identify and characterize evolvability-enhancing mutations. This data
comes from experimentally characterized fitness landscapes26,27. Each
location in such a landscape corresponds to a genotype. The elevation
at that location is the fitness of that genotype. Current technologies
allow us to measure the fitness or a proxy of fitness for thousands of
protein or RNA genotypes within a larger collection or “space” of such
genotypes.26,28–43, and to analyze the topography of the resulting
landscape. A small subset of landscapes characterized to date are
combinatorially complete or nearly so26,27,34,43–46. In a combinatorially
complete landscape, for any two genotypes whose fitness is known,
the fitness of all genotypes that lie on the shortest mutational paths
between these genotypes is also known. Combinatorial completeness
is important for my purpose, because it permits the evaluation of a
mutant genotype and its interactions with other genotypes inmultiple
genetic backgrounds.

I will first define the notion of an evolvability-enhancing (EE)
mutation quantitatively. I will focusmostly on beneficial EE mutations,
which themselves increase fitness while at the same time enhancing
evolvability, because beneficial mutations spread most easily through
populations via direct selection. I then study the incidence and dis-
tribution of fitness effects of EEmutations, as well as their evolutionary
dynamics in experimentally characterized adaptive landscapes. The
landscapes I study must fulfill several criteria. First, organismal fitness
and not just a proxy of fitness must have beenmeasured in vivo, in the
form of a microbial growth rate. Second, the landscapes need to be
large (>103 genotypes), partly because EEmutationsmaybe rare, and it
may thus be necessary to evaluate manymutations for their effects on
fitness and evolvability. Finally, the landscapes need to be combina-
torially complete or nearly so. These requirements are fulfilled by few
experimentally characterized landscapes26,27,46. I chose two that
represent different kinds of molecules and organisms. The first is the
protein fitness landscape of an E. coli toxin-antitoxin system, which
comprises fitness values for 7882 antitoxin protein genotypes27. The
second is an RNA fitness landscape of 4176 yeast (Saccharomyces cer-
evisiae) transfer RNA (tRNA) genotypes.

In this work, I use these landscapes to show that EE mutations
exist and comprise a small minority of all mutations that can improve
the fitness effects of subsequentmutations dramatically. A population
that encounters evolvability-enhancing mutations during adaptive
evolution on such landscapes can achieve significantly higher fitness.

Results
Defining evolvability-enhancing (EE) mutations
To define an evolvability-enhancing (EE) DNA mutation, consider
some wild-type genotype wt with fitness wðwtÞ and a 1-mutant
neighbor m with fitness w mð Þ, i.e., a genotype that can be produced
from the wild-type through a point mutation that changes a single
nucleotide in the wild-type. Even though the word enhancing may
suggest that an evolvability-enhancing mutation actively changes the
effects of other mutations, that would be an unintended anthro-
pomorphism. An EE mutation simply creates a genetic background m
in whichmutations aremore likely to be adaptive than in the wild-type
background wt.

To make this property more precise, I first denote the set of all
1-mutant neighbors of the wt (excluding m itself) as nwt

� �
=

nwt,1, . . . ,nwt,k

� �
: In other words, these are all genotypes that can be

reached through a single mutation from the wild-type genetic “back-
ground”. Denote their fitness values as wðnwt,1Þ, . . . ,wðnwt,kÞ

� �
and

their mean fitness as �wðnwtÞ. Likewise, denote the set of all 1-mutant
neighbors ofm (excluding thewt) as nm

� �
= nm,1, . . . ,nm,k

� �
. All these

are genotypes that can be reached through a single mutation in the
mutant genetic background. Denote their fitness values as
wðnm,1Þ, . . . ,wðnm,kÞ

� �
and their mean fitness as �wðnmÞ.

One possible definition of an EE mutation is thatmmust increase
the fitness of all possible such point mutations. In other words, one
might require that the fitness of eachmutant in nm

� �
should be higher

than the fitness of each mutant in nwt

� �
: wðnm,iÞ>wðnwt,iÞ for all

neighbors i. However, this would be an unrealistic expectation,
because somemutations (such as nonsense mutations) may always be
equally deleterious, regardless of the genetic background in which
they occur. For this reason, I will only require that an EE mutation
increases the fitness benefit of subsequent mutations on aver-
age (Fig. 1a).

The following considerations apply to both beneficial and neutral
EEmutations (Δw=w mð Þ �wðwtÞ≥0; see SupplementaryMethods for
a definition of deleterious EE mutations).

For a neutral mutation ðΔw=0Þ to be EE, I require that

�w nm

� �� �wðnwtÞ>0 ð1Þ

This means that the mutation m causes the fitness of mutations
that occur in its background to be higher than that of mutations in the
wild-type background on average. If m is beneficial, this condition
needs to be modified for the following reason. If mutations interact
additively in their effect on fitness, the condition �w nm

� �� �wðnwtÞ > 0
would be triviallymet as a result of the fact that themutationm itself is
beneficial Δw>0ð Þ. To see this, note that in case of additivity

�wðnmÞ � �wðnwtÞ=
1
k

� �Xk

i = 1

ðwðnm,iÞ �wðnwt,iÞÞ

=
1
k

� �Xk

i = 1

ðwðnwt,iÞ+Δw�wðnwt,iÞÞ=Δw>0

Thus, for a beneficial mutation m to be EE, it is necessary to
require more, namely that m increases the fitness of other mutations
beyond its own fitness benefit, that is:

�w nm

� �� �wðnwtÞ>Δw ð2Þ

This requirement is mathematically equivalent to

�w nm

� ��w mð Þ> �w nwt

� ��w wtð Þ ð3Þ

In plain words, the neighbors of m must have higher fitness
(relative tom) than the neighbors of the wild-type (relative to the wild-
type). This condition is equivalent to requiring that m shows on aver-
age positive epistasis with the mutations leading to its neighbors
(Supplementary Methods). I define but do not explicitly study neutral
EE mutations further here, because such mutations cannot be reliably
identified in large populations with today’s technology to measure
fitness.

EE mutations are rare in the protein adaptive landscape
I first study the fitness landscape formed by genetic variants at
three amino acid positions of the antitoxin protein ParD3 from the
pseudomonad bacterium Mesorhizobium opportunistum (Fig. 1b
and SupplementaryMethods).When expressed in E. coli, this protein is
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one member of a toxin-antitoxin pair whose specific binding to the
toxin protein ParE3 is necessary for E. coli growth. Mutations in the
antitoxin that reduce such binding allow the toxin to inhibit cell
growth through its interactionwithDNAgyrase47. Toxin-antitoxinpairs
like these are widespread in bacteria, occur both on plasmids and
chromosomes, are frequently horizontally transferred, and may have
important biological roles, such as to help maintain plasmids in a
population48, 49.

I use data from a study whose authors employed mutagenesis to
randomize three key antitoxin amino acids that affect the antitoxin’s
binding specificity to the toxin and thus fitness27 (Fig. 1b). I will refer
here to the genotype of the unmutated antitoxin (D61, K64, and E80)
as the reference or M. opportunistum genotype. Starting from this
reference, the authors created a library of all possible 203 = 8000
antitoxin variants, expressed them from plasmids in E. coli, and mea-
sured the fitness of E. coli cells expressing these variants through

helix α1

helix α2

helix α3

D61
K64

E80

d

b

a

e

f

c

P=8×10-151

w(wt)

w(m)

w(nwt)

w(nm)

g

Fig. 1 | Beneficial EEmutations in a protein adaptive landscape. a The notion of
a beneficial EE mutation. Gray circles indicate the fitness �w of a hypothetical wild-
type (wt) and mutant (m) genotype. Lower (upper) black circles and vertical bars
indicate mean and standard deviation of the fitness of the 1-mutant neighbors of
the hypothetical wild-type (mutant). Each black circle is drawn below the nearest
gray circle to reflect the observation that mutations are on average deleterious50.
An EE mutation reduces the deleterious effects of mutations and increases the
incidenceof beneficialmutations, as indicated by the shorter distance of the upper
black circle to the gray circle symbolizingmutantfitness. bTertiary structureof the
ParD3 antitoxin (blue) in complex with its cognate toxin ParE3 (gray; protein
database (PDB) file: 5CEG; https://doi.org/10.2210/pdb5CEG/pdb; ref. 74). The
residues D61, K64, and E80 (red) of the M. opportunistum reference antitoxin
sequence are part of antitoxin helix 2 and 327. c Distribution of the mean fitness of
all neighbors of the wild-type (�w nwt

� �
, black), as well as of all neighbors of the

mutant (�w nm

� �
, gray), for all pairs of neighbors and their beneficial EE mutants in

the ParD3 antitoxin fitness landscape of27. Inset: scatterplot of �w nwt

� �
and �w nm

� �
;

diagonal: �w nwt

� �
= �w nm

� �
.dDistribution of themean fitness of all neighbors of the

wild-type adjusted by the fitness of the wild-type (�w nwt

� ��wðwtÞ, black), as
well as of all neighbors of the mutant adjusted by the fitness of the mutant
(�w nm

� ��wðmÞ, gray), for all pairs of neighbors and their beneficial EE mutants in
the protein landscape. Inset: scatterplot of the same quantities. e Distribution of
the fractionof beneficial neighbors (neighborswith greaterfitness) of thewild-type
(black) as well as of the corresponding mutant (gray), for all n = 681 pairs of wild-
type sequences and the corresponding beneficial EEmutants. Inset: box plot of this
fraction (box height: interquartile range (IQR), horizontal bar: median; whisker
length: 1.5 × IQR) f fitness evolution (vertical axis) during 100 stochastic adaptive
walks on the protein landscape. Red edges correspond to EEmutations that occur
during an adaptive walk. g The fitness difference attained after step three of 104

adaptive walks between walkers that experienced no (EE = 0) and at least one
(EE > 0) EE mutations is highly significant (P = 8 × 10−151, two-sided Mann–Whitney
U = 7,390,352, n = 6778 independent randomwalks). Circles and vertical bars show
means and one standard deviation. Fitness values in (f, g) are normalized to lie in
the interval (0,1). Source data are provided as a Source Data file.
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Illumina sequencing after mass selection27 (Supplementary Methods).
The published data contains fitness information on 98.5% (7882) of
these variants. I analyze this data as an adaptive landscape, and con-
sider those variants neighbors of each other that differ in a single
amino acid, and where the differing amino acids can be reached from
each other through a single-point mutation (“Methods”).

Ifirst examinedall 175,552pairs of neighboring variants, considered
one member of the pair as the “wild-type”, and asked whether the
mutation creating the neighbor meets criterion (2) for being beneficial
and evolvability-enhancing (“Methods”). I found that such beneficial EE
mutations comprise only 0.39% (681) of all mutations in the landscape.
Figure 1c shows histograms of the mean fitness of the neighbors of the
wild-type (black) as well as of the mutant (gray), for all beneficial EE
mutations. The gray histogram is shifted far to the right, indicating that
the mean fitness of the neighbors of the mutant is substantially higher
than that of the neighbors of the wild-type. Indeed, when averaged over
all beneficial EE mutations, the mean fitness of the neighbors of the
mutant �w nm

� �
= 0.85, which is 77% higher than the mean fitness of the

wild-type �w nwt

� �
= 0.48, a difference that is highly significant

(P= 3.8 × 10−148, two-sided Mann–Whitney U =43,750, n =681).
Considering only the difference in the fitness of neighbors of a

mutant and of a wild-type ignores the fitness differences that exist
between the wild-type and the mutant themselves. To take this
fitness difference into account, Fig. 1d shows histograms of the
mean fitness of the wild-type’s neighbors adjusted for the fitness of
the wild-type (�w nwt

� ��w wtð Þ), as well as the analogous quantity for
the mutants (�w nm

� ��w mð Þ). Even with this adjustment, the pro-
nounced right shift of the distribution persists. More specifically,
averaged over all beneficial EE mutations �w nwt

� ��w wtð Þ = −0.21 and
�w nm

� ��w mð Þ = −0.004, a difference that is again highly significant
(P = 4.9 × 10−185, two-sided Mann–Whitney U = 21329, n = 681). I note
that the sign of both quantities is negative, which is consistent with the
general principle that mutations are on average deleterious50. This
observation raises the questionwhether EEmutations, as defined here,
only render deleterious mutations more weakly deleterious on aver-
age, insteadof increasing the propensity ofmutations to be beneficial?
The inset of Fig. 1d, whichplots �w nm

� ��w mð Þ against �w nwt

� ��w wtð Þ,
already hints that this is not the case. Its upper left quadrant contains
EE mutations whose neighbors are on average beneficial
(�w nm

� ��w mð Þ >0), whereas the same mutations in the wild-type are
on average deleterious (�w nwt

� ��w wtð Þ <0). There are 119 such
mutations or 17.4% of all beneficial EE mutations. Figure 1e shows the
distribution of the fraction of beneficial neighbors both for the wild-
type and each corresponding EE mutant. This distribution is again
shifted rightward, towards a higher fraction of beneficial mutation in
the neighborhood of EE mutations. Overall, 20.6% of wild-type neigh-
bors are on average beneficial, whereas 36.3% of EE mutant neighbors
are (Fig. 1e, inset), an increase of 76% that is statistically highly sig-
nificant (P = 4.9 × 10−32, two-sidedMann–WhitneyU = 146,432, n = 681).
In addition, 72.5% of EE mutants (494 of 681) have more beneficial
neighbors than their wild-type ancestors. In sum, EE mutations do not
just shift the distribution of mutational effect toward less deleterious
mutations. Their neighbors are also more likely to be beneficial.
Deleterious EE mutations share these main properties with beneficial
EE mutations (Supplementary Fig. 1).

Beneficial EE mutations are rare in the lowest fitness regions of
the landscape (Supplementary Fig. 3a). However, beneficial EE muta-
tions do not themselves cause higher or lower fitness gains Δwð Þ than
other beneficial mutations (P =0.34, two-sided Mann–Whitney
U = 29,022,948,n1 = 681,n2 = 87076;meanΔw=0.16 andmeanΔw=0.17
for beneficial EE mutations and beneficial non-EE mutations).

An examination of the most strongly evolvability-enhancing
mutations shows that they fall into only three categories. They com-
prise mutations towards the amino acid D at position 61 (Fig. 1b),
mutations toward the amino acid K at position 64, andmutations away

from a proline at position 81 (Supplementary Table 1). All of these
changes show pronounced nonadditive interactions with subsequent
mutations that render such mutations less deleterious andmore likely
to be beneficial (Supplementary Table 1).

Adaptive walks with EE mutations lead to higher fitness in the
protein landscape
I next asked whether the occurrence of an evolvability-enhancing
mutation in an evolving population would influence the speed of
adaptive evolution. To model adaptive evolution, I mostly consider a
weak-mutation scenario18,51,52, because I study the evolution of a small
section of a gene in which mutations are much rarer than in whole
genomes. In this scenario, adaptive evolution can be modeled as an
adaptive random walk of a single genotype changing through point
mutations (“Methods”).

I modeled this adaptive walk stochastically, using Kimura’s for-
mula for the probability pf ix that a mutation goes to fixation in a
haploid population under the influence of selection and drift (“Meth-
ods”). At the large population sizes of E. coli (N = 1.8 × 108)53, deleter-
ious mutations are very unlikely to go to fixation, such that beneficial
mutations dominate the evolutionary dynamics.

I analyzed 104 stochastic adaptive walks of maximally ten muta-
tional steps each, which started out from randomly chosen genotypes
from the bottom 5% of the fitness distribution, and for a population
size similar to that of E. coli (N = 108)53. An adaptive walk can terminate
prematurely if it reaches a global or local fitness peak, i.e., a genotype
whose neighbors all have fitness lower than itself. Figure 1f shows
the evolutionary trajectories of a sample of 100 of these walks, with EE-
enhancingmutation shown in red. The figure shows that adaptive walks
approach the highest possible fitness values within a mere few steps,
implying that the landscape is highly navigable. In fact, by the fourth
step, themedianfitness among all 104 walks has reachedmore than 90%
of themaximally possible fitness (medianw=0:94). Thus, EEmutations
can make a difference only early during a adaptive walk, before most
trajectories have reachedhighfitness. Here I study thepreceding (third)
step of the adaptive walks, at which the difference between the max-
imumand theminimum fitness among all walks is 0.8, i.e., it covers 80%
of the possible fitness range. I determined the average fitness increase
that the 104 adaptive walks had achieved by the third step of the
adaptive walk. This increasewas 7.7% higher for adaptive walks that had
experienced at least one EE mutation (mean Δw=0:81) than for adap-
tive walks that had experienced no EE mutations (mean Δw=0:75), a
difference that is highly significant (Fig. 1g, P= 8× 10−151, two-sided
Mann–WhitneyU = 7,390,352, n =6778).More generally, adaptivewalks
that experienced more EE mutations also experienced a significantly
higher increase inmean fitness (Spearman’s r=0.27, P = 1.2 × 10−161, two-
sided, n = 104). I also observed that 83.6% of adaptive walks terminated
before ten steps had been reached, even though only 66.1% of adaptive
walks reached themaximal fitness after ten steps. Thismeans thatmany
adaptivewalks become trapped at local fitness peaks. EEmutationsmay
help prevent a population from becoming trapped, because adaptive
walks with more EE mutations last longer (Spearman’s r =0.28,
P = 1.1 × 10−179, two-sided, n = 104). Indeed, 19.8% (1282/6485) of adaptive
walks with at least one EEmutation do not terminate early, whereas the
same holds for only about half as many adaptive walks with no EE
mutation (10.2%, 359 of 3515), a difference that is highly significant
(P = 10−34, Chi-square = 151.0, 1 df). Analogous simulations for smaller
population sizes and without the assumption of weak mutation also
show that EE mutations are associated with significant fitness increases
(Supplementary Note 1).

EE mutations are more frequent but have smaller fitness effects
in an RNA adaptive landscape
I next studied the fitness landscape of an arginine-CCU transfer RNA
(tRNA) from the yeast Saccharomyces cerevisiae (Fig. 2a). Previous
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work measured the fitness of 4176 tRNA variants that differ at one or
more of 10 nucleotide positions, with two or three variable nucleotides
per position that occur naturally in seven yeast species26. The authors
expressed a library of these variants from a centromeric yeast plasmid
in a S. cerevisiae strain from which the native (single-copy) gene HSX1,
which encodes the tRNA, had been deleted. To quantify fitness, the
authors deep-sequenced the library before and after selection in an
environment where the tRNA is essential for growth (Supplementary
Methods)26. This procedure allowed them to estimate the fitness of

individual variants by estimating their pre-and post-selection sequen-
cing read counts. Data are reported as logarithmically transformed
ratios of post-selection read counts of the focal variant and the refer-
ence tRNA, that is, the tRNA encoded by the S. cerevisiae genome. On
this logarithmic measurement scale, w(g) > 0 ( <0) means that geno-
type g grows faster (more slowly) than the S. cerevisiae genotype. Fit-
ness values for the 4176 tRNA variants range between −0.86 and 0.09.
Although this range differs from that of the protein landscape, I note
that themeasurement scale (a logarithmically transformed read count

c

ba

d

fe

1 71

6

2 70
69

66

46

4327

3’
5’

P=8×10-151

Fig. 2 | Beneficial EE mutations in an RNA adaptive landscape. a Schematic of
tRNA secondary structure. Paired bases in stems (helices) are indicated by short
straight lines. Black circles indicate those ten positions at which the nucleotide
sequence was varied to map the adaptive landscape26. The vertical stem on top is
the acceptor stem, which contains most of the variable sites. b Distribution of the
mean fitness of all neighbors of the wild-type (�w nwt

� �
, black), as well as of all

neighbors of the mutant (�w nm

� �
, gray), for all pairs of neighbors and their bene-

ficial EE mutants in the yeast tRNA fitness landscape26. Inset: scatterplot of �w nwt

� �
and �w nm

� �
; diagonal line: �w nwt

� �
= �w nm

� �
. c Distribution of the mean fitness of all

neighborsof thewild-typeadjustedby thefitness of thewild-type (�w nwt

� ��wðwtÞ,
black), as well as of all neighbors of the mutant adjusted by the fitness of the
mutant (�w nm

� ��wðmÞ, gray), for all pairs of neighbors and their beneficial EE
mutants in the tRNA landscape. Inset: Scatterplot of the same quantities.

d Distribution of the fraction of beneficial neighbors (neighbors with greater fit-
ness) of thewild-type (black) aswell as of the corresponding EEmutant, for all pairs
of wild-type sequences and their beneficial EE mutants. Inset: box plot of this
fraction (n = 2983 wild-type/mutant pairs; box height: interquartile range (IQR),
horizontal bar:median; whisker length: 1.5 × IQR). e Fitness evolution (vertical axis)
during 100 stochastic adaptive walks (horizontal axis: mutational steps) on the
RNA landscape. Red edges correspond to EE mutations that occur during an
adaptive walk. f The fitness difference attained after step three of 104 adaptive
walks between walkers that experienced no (EE = 0) and at least one (EE >0) EE
mutations is highly significant (P = 2.2 × 10−39, two-sided Mann–Whitney
U = 10,237,878, n = 4109). Circles and vertical bars show means and one standard
deviation. Fitness values for (e, f) are normalized to the interval (0,1). Source data
are provided as a Source Data file.
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ratio) is comparable between the two landscapes (Supplementary
Methods)27. Except where otherwise mentioned, I use the originally
reported fitness scale.

In the RNA landscape, 5.7% of mutations (2983 of 52672) are
beneficial and EE-enhancing. For these beneficial EE mutations, Fig. 2b
showshistograms of themean fitness of the neighbors of thewild-type
(black) as well as of themutant (gray). As for proteins, the neighbors of
EE mutants tend to have higher fitness than those of the wild-type.
Indeed, for all beneficial EE mutations, �w nm

� �
= −0.15 compared to

�w nwt

� �
= −0.25, a difference that is highly significant (P = 3.5 × 10−297,

two-sidedMann–WhitneyU = 1,998,287, n = 2983). Figure 2c shows the
histograms of the mean fitness of the wild-type’s neighbors adjusted
for the fitness of the wild-type (�w nwt

� ��w wtð Þ), as well as the analo-
gous quantity for the mutants (�w nm

� ��w mð Þ). The right shift of the
mean fitness distribution persists with this adjustment. More specifi-
cally, averagedover all beneficial EEmutations �w nwt

� ��w wtð Þ = −0.05
and �w nm

� ��w mð Þ = +0.005, a difference that is again highly sig-
nificant (P = 5.3 × 10−241, two-sided Mann–Whitney U = 224,935,
n = 2983). Thepositive (albeit small value) of �w nm

� ��w mð Þ shows that
at least some neighbors of mutants are typically beneficial. Indeed
there are 968 (32.4%) of beneficial EE mutations whose neighbors are
on average beneficial (�w nm

� ��w mð Þ >0), whereas the same muta-
tions in the wild-type are on average deleterious (�w nwt

� ��w wtð Þ <0,
inset of Fig. 2c, upper left quadrant). Figure 2d shows the distribution
of the fraction of beneficial neighbors both for the wild-type and each
corresponding EE mutant. This distribution is again shifted towards a
higher fraction of beneficial mutation in the neighborhood of EE
mutations. Overall, 34.3% of wild-type neighbors are on average
beneficial, whereas 50.9% of EE mutant neighbors are (Fig. 2d, inset),
an increase of 48% (P = 1.9 × 10−145, two-sided Mann–Whitney
U = 2,741,913, n = 2983). In addition, 76.4% of beneficial EE mutants
(2279) have more beneficial neighbors than their wild-type ancestors.
In sum, like in the protein landscape, the neighbors of beneficial EE
mutations are also more likely to be beneficial. Deleterious EE muta-
tions (7.0% of all mutations) share theirmainproperties with beneficial
EE mutations (Supplementary Fig. 2).

As in the protein landscape, beneficial EEmutations aremore rare
in low-fitness regions of the RNA landscape, but wild-types of inter-
mediate fitness are most likely to give rise to EE-enhancing mutations
(Supplementary Fig. 3c). Another noteworthy difference to the protein
landscapes is that beneficial EE mutations themselves tend to cause a
significantly lower fitness increase (mean Δw=0.04) than beneficial
non-EE mutations (mean Δw=0.11; P < 10−297, two-sidedMann–Whitney
U = 14,619,198, n1 = 2983, n2 = 23,336).

When examining the mutations that enhance evolvability to the
greatest extent, I found that they all occur in the tRNA acceptor stem
(Fig. 2a). They fall into few categories and tend to stabilize the tRNA
secondary structure, for example by creating a G–C base from a mis-
matched base pair or from a G–U base pair (Supplementary Table 2).
Thus, in a genetic background that confers greater RNA structural
stability, subsequent mutations may be less deleterious and more
likely to be beneficial.

Adaptive walks with EE mutations also lead to higher fitness
gains in the RNA landscape
As in the protein landscape, I first studied 104 stochastic adaptivewalks
that started out from randomly chosen genotypes within the bottom
5% of the fitness distribution, but with the effective population size of
yeast (N = 7.8 × 106)53. Figure 2e shows the evolutionary trajectories of a
sample of 100 of these walks, with EE mutational steps shown in red.
Most adaptive walks rapidly reach a fitness plateau, but the landscape
appears less navigable than the protein landscape. It takes six instead
of just four steps to reach a median fitness that exceeds 90% of the
maximally possible fitness, and even after ten steps, themedian fitness
reached by 104 adaptive walks is �w=0:92, 8% below the maximum.

Figure 2e suggests that only a small fraction of adaptive walks over-
comes a suboptimal fitness plateau. Indeed, among 104 adaptive walks,
none reach themaximalfitness within ten steps, and only 6% reached a
fitness within 5% of the maximum. Relatedly, many more adaptive
walks (9576 of 10,000) terminate before 10 steps than in the protein
landscape (8359 of 10,000).

As in the protein landscape, I study the role of EE mutations after
the third step of the adaptive walks. After this step, the difference
between the maximum and the minimum fitness among all walks still
covers 56% of the total fitness range. Adaptive walks that experience at
least one EE mutation had reached a fitness of �w=0:51 after the third
step, 7.0% higher than adaptive walks that experience no EEmutations
(�w=0:48), a highly significant difference (Fig. 2f; P = 2.2 × 10−39, two-
sided Mann–Whitney U = 10,237,878, n = 4109). More generally, adap-
tive walks that experience more EE mutations also experience a sig-
nificantly higher increase in mean fitness (Spearman’s r =0.15,
P = 8.7 × 10−52, two-sided, n = 104). Finally, adaptive walks with more EE
mutations are significantly longer (Spearman’s r =0.67, P < 10−297, two-
sided, n = 104). Relatedly, adaptive walks with EE mutations are 140
times less likely to become trapped at a local peak than adaptive walks
with no EEmutations (5.7% [440/7751] vs. 0.04% [1/2249] of walks with
and without EE mutations do not terminate prematurely;
P = 4.4 × 10−30, Chi-Square = 129.8, 1 df). Adaptive walks at smaller
population sizes and without the weak-mutation assumption also
achieve higher fitness when EE mutations are present (Supplemen-
tary Note 1).

Biological landscapes containmorebeneficial EEmutations than
expected by chance
Themere existence of EEmutations in biological fitness landscapes is
biologically significant if they help populations evolve higher fitness
during adaptive evolution, as they do in the landscapes I study. This
biological significance is the main focus of my work, but it is also
sensible to ask about the statistical significance of EE mutations, i.e.,
would such mutations be expected to occur “by chance alone” in a
suitably defined null model of a “random” fitness landscape? I asked
this question for each of the two empirical landscapes by randomly
permuting the landscape’s fitness values, determining the incidence
of beneficial EEmutations, and repeating this procedure 100 times. In
the randomized protein landscape, only 0.0013 ± 8.7 × 10−6 (s. dev.)%
of mutations (2.3 ± 1.5 mutations) on average are beneficial, a much
smaller proportion than the 0.39% of beneficial EE mutations (681
mutations) in the actual protein landscape. Thus, the protein land-
scape has over 300 times more beneficial EE mutations than expec-
ted from the randomized landscape. Also, not a single one of the 100
randomized landscapes has as many beneficial EE mutations as the
protein landscape. Thus, the number of EE mutations in the protein
landscape is greater than expected by chance alone at a statistical
significance of P < 0.01. In the randomized RNA landscape, 1.8 ± 0.08
(s. dev.)% of mutations (971 ± 40 mutations) are beneficial and EE,
whereas in the RNA landscape, 5.7% of mutations (2983 mutations)
are beneficial and EE. In other words, the RNA landscape contains 3.1
times more beneficial EE mutations than expected by chance. This
difference is also statistically significant at P < 0.01. In sum, both
landscapes contain significantly more beneficial EE mutations than
expected by chance, and dramatically more so for the protein
landscape.

Discussion
Multiple properties of biological systems have been linked to
evolvability1,4,40,54. Some of them, such as the shortness of the amino
acid motifs recognized by regulatory protein kinases, or the structure
of the genetic code1,40,54,55, are global organizational properties of life
that do not evolve on short evolutionary time scales. This makes them
poorly suited to study the evolution of evolvability.
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Other, more local properties are better suited, because they can
evolve rapidly. Among them is a genotype’s potential to experience
mutations that are adaptive (or at least only weakly deleterious). Single
EEmutations can affect this potential. They belong in a broader classof
mutations thatmodify thedistributionoffitnesseffects (DFEs)of other
mutations. Because knowledge about the DFE is necessary to under-
stand the evolutionary dynamics of populations, techniques to quan-
tify it from empirical data have been developed50. DFE modifiers have
also been studied theoretically, albeit in other contexts56,57. For
example, theory predicts that DFE modifiers that render mutations
more deleterious may help drive viral populations to extinction56.

EE mutations are DFEmodifiers that shift the DFE towards greater
fitness. In both the protein and the RNA landscape, beneficial (as well
as deleterious) EE mutations exist and comprise a small minority of
mutations. They increase the mean fitness of other mutations, reduce
the deleterious effects of deleterious mutations, and increase the
fraction of mutations that are beneficial. In other words, they do not
just make maladaptive mutations less maladaptive, but also increase
the incidence of adaptive mutations. Some single EE mutations can
shift the DFE dramatically toward more beneficial mutations. The
occurrenceof EEmutations during adaptive evolution can increase the
fitness of an evolving population significantly.

A beneficial EE mutation that renders another beneficial mutation
even more beneficial provides an example of a positively epistatic
(nonadditive) interaction,where the combined effect of twomutations
is stronger than that of both mutations individually (Supplementary
Methods). Positive epistasis is the exception58,59, and negative epistasis
is the rule in adaptive landscapes29,33,38,39,60–62, which may help explain
why EE mutations are rare. Consistent with this observation, most fit-
ness landscapes show a form of negative epistasis known as dimin-
ishing returns epistasis11,31,63–65, in which beneficial mutations become
less beneficial as an evolving population becomes increasingly well-
adapted to its environment.

I note that multiple alternative definitions of an EE mutation are
conceivable. First, a mutation could be considered EE if it merely helps
reduce the deleterious effects of other mutations, even if it does not
itself increase the incidence of beneficial mutations. Mutations that
render proteins more stable have this effect, and their suppression of
deleterious mutation can help enzymes evolve new catalytic
activities21. Second, one might require that an EE mutation must
increase the proportion of subsequent mutations that are beneficial.
Many but not all of the EE mutations I identify have this property.
Third, one could exclude all neighbors of a wild-type/mutant pair with
very low fitness from further analysis, because theymay play little role
in adaptive evolution. Fourth, one could require that an EE mutation
increases the fitness of two, three, and higher mutant neighbors (and
not just those in the immediate neighborhood of the mutant). Finally,
one could also average neighbor fitness in different ways, or use dif-
ferentmeasurement scales for fitness.Which definition turns out to be
most useful may well depend on the question asked and on the land-
scape studied.

I focused here on EE mutations that are themselves beneficial,
because under the high population sizes that are typically ofmicrobes,
deleterious mutations are very unlikely to go to fixation. For example,
at E. coli’spopulation size ofN = 1.8 × 108, a deleteriousmutationwhose
fitness is lower than that of the wild-type by a mere s = 10−7 has a
negligible probability of P = 4.6 × 10−23 to go to fixation66. However,
exceptions may exist. For example, in a long-term E. coli evolution
experiment, initially deleterious mutations increased a population’s
potential to evolve the ability to extract energy from a new carbon
source, which allowed thesemutations to persist in the population10. It
is thus important that themain properties of deleterious EEmutations
are similar to those of beneficial EE mutations (Supplementary Figs. 1
and 2).

Both the protein and RNA landscapes I study harbor EE muta-
tions, but they differ in many other respects. First, beneficial EE
mutations are many times less abundant in the protein landscape
(0.39 vs. 5.7%). Second, EE mutations in the protein landscape
increase the fitness of other mutations more strongly
( �w nm

� �� �w nwt

� �� �� Δw≈0:21) than in the RNA landscape
( �w nm

� �� �w nwt

� �� �� Δw≈0:055).Third, in the protein landscape the
fitness benefit of beneficial EE mutations is similar to that of non-EE
mutations. In contrast, in the RNA landscape, the fitness benefit of EE
mutations is smaller than that of non-EE mutations. This property
may help explain why EE mutations that occur during adaptive walks
lead to a smaller fitness increase in the RNA landscape than in protein
landscapes. Which, if any, of these differences may be universal dif-
ferences of protein and RNA landscapes is an exciting question for
future work. Answering it will become possible as more such land-
scapes are being characterized.

The evolutionary dynamics on landscapes with EE mutations may
be complex. For example, on landscapes like that of the tRNA (Fig. 2a)
the first mutation(s) to be fixed will probably not be EE-enhancing if
adaptive evolution starts out in a low-fitness region (Supplementary
Fig. 3). The reason is that EE mutations are rare in such regions. Once
such an EE mutation becomes fixed, it may increase or decrease the
likelihood that further mutations are EE. Furthermore, interactions
between mutations may also affect the adaptive benefit of EE muta-
tions. For example, consider a large population with a high mutation
rate, in which multiple beneficial clones that compete with each other
forfixation occur at the same time. Suchcloneswill be subject to clonal
interference67–71, which may prevent EE mutations (with a small fitness
benefit) from going to fixation and favor non-EE mutations (with a
larger fitness benefit). As experimental data on more landscapes
become available, the evolutionary dynamics of EEmutationsmay also
become a rewarding study subject.

One limitation of my analysis is that it considers only the small
number of variable sites used in mapping the protein and RNA land-
scape. This is an unavoidable limitation, because it would be impos-
sible to construct a combinatorially complete adaptive landscape for
even a short RNA molecule like a tRNA (≈70 nucleotides), an entire
protein, or an entire genome. To mitigate this limitation experimen-
tally, one could (i) engineer specific pairs of wild-type molecules
(protein or RNA) and their putative EE mutants based on landscape
analysis, (ii) subject them to random mutagenesis over the entire
length of the molecule, and (iii) measure the (mean) fitness of the
randomized variants. If a mutation is truly EE, one would expect that
this mean fitness is higher in the EE mutant background. A second
limitation is that my quantitative observations may not be directly
comparable between landscapes, because of differences in how fitness
is reported26,27. Such a comparison is not central for my purpose, but
where it is, different landscapesmay have to bemappedwith the same
experimental protocols. Third, I only studied the consequences of EE
mutations on adaptive evolution in the short term. In the long term,
they may have additional consequences. For example, they may
increase the mutational load of a population.

In sum,my analysis shows that EEmutations exist in both protein
and RNA landscapes, and that they can help increase fitness during
adaptive evolution. Do such EEmutations exist in all proteins or RNA
molecules? Do they differ in their abundance among different kinds
of suchmolecules?Do they create evolutionary contingencies, where
populations that encounter such mutations take different evolu-
tionary paths than those that do not. Do such mutations enhance
evolvability across different environments? Can they help make
qualitatively new phenotypes accessible to Darwinian evolution? As
more and larger landscapes are being characterized, these and other
questions will open many avenues for research on the evolution of
evolvability.
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Methods
For both the protein and RNA landscape, I first identified all pairs of
sequences that are (one-mutant) neighbors of each other, i.e., they
differ only in a single residue, and arbitrarily designated one as the
“wild-type” (wt) and the other as the mutant (m). I then classified the
mutant as beneficial if Δw=w mð Þ �w wtð Þ>0, and as deleterious if
Δw<0: I do not explicitly study neutral EE mutations here, because
suchmutations cannot be reliably identified for large populations with
today’s technology to measure fitness, and the number of 1-mutant
neighbor pairs where both fitnessmeasurements happen to be exactly
equal is so small as to benegligible (38pairs or 0.02%of all pairs for the
protein dataset and 34 or 0.06% for the RNA dataset). I then deter-
mined all kwt one-mutant neighbors of the wt sequence, excluding
those sequences that differ from thewt at the same residue atwhichm
differs from it. For these neighbors, I computed the mean fitness
�w nwt

� �
and its standard deviation σ nwt

� �
. I repeated this calculation

for the km neighbors of the mutant m to obtain their mean fitness
�w nm

� �
and its standard deviation σ nm

� �
. I note that kwt ≠ km may hold,

because for a small fraction of genotypes, fitness data is not available.
The maximally possible number of neighbors of any genotype in the
RNA landscape equals k = 6 × 1 + 4 × 2 = 14.

With this information in hand, I then tested the null hypothesis
that the mutation wt ! m is not evolvability-enhancing. To this end, I
used a two-sided one-sample t test of the null hypothesis that
�w nm

� �� �w nwt

� �
≤Δw, which is equivalent to asking whether

�w nm

� ��w mð Þ≤ �w nwt

� ��w wtð Þ. If the null hypothesis is rejected, i.e.,
if the difference �w nm

� �� �w nwt

� �
is significantly greater than the dif-

ference Δw in fitness between the wild-type and the mutant, the
mutation is evolvability-enhancing, according to inequality (2). To
compute the standard deviation of �w nm

� �� �w nwt

� �
, which is neces-

sary for the t test, I took advantage of the fact that the standard
deviationof the differenceof two independent randomvariates x and y
(with individual standard deviations σx and σx) is given by
σy�x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x + σ2

y

q
. Thus, the standard deviation of �w nm

� �� �w nwt

� �
,

computes as σ2ðΔ�wðnÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 nwt

� �
+ σ2 nm

� �q
. I used minðkwt,kmÞ, i.e.,

the smaller of the two numbers of neighbors of the wild-type and
mutant genotype, as the degrees of freedoms for this t test. This
procedure renders the t test conservative. I performed such t tests
for all beneficial mutations in both data tests, and used a
Benjamini–Hochberg correction72 with a false discovery rate (FDR) of
0.01 to correct for multiple testing. Supplementary Methods describe
an analogous procedure to identify deleterious EE mutations.

The published protein landscape data contains only information
on the fitness of each amino acid sequence variant of the antitoxin, but
not on theDNAgenotype encoding this variant. Due to the structure of
the genetic code73, not all 20 amino acids can be reached from one
another through single-point mutations. In my analysis of this land-
scape, I admitted only those genotypes as 1-mutant neighbors that
differ in a single amino acid, and where the two differing amino acids
(i.e., amino acid a1 in genotype 1 and a2 in genotype 2) are accessible
from each other through a single-point mutation. This means that
theremust exist at least one codon c1 for a1, and at least one codon c2
fora2, such that codons c1 and c2 differ by only a single nucleotide. The
Supplementary Methods provide further information on fitness
measurements.

To model adaptive evolution on the two landscapes, I focus on a
weak-mutation scenario18,51,52, which is appropriate, because I study the
evolution of small parts of single genes in which mutations are much
rarer than in whole genomes. The scenario requires that the popula-
tionmutation rate, i.e., the product of (effective) population sizeN and
per-nucleotide mutation rate μ is small, i.e., Nμ < 1. For example, in E.
coli, with a per-nucleotidemutation rate of μ = 2 × 10−10 and aneffective
population size of N = 1.8 × 108, the per-generation population muta-
tion rate in the three amino acid (nine nucleotide) region of the gene I
study is given by 9Nμ = 0.32, and only a fraction of these mutations

would be non-synonymous, creating a new amino acid sequence53.
Likewise, in the yeast S. cerevisiae,μ = 2.6 × 10−10, andN = 7.8 × 106, such
that 10Nμ = 0.02 for the ten-nucleotideRNA landscape I study53). In the
weak-mutation scenario, a population is monomorphic most of the
time until a mutation occurs that goes to fixation. Most mutations do
so rapidly relative to the waiting time for the next mutation that goes
tofixation, and after suchafixation event thepopulation again remains
monomorphic until this next mutation occurs, and so on. In other
words, adaptive evolution can bemodeled as if it was an adaptive walk
of a single genotype changing through point mutations.

To model this adaptive walk, I took advantage of Kimura’s
formula for the probability pf ix that a mutation goes to fixation in a
haploid population under the influence of selection and drift,
pf ix = ð1� e�2sÞ\ð1� e�2NsÞ (Equation 3.11 of ref. 66). Here, N is the
effective population size and s denotes the selection coefficient of the
mutant, i.e., its difference in fitness from the pre-mutated (wild-type)
state. If s > 0 (s < 0) themutation is beneficial (deleterious). At the large
population sizes of E. coli and yeast, deleterious mutations are very
unlikely to go to fixation, and the same holds for neutral mutations
ðs =0,pf ix = 1=NÞ, such that beneficial mutations dominate the evolu-
tionary dynamics.

To simulate adaptive evolution on each of the two adaptive
landscapes, I first constructed a graph whose nodes are the genotypes
of the landscape. Two nodes are connected by a directed edge if they
are one-mutant neighbors. For a given population size N, I then com-
puted for each edge the fixation probability pf ix of the corresponding
mutational step, where I calculated the selection coefficient s of the
respective mutation as the difference in fitness between the genotype
after and before mutation. I note that in this graph, for each “forward”
edge connecting two neighboring genotypes gi and gj (and its pf ix)
there is a corresponding “backward” edge connecting gj and gi,
together with an associated probability pf ix .

Starting from any one genotype g on an adaptive landscape, I
simulated each step of an adaptive walk as follows. I divided (“nor-
malized”) the fixation probability pf ix of each neighbor of g by the sum
of the fixation probabilities of all neighbors. Subsequently, I chose one
of these neighbors at random, such that each neighbor had an equal
likelihood to be chosen, and generated a (pseudo)random number on
the interval (0,1). If this random number was smaller than the (nor-
malized) fixation probability of the mutational step leading to this
neighbor, the corresponding mutation goes to fixation, i.e., the adap-
tive walk progresses by one step towards this neighbor. If not, I repe-
ated the procedure, choosing another neighbor, and another random
number, and so on, until I had found a successful fixation event.

The above normalization of fixation probabilities is necessary to
render the adaptive walks computationally feasible. The reason is that
the fixation probabilities of all neighbors of a genotype g can be very
small if the fitness of these neighbors is very similar to that of g. In this
case, waiting times for a successful fixation event become excessive.
The normalization helps avoid this problem while preserving the
important relative magnitude of the fixation probabilities. I note that
as a result of this normalization, information on the time scale of
adaptive evolution is lost.

With this procedure, I performed 104 adaptive walks, each with a
maximum of 10 mutational steps. The initial genotype for each adap-
tive walk I chose at random (with uniform distribution) from the
genotypes within the lowest 5% (the 5th percentile) of the fitness dis-
tribution on the landscape. Whenever such an adaptive walk reached a
genotype g for which all neighbors had a smaller fitness than g and a
fixation probability of pf ix = 0, I considered a local adaptive peak in the
landscape to have been reached. In this case, I terminated the adaptive
walk and recorded the number of steps from the starting genotype to
the local peak.

To explore the consequences of relaxing the assumption of weak
mutation, I also simulated adaptive evolution under a simplemodel of
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clonal interference, a phenomenon that occurs at high population
mutation rates and that leads to the co-occurrence of multiple bene-
ficial mutations that compete with each other for fixation67–71. In this
model, only the fittest mutation goes to fixation. I modeled this sce-
nario through a “greedy” adaptive walk, in which the most beneficial
neighbor of the current genotype always goes to fixation. For the
display of adaptive walks, I normalized fitness values of both land-
scapes to the interval (0,1) to facilitate visual comparisonbetweenRNA
and protein landscapes (Figs. 1f, g and 2e, f). To test for differences in
the location of statistical distributions, I used two-sided
Mann–Whitney U tests implemented in scipy (version 1.9.1) of
Python (version 3.8.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All landscape data analyzed here has been obtained from previous
publications. Specifically, RNA landscape data are publicly available as
Supplementary Table S1 from the Supplementary Information section
of ref. 26. Protein data is taken from ref. 27 and publicly available
through accession number GSE153897 from the NCBI Gene Expression
Omnibus database. The protein structure shown in Fig. 1b is based on
data in protein database (pdb) file 5CEG (https://doi.org/10.2210/
pdb5CEG/pdb) Source data are provided with this paper.

Code availability
Scripts to analyze the landscape data are publicly available at https://
github.com/andreas-wagner-uzh/EE_mutations.
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