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Late-fall satellite-based soil moisture
observations show clear connections to
subsequent spring streamflow

Randal D. Koster 1 , Qing Liu1,2, Wade T. Crow 3 & Rolf H. Reichle 1

Because runoff production is more efficient over wetter soils, and because soil
moisture has an intrinsic memory, soil moisture information can potentially
contribute to the accuracy of streamflow predictions at seasonal leads. In this
work, we use surface (0–5 cm) soil moisture retrievals obtained with the
National Aeronautics and Space Administration’s Soil Moisture Active Passive
satellite instrument in conjunction with streamflow measurements taken
within 236 intermediate-scale (2000–10,000 km2) unregulated river basins in
the conterminous United States to show that late-fall satellite-based surface
soil moisture estimates are indeed strongly connected to subsequent spring-
time streamflow.We thus show that the satellite-based soilmoisture retrievals,
all by themselves, have the potential to produce skillful seasonal streamflow
predictions several months in advance. In poorly instrumented regions, they
could perform better than reanalysis soil moisture products in this regard.

Forecasting variations in streamflow at monthly to seasonal leads has
obvious implications for water resources management. Because our
ability to forecast precipitation at seasonal leads is marginal at best1,
accuracy in streamflow forecastsmust generally rely on other facets of
the climate system. Importantly, wintertime snowpackmeasurements,
particularly in mountainous areas, provide significant information
about streamflow during the subsequent melt season. As a result,
snowpack estimates underlie many current streamflow forecast
efforts2,3.

A second facet of the climate system relevant to streamflow
forecasting is soil moisture. Wet soils provide little pore space for
infiltration and are thus particularly conducive to surface runoff pro-
duction during storms; conversely, rainfall or snowmelt water incident
on a drier soil ismore likely to infiltrate and subsequently be lost to the
atmosphere through later evapotranspiration (ET). Put simply, the
soil’s water content determines the degree to which the land surface is
preconditioned to produce runoff from incident water. For seasonal
streamflow forecasting, soil moisture has the additional advantage of
having useful memory—a soil moisture anomaly at the start of a fore-
cast can persist and thereby affect hydrological processes well into the

forecast period. This is particularly true during winter, when soil
moisture anomalies persist longer due to lower ET rates4. Through the
combined effects of thismemory and the preconditioningmechanism,
knowledge of soil moisture conditions on the start date of a seasonal
streamflow forecast has the potential to contribute skill to that
forecast5,6, even in the absence of snowpack information or accurate
seasonal rainfall forecasts7.

In the present paper, we examine the ability of space-based soil
moisture retrievals to provide the information needed to tap into this
potential. The National Aeronautics and Space Administration (NASA)
Soil Moisture Active-Passive (SMAP) mission8 has provided global
estimates of near-surface soil moisture (over a nominal depth of 5 cm)
since the spring of 2015. Studies have already examined the connec-
tion between SMAP retrievals and runoff efficiency at synoptic time
scales9; here, we investigate their relevance to runoff production at the
seasonal time scale, at seasonal leads. We first utilize an exponential
temporal filter (Methods) to infer moisture deeper in the soil from the
surface retrievals. We then quantify the statistical connection between
the inferred deeper soil moistures, as determined for late fall, and
gauge-measured streamflow totals in the subsequent spring. Our
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analysis demonstrates that the connection is indeed significant and
that SMAP data therefore do have the potential to contribute skill to
predictions of seasonal streamflow.

Results
Wepresent two sets of results in this section. In the first subsection, we
describe the calibration of a parameter that allows us to infer estimates
of deeper soil moisture from the surface moisture retrievals provided
by SMAP. With this calibration in hand, we describe in the second
subsection our main findings: the connection between the deeper soil
moisture estimates so obtained and streamflow measured several
months later.

Calibration of τ parameter
The τ parameter describes the time scale over which we exponentially
filter the surface soil moisture retrievals into estimates of profile soil
moisture on November 30,WNov30 (seeMethods). It is a key parameter
for this research, a parameter that would presumably be relevant to

any study that attempts to infer deeper soil moisture from surface
retrievals alone. Figure 1a shows the results of the τ calibration exer-
cise: it shows, as a function of τ, the spatial average (across the 236
basins) of the local Pearson’s correlation coefficient R between the
SMAP-derived WNov30 and the MERRA-2 reanalysis’s November 30 full
profile soilmoisture, an independent estimateof the soilmoisture over
a depth of 1.3–3.5m, depending on location. For all τ values exceeding
~20 days, the spatial average exceeds 0.7, suggesting that any of these
time scales could provide, with some skill, estimates of the interannual
variation of profile soil moisture. The spatial average, however, has a
maximum at τ = 38 days. This is the time scale we will use in the next
section to generate SMAP-based November 30 soil moisture estimates
for correlation against subsequent springtime streamflow.

We should note, however, that while τ = 38 days is an overall
optimal time scale for the basins, it may be suboptimal in some areas.
Figure 1b, c shows theRdistributions across the streamgauge sites for,
respectively, the optimal τ value and τ equal to 7 days. As must be the
case, the averageR is higher for τ = 38 days (R = 0.72) than for τ = 7 days
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Fig. 1 | Estimating November 30 profile soil moisture with Level 2 (L2) retrie-
vals. a Results of the time scale calibration exercise: spatially averaged correlation
coefficient R (that between Soil Moisture Active-Passive (SMAP)-estimated basin
soil moisture for November 30 and corresponding profile soil moisture from the
Modern-Era Retrospective analysis for Research and Applications, Version 2
[MERRA-2] reanalysis) as a function of the time scale, τ, applied in Eq. (1) of

Methods. The basin-level R values are averaged here across the 236 basins. b Local
values of the correlation coefficient, R, underlying the spatial average in (a) for the
optimal time scale of 38 days. For ease in visualization, values are plotted with
circles of uniform size at the stream gauge locations. The attached histogram
provides an overall summary of the results. c As in (b), but for a 1-week time scale.
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(R =0.61). Indeed, R values for τ = 38 days are generally high across the
continental United States (CONUS), supporting the time scale’s gen-
eral application. Nevertheless, R values for some locations (e.g., in the
lower Mississippi Basin) are higher for τ = 7 days, a distinction that
hints at the potential benefit of applying a spatially varying time scale.
We leave a treatment of spatial variability in τ to future work, noting
the difficulties that would be encountered in such a treatment given
the small sample sizes—each local R calculation in the calibration
exercise is based on only 7 sample pairs. Again, here we will simply use
the single value (τ = 38days) supportedby the joint considerationof all
236 basins.

Correlations between soil moisture and streamflow
Figure 2a shows the spatial distributionof the correlations between the
estimated WNov30 values (using the calibrated τ) and the measured
streamflow rates accumulated over the subsequent spring
(February–May) season. (See Supplementary Figs. S1–S3 for examples
of soil moisture, streamflow, and precipitation time series in repre-
sentative basins.) As already noted, a temporal correlation computed
from seven data pairs is highly uncertain. Nevertheless, such a corre-
lation can be considered significantly different from zero with 95%
confidence if it exceeds0.68 (Methods); this condition ismet by 22%of
the basins in Fig. 2a, well above the 5% of basins for which the criterion
would, on average, be met by chance. Most importantly, the values
shown in Fig. 2 are overwhelmingly positive, with negative values
appearing for only 19 of the 236 basins examined. The probability of
sucha positive/negativebreakdownoccurring by chance is vanishingly
small. The prevalence of positive values appears throughout CONUS,
which is noteworthy given the hydrological diversity of the basins
considered. Positive values dominate in both mountainous and non-
mountainous regions and in both seasonally snow-dominated and
snow-free regions.

Curiously, the few negative or very small correlations that do
appearmostly lie in the northernmost parts of the study region. While
someof the larger negative correlations reflect unexpected springtime
precipitation extremes (Supplementary Fig. S3), we note that themore

northern areas are often snow-covered in late November. Arguably,
snowpack present on November 30 represents water that could
otherwise have infiltrated and modified the soil moisture before and
up to that date; as a result, we can speculate that late fall snowpack has
the effect of degrading the connection between WNov30 and sub-
sequent streamflow. More analysis, of course, in conjunction with a
longer data period would be needed to explain the correlations found
at individual locations.

The raw average of the correlations shown in Fig. 2a is 0.43. A
cluster analysis (Methods) provides some slightly different averages:
using a cluster radius of 2 degrees, the average is 0.42, with a 95%
chance that the true average lies between 0.29 and 0.49, and with a
more conservative cluster radius of 3 degrees (i.e., an assumption of a
larger spatial correlation length scale between themeasurements), the
mean becomes 0.38, with the 95% confidence interval ranging from
0.19 to 0.49. Overall, regardless of whether we focus on the raw cor-
relations or the cluster analysis results, and despite the noted sample
size limitations, the joint consideration of the results across the con-
tinent indicates that SMAP L2 soil moistures provide real information
on streamflow totals at a seasonal lead.

Supplemental calculations can address the impact of retrieval
reliability on the correlation analysis. Up to this point, our analysis has
used SMAP retrievals with an “uncertain” quality flag along with those
having a “recommended” flag (Methods, section “SMAP soil moisture
retrievals”); this lax constraint allowed the basins we consider to better
cover CONUS. Ifwe now repeat the analysis above using amore limited
set of SMAP retrievals—only those with the “recommended” quality
flag—we obtain the revised results in Fig. 2b. The basins considered are
reduced to 158and are focusedmainly in the center of CONUS. The raw
average correlation, however, betweenWNov30 (now determined using
a revised optimal time scale of 45 days, based on a supplemental
calibration performed over the 158 basins) and subsequent streamflow
has increased further to 0.50 in this subset of basins. It appears from
Fig. 2b that retrieval quality does have an impact on our results; the
SMAP L2 retrievals that are presumed to be more accurate are indeed
more strongly connected to subsequent streamflow.
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Fig. 2 | Correlating November 30 soilmoisture with subsequent February–May
streamflow. a Correlation between Soil Moisture Active-Passive (SMAP)-derived
profile soil moistures (WNov30, as estimated from Level 2 [L2] surface moisture
retrievals through Eq. (1)) and subsequent spring (February through May) stream-
flow amounts. For ease in visualization, values are plotted with circles of uniform

size at the stream gauge locations. The attached histogram provides an overall
summary of the results. b As in (a), but using only SMAP L2 retrievals flagged as
being recommended. The values of τ underlying the calculations for the two panels
are 38 and 45 days, respectively.
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Discussion
Using an exponentialfilter, SMAP L2 soil moisture retrievals during the
falls of 2015–2021 are processed intoNovember 30 estimates of profile
soil moisture. As shown in Fig. 2, these late-fall estimates correlate
significantly with accumulated streamflow measurements in the sub-
sequent spring (February through May) across a wide variety of
hydrological basins within CONUS. Positive correlations prevail
throughoutCONUSdespite the complexity associatedwith streamflow
generation processes—despite strongly region-specific impacts of
topography, soils, snowpack, ecosystems, groundwater, freeze-thaw
conditions, and other facets of the system on streamflow production.
We emphasize that our goal here is not to parse out how elements of
this complexity feed intoor limit the correlations on a region-to-region
basis; rather, it is simply to show that, even in the face of all this
complexity, positive correlations appear across the entire study area—
there is a real connection between autumnal SMAP data and sub-
sequent springtime streamflow observations, a connection that spans
the continent despite regional variations in hydrological processes.
While some negative correlations do appear—this is inevitable given
the small sample sizes examined and, for example, the vagaries of
springtime precipitation variability (see, e.g., Supplementary Fig. S3)—
the correlations in Fig. 2 could not be so overwhelmingly positive if a
real connection did not exist.

The established connection, of course, has direct relevance to the
prediction of springtime streamflow at the seasonal lead. A simple
prediction model based on the linear regressions underlying the cal-
culated correlations in Fig. 2 would provide levels of correlation-based
prediction skill that are relatively high compared to those typically
attained in the general realm of seasonal prediction, e.g., those
obtained when operational seasonal forecast systems predict season-
ally averaged midlatitude air temperature and precipitation at multi-
month leads (https://www.cpc.ncep.noaa.gov/products/people/
wwang/cfs_skills/). The raw average of the square of the correlations
in Fig. 2a (after zeroing out negative values) is 0.27, meaning that on
average, SMAP-predicted streamflow could explain over one-fourth of
the variance of actual streamflowwithout any benefit from snow cover
information or forecast precipitation. RMSE-based skill using such a
linear regression model would similarly be non-negligible assuming
that the statistical moments of basin streamflow are known a priori10.

Of course, we could also evaluate in this regard the November 30
profile soil moisture estimates from MERRA-2—i.e., the reanalysis-
based data we used to calibrate the exponential filtering of the SMAP
data. Supplementary Fig. S4 shows that November 30 MERRA-2 soil
moistures could provide a very similar amount of potential streamflow
prediction skill; correlations are again essentially positive across
CONUS, with an average value of 0.42. These similar results and the
public’s easy access to MERRA-2 data raise an obvious question: what
advantages do SMAP data offer over reanalysis products for seasonal
streamflowprediction? The key advantage offered by the SMAP data is
accurate soil moisture information in otherwise poorly instrumented
regions11,12. We should expect MERRA-2 soil moisture to be reasonably
accurate over CONUS given the strong measurement networks there,
particularly for precipitation, which drives the variability of soil
moisture in the reanalysis. Across much of the globe, however, pre-
cipitation measurement networks are much less reliable, which will
necessarily lead to less reliable MERRA-2 soil moisture estimates and
thus a significantly reduced potential for streamflow prediction.

We can illustrate such reduced reliability through calculations
using profile soil moistures generated with the NASA Global Earth
Observing System Forward Processing for Instrument Teams (GEOS
FPIT) product13 (https://gmao.gsfc.nasa.gov/GMAO_products/NRT_
products.php), which, like MERRA-2, is housed and operated by the
NASA Global Modeling and Assimilation Office. In the context of this
study, the GEOS FPIT system is essentially identical to the MERRA-2
system except for one key difference: in GEOS FPIT, rather than using

observational rain gauge data to drive the land surface hydrology, the
hydrology is driven instead with model-generated precipitation from
the atmospheric analysis itself. The average correlation across CONUS
between November 30 soil moistures fromGEOS FPIT and subsequent
springtime streamflow drops to 0.345 (see Supplementary Fig. S5),
significantly less than that obtained with the SMAP-derived orMERRA-
2 soil moistures. It is not a surprise that mostly positive values are still
obtained with GEOS FPIT, given that rainfall in the FPIT system can still
draw accuracy from other measurements, such as from aircraft and
radiosondes, which have a higher-than-average density over CONUS.
Nevertheless, not using direct rainfall measurements in GEOS FPIT has
a clear detrimental effect, one that should reflect MERRA-2 perfor-
mance in areas across the globewith limitedornon-existent rain gauge
information. In other words, the average of 0.42 found with the
MERRA-2 soil moisture predictor over CONUS should not be expected
to apply in many regions of the globe. In contrast, under the
assumption that the time scale identified in Fig. 1 is itself widely
applicable (a reasonable assumption given the high correlations seen
in Fig. 1b across themany disparate climates ofCONUS), the average of
0.43 found using the SMAP data (Fig. 2) should be representative even
in regions without strong in-situ measurement systems, particularly in
midlatitudes.

We emphasize midlatitudes in the previous sentence because we
consider a prediction lead that spans the winter season to be parti-
cularly conducive to success—fall soil moisture anomalies may survive
largely intact into the spring because ET during winter is greatly
reduced and because snow falling after November 30 often may not
melt and affect (or respond to) soil moisture conditions until the
spring snowmelt season. In addition, in parts of midlatitudes14–16,
including central CONUS, precipitation rates are lower during winter,
reducing potential variations in soil moisture. The potential for higher
correlations during winter is supported by corresponding results in
the study area for a lead that spans the summer season; the
continental-scale average of the correlations in the summer case is, as
expected, much lower (Supplementary Fig. S6). Latent predictability
within the climate system, as indicated here for the winter lead, has
been discussed extensively in the literature in the context of other
climateprocesses17,18. (Note thatwe avoidDecember and January in any
case because for many of the basins, SMAP L2 soil moisture retrievals
are unavailable due to the presence of snow cover or frozen ground.)
The implied predictability illustrated in Fig. 2 must mainly stem from
soil moisture memory, given that the soil moisture anomalies exam-
ined here have a substantially larger connection (e.g., in terms of
correlation) to the streamflow totals themselves than to the observed
precipitation amounts leading into spring (the average correlation
betweenWNov30 andDecember–Mayprecipitation is only 0.23). Simply
put, our results indicate that late fall soil moisture anomalies survive
into spring and thereby determine the preconditioning of the spring-
time land surface for generating runoff.

The connection in Fig. 2a between the processed fall SMAP
retrievals and subsequent spring streamflow (along with the asso-
ciated implications for prediction) is the main result of the present
study. A secondary result, however, is also worth highlighting. Two
separate and independent calculations suggest that exponential filter-
based averaging of the SMAP L2 soil moistures provides information
onmoisture deeper in the soil: (i) the correlations against theMERRA-2
profile soil moisture estimates in Fig. 1, and (ii) the fact that the aver-
aged surface soil moisture does indeed provide information on sub-
sequent streamflow (Fig. 2). The averages determined with a τ of
38 days are in fact more correlated with subsequent streamflow than
are averages computed with shorter τ values (e.g., 10 or 20 days, see
Supplementary Fig. S7). Our secondary result is thus consistent with
past findings19; while soil moisture below a 5 cm depth is not directly
accessible by the SMAP radiometer, information about this soil
moisture nonetheless appears to be accessible through exponential
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filtering. This result is also consistent with past studies demonstrating
a connection between time-averaged surface moisture and deeper
water storage variations20.

Finally, we point out that the SMAP L4 product21 combines SMAP
brightness temperatures with observation-based meteorological data
in a data assimilation framework, producing SMAP-based soilmoisture
estimates with ~2.5-day latency for both the root zone and the full soil
profile that should, in principle (at least in areas with adequate
meteorological forcing), be more accurate than those obtainable
through the simple exponential filtering approach used here. Future
work will include evaluating the L4 product for streamflow prediction
and, in particular, parsing out the independent contribution of SMAP
measurements (relative to that of the meteorological forcing used in
the L4 product) to seasonal streamflow prediction accuracy.

Methods
Stream gauge data
We consider streamflow measurements for the spring period
(February–May) of years 2016–2022 from 240 unregulated (unaf-
fected by reservoir management) hydrological basins of intermediate
size (2000–10,000 km2) over CONUS, published by the United States
Geological Survey (USGS) (https://waterdata.usgs.gov/nwis). The
selected basins are a subset, based on basin area, of the 572 basins
described by Kumar et al.22. The intermediate size was targeted
because it is not smaller than the SMAP radiometer footprint but still
small enough to allow most regions within CONUS to be represented.
Of the 240 basins, 236 had streamflow data for all 7 years of the
2016–2022 period; we use these 236 basins for our analysis. The
locations of the basins are indicated in Figs. 1 and 2; the circles in the
panels are centered on the stream gauge locations.

SMAP soil moisture retrievals
The SMAP Level 2 (L2) soil moisture retrievals are derived from space-
borne L-band (1.4GHz) radiometer measurements and represent
average soil moisture conditions in the top several centimeters of
soil23. The retrievals have been extensively evaluated against inde-
pendent in-situ soil moisture data24,25 and have been shown successful
in meeting mission accuracy requirements. For the present study, we
use the L2 Radiometer Half-Orbit Soil Moisture, version 826, baseline
retrievals from the dual channel algorithm27. We use data collected on
the descending branch of the SMAP orbit (6AM local overpass time)
and use only data flagged as having either “recommended” or
“uncertain” quality, so that, for example, data collected during snow-
covered periods are not considered. (We in fact consider the
“recommended” subset of these data by themselves in Fig. 2b.) The
data are analyzed on the 36-km Equal Area Scalable Earth grid28 (ver-
sion 2), which approximates the data’s true underlying resolution.

At eachof the 236basins described in section “Streamgaugedata”
of Methods, we compute the basin-average near-surface soil moisture
from the SMAP L2 retrievals. A basin average on a given day is con-
sidered valid only if the SMAP retrieval’s grid cell area covers at least
50% of the basin area. These spatial averages are then time-averaged
(see next section) to produce, for that basin, estimates of that year’s
late-fall profile soil moisture for correlation with subsequent spring-
time streamflow.

Estimation of profile soil moisture
For the streamflow prediction problem, soil moisture estimates for a
depth extending well below the top several centimeters of soil are
particularly relevant, given that anomalies in this deeper moisture are
more likely than surface anomalies to survive into spring. The first task
in our analysis is thus to produce, using SMAP L2 surface soil moisture
retrievals alone, estimates of such deeper-layer soil moisture. We will
loosely refer to these L2-based deeper soil moisture estimates as
profilemoisture estimates, given thatwe calibrate the equationused to

compute them with profile soil moisture estimates from an indepen-
dent source.

Our chosen predictor for springtime streamflow is a basin’s esti-
mated profile soil moisture on November 30, WNov30. While this spe-
cific date is somewhat arbitrary—other dates in that general
neighborhoodproduce similar results (see Supplementary Figs. S8 and
S9)—it does satisfy our requirement of late-fall soil moisture for the
analysis. A late-fall date is far enough from the spring snowmelt season
to allow a demonstration of predictability at the seasonal time scale;
furthermore, the fact that this seasonal lead spans the winter season
allows us to take advantage of the added predictability (i.e., memory)
associated with the quiescent nature of wintertime soil hydrology, a
time when ET rates are low and much of the soil surface in North
America is potentially frozen or covered by snow.

An established approach, the exponential filter19,29,30, is applied to
the surface soil moisture retrievals to obtain our estimates of deeper
soil moisture. (Supplementary Fig. S10 illustrates the relevance of such
temporal averaging.) In essence, if tNov30 is the day-of-year corre-
sponding to November 30, we compute our estimate of basin-
averaged profile soil moisture using:

WNov30 =
XN

n=0

wn exp
tn � tNov30

τ

� �
=
XN

n =0

exp
tn � tNov30

τ

� �
ð1Þ

where tn is the day-of-year lying n days prior to November 30,wn is the
basin-average of the soil moisture retrievals on day tn, N is a suitably
large number of days, and τ is a chosen time scale. The discrete formof
Eq. (1) allows the determination ofWNov30 even under the intermittent
availability of surface retrievals at the grid cell in question; this is of
value given that the SMAP instrument has a typical return time of
2–3 days and may, in any case, feature data drop-outs.

For effective use of Eq. (1), we calibrate the time scale τ from
available data—data that are, of course, independent of the streamflow
data thatwewill eventually try topredict. Herewe use reanalysis-based
profile soil moisture estimates on November 30 (day 334 in non-leap
years, day 335 in leap years) as the calibration target. In essence,
through the calibration, we determine the single, universal value of τ
that produces the greatest agreement between the basin-averaged
retrieval data and these instantaneous profile soil moisture estimates
from the reanalysis (which are also spatially averaged over each basin).
The reanalysis used, the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2)31, features a soil
moisture hydrology driven by gauge-corrected precipitation forcing32;
we use the profile soil saturation variable from the MERRA-2
holdings33, which represents the average degree of soil saturation
from the soil surface to the assumed bedrock. (This bedrock has a
depth ranging fromabout 1.3 to 3.5m inCONUS34.)While theMERRA-2
estimates are far from perfect, they should have the first-order accu-
racy needed for this calibration exercise35,36. In any case, we show in the
results section above that despite any MERRA-2 inaccuracies, the
calibration successfully leads to soil moisture estimates of relevance
for streamflow prediction.

In each of the 60 tests (one test for each value of τ evaluated, with
imposed values ranging from 1 to 60 days), we use Eq. (1) to estimate
November 30 profile soil moisture within each basin for every year
during 2015–2021 from the SMAP retrievals and then compare these
estimates to the corresponding MERRA-2 profile soil moisture.
Agreement between the seven data pairs at each of the 236 basins is
measured with the Pearson correlation coefficient, R. The overall
calibration metric is then defined as the average of the 236 R values.
Note that we mitigate to some degree the deleterious effect of a small
sample size by averaging these R values over hundreds of basins. The τ
value found to produce the largest spatially averaged R is deemed
optimal; this single calibrated value is used for all basins to translate
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the basin-averaged SMAP L2 retrievals into WNov30 values for the
streamflow prediction analysis.

Soil moisture—streamflow correlations
At each basin, we calculate R between the seven values of WNov30 (one
for each year in 2015–2021) and the measured basin streamflow
accumulated over the subsequent February through May period (one
value for each year in 2016–2022). Given that WNov30 does not utilize
any information between November 30 and the streamflow period,
this temporal correlation indicates the degree to which springtime
streamflow totals canpotentially be predictedmonths in advance from
SMAP L2 soil moisture retrievals.

As in the time scale analysis, while a correlation derived from
seven data pairs is naturally prone to significant sampling uncertainty,
our analysis is made statistically tenable by the large number of basins
considered here, basins that indeed span CONUS. We examine the
distribution across the basins of the individual correlations along with
their overall average, examining the degree to which they violate the
null hypothesis of zero true correlation. At a given station, a correla-
tion based on 7 data pairs is significantly different from zero with a
confidence of 95% if it exceeds 0.68. This value was determined from a
simple Monte Carlo exercise: 10,000 sets of 7 sample pairs, each ele-
ment in each pair drawn from a random normal distribution, provided
10,000 correlation values, fromwhich the null hypothesis value at the
95th percentile was determined.

In addition, to provide a confidence interval for the overall aver-
age as well as to curtail the ability of spatial correlations in streamflow
or soil moisture to affect this average (i.e., to keep densely gauged
areas from inappropriately dominating the statistics), we apply a
clustering approach as used in previous studies37,38. The approach
involves specifying a cluster radius (say, 2 degrees) and, through the
use of a Fisher Z transformation, computing a 95% confidence interval
(for the positive and negative sides separately) for the R value of each
basin contained within a given cluster. The positive (negative) con-
fidence intervals within that cluster are then averaged into a single
confidence interval. Finally, the average of these cluster-specific values
across the domain is computed and then divided by the square root of
the number of clusters.

Data availability
The Version 8 SMAP L2 retrievals are available from https://doi.org/10.
5067/LPJ8F0TAK6E0. USGS streamflowdata are available fromhttps://
waterdata.usgs.gov/nwis/dv/?referred_module=sw. MERRA-2 data are
disseminated through the Goddard Earth Science Data and Informa-
tion Services Center (GES DISC), with the particular data used here
obtained at https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/
summary. The November 30 soil moisture data (from SMAP, MERRA-
2, and GEOS FPIT) and subsequent streamflow data used herein are
available at https://doi.org/10.6084/m9.figshare.22593244.

References
1. Becker, E., van den Dool, H. & Zhang, Q. Predictability and forecast

skill in NMME. J. Clim. 27, 5891–5906 (2014).
2. Wood, A. W. & Lettenmaier, D. P. A test bed for new seasonal

hydrologic forecasting approaches in the Western United States.
Bull. Am. Met. Soc. 87, 1699–1712 (2006).

3. Bennett, K. E., Cherry, J., Balk, B. & Lindsey, S. Using MODIS esti-
mates of fractional snow cover area to improve streamflow in
interior Alaska. Hydrol. Earth Syst. Sci. 23, 2439–2459 (2019).

4. Koster, R. & Suarez, M. Soil moisture memory in climate models. J.
Hydrometeorol. 2, 558–570 (2001).

5. Harpold, A. A., Sutcliffe, K., Clayton, J., Goodbody, A. & Vazquez, S.
Does including soil moisture observations improve operational
streamflow forecasts in snow-dominated watersheds? J. Am. Water
Resour. Assoc. 53, 179–196 (2016).

6. Wyatt, B. M., Ochsner, T. T., Krueger, E. S. & Jones, E. T. In-situ soil
moisture data improve seasonal streamflow forecast accuracy in
rainfall-dominated watersheds. J. Hydrol. 590, 125404 (2020).

7. Koster, R., Mahanama, S., Livneh, B., Lettenmaier, D. & Reichle, R.
Skill in streamflow forecasts derived from large-scale estimates of
soil moisture and snow. Nat. Geosci. 3, 613–616 (2010).

8. Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP)mission.
Proc. IEEE 98, 704–716 (2010).

9. Crow, W. T., Chen, F., Reichle, R. H., Xia, Y. & Liu, Q. Exploiting soil
moisture, precipitation, and streamflow observations to evaluate
soilmoisture/runoff coupling in land surfacemodels.Geophys. Res.
Lett. 45, 4869–4878 (2018).

10. Entekhabi, D., Reichle, R. H., Koster, R. D. &Crow,W. T. Performance
metrics for soil moisture retrievals and application requirements. J.
Hydrometeorol. 11, 832–840 (2010).

11. Dong, J. et al. Aglobal assessment of addedvalue in theSMAPLevel
4 soil moisture product relative to its baseline land surface model.
Geophys. Res. Lett. 46, 6604–6613 (2019).

12. Reichle, R. H. et al. The contributions of gauge-based precipitation
and SMAP brightness temperature observations to the skill of the
SMAP Level-4 soil moisture product. J. Hydrometeorol. 22,
405–424 (2021).

13. Lucchesi, R. File Specification for GEOS-5 FP-IT. GMAOOffice Note
No. 2 (Version 1.4), p. 58; http://gmao.gsfc.nasa.gov/pubs/office_
notes (2015).

14. Weaver, S. J., Schubert, S. &Wang,H.Warmseason variations in the
low-level circulation andprecipitation over the central united states
in observations, AMIP simulations, and idealized SST experiments.
J. Clim. 22, 5401–5420 (2009).

15. Ummenhofer, C. C. et al. How climate change affects extremes in
maize and wheat yield in two cropping regions. J. Clim. 28,
4653–4687 (2015).

16. Xiang-Hui, K. & Xun-Qiang, B. Dynamical downscaling of the
twentieth century reanalysis for China? Climatic means during
1981–2010. Atmos. Ocean. Sci. Lett. 8, 166–173 (2015).

17. Alexander, M., Deser, C. & Timlin, M. The reemergence of SST
anomalies in the North PacificOcean. J. Clim. 12, 2419–2433 (1998).

18. Guo, Z., Dirmeyer, P., DelSole, T. & Koster, R. Rebound in atmo-
spheric predictability and the role of the land surface. J. Clim. 25,
4744–4749 (2012).

19. Albergel, C. et al. From near-surface to root-zone soil moisture
using an exponential filter: an assessment of the method based on
in-situ observations and model simulations. Hydrol. Earth Syst. Sci.
12, 1323–1337 (2008).

20. Crow, W. T. et al. Estimating annual water storage variations in
medium-scale (2000 to 10000 km2) basins using microwave-
based soil moisture retrievals.Hydrol. Earth Syst. Sci. 21, 1849–1862
(2017).

21. Reichle, R. H. et al. Version 4 of the SMAP Level-4 soil moisture
algorithm and data product. J. Adv. Model. Earth Syst. 11,
3106–3130 (2019).

22. Kumar, S. et al. Assimilation of remotely sensed soil moisture and
snow depth retrievals for drought estimation. J. Hydrometeorol. 15,
2446–2469 (2014).

23. Chan, S. et al. Development and assessment of the SMAPenhanced
passive soil moisture product. Remote Sens. Environ. 204,
931–941 (2018).

24. Chan, S. et al. Assessment of the SMAP passive soil moisture pro-
duct. IEEE Trans. Geosci. Remote Sens. 54, 4994–5007 (2016).

25. Colliander, A. et al. Validation of soil moisture data products from
the NASA SMAP mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 15, 364–392 (2022).

26. O’Neill, P. E. et al. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid
Soil Moisture, Version 8. Boulder, Colorado USA. NASA National
Snow and Ice Data Center Distributed Active Archive Center

Article https://doi.org/10.1038/s41467-023-39318-3

Nature Communications |         (2023) 14:3545 6

https://doi.org/10.5067/LPJ8F0TAK6E0
https://doi.org/10.5067/LPJ8F0TAK6E0
https://waterdata.usgs.gov/nwis/dv/?referred_module=sw
https://waterdata.usgs.gov/nwis/dv/?referred_module=sw
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2T1NXLND_5.12.4/summary
https://doi.org/10.6084/m9.figshare.22593244
http://gmao.gsfc.nasa.gov/pubs/office_notes
http://gmao.gsfc.nasa.gov/pubs/office_notes


(accessed 22 February 2022); https://doi.org/10.5067/
LPJ8F0TAK6E0 (2021).

27. Chaubell, M. J. et al. Regularized dual-channel algorithm for the
retrieval of soil moisture and vegetation optical depth from SMAP
measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15,
102–114 (2021).

28. Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H.
EASE-Grid 2.0: incremental but significant improvements for earth-
gridded data sets. ISPRS Int. J. Geoinf. 1, 32–45 (2012).

29. Wagner, W., Lemoine, G. & Rott, H. A method for estimating soil
moisture from ERS scatterometer and soil data. Remote Sens.
Environ. 70, 191–207 (1999).

30. Ford, T. W., Harris, E. & Quiring, S. M. Estimating root zone soil
moisture usingnear-surface observations fromSMOS.Hydrol. Earth
Syst. Sci. 18, 139–154 (2014).

31. Gelaro, R. et al. TheModern-EraRetrospectiveAnalysis for Research
and Applications, Version 2 (MERRA-2). J. Clim. 30,
5419–5454 (2017).

32. Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim.
30, 1643–1664 (2017).

33. Global Modeling and Assimilation Office (GMAO). tavg1_2d_lnd_Nx
hourly collection, Greenbelt, MD, USA: Goddard Space Flight
Center Distributed Active Archive Center (GSFC DAAC) (accessed
27 September 2019); https://doi.org/10.5067/RKPHT8KC1Y1T
(2015).

34. Mahanama, S. et al. Land Boundary Conditions for the Goddard
Earth Observing System Model Version 5 (GEOS-5) Climate Mod-
eling System – Recent Updates and Data File Descriptions. NASA
Technical Report Series on Global Modeling and Data Assimilation,
NASA/TM-2015-104606, Vol. 39, p. 53; https://gmao.gsfc.nasa.
gov/pubs/ (2015).

35. Reichle, R. H. et al. Assessment of MERRA-2 land surface hydrology
estimates. J. Clim. 30, 2937–2960 (2017).

36. Koster, R., DeAngelis, A., Liu, Q., Schubert, S. & Molod, A. The
simulation and subseasonal forecasting of hydrological variables:
insights from a simple water balance model. J. Hydrometeorol. 23,
1719–1736 (2022).

37. De Lannoy,G. J.M. &Reichle, R. H.Global assimilation ofmultiangle
and multipolarization SMOS brightness temperature observations
into the GEOS-5 catchment land surface model for soil moisture
estimation. J. Hydrometeorol. 17, 669–691 (2016).

38. Reichle, R. H. et al. Assessment of the SMAP Level-4 surface and
root-zone soil moisture product using in situ measurements. J.
Hydrometeorol. 18, 2621–2645 (2017).

Acknowledgements
Funding for this work was provided by the NASA SMAP mission and the
SMAP Science Team. Computational resources were provided by the

NASAModeling and Prediction (MAP) Program through their support of
the NASA Global Modeling and Assimilation Office. We thank Sarith
Mahanama for helpwith the datasets. USDAARS is an equal-opportunity
employer.

Author contributions
R.D.K. oversaw the study and wrote the paper. Q.L. managed the data-
sets. All authors contributed significantly to the analysis and inter-
pretation of the results as well as to the editing of themanuscript. These
authors contributed equally: W.T.C., R.H.R.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39318-3.

Correspondence and requests for materials should be addressed to
Randal D. Koster.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

This is aU.S.Governmentwork andnot under copyright protection in the
US; foreign copyright protection may apply 2023

Article https://doi.org/10.1038/s41467-023-39318-3

Nature Communications |         (2023) 14:3545 7

https://doi.org/10.5067/LPJ8F0TAK6E0
https://doi.org/10.5067/LPJ8F0TAK6E0
https://doi.org/10.5067/RKPHT8KC1Y1T
https://gmao.gsfc.nasa.gov/pubs/
https://gmao.gsfc.nasa.gov/pubs/
https://doi.org/10.1038/s41467-023-39318-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Late-fall satellite-based soil moisture observations�show clear connections to subsequent�spring streamflow
	Results
	Calibration of τ parameter
	Correlations between soil moisture and streamflow

	Discussion
	Methods
	Stream gauge data
	SMAP soil moisture retrievals
	Estimation of profile soil moisture
	Soil moisture—streamflow correlations

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




