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Biomedical knowledge graph learning for
drug repurposing by extending guilt-by-
association to multiple layers

Dongmin Bang1,2, Sangsoo Lim3, Sangseon Lee4 & Sun Kim 1,2,5,6

Computational drug repurposing aims to identify new indications for existing
drugs by utilizing high-throughput data, often in the form of biomedical
knowledge graphs. However, learning on biomedical knowledge graphs can be
challenging due to the dominance of genes and a small number of drug and
disease entities, resulting in less effective representations. To overcome this
challenge, we propose a “semantic multi-layer guilt-by-association" approach
that leverages theprinciple of guilt-by-association - “similar genes share similar
functions", at the drug-gene-disease level. Using this approach, our model
DREAMwalk: Drug Repurposing through Exploring Associations using Multi-
layer random walk uses our semantic information-guided random walk to
generate drug and disease-populated node sequences, allowing for effective
mapping of both drugs and diseases in a unified embedding space. Compared
to state-of-the-art linkpredictionmodels, our approach improves drug-disease
association prediction accuracy by up to 16.8%. Moreover, exploration of the
embedding space reveals a well-aligned harmony between biological and
semantic contexts.Wedemonstrate the effectiveness of our approach through
repurposing case studies for breast carcinoma and Alzheimer’s disease, high-
lighting the potential of multi-layer guilt-by-association perspective for drug
repurposing on biomedical knowledge graphs.

Novel drug development process in the modern era is costly, both in
terms of resources and time. Drug repurposing utilizes already-
approved drugs to treat diseases, and it is increasingly becoming an
attractive alternative for treatment-lacking conditions. The benefits of
using existing drugs lie in the lower risk of toxicity-related clinical
failure, along with lower development costs and shorter approval
timelines1.

Accumulating bioassays and screening results have led to better-
than-ever understanding of drugs and diseases at themolecular level.
Computational drug repurposing has gained attention owing to its
rapidness and ability to utilize high-throughput data2, especially with

the rise of the pandemic era3. Throughout the COVID-19 pandemic, a
number of computational methodologies have been successful in
predicting the use of existing drugs for COVID-19 patients. A notable
example is an expert-curated network analysis that discovered
baricitinib4, which is now approved by the US Food and Drug
Administration (FDA) in combination with remdesivir5. As another
example, a transcriptome, proteome, and human interactome-
integrative network approach along with population-based study
identified melatonin as a potential prevention and treatment for
COVID-196. As the number of drug repurposing cases grew, so did the
interest in a systematic data-driven, instead of hypothesis-driven,
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screen of all known drugs by fully incorporating the large bioassay
datasets7.

Many models have attempted to connect drugs to candidate
disease by constructing drug-disease bipartite similarity networks8–11.
For example, MVGCN11 constructed a multi-view drug-drug and
disease-disease similarity network for drug-disease association (DDA)
prediction. However, the limitation of these methods is that they do
not fully consider the biological mode of action (MoA) of drugs and
their relationship with disease. A more convincing and widely-used
method is clarifying biological mechanisms with relevant genes. This
method has been well applied in the aforementioned cases of bar-
icitinib andmelatonin against COVID-19, where the target genes of the
disease have already been intensively identified. However, this is not
the case in general, where a drug’s MoA needs to be inferred and this
inferred MoA needs to be connected to disease. Hence, a single com-
putational framework that connects through all three layers of drug,
gene, and disease-integrated knowledge graph is required.

Several studies have been proposed to leverage the integrated
drug-gene-disease knowledge graph, or biomedical knowledge graph
(biomedKG) for systemic DDA prediction and drug repurposing4, 12–15.
Himmelstein et al.13 performed meta-path based network mining on a
constructed a heterogeneous network, named HetioNet, for drug
repurposing. Also,Ruiz et al12. analyzed thenetworkdiffusionprofile of
drugs on their constructedMulti-scale Interactome (MSI) network and
revealed that integrating gene ontology (GO) annotations on biome-
dical network improved both DDA prediction performance and inter-
pretability. A Graph Convolutional Network (GCN)-based drug
repurposing model, biFusion16, reported performance enhancement
when the PPI network was integrated into a drug-disease bipartite
network. Lastly, a recently proposed model iDPath17 adopted a deep
learning framework to connect drugs and diseases through a multi-
layer knowledge graph for drug repurposing. iDPath identified critical
paths that match drugs’ MoA, implying that connection of drug and
disease through the MoA-relevant path is critical for accurate predic-
tion of DDAs.

The main research issue is that learning drug-disease association
with the PPI-based gene-gene network (PPI network) brings forth
technical challenges. The main hurdle is that the PPI network is much
larger and denser than drug-gene and disease-gene networks. Statis-
ticsof several biomedical heterogeneous networks show that the gene-
gene network covers over 90% of nodes and edges owing to its large
number of entities andhighdegree (Supplementary Fig. 1). Connecting
two sparse networks through a large and dense network is difficult,
and network representation learning frameworks of other domains
suffer from bias towards the PPI network. Empirical analysis of drug-
gene-disease knowledge graphs showed that random walk and net-
work propagation algorithms were biased towards the PPI network
(Supplementary Fig. 1). Although existing drug-gene-disease node
sequencegeneration approaches effectively producedrug and disease
embeddings, the dominance of gene nodes and a small number of
drug and disease nodes results in less effective representation
learning.

Furthermore, current biomedKG-based drug repurposing frame-
works do not utilize drug and disease similarities in a single compu-
tational framework. The concept of “guilt-by-association" (GBA)18,
where the function of a biological entity is inferred by investigating its
direct neighbors, has been a cornerstone of network-based inference
algorithms, including network propagation19. However, applying GBA
to drug repurposing is not as straightforward as it is for protein
function inference, where the protein and its function exist on the
same layer. The reason for this is that the function of a drug is deter-
mined by its molecular-level targets, while associated diseases are
based on the semantic level. To incorporate the GBAprinciple for drug
repurposing, we suggested a “semantic multi-layer GBA" concept. The
core idea of semantic multi-layer GBA is to assign the roles of drug/

disease entities by simultaneously looking at their semantic neighbors,
along with their topology on the biomedKG.

In an effort to overcome the hurdles of connecting drugs and
diseases through a large and dense gene-gene network by employing a
semantic multi-layer GBA approach, we applied teleport operation on
drugs and diseases to populate paths passing drug and disease nodes.
The concept of teleportation was originally introduced by the PageR-
ank algorithm20, which randomly teleports a walker to any node,
regardless of its topology. Building upon this idea, we have extended
the teleportation process to a semantic-information-guided tele-
portation, which associates semantically related drugs and diseases.

With this extension, we propose an algorithm that enables ran-
domwalker to teleport to semantically similar drugs and diseases. Our
approach isbasedon the premise that the semantic neighborsof drugs
share biologically relevant targets with diseases, as evidenced by our
preliminary network analysis results (Supplementary Fig. 2). The
incorporation of a semantic neighborhood has resulted in the gen-
eration of random walk paths that provide both biological and
semantic perspectives, leading to representation learning that accu-
rately reflects the molecular and semantic contexts of entities.

Based on these ideas, we proposeDREAMwalk, which stands for:
Drug Repurposing through Exploring Associations using Multi-layer
random walk. DREAMwalk incorporates semantic information guided
teleportation to populate drugs and disease entities on a randomwalk-
based path generation process. The resulting random walks are then
used to create embedding vectors using a heterogeneous Skip-gram
model. These embedding vectors are then used to predict drug-
disease associations and repurposing probabilities using an eXtreme
Gradient Boosting (XGBoost)21 classifier. We believe the innovation of
our work lies in the fact that our semantic multi-layer GBA-based
technique generates a more effective embedding space that allows for
mapping drugs and diseases in the same space.

Throughout this paper, we demonstrate the following contribu-
tions of DREAMwalk; (i) the expansion of a drug’s role through the
incorporation of additional semantic neighbor information, (ii) the
generation of an embedding space that effectively captures the har-
mony between semantic and molecular level contexts, and (iii) the
provision of interpretability of drugs’ and diseases’ mechanisms of
action through the sampled paths. Moreover, we present case studies
on breast carcinoma and Alzheimer’s disease that demonstrate the
potential for drug repurposing and highlight the effectiveness of the
multi-layered GBA approach in uncovering novel drug-disease asso-
ciations, facilitating the translation of the molecular world to action-
able insights for drug repurposing.

Results
DREAMwalk algorithm that integrates semantic information on
biomedKG for multi-layered GBA
According to the GBA principle, characteristics of a particular biolo-
gical entity can be inferred by reflecting upon its neighbors. This may
be the case for single-layer GBA, such as gene or protein function
prediction. However, in the case of DDA, function of a drug is defined
through its biological targets and MoA; yet, its indications are deter-
mined at a higher level. To infer a drug’s role fromboth biologicalMoA
and semantic neighbors, we introduce the concept of “semanticmulti-
layer GBA".

Random walk approach has been successful for shallow embed-
ding of graphs. Random walk-based approaches first sample node
sequences, and then pass them to representation learning archi-
tectures, for example, Continuous Bag-Of-Words22 or Skip-gram22.
Owing to itsflexible and stochastic nature, the algorithmdemonstrates
superior performance in a number of settings23, 24. DREAMwalk fully
utilizes this flexibility for integrating semantic level information and
successfully implements the multi-layered GBA principle on bio-
medKG. The outline of the DREAMwalk algorithm is summarized
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below as illustrated in Fig. 1. Details on the technologies used in the
DREAMwalk algorithm can be found in Methods Section.
1. DREAMwalk performs teleport operation while random walking

by using semantic similarity as its guide (Fig. 1a). The widely used
Anatomical Therapeutic Chemical (ATC) classification and medi-
cal subject headings (MeSH) describe the semantic hierarchy of
drugs and diseases, respectively (Supplementary Table 1). When
the random walker arrives at a drug or disease node, it selects its
next action between network traversing and teleport operation. If
network traversing action is selected, the random walker pro-
ceeds with network traversing procedure as it has done so far. If
the selected action is teleport operation, the random walker
randomly samples the next node from the similarity matrix Sdrug
or Sdisease, by using similarity values as sampling distribution. The
probability of choosing teleport operation over network traver-
sing is defined by the teleport factor τ, which is a user-given
parameter. This guided teleport operation leads the randomwalk
sequence from the local neighborhood of the biological level
network to a semantically relevant neighborhood.

2. The semantic information-integrated randomwalk sequences are
then passed on to the heterogeneous Skip-gram model-based

node representation learning. This process generates an embed-
ding space that enables computation of the relations between
entities, for example clustering or distance-based analysis
(Fig. 1b,c). The results of these analyses demonstrate both
semantic and biological level characteristics of the DREAMwalk’s
constructed embedding vector space.

3. Then, using the generated node representations, a XGBoost
classifier is trained to output the drug-disease treatment prob-
ability, given the subtracted vector of drug and disease nodes
(Fig. 1d). The trained XGBoost model is then utilized for drug
repurposing by prioritizing highly probable treatment drug-
disease relationships (Fig. 1e). Details of the model can be found
in the Methods Section.

Multi-layer GBA enables accurate prediction of drug-disease
associations
Prior to drug repurposing, we first evaluated the DDA prediction
performanceofDREAMwalkon threebiomedKGs:MSI12, HetioNet13,
and KEGG25. The statistics of each network are listed in Supple-
mentary Tables 2–4, respectively. The prediction performances
were measured with prediction accuracy, area under receiver

Fig. 1 | The overview of the DREAMwalk framework. a The node sequence gen-
eration process through teleport-guided random walk. When arriving at a drug/
disease node, the randomwalker selects an action between network traversing and
teleport operation based on the teleport factor τ. b The embedding space gen-
eration process with heterogeneous Skip-gram model. The heterogeneous Skip-
gram performs negative sampling process from the same node types. c The
embedding vector space enables computational analysis including clustering of

entities and distance-based analysis. d Drug-disease association prediction using
XGBoost classifier with subtracted vectors of drug and disease embedding vectors
as input. e Repurposing candidate drugs are prioritized using the trained XGBoost
classifiers. Given a query disease of interest, all unlabeled drug-disease pair vectors
are pass through the trained classifiers to obtain treatment probabilities. These
probabilities are then averaged to yield a ranked list of candidate drugs based on
their average treatment possibility.
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operating characteristic curve (AUROC) and area under precision-
recall curve (AUPR).

The selected parison models can be grouped as random walk-
based model, graph neural network (GNN)-based models, and
transition-based link prediction models. Random walk-based models
include two similarity network-based models, NEWMIN26 and
DTi2vec27, and non-similarity network-based models, edge2vec28 and
node2vec29. We also evaluated the performance of two subgraph-
basedGNNmodels, SEAL30 andWalkPool31, that are currently knownas
state-of-the-art models for link prediction tasks. Additionally, we
investigated the effectiveness of transition-based models, including
ComplEx32, RotatE33, and QuatE34, thatmodel relation between entities
as a transition operation in the complex vector space and use score

functions to predict link probabilities. The detailed description of the
methods and their model structures are in Supplementary Methods.

The results are shown in Fig. 2. In random data splitting experi-
ments (Fig. 2a, c, d), DREAMwalk outperformed state-of-the-art link
prediction models on all three biomedKGs. DREAMwalk achieved an
average accuracy of 0.873, AUROC of 0.938, and AUPR of 0.939 on
three biomedKG, outperforming NEWMIN, the best performingmodel
among walk-based models with an average accuracy of 0.840, AUROC
of0.913, andAUPRof0.913, aswell asWalkPool, thebestmodel among
GNN-based models with average accuracy of 0.760, AUROC of 0.827,
and AUPR of 0.829. In addition, among transition-based approaches,
ComplEx achieved the best performance with average accuracy of
0.706, AUROC of 0.833, and AUPR of 0.858. Notably, the performance

Fig. 2 | Thedrug-disease associationpredictionperformancesof eachmodel on
the three biomedKGs. a DDA prediction performance on MSI network with ran-
dom split. b DDA prediction performance on MSI network with disease area split.
c,d DDA prediction performance with random split on HetioNet and KEGG

network, respectively. Throughout (a)–(d), The error bars denote the mean
values ± 95% confidence interval, derived throughn = 10 independent experiments.
Source data are provided as a Source Data file. (AUROC Area Under the Receiver
Operating Characteristics curve, AUPR Area Under the Precision-Recall curve).
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comparison between proposed model and similarity-based methods,
DTi2vec and NEWMIN, demonstrates that the necessity of the PPI
network lies not only in biological interpretability, but also in perfor-
mance improvement.

To simulate real-world drug repurposing scenarios, additional
disease area-split experiment was conducted on the MSI network
(Fig. 2b). The dataset was partitioned by disease categories, wherein
the model must predict the treatment probabilities of drugs for
unseen disease categories. This approach enables the evaluation of the
model’s generalizability to novel disease categories. DREAMwalk per-
formed better over all baseline models with a margin of 6% in AUROC
and 6% in AUPR, demonstrating the DREAMwalk’s ability to accurately
predict the potential DDA for unseen disease categories. Additionally,
we conducted an experiment to compare the actual drug repurposing
capabilities of the models by splitting the dataset with eight well-
known repurposing cases35 as test set. We reported the output prob-
ability of each model for the associations in Supplementary Table 7,
and demonstrated that our approach achieved successful predictions
for four out of eight cases at over 90% accuracy, which was the best
among all tested models.

Overall, in all experiments on the three different biomedKGsMSI,
HetioNet and KEGG, DREAMwalk outperformed all other comparison
models in our analysis (accuracy: 0.876), ahead of state-of-the-art
methods such as DTi2vec (0.840), WalkPool (0.830), and ComplEx
(0.646). The integration of semantic information on biomedKG with
teleport operation showed accurate and consistent prediction of DDA,
along with its generalizability shown in three biomedKGs and disease
split setting.

Embedding space of DREAMwalk exhibit the harmony between
biological and semantic information
We further investigated the embedding space generated by DREAM-
walk to evaluate its representation of the harmonious characteristics
of biological- and semantic-level contexts. Investigations withmultiple
perspectives were performed to evaluate the embedding space of
DREAMwalk, implemented with teleport operation, by comparing it
with embedding space that is constructed without teleport operation
(Fig. 3a). We first observed the capability of DREAMwalk’s generated
space in distinguishing drug nodes from disease nodes, and also
aligning drugs by their pharmacological classes (Supplementary
Fig. 3). For a more detailed investigation of the generated embedding
space, two case studies were performed to identify its characteristics
at different levels; pharmacological and systemic pathway levels. All
results reported in this section are those of the MSI network.

First, we investigated how well the embedding space represent
the pharmacological level information, with hypertensive drugs as
example. Hypertensive drugs from three different classes, amlodipine,
labetalol and furosemidewere chosen for investigation. Amlodipin is a
calcium channel blocker, which lowers blood pressure through inhi-
biting calcium channels on the surface of vascular smooth muscle
cells, leading to vasodilation36. Labetalol, as well as other β-blockers,
treat hypertension by directly acting on the β-adrenergic receptors of
the heart and reducing its stress37. Finally, diuretics, including fur-
osemide, inhibit the reabsorption of ions and water in the kidney,
resulting in increased diuresis and decreased blood volume38. As
mentioned above, these three drug classes have differentMoAs, hence
they target different proteins, perturb different pathways and result in
varying cellular events. The three drugs exhibits no interactions
between their target proteins (Fig. 3b). However, they share the same
disease target: hypertension, are among the first-line treatments, and
are often used in combinations39. These characteristics of drugs with
same target disease-different MoAs may be a hurdle for biomedKG-
based drug repurposing.

We hypothesized that the three drugs would be located close to
each other in the DREAMwalk’s embedding space since their semantic

roles are analogous, even though biological MoAs differ (Fig. 3c). To
validate our hypothesis, normalized Euclidean distances between the
three drugs were measured on both DREAMwalk-generated space
(with teleport) and space generated without teleport. Each space was
generated for ten times with different random seeds because the
randomwalk algorithm is stochastic. As shown in Fig. 3e, themeasured
distances of three pairs display significant reduction with the inte-
gration of semantic-level information. Since the three drugs with dif-
ferent MoAs but same disease targets are located closer in the multi-
layer embedding space, the GBA principle can be applied in a more
reasonable way for drug repurposing.

The next example demonstrates the systemic pathway level
information implied in the embedding space. Enalapril and valsartan
are drugs that target proteins in the same hormone system, known as
renin-angiotensin-aldosterone system (Fig. 3d). Enalapril is an
angiotensin-converting enzyme inhibitor, and valsartan is an angio-
tensin receptor blocker. Since the MoAs of the two drugs exist in the
same system, they both treat hypertension, and are clinically recom-
mended to be used separately as their combination is associated with
adverse effects40, 41. However, in the biomedKG, they do not share
targets. In addition, the Jaccard similarity of the PPI neighbor set of
ACE and AGTR1 was 0.018 (Fig. 3c), implying a notable biological dis-
tance between the two drugs.

The measured normalized Euclidean distance of the two drugs
significantly decreased with the integration of semantic-level infor-
mation (Fig. 3f). Their cellular pathways are well implied in the
embedding space constructed without semantic teleport since the
biomedKGs already contain pathway or molecular function entities.
However, biological system level pathway interactions, for example,
hormone systems, do not appear to be sufficiently contained in bio-
medKGs. Hence, our case study demonstrates the practicality of the
multi-layer GBA approach in narrowing down this gap between mole-
cular and systemic levels.

For a quantitative demonstration of the decrease of Euclidean
distance of drugs sharing same indications, we measured all-pairwise
distance between the treatments for four disease with the most
number of treatments; rheumatoid arthritis (92 drugs), asthma (88
drugs), hypertensivedisease (82drugs), and allergic rhinitis (74drugs).
The all-pairwise distance distribution of the four disease-curing drugs
also demonstrates the significant decrease with semantic information-
guided teleport. Overall, the two examples suggest that embedding
space of DREAMwalk, generated with semantic information as guide,
reflects entities’ relations at different levels, thereby locating ther-
apeutically associated entities closer.

semantic information-guided teleport is essential for perfor-
mance improvement in DREAMwalk
DREAMwalk’s multi-layer GBA strategy, which integrates semantic
information into biomedKGs, is implemented through a teleport-
guided random walk algorithm. To demonstrate the efficiency and
significance of semantic information-guided teleport operation in
accurate DDA prediction, we conducted several ablation studies.
Integrating semantic information, such as semantic hierarchies of
drugs (ATC classification) and diseases (MeSH term, DiseaseOntology,
ICD-11) is a key principle of the DREAMwalk framework. To compare
the model performances with equal amounts of information for
baseline models, we integrated semantic hierarchies as nodes on the
biomedKGs. Figure 4a illustrates the network learning with hierarchy
entity nodes attached, in comparison with teleport operation.

First, we compared the DDA prediction performances of three
models: model without teleport, model with hierarchy as nodes, and
model with semantic information-guided teleport on theMSI network.
The experimental results show that the integration of hierarchical
information as nodes indeed produced a more accurate prediction
(Fig. 4b). Notably, the increase in AUPR and AUROC was significantly
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Fig. 3 | The embedding space of DREAMwalk reflects the pharmacological and
biological system-level characteristics of drugs. a, b Network topology of the
three hypertensive drug classes on without-teleport embedding space (left) and
DREAMwalk embedding space (right). c, d Network of RAAS and its two targeting
drugs. e The normalized euclidean distance between the hypertensive drug pairs
on DREAMwalk embedding space (blue) and without-teleport embedding space
(orange). f The normalized euclidean distance between the RAAS targeting drugs.
On boxplots of (e) and (f), the center line represents the median, while the upper

and lower box limits represent the quartiles. The whiskers indicate 1.5 times the
interquartile range. All data have been derived through n = 10 independent
experiments. g The all-pairwise normalized euclidean distance distribution for all
drug treatments for rheumatoid arthritis, asthma, hypertension and allergic rhi-
nitis. On the violin plot, the white dot represents the median, while the thick bar
represents the interquartile range and the thin line indicates 1.5 times the inter-
quartile range. Source data are provided as a Source Data file. (RAAS Renin-
Angiotensin-Aldosterone System, t-test paired two-sided paired t-test).
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higher with semantic information-guided teleport (AUROC: 0.944,
AUPR: 0.947) compared with using the semantic information alone as
network components (AUROC: 0.922, AUPR: 0.929).

There are advantages of integrating semantic-level information
through teleport operation over learning them as network compo-
nents. Along with computational efficiency due to the smaller node
and edge counts (Supplementary Table 1), the signal-to-noise (S/N)
ratio may be controlled by applying a cut-off value to the similarity
matrix. Introducing the whole hierarchy as a network component
possesses the limitations of an uncontrollable S/N ratio. Applying a
cut-off or threshold value for similarity matrix construction can
effectively reduce the number of edges (Fig. 4c). This approach not
only narrows the search space but also eliminates noise resulting from
irrelevant neighbors. The performances of the DREAMwalk model
based on different similarity cut-off values are shown in Fig. 4d. The
performance increased as cut-off increased until 0.4, implying a
decrease in S/N ratio as dissimilar entities are excluded from teleport-
able neighbors. Notably, we also observed varying levels of perfor-
mance improvements and decreases among the baseline models fol-
lowing the addition of hierarchy nodes (Supplementary Fig. 4). These
findings suggest that the semantic hierarchy information may act as a
guide if appropriately utilized; otherwise, it may introduce noise into
the network, leading to performance degradation.

In addition, teleport factor τ can be modified for balancing
representation learning between biological and semantic levels and
controlling S/N ratio (Fig. 4e). The capability of DREAMwalk algorithm
in setting the cut-off point to the optimal value andmaintaining the S/
N ratio makes it more powerful tool in accurately predicting DDAs.

Another study was performed to investigate the contribution of
semantic information towards performance enhancements. As pre-
viously mentioned, the biomedKGs are heavily biased to the PPI net-
work, since the number of nodes and their degree are much higher
than the other components (Supplementary Fig. 1). We hypothesized
that the teleport operation’s nature of populating drug- and disease-
passing paths may have contributed the most to the improved per-
formance by debiasing the biomedKG learning process from PPI. To
determinewhether the use of semantic information contributed to the
increase in performance, an additional experiment is conducted by
performing teleport operation randomly. When random teleport-
guided random walker selects its action as teleport, it selects the next
node from randomly generated transition weights instead of semantic
similarity matrix as transition weights. The random generation of the
transition matrix was performed for 10 times, and the resulting per-
formances compared with models without teleport and with semantic
information-guided teleport are provided in Fig. 4b.

The results show the performance of random teleport model
(AUROC: 0.885, AUPR: 0.893) significantly lower than that of the
without-teleport model (AUROC: 0.905, AUPR: 0.912), let alone the
semantic information-guided teleport model (AUROC: 0.944, AUPR:
0.947). This leads to the conclusion that a semantically relevant guide
is necessary for teleport operation to exert its potentials, and using
both adequately results in synergistic improvement in drug-disease
association prediction.

DREAMwalk’s semantic information-guided path enables inter-
pretation of drug/disease mechanisms
Use of biomedKGs for learning and predicting drug-disease associa-
tions offers interpretability, compared to alternative black-box learn-
ing methods. The node sequences generated by DREAMwalk can be
analyzed to identify neighboring genes for a given entity. In this sec-
tion, we demonstrate an approach for inferring the MoA of a biome-
dical entity based on neighboring genes. For the functional analysis of
neighboring genes, we first defined a ‘window neighbors’ of an entity
as the set of genes within a window of given size l in the generated
node sequences (Fig. 5a).

Teleport-guided random walk of DREAMwalk is expected to not
only explore the local neighborhood of the PPI network but also
broaden the search range to semantically relevant regions. We first
observed that teleport introducesmore diversity to windowneighbors
compared with non-teleported paths (Supplementary Fig. 6).

Gene set enrichment analysis was further performed to demon-
strate the biological interpretability of teleport-guided neighborhoods
in explaining drug and disease mechanisms compared to non-
teleported neighbors. Case studies were investigated with drug
“gabapentin” and disease “Parkinson’s disease (PD)”. Window neigh-
bors were selected from the window of size l = 2. The enrichment
analyses were performed using Enrichr42. Gabapentin is a relatively
novel drug used in the treatment of epilepsy. The effects of gabapentin
on brain neurotransmitters, including gamma-aminobutyric acid
(GABA), have yet to be elucidated. Studies have reported that gaba-
pentin significantly increases GABA levels in the brain43, 44. Interest-
ingly, even though gabapentin alters and structurally mimics GABA,
the drug does not seem to directly affect GABA-specific enzymes or
receptors45. Drug-target databases reflect that gabapentin does not
directly bind to GABA receptors46, 47. GO Molecular Function (MF)-
enrichment was performed to examine the window neighboring genes
of gabapentin on both teleport-guided and non-teleported paths. The
resulting top 20 MFs based on adjusted p-values are shown in Fig. 5b.
Asmentioned, gabapentin does not directly target GABA receptors, so
GABA-related proteins are not located close to gabapentin in the bio-
medKG. Because the non-teleport neighbor set is generated based on
local neighbors of gabapentin, GABA-related MFs are not in the high
ranks of its enrichment results. In contrast, teleport-guided neighbor
set capturesGABA-relatedMFs. EnrichedMFs that appearedonly in the
top 20 MFs of the teleport neighbors included GABA receptor activity
(adj. P = 4.30E-19), GABA-gated chloride ion channel activity (adj.
P = 1.92E-17), and GABA-A receptor activity (adj. P = 1.39E-16). Gaba-
pentin’s GABAergic activities, although not contained in drug-target
interactions, are well captured through the semantic information-
integrated embedding space of DREAMwalk.

Parkinson’s disease (PD), one of the most common neurode-
generative diseases in the elderly, mainly occurs due to depletion of
neurotransmitter dopamine. KEGG enrichment was performed using
the window neighbors of PD (Fig. 5c). Among the top 20 enriched
KEGG pathways in both neighbor sets, the pathways that appeared
only onDREAMwalk were Apoptosis pathway (adj. P = 2.36E-19), Fluid
shear stress and atherosclerosis pathway (adj. P = 2.18E-18) and Focal
adhesion (adj. P = 4.10E-18). Literature validation confirmed that
these pathways are closely related to PD. Apoptosis is regarded as
one of the main mechanisms of neuronal death in PD48. Although the
specific processes of PD are not completely understood, it has been
observed that these convergentmechanisms result in neuronal death
through apoptosis49, 50. Fluid shear stress and atherosclerosis path-
way, along with lipid and atherosclerosis pathway (adj. P = 2.27E-21)
represent the association between PD and atherosclerosis. Several
studies have supported the association between atherosclerosis and
PD, as well as other neurodegenerative disorders51, 52. A large-scale
Atherosclerosis Risk in Communities study53-based analysis reported
that decreased heart rate variability, a well-known cause of fluid
shear stress and atherosclerosis54, was associated with an increased
risk of PD55. Finally, Focal adhesion pathway is known to be asso-
ciated with PD because adhesion plays a role in neuroprotection56

and the structure and function of the synapses57. A genome-wide
association studies (GWAS) and gene expression-based integrative
studies have also reported Focal adhesion as a consensus disease
pathway in PD58.

The path-based interpretation of gabapentin and PD show the
semantic information integrated neighborhoods’ potential ability to
explain biological mechanisms of drugs and diseases, which are diffi-
cult to identify solely via molecular-level neighborhoods.
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DREAMwalk suggests potential repurposable drugs for Alzhie-
mers’ disease and breast cancer
As our goal is to suggest the repurposing use of existing drugs,
repurposing candidate drugs were selected for breast carcinoma and
Alzheimer’s disease (AD) on the MSI network. For each disease, drug-
disease association probabilities for all unlabeled drugs were

calculated ten times using DREAMwalk trained with different negative
sets. After calculating the average probabilities, top 10 high-probable
drugs were selected as candidates for drug repurposing. The average
probabilities and their standarddeviations (SD) for eachdrug are listed
in Table 1, along with their original indications and supporting litera-
ture for repurposing evidence.

Fig. 4 | Ablation study results of DREAMwalk’s teleport operation. a Concept
illustration of Random walk with hierarchy nodes (left) and semantic information-
guided Teleport (right).bDrug-disease association (DDA)predictionperformances
of models random teleport (green), without teleport (orange), with hierarchy
nodes (red) and semantic information-guided teleport (blue) on MSI network.
c Stacked area plot of number of similarities of drug (blue) anddisease (orange) per
cut-off. d DDA prediction performances following the change in similarity cut-off.

Teleport factor was fixed at 0.3. e DDA prediction performances following the
change in teleport factor τ. Similarity cut-off was fixed at 0.4. On box plots of (b,
d, e), the center line represents the median, while the upper and lower box limits
represent the quartiles. The whiskers indicate 1.5 times the interquartile range. All
data have been derived through n = 10 independent experiments. Source data are
provided as a Source Data file. (AUROC Area Under the Receiver Operating Char-
acteristics curve, AUPR Area Under the Precision-Recall curve).
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Fig. 5 | The window neighbor gene set analysis results. a Selection of Drug1’s
window neighbor genes from node sequences using window of length 2. b GO
ontology enrichment results of window neighbors of drug “gabapentin”. c KEGG

enrichment results of window neighbors of disease “Parkinson’s disease”. Source
data are provided as a Source Data file. Fisher’s Exact test and Benjamini-Hochberg
method have been applied for calculating the adjusted p-values. (Adj.: Adjusted).
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The top ten repurposing candidates for breast carcinoma inclu-
ded various chemotherapeutic agents, some of which are frequently
administered off-label for treatingmetastatic breast cancers and other
metastatic cancers in clinical settings59, 60. Additionally, the list com-
prised drugs that were more widely employed for treating breast
cancer during the 1980s, but have since seen reduced usage61–64, set-
ting them absent from the current treatment list for breast cancer in
the BiomedKG. A notable observation was the inclusion of Interferon
alfa-2b and Cortisone-acetate in this list, suggesting that the model
recognizes the relationship between breast cancer treatment and an
immunological approach (in the case of Interferon alfa-2b) or the
ability of glucocorticoids to mitigate chemotherapy agents’ side
effects (in the case of Cortisone-acetate).

AD is one of the most common causes of dementia, a neurode-
generative disorder of the cerebral cortex and limbic system that results
inmild cognitive decline andmemory loss. Among the ten high-probable
repurposing candidates, there were four anti-depressive drugs and five
ADHD/narcolepsy treatments, supported by multiple clinical and mole-
cular evidences. The relationship between depression and AD
progression65, as well as the link between cognitive-enhancing drugs and
AD66, has been highlighted by previous research. An interesting case was
the top-rankeddrug levetiracetam, an anti-epileptic drug,whichhas been
shown to improve spatial memory in a recent randomized clinical trial67.
Although it lacks a shared target with AD or any other known AD treat-
ments, ourmodel successfully identified the potential of levetiracetam in
improving the symptoms of AD patients with the epileptic variant.

Furthermore, the top ten lists of baseline models for both breast
carcinoma and AD are provided in Supplementary Table 5. Comparing
these lists highlights DREAMwalk’s capability to identify a related yet
diverse range of repurposable drugs when compared to the baseline
models. Also, the bottom-ten list of DREAMwalk listed drugs from
therapeutically unrelated areas for breast carcinoma and AD (Supple-
mentary Table 6).

Additionally, for clinical interpretation of prediction results, we
examined the models’ performance in predicting DDAs for AD repur-
posing candidates in phase 3 clinical trials as of 202168 (Table 2). Our
study focused on eight drugs: Brexpiprazole, Caffeine, Escitalopram,
Guanfacine, Hydralazine, Metformin, and Omega-3-carboxylic acids,
which exists in the MSI network. For each model, we predicted the
probability for all unlabeled drugs for ten times and ranked them based
on their average probabilities. Our model predicted the DDAs with the
highest median probability and rank compared to the seven baseline
models. Specifically, two drugs (Caffeine and Escitalopram) had a pre-
dicted probability of over 0.8, indicating a strong likelihood of a drug-
disease link, which no other models were able to output but once for
DTi2vec. Also,DREAMwalkhad thehighest predictedprobability among
all models for three drugs (Brexpiprazole, Caffeine, and Guanfacine).

In summary, literature-based evaluation from invitro experiments
to clinical case reports and off-label uses demonstrated the potential
repurposability of our candidate drugs for breast carcinoma and AD.
Especially, AD drug repurposing candidates in phase 3 clinical trial
showed the highest median probability and rank compared to all
baseline models. Overall, the presented results and case studies
demonstrate theusefulness ofDREAMwalk inderivingnewhypotheses
for DDAs that would facilitate experimental and clinical validation and
ultimately provide novel treatment strategies for treatment-poor
diseases.

Discussion
The DREAMwalk framework implements a semantic multi-layer GBA
for accurate DDA prediction and drug repurposing by introducing the
semantic neighbors of drug and disease entities. By integrating
semantic information-guided teleport technique to the random walk
algorithm, our representation learning process incorporates both
molecular- and semantic-level information and generates a harmo-
nized embedding space of drugs and diseases. The high DDA

Table 1 | Drug repurposing candidates of DREAMwalk for breast carcinoma and Alzheimer’s disease

Breast Carcinoma

Rank Drug Original Indication Avg. prob. SD Evidences

1 Irinotecan Colorectal cancer, SCLC, NSCLC 0.995 0.0033 59, 81, 82

2 Etoposide Germ cell tumors, Kaposi sarcoma, SCLC 0.993 0.0066 59, 60

3 Dactinomycin Wilm’s tumor, Rhabdomyosarcoma, Neuroblastoma 0.992 0.0128 83

4 Teniposide ALL, Small Cell Carcinoma, Lymphoid Leukemia 0.991 0.0109 61, 62

5 Vinblastine Hodgkin disease, Lymphoma, NHL 0.989 0.0125 59, 60

6 Mitoxantrone AML, Multiple Sclerosis, Lymphoma, Sarcoma 0.989 0.0128 60

7 Interferon alfa-2b Melanoma, Brain Neoplasms, Hepatitis C 0.988 0.0095 -

8 Cortisone-acetate SLE, CTCL, IBD, Autoimmune Diseases 0.987 0.0218 -

9 Vindesine CML, Melanoma, ALL, Hodgkin’s lymphoma 0.987 0.0100 63, 64

10 Hydroxyurea CML, cancer of head and neck, sickle cell anemia 0.986 0.0128 84–87

Alzheimer’s disease

1 Levetiracetam Simple partial seizures, Epilepsy 0.990 0.0137 67, 68

2 Clomipramine OCD, Chronic pain, Narcolepsy 0.983 0.0161 88, 89

3 Duloxetine Major depressive disorder, Peripheral neuropathy 0.977 0.0236 65

4 Fluoxetine Major depressive disorder, OCD, Bipolar disorder 0.976 0.0315 65, 90–93

5 Maprotiline Depressive disorder, Duodenal Ulcer 0.974 0.0253 -

6 Armodafinil Narcolepsy, Obstructive sleep apnea 0.974 0.0278 94

7 Sertraline Depressive disorder, OCD, Panic disorders 0.973 0.0351 65, 95–97

8 Lisdexamfetamine ADHD 0.971 0.0305 98

9 Atomoxetine ADHD 0.968 0.0509 66, 99

10 Dextroamphetamine ADHD, narcolepsy 0.967 0.0392 100

Avg. prob. average probability; SD standard deviation; ADHD attention-deficit/hyperactivity disorder, ALL acute lymphocytic leukemia; AML acute myelocytic leukemia; CML chronic myeloid
leukemia;CTCLcutaneous T-cell lymphoma;NHLnon-Hodgkin lymphoma;NSCLC non-small cell lung cancer;OCD obsessive compulsive disorder;SCLC small cell lungcancer;SLE systemic lupus
erythematosus.
The drug-disease association probabilities were measured ten times, and the average and the SD of the predicted probabilities are provided in the table.
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prediction performance on the three biomedKGs ofMSI, HetioNet and
KEGG demonstrates the generalizability of teleport-mediated inte-
gration of semantic and biological information. Ablation studies sup-
port this concept by demonstrating that semantic information-guided
teleport is essential for prediction performance enhancement.
semantic information injected semantic similarity measure provides
the largest performance enhancement, whereas randomly performed
teleport results in poor performance.

The high performance of DREAMwalk on DDA prediction is based
on the effective embedding space of drugs and diseases that are
constructed from semantic information-guided random walks. The
examples on hypertensive drugs demonstrated the pharmacological-
and biological system-level information reflected in the embedding
space. In addition, the generated paths offer interpretability of drug
and disease associations. The gene set enrichment analysis on gaba-
pentin and PD with the sampled paths displayed the interpretability of
DREAMwalk in determining the mode of actions of drug and disease.
Finally, DREAMwalk’s predicted repurposing candidate drugs for
breast carcinoma and AD are well supported in literature.

There are however some potential limitations to DREAMwalk’s
current DDA prediction and drug repurposing framework. Although
teleport operation offers efficient integration of semantic information
into the biomedKG representation learning process, the teleport
probability τ is a user-specified hyperparameter and τ is fixed to a
preset value throughout the entire network. Adaptation of teleport
probability based on local network topology may offer more flexible
integration of semantic data. In addition, downstream DDA prediction
task of DREAMwalk is trained based on randomly sampled negative
drug-disease pair, owing to the lack of public data on negative drug-
disease pairs, we plan to develop an adequate positive-unlabeled
learning framework for more accurate DDA prediction with more
reliable decision boundaries in future studies.

In summary, our results indicate that themulti-layerGBAprinciple
can be used for more accurate computational drug repurposing,
inferring from semantic neighbors via random walk with semantic
information-guided teleport. We believe that our work is a demon-
stration of how to efficiently leverage semantic information inmachine
learning frameworks on biological domain, as adequate integration of
different levels of information is key to translating molecular infor-
mation to the clinical world. Also, our work may provide clues for
pharmaceutical scientists to discover effective treatments for diseases
that are currently without treatment options.

Methods
Biomedical knowledge graphs
Three biomedKGs, MSI12, HetioNet13, and KEGG25, were used for eval-
uating the drug-disease link prediction performances of the proposed
and baseline models. Each biomedKG consists of varying types of
nodes and edges. Node types other than drug, disease, gene and

pathway (or biological function) were eliminated to construct a
molecular-level biomedKG. Associations of higher level, for instance
adverse effect or anatomy, were excluded during this process. Also,
during node embedding generation step, all the drug-disease treat-
ment edges were removed from the biomedKG. This allows the node
representation learning process to fully incorporate the biological and
semantic contexts of entities, without treatment association informa-
tion. The drug-disease association pairs were later used for down-
stream tasks of XGBoost classifier-based DDA prediction.

Multi-scale interactome (MSI) network. Multi-scale interactome
(MSI) network12 is a multi-scale heterogeneous biomedKG, including
not only molecular-scale interaction but also their functional annota-
tions. After constructing a multi-scaled biomedKG of drug, disease,
protein and Gene Ontology69 Biological Function nodes, the authors
generated diffusion profiles for each node through weighted network
propagation and performed downstream analyses, e.g., drug
mechanism analysis and drug-disease association prediction. The ori-
ginal MSI network consists of four node types and four edge-types.
Since the network consists of only drug, disease, protein and GO bio-
logical function, the whole network is utilized for experiments and
drug repurposing procedure of this work. The statistics and the data
source of node and edge information are provided in Supplementary
Table 2.

HetioNet. HetioNet13 is a biomedKG of 11 types of nodes and 24 edge
types, from 29 publicly available data sources. HetioNet is designed to
integrate every available resource into a single interconnected data
structure to assess the systematicmechanisms of drug efficacy. To use
the original network to our experimental settings, node types other
than drug, disease, protein (gene) and pathway were removed. The
original and the processed network statistics are provided in Supple-
mentary Table 3. It is worth mentioning the HetioNet contains a
smaller number of disease nodes compared to MSI and KEGG because
the disease nodes defined are at a higher or broader level. For instance,
all hypertensive disorders and its relationships are summarized into
single “hypertension” node in HetioNet, while the MSI network con-
tains not only “Hypertensive disease” but also variations of the dis-
orders, e.g., “Intracranial Hypertension”, “pulmonary arterial
hypertension (PAH)”, “ocular hypertension”, and more.

KEGG. KEGG25 is one of the most widely-used database of expert-
curated molecular- and pathway-level interaction annotations. The
whole KEGG database contains 15 sub-databases of different types of
entities. The systems information is contained in PATHWAY, BRITE and
MODULE sub-databases, and the genomic information is contained in
a latter-developed KEGG Orthology (KO) database. KEGG DISEASE
database contains information of disease entities and their relation-
ship to disease genes, carcinogens, pathogens and other

Table 2 | Predicted probabilities and rankings of repurposing candidate drugs in phase 3 clinical trial for Alzheimer’s disease
in 2021

Models Brexpiprazole Caffeine Escitalopram Guanfacine Hydralazine Metformin Omega-3-carboxylic acids Median

DREAMwalk 0.736 (210) 0.910 (59) 0.875 (82) 0.602 (326) 0.481 (412) 0.03 (1440) 0.342 (564) 0.602 (326)

edge2vec 0.499 (1496) 0.582 (975) 0.616 (738) 0.584 (962) 0.626 (665) 0.531 (1362) 0.592 (912) 0.584 (962)

ComplEx 0.466 (886) 0.680 (49) 0.412 (1180) 0.503 (698) 0.678 (51) 0.531 (549) 0.409 (1199) 0.503 (698)

DTi2vec 0.769 (211) 0.706 (238) 0.870 (104) 0.11 (970) 0.11 (968) 0.047 (1346) 0.443 (456) 0.443 (456)

node2vec 0.338 (1631) 0.556 (204) 0.439 (982) 0.477 (606) 0.508 (366) 0.350 (1618) 0.404 (1327) 0.439 (982)

NEWMIN 0.692 (120) 0.576 (273) 0.596 (248) 0.431 (617) 0.391 (925) 0.380 (1037) 0.436 (589) 0.436 (589)

WalkPool 0.237 (1471) 0.62 (179) 0.227 (1538) 0.239 (1458) 0.436 (514) 0.386 (747) 0.509 (292) 0.386 (747)

SEAL 0.338 (1085) 0.518 (247) 0.426 (699) 0.281 (1396) 0.337 (1086) 0.341 (1071) 0.363 (980) 0.341 (1071)

For eachmodel, the drug-disease association probabilitiesweremeasured for ten times, then ranked by their average probabilities. The ranks of the drugs are shown in parentheses, and the highest
probability and rank for each drug are highlighted in bold.
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environmental factors. KEGG DRUG database of approved drugs lists
information of drug target information along with drug metabolism
information. Of all the relationships contained in 15 sub-databases,
only gene-pathway, drug-gene and disease-gene relationships were
utilized. The statistics of the utilized KEGG network is provided in
Supplementary Table 4.

Drug and disease semantic similarities
Integrating semantic level information to biomedKG of drug-gene-
disease enables drug-disease association prediction through multi-
layer GBA perspective. To leverage the tree-structured hierarchical
annotation of drug and disease nodes, DREAMwalk utilizes semantic
similarity measure as teleport probability between drug-drug or
disease-disease nodes. Based on public drug and disease ontologies,
an information content-based semantic similarity measure was adop-
ted for calculating the semantic similarities of drug-drug and disease-
disease pairs. The detailed process for calculating the similarities are
described below.

Drug and disease ontologies. The utilized drug hierarchy is ATC
classification hierarchy for all three biomedKGs. The ATC codes were
assigned to drugs using the information provided by Drugbank46.
Since the diseases IDs were mapped to different hierarchies in each
biomedKG, two different disease hierarchies were used; Hetio’s dis-
ease entities were mapped to Disease Ontology70 hierarchy, MSI dis-
eases were mapped to Medical Subject Heading (MeSH)71 term
hierarchy, and KEGG diseases were mapped to ICD-1172. All the hier-
archies can be regarded as a directed acyclic graph of terms.

Information content. A number of measures have been proposed for
calculating the similarity of entities in biomedical ontologies since the
1990s73–75. Some measures compare the entities’ information content
(IC) when measuring their similarity. IC gives a measure of how infor-
mative an entity c is, based on the occurrence frequency of an entity in
a given biomedical corpus, e.g., Uniprot Knowledge base76. More fre-
quent an entity appears, less informative it is, so smaller IC is assigned
to the entity. Calculating the IC value of an entity directly from a tree-
structured hierarchy instead of a given corpus can be performed
through counting Nchild, which is the number of children a term has in
the hierarchy structure, as proposed by ref. 77. The IC value of a term in
a hierarchy structure can be defined as following:

ICðcÞ= 1� logðNchildðcÞ+ 1Þ
logðNchildðrootÞÞ

ð1Þ

The denominator of the equation (1) assures the IC values are in [0,1],
and the information content of the top entity is equal to 0.

Semantic similarity. Among the most commonly used semantic
similarity measures73–75, DREAMwalk adopted the semantic similarity
measure proposed by ref. 73. According to the authors, given the IC
value of two entities c1, c2 and their Most Informative Common
Ancestor, the distance between the two entities can be defined as
following:

distðc1,c2Þ= ICðc1Þ+ ICðc2Þ � 2 × ICðMICAðc1,c2ÞÞ

Since max(IC) = 1, the maximum value of the semantic distance
between two entities is 2. In order to transform the distance measure
into similarity value in range of [0,1), the similarity measure can be
defined as below:

simðc1,c2Þ= 1�
distðc1,c2Þ

2

� �
ð2Þ

Using Eq. (2), similaritymeasure is calculated all-pairwise for drugs and
disease of the three biomedKGs, according to their drug/disease
hierarchies. This procedure returns a similarity matrix S 2 Rn ×n where
n is the number of drug or disease contained in a biomedKG. A user-
defined cutoff may be introduced for eliminating the pair information
with similarity below the given cutoff value for the reduction of noise
and improvement of computational efficiency. For our study, the
cutoff is empirically set to 0.4 for all biomedKGs and all similarities
below are masked.

Multi-layered GBA through teleport-guided random walk
Implementing the multi-layer GBA concept requires the introduction
of semantic neighbors on network feature learning frameworks. To
introduce the semantic-level information on molecular-level bio-
medKGs, we augmented a random walk algorithm with semantic
information-guided teleport operation, which is inspired from the
PageRank algorithm20.

The teleport-guided random walker generally traverses the bio-
medKGby following its edges; however,when it arrives at drug/disease
nodes, it randomly selects an action between teleport operation and
network traversing based on the user-given teleport factor. If the
selected action is the teleport operation, the random walker teleports
to a randomly sampled node based on the similarity matrix S. Other-
wise, if the action is network traversing, the random walker resumes
the traversing process. For all nodes in each network, 100 walks of
length four were sampled. The detailed algorithm is provided below.

Random walk. The random walk algorithm traverses nodes in the
network, generating a node sequence p = n1, n2,…, nl that can be used
in the heterogeneous Skip-gram based graph learning framework. A
node sequence of length l from a network G = (V, E) of node set V and
edge set E can be generated by following distribution:

Pðni = x∣ni�1 = vÞ=
πvx=Z if ðv,xÞ 2 E

0 otherwise

�

where πvx is the unnormalized transition probability between nodes v
and x, with Z as a normalizing constant. The transition probability of
the unbiased random walk introduced in word2vec22 is equal to the
edge weights wvx, which is equal to 1 in case of unweighted graphs.

Node2vec29 added search bias term αpq to the transition prob-
abilitywhich is basedonparametersp, the returnparameter, and q, the
in-out parameter. The two parameters control the priority of the
sampling strategy between breadth-first sampling and depth-first
sampling.

Edge-type transitionmatrix. To deal with the different types of edges
and their semantics when generating node sequences from hetero-
geneous networks, an edge-type transition matrix inspired from
edge2vec28 is used. An edge-type transition matrix is generated based
on the correlations of edge-types consisting the network through an
iterative Expectation-Maximization (EM) process. Given a hetero-
geneous networkwithm types of edges, an edge-type transitionmatrix
M 2 Rm×m is generated, where M(i, j) refers to the transition weight
between edge-types i and j.

Initially, the walk paths are empty, and the transition matrix is
initialized with all values set to 1. In the maximization step, a biased-
random walk based on the transition matrix is performed to obtain l
walk paths. In the expectation step, the updated walk paths are used to
optimize the transition matrix based on the correlation between edge-
types. The updated values of thematrix are based on the sigmoid of the
Pearson’s correlation of the vectors of the edge-types, generated by
counting the occurrence of each edge-type on each of the generated
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paths. The updated value of the transition matrix can be expressed as:

Mij = Sigmoid
E½ðvi � μðviÞÞðvj � μðvjÞÞ�

σðviÞσðvjÞ

 !

where vi,vj 2 Rl are vectors containing each edge-type’s number of
occurrence in the l generated paths.

Teleport operation and teleport factor. Teleport operation is per-
formed only when the type of current node v, Type(v)∈ {drug, dis-
ease}. Teleport factor τwhere 0 ≤ τ ≤ 1, is a parameter that controls the
rate of teleport operation and network traversing. In the proposed
teleport-guided random walk algorithm, when the random walker
arrives at a drug or disease node, the teleport action is chosen with a
probability of τ; otherwise, the network traversal continues, with a
probability of 1 − τ.

For instance, if τ =0.3, the randomwalker on a drug/disease node
has 30% probability of selecting teleport action and 70% probability of
choosing network traversing. Thus, setting τ to a high value makes
teleport operation more frequent, enabling the influence of semantic
similarity to become greater and vice versa.

If the selected action of the randomwalker is teleport operation,
the next node is randomly sampled from weighted probability as
calculated in the similarity matrix S, defined through the process
described in “Drug and disease semantic similarities”. For example,
given a current drug node vdrug, the probability for the next node to
be drug node ndrug through teleport operation can be express as
below:

pðndrug ∣τ,vdrug ,SÞ= τ ×
Svdrug ,ndrugP

kdrug2Ns ðvdrug ÞSvdrug ,kdrug

where t is the teleport factor, and Ns(vdrug) is the neighboring node set
of node vdrug in the drug similarity matrix S. The same process is
computed for disease nodes with disease similarity matrix Sdisease.

Network traversing. Network traversing is performed when: 1) the
current node type is other than drug/disease, or 2) the current node
type is drug/disease and the selected action is network traversing.
Given the current node v and the previous node u with the trained
edge-type transition matrix M, the probability of selecting the next
node n can be shown as below:

pðn∣v,u,MÞ= στ ðvÞ �
wvn �MTðu,vÞTðv,nÞ � αpqðn,uÞP
k2NðvÞ �MTðu,vÞTðv,kÞ � αpqðk,uÞ

ð3Þ

where στ(v) is the network traverse probability defined by the node
type of v,N(v) is the neighboring node set of node v and T(u, v) is the
edge-type between u and v. Network traverse probability term is
defined as follows:

στ ðvÞ=
1� τ if TypeðvÞ 2 fdrug,disease g
1 otherwise

�
:

Node embedding generation
The Skip-gram22 model is widely used for learning continuous feature
representations of nodes in the random walk-generated node
sequences (Multi-layered GBA through Teleport-guided randomwalk).
The representation learning of the Skip-gram model is performed by
optimizing a neighborhood-preserving likelihood objective function
using stochastic gradient descent with negative sampling. However,
the Skip-gram model does not consider the different types of nodes
during the training steps, for example negative sampling step, thereby
generating embedding vectors that are not aware of the node types.
Inspired from an heterogeneous node representation learning model

metapath2vec++78, we adopted a node type-aware heterogeneous
Skip-gram approach for generating node embedding vectors from
teleport-guided random walk-generated node sequences. By per-
forming negative sampling only from nodes that belong in the same
node type, the heterogeneous Skip-gram approach enables the gen-
eration of embedding vectors based on the distribution of node types
within the graph.

During training, the windowlength parameter, that is the max-
imum distance between the current node and the predicted node in a
node sequence, is set to 4 while training all models.

Distance-basedembedding spaceexploration. “Embedding spaceof
DREAMwalk exhibit the har-mony between biological and semantic
information” explores the generated embedding spaces based on
distance-based analyses. The distance between entities u and v are first
measured through Euclidean distances using the equation:

duv =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1
ðui � viÞ2

q
where u,v 2 Rn refers to the embedding vectors of entities u and v,
respectively. While the Euclidean distance can be used for comparison
within an embedding vector space, it is not suitable for comparing
distances between two different spaces, such as embedding vector
spaces created with different walk sequences. To enable the compar-
ison of distances between teleport-guided and non-teleported spaces,
we applied a normalization step to the calculated Euclidean distances
of each space. This involved calculating the all-pairwise distance
between every node in the network and then calculating the z-score
normalized Euclidean distance for each pair. The normalization step
involves subtracting the mean of each dimension and dividing by its
standard deviation. The resulting z-score normalized Euclidean
distance provides a standardized, unit-lessmeasure of the dissimilarity
between two data points.

To assess the statistical significance of the differences between z-
score normalized distances of teleport-guided and non-teleported
spaces, we conducted two-sided paired t-tests using the Scipy79 Python
package, which is prone to Python’s underflow issues. To note, we
observed cases where the resulting P value was 0.0, indicating the
occurrence of underflow. Underflow arises when numerical computa-
tion yields a value that is smaller than the minimum representable
number for the data type being utilized, in this case, floating-data type,
which can represent values between ~10−308 to 10308. Thus, any value
smaller than ~10−308 was rounded to zero.

XGBoost classifier for drug-disease association prediction
After the representations for all biomedical entities in the biomedKG
aregenerated, anXGBoost21model is used for drug-disease association
prediction and drug repurposing.

XGBoost. For learning the relationship between drug and disease,
feature vectors obtained by element-wise subtraction of embedding
vectors of two entities are used as input for an XGBoost classifier.
XGBoost is a machine learning algorithm that is widely used in various
application domains including computational drug discovery. Espe-
cially, XGBoost has proven to be highly effective for binary classifica-
tion tasks with multiple features. XGBoost is an ensemble model that
combinesmultiple weak learners, in this case decision trees, through a
boosting algorithm to create a stronger learner. A boosting algorithm
works by sequentially training weak learners based on the residual
error of the previous learner. To prevent over-fitting during the
training phase, number of boosting rounds were set to 500, and
maximumdepth of below six.

Drug-disease association prediction. The DREAMwalk framework
consists of two steps; node embedding generation step and link

Article https://doi.org/10.1038/s41467-023-39301-y

Nature Communications |         (2023) 14:3570 13



prediction step. As mentioned above, we removed all the drug-disease
links during thefirst step togenerate drug anddiseaseembeddingwith
their MoA contexts. The drug-disease pairs were used in the second
step; DDA prediction task as positive set. Negative drug-disease pairs
of equal number of positive pairs were randomly sampled from the
network. ten-times ten-fold cross-validation (CV) setting was adopted,
and negative sampling was conducted in a way that there are no
overlapping samples between the ten CV sets. The CV setting was
applied identically to all the models evaluated for this study.

Disease split for DDA prediction. To assess the effectiveness of our
model in a real-world drug repurposing scenario, we conducted an
additional disease-split DDA prediction experiment on the MSI net-
work. We first classified all disease entities based on their highest
MeSH (Medical Subject Headings) term category, such as Cancers and
other Neoplasms (Code: C04), Heart and Blood Vessel Diseases (C14).
Next, we divided the categories into train, validation, and test sets
using an approximate ratio of 8:1:1, repeating the process ten times.
Thismethod ensured that the drugs’ efficacy in a new disease category
was unknown during the training process, thus avoiding circularity.

Window neighbor-based gene set enrichment analyses
Gene set enrichment analysis is performed to analyze gene sets in
various biological contexts. The node sequences generated through
random walk algorithm opens the opportunity of interpreting of an
entity’s mechanism of actions. To narrow down the generated path
to a gene set, we proposed an approach using the “window neigh-
bors”. Window neighbors of an entity is defined as the set of genes
within a window of given size l in the whole set of generated node
sequences.

After retrieving the window neighbors with the window size of 4,
enrichment analysis is performed to identify the associated functional
terms using Enrichr42. During the enrichment analysis, two statistical
tests are applied. First, to determine whether there is a significant
association between the window neighbor set and a given KEGG
pathway or Molecular Function, Fisher’s exact test is utilized. Another
statisticalmethodutilized is Benjamini-Hochberg correction. This false
discovery rate adjustment method is used to adjust for the multiple
hypothesis testing involved in analyzing large datasets. The resulting
Benjamini-Hochberg correction yields the final adjusted P value to
identify biologically meaningful associations between the window
neighbor sets and various functional contexts. Also, the gene ratio
represents the number of overlapping genes divided by the number of
genes in assigned to the given term, and interaction size refers to the
number of the overlapping genes.

Statistics and reproducibility
For all performance comparison of DREAMwalk’s teleport-guided
embedding space with non-teleported embedding space, we have
performed two-sided paired t-tests for evaluating the significance
between the two spaces. No statistical method was used to pre-
determine sample size, and no data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Each biomedKGs were retrieved from the corresponding GitHub
repositories and through API calls; HetioNet (https://github.com/
hetio/hetionet), MSI (https://github.com/snap-stanford/multiscale-
interactome) KEGG (https://www.kegg.jp/kegg/rest/keggapi.html).
Source data for all Figures are provided with this paper in the Source
Data file. Source data are provided with this paper.

Code availability
The source code for DREAMwalk’s node embedding and DDA predic-
tion are available at the following GitHub repository (https://github.
com/eugenebang/DREAMwalk under the DOI: 10.5281/
zenodo.7935342)80.
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