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Using mortuary and burial data to place
COVID-19 in Lusaka, Zambia within a
global context

Richard J. Sheppard1, Oliver J. Watson 1,2, Rachel Pieciak3, James Lungu4,
Geoffrey Kwenda5, Crispin Moyo4, Stephen Longa Chanda 6,
Gregory Barnsley 1, Nicholas F. Brazeau1, Ines C. G. Gerard-Ursin1,
Daniela Olivera Mesa 1, Charles Whittaker 1, Simon Gregson1,7,
Lucy C. Okell 1, Azra C. Ghani 1,WilliamB.MacLeod3, Emanuele Del Fava 8,9,
Alessia Melegaro 8,10, Jonas Z. Hines11, Lloyd B. Mulenga12,
Patrick G. T. Walker1,13 , Lawrence Mwananyanda3,4,13 & Christopher J. Gill3,13

Reported COVID-19 cases and associated mortality remain low in many sub-
Saharan countries relative to global averages, but true impact is difficult to
estimate given limitations around surveillance and mortality registration. In
Lusaka, Zambia, burial registration and SARS-CoV-2 prevalence data during
2020 allow estimation of excess mortality and transmission. Relative to pre-
pandemic patterns, we estimate age-dependent mortality increases, totalling
3212 excess deaths (95% CrI: 2104–4591), representing an 18.5% (95% CrI:
13.0–25.2%) increase relative to pre-pandemic levels. Using a dynamicalmodel-
based inferential framework, we find that these mortality patterns and SARS-
CoV-2 prevalence data are in agreement with established COVID-19 severity
estimates. Our results support hypotheses that COVID-19 impact in Lusaka
during 2020 was consistent with COVID-19 epidemics elsewhere, without
requiring exceptional explanations for low reported figures. For more equi-
table decision-making during future pandemics, barriers to ascertaining
attributable mortality in low-income settings must be addressed and factored
into discourse around reported impact differences.

Following the emergence of COVID-19 in 2019, SARS-CoV-2 has spread
across the world, causing the highest level of social and economic
disruption due to an infectious disease in living memory1. As of April
24th 2023, confirmed global cases and deaths total 763,740,140 and

6,908,554 respectively2. This recorded impact has occurred despite
the implementation of often stringent non-pharmaceutical interven-
tions (NPIs) that frequentlyproved capableof controlling the epidemic
while in place3,4. The subsequent development of numerous vaccines
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has also mitigated the potential impact of COVID-19 through
decreasing the rates of severe disease in all known genetic variants5–8

and, to a lesser-extent, lowering transmission9,10.
Relative to a global average of 8128.8 reported cases and 84.6

reported deaths per 100,000 (as of April 24th 2023), reported COVID-
19 impact in Africa remains notably low (884.7 cases and 15.6 deaths
per 100,000)2. Common hypotheses for a perceived low impact of
COVID-19 in Africa include a younger population structure11–21, pro-
tection through exposure to pre-existing coronaviruses and other
endemic diseases11,13,15–17,20,22, climate-related protections14–17,19,20,23,
effective use ofNPIs developed fromdisease-control expertise11,15,17,20,24,
and genetic factors13,16,17,25. Some hypotheses (low population density
and climate-associated outdoor lifestyles14–20,23) suggest a landscape of
reduced disease transmission, whilst others assume high transmission
with an associated implication of lower severity (e.g., protection
through existing coronavirus exposure). However, it is widely
acknowledged that recorded cases and deaths substantially under-
estimate the total number of SARS-CoV-2 infections and COVID-19
attributable deaths in many settings, corresponding with regional
testing capacities26–30. This raises a fundamental question: once ascer-
tainment biases are accounted for, to what extent are any of these
alternative hypotheses needed? Understanding whether there was any
so-called “Africa paradox”12,16,17 (the perception of lower COVID-19
impacts across many African countries compared with expectations)
and if so, which, if any, of these hypotheses have justifiable basis can
help ensure that the correct conclusions and lessons are learned from
the pandemic in Africa.

While an increasing amount of evidence, as of late 2022, suggests
that SARS-CoV-2 has spread widely in many African countries30,31,
similar data from 2020, when the concept of low impact in Africa
gained traction, remain exceptionally scarce. Of 134 high-quality large-
scale community-based seroprevalence surveys from 2020, only five
were from African countries32. Meanwhile, capturing trends in excess
mortality (as a proxy for COVID-19 impact) in Africa during the pan-
demic is challenging due to a lack of robust civil and vital registration
systems inmany countries. In a recent global study of excessmortality,
theWorldHealthOrganisation (WHO) found that 41 of 47 of theWHO’s
Africa region countries hadno data suitable for inclusion, resulting in a
wide uncertainty interval for the Africa region33. Furthermore, when
excess mortality trends can be well-quantified, it is critical to identify
where changes in overall pandemic mortality have indirect (e.g.,
reduced traffic accidents due to NPIs) or direct causes (i.e., infection-
associateddisease)34,35. Further delineatingdifferences in direct impact
between regions due to spread (i.e., the percentage of population
infection) and severity (often summarised as the infection-fatality-
ratio, IFR) is then critical to understanding the need for and impact of
control measures. IFR estimation in African countries has been chal-
lenging due to difficulties in the ascertainment of SARS-CoV-2 infec-
tions and COVID-19 deaths, resulting in estimates that vary
substantially as different mortality estimates are used19,29,36.

Research conducted in Zambia generated important insights into
the true impact of the pandemic in Africa during 2020. In July 2020,
during the first pandemic wave in Zambia, a population-based survey
found that 2.1% (95% CI: 1.1–3.1%) of the population had evidence of
previous infection based on an IgG serological assay while 7.6% (95%
CI: 4.7–10.6%) tested positive for active infection by polymerase chain
reaction (PCR)37. These results represent a 92-fold increase in infection
rates relative to reported case numberwithin the country at the time37.
Meanwhile, post-mortem sampling of the mortuary at the University
Teaching Hospital (UTH), the largest morgue in Lusaka, the capital of
Zambia, found 15% of deaths tested positive by PCR (CT < 40) during
June-October 202027, proportions that were exceeded during sub-
sequent pandemic waves in 202138. All-cause burial registrations were
also collected from official registries39 by the post-mortem sampling
team, dating from mid-2017 to mid-2021. These data provide

opportunity for inference of SARS-CoV-2 spread andCOVID-19 severity
in Lusaka that can be compared with estimates from elsewhere.

In this study we build upon this combined research effort to ask:
“Is there evidence that age-patterns of COVID-19 severity in Lusaka
were substantially different from patterns in other countries during
the first wave of the pandemic?”. To answer this, we place existing
WHO excess mortality estimates during the pandemic in Zambia in a
global context, explicitly accounting for the protective effect of its
relatively young population. We then develop a statistical framework
to obtain estimates of pandemic impact upon Lusaka mortality pat-
terns, focusing upon the burial registration age-distribution during
2020–2021. We combine these mortality estimates with data from the
Lusaka population-based PCR- and sero-survey and UTH post-mortem
PCR testing to assesswhether patterns of excessmortality reflect likely
patterns of spread. Finally, we use this approach to provide inference
on key parameters such as the reproduction number, cumulative
attack rate and IFR within Lusaka during 2020, comparing these with
estimates throughout the world (Fig. 1). We find evidence of sub-
stantial COVID-19 impact on excess mortality during epidemic waves,
comparable to that seen elsewhere, and that previously established
COVID-19 severity estimates are in statistical agreement with observed
mortality and SARS-CoV-2 prevalence patterns in the city. These
results suggest that low reported COVID-19 cases and deaths in Lusaka
are not reflective of true patterns of spread and severity. Limitations in
the ascertainment of disease burden in low-income countries must
therefore be incorporated into pandemic planning in order to improve
decision-making and health outcomes in future pandemics.

Results
WHO 2020 excess mortality estimates in Zambia
The WHO’s mean per-capita excess mortality estimate of 290 deaths
per million in Zambia during 2020 ranks 26th highest of the 47 WHO
Africa region countries (Fig. 2a). The estimate is similar to the
equivalent Africa region estimate of 320 deaths per million, which
ranks 5th highest, above only the Western Pacific region, where esti-
mated 2020 excess mortality was negative. Zambia’s uncertainty esti-
mate is wide (and of similarmagnitude to 40 other African countries in
which the WHO was unable to identify adequate mortality data)
allowing only limited comparative analysis with the rest of the world.
Zambia’s upper bound of 820 deaths per million excludes Algeria and
South Africa’s lower bound estimates (both of which had well-
documented large-scale epidemics40) and of the Europe and the
AmericasWHO regions.Meanwhile, its lower bound of -230 deaths per
million exceeds the upper bound of estimates for Seychelles, Maur-
itius, Kenya, Togo and encompasses the region-level estimates for the
Western Pacific region. Seychelles andMauritius, twomore developed
island nations in the Africa region, are known to have experienced
lower-than-typical rates of overall 2020 mortality (likely driven by
suppression measures involving stringent border controls40,41). Aside
from these comparisons, little can be said about the actual excess
mortality in any country with similarly wide confidence intervals.

To help place these estimates in the context of differing under-
lying demography, wefirst weighted globally-derived estimates of age-
specific IFR42 by population age-structure. According to this measure
of demographic vulnerability to severe disease, Zambia ranked 2nd
lowest in both Africa and the world, with only Uganda’s demographic
structure producing a lower estimate (Fig. 2b). From these estimates,
we then calculated a measure that standardises excess mortality by
average protection from (or vulnerability to) severe disease upon
infection that comes from population age structure. This measure, the
“demographic vulnerability-weighted impact” (DVWI), is defined
explicitly as the cumulative attack rate required to match estimates of
excessmortality, assuming direct COVID-19 causation and age-specific
IFR from Brazeau et al.42, with even spread of infection by age within
the population. It is important to note that indirect pandemic
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consequences also impact excess mortality. Moreover, our estimates
are based upon infection-fatality patterns during the pandemic’s first
wave, largely using data from high-income settings with good care
access and standards, relative to global averages. Consequently, this
measure is not designed to provide insight into excess mortality cau-
ses, but places such estimates within the context of the population’s
vulnerability to direct infection consequences at the beginning of the
pandemic. It is, therefore, plausible that countries can have DVWI>1
due to any combination of: (i) high indirect pandemic impact; (ii)
greater disease severity, due to health-care limitations, SARS-CoV-2
variants of greater severity or anyother factor not accounted forwhich
contribute to higher IFRs by age than those used in our analysis; (iii)
substantial burden associated with reinfection.

Our estimates (Fig. 2c) highlight that, once demographic effects
are removed, uncertainty in existing WHO estimates for Zambia
(DVWI = 0.251, 95% CI: 0–0.710) permit very few conclusions about the
differential impact of the disease relative to global patterns. We find
that estimates for Zambia are no longer comparatively lower than the
worst impacted Africa region countries such as South Africa (DVWI =
0.294, 95% CI: 0.265–0.320) or Algeria (DVWI =0.417, 95% CI:

0.397–0.440), nor lower than theworst impactedWHOregions suchas
Europe (DVWI = 0.171, 95% CI: 0.167–0.176) and the Americas
(DVWI = 0.240, 95% CI: 0.233–0.248).

Burial registration patterns in Lusaka
Figure 3 shows officially reported COVID-19 deaths for Lusaka
Province43 and burial registration data39 during January 2018–June
2021. NPIs restricting international travel, closing educational and
social establishments, limiting gatherings to 50, and encouraging
social distancing, hand sanitation and mask wearing were imple-
mented in Zambia in late March 202044–46, concurrently with the
country’s first reported COVID-19 cases 19th March 202047. Very few
confirmed COVID-19 deaths occurred whilst these measures were
maintained (Fig. 3a). However, a first wave of 223 confirmed COVID-19
provincial deaths occurred during June-October 2020, following a
gradual easing of initial restrictions during 24th April–25th June, 2020
(reopening recreational venues, airports, and educational institutions
for older students. Social distancing, mask wearing and gathering
limitations were maintained throughout)48–51. Two subsequent waves
of 273 and 182 confirmed deaths occurred during January-March 2021

Fig. 1 | Inferential Framework. Data sources and other inputs are denoted by
purple boxes, methodological steps are shown in orange boxes, while results and
other outputs are shown in teal boxes. A Age-stratified burial registration data are
used to B quantify the shift in registration age-patterns throughout the pandemic,
relative to those observed in 2018–2019. These are then converted into C excess
mortality estimates during 2020 until June 2021, making several assumptions
(subjected to various sensitivity analyses), in particular that registration rate
changes in children (mirrored by similar patterns in adolescents and young adults)
during the pandemic are a guide to underlying registration and mortality patterns.
These estimates are combined with: D weekly post-mortem polymerase chain

reaction (PCR) prevalence data from the largest mortuary in Lusaka during June-
October 2020; E population-based PCR prevalence and seroprevalence survey data
from July 2020; F demography information and likely social-contact structure
within Lusaka. These inputs are then used to G fit an age-structured SARS-CoV-2
transmissionmodel usingMarkov chainMonte Carlo forH a given infection-fatality
ratio (IFR) pattern by age to I infer transmission trends over time, J extrapolate
patterns of spread throughout the first pandemic wave in Lusaka and K obtain the
posterior likelihood of observing the patterns in B, D, and E conditional on the
assumed IFR pattern by age.
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and fromApril to June, 2021 respectively. Post-mortem sampling38 and
GISAID data52 show these waves were associated with the Beta and
Delta variants.

Although burial registration is legally required in Zambia, deaths
are not registered comprehensively, particularly when a substantial
proportion occur in the community53,54. Overall, 14,665 and 14,992
Lusakan deaths were registered in 2018 and 2019, respectively,

representing registration rates of 5.74 in 2018 and 5.85 in 2019 per
1000 population. United Nations Population Division projections
(based on census and population survey data) of 6.7 and 6.6 Zambian
deaths per 1000 in 2018 and 201955 suggest these registration rates
could constitute 85.7% and 88.6% of total Lusaka deaths respectively.
From a median of 302 registrations per week, these data show sub-
stantial pre-pandemic volatility (Fig. 3b), exhibiting a range
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Fig. 2 | Global estimates of excess mortality relative to patterns of demo-
graphic vulnerability.Figure shows aWorldHealthOrganisation (WHO) estimates
of excess mortality per million people in 2020. Points show mean and lines 95%
confidence intervals from 1000 samples. Crosses show confirmed COVID-19 mor-
tality per million people in 2020. b Estimates of region-level IFR calculated using
age-specific IFR estimates from Brazeau et al.42 weighted by region population age-
distribution (i.e., assuming infection equally distributed across the population).
Points show median IFR and lines 95% credible intervals from 1000 draws of the

joint posterior of the IFR by age curve. c Estimated demographic-vulnerability-
weighted impact (DVWI), defined as the cumulative attack rate, spread uniformly
by age, required to achieve a level of directCOVID-19mortalitymatching the excess
mortality in a assuming the posterior median IFR from b. Points and lines show
median with 95% confidence intervals corresponding with 1000 draws from excess
mortality estimates in a. All panels highlight in blue estimates for the WHO Africa
region and Zambia for ease of identification.
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exceeding 500 twice and falling below 100 six times during
2018–2019 weeks. Such variation seems unlikely to represent
underlying mortality patterns when non-communicable disease,
cancer and HIV/AIDs, accounting for approximately two thirds of
Zambian deaths56, are unlikely to be subject to sharp, temporary
declines. When grouped by age and plotted relative to their age-
respective 2018-2019 averages (Fig. 3c), these data showed high
consistency in pre-pandemic volatility across age-groups. This
occurs even as underlyingpre-pandemic causes of Zambianmortality
vary substantially between age groups. For example, in children
under the age of 5 years (U5),maternal andneonatal disorders are the

primary cause of deaths (31.2%) compared to <1% in children aged
5–14; HIV/AIDS is the leading cause of death in children aged 5-14
representing 23.2% of deaths (compared to 13.8% of U5 deaths);
injuries represent 14.6% of deaths in 5–14-year-olds but just 2.5% of
U5 deaths56. In contrast to the weekly registration variability, the pre-
pandemic average age at death and age-distribution of burial regis-
trations bydateof death are farmore stable (Fig. 3d, e), with amedian
weekly average age of death of 37.6 years (95% CI: 33.9–41.4 years)
during 2018–2019. Together, these data suggest that burial regis-
tration volatility is caused by service disruption, rather than inherent
changes in underlying mortality.
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Fig. 3 | Burial registrations and COVID-19 mortality patterns. a Confirmed
COVID-19 deaths in Lusaka Province, b total weekly burial registrations in Lusaka
with a 5-week rolling average of the two preceding, current and two succeeding
weeks, c age-grouped registrations relative to 2018–2019 mean, d weekly
average age at death of burial registrations with similar 5-week rolling average,
e age-grouped proportion of deaths in burial registrations. Dates of key

non-pharmaceutical intervention (NPI) changes are also given (vertical dashed
lines, 17th March 2020: initial COVID-19 press briefing and NPIs45, 24th April 2020:
initial relaxation of some NPIs48, 6th June 2020: opening of primary and secondary
schools for examination students only49, 10th October 2020: business restrictions
fully lifted, COVID guidance continues, e.g., mask wearing, good hygiene etc57,85).
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Weekly burial registrations declined across all ages in February
2020, reaching a sustained low during March–April 2020 (Fig. 3b), as
awareness of the likely scale of the pandemic intensified and NPIs
implemented in Lusaka44,46. While the explicit causes of this decline are
unknown, trends remain highly consistent across all age groups, with
both the burial registration age-distribution and the average age of a
registered individual remaining consistent with pre-pandemic levels
(Fig. 3c–e). Consequently, and given the aforementioned disparate
aetiology of non-COVID-19 mortality across age-groups, we posit that
these declines were most likely due to burial registration process dis-
ruptions, rather than underlying mortality pattern changes. From late
April 2020, as restrictions began lifting, overall registration rates
returned to pre-pandemic levels, coinciding with the first recorded
epidemicwave. This increasewas, however, largely driven by a surge in
older-aged registration (Fig. 3c)with the average age at death reaching
peaking at 49.3 years old in July 2020, well in excess of the pre-
pandemic maximum of 43.9 years. A short, sharp registration decline
also occurred during this epidemicwave (in theweek of July 6th 2020),
though data from this week follow the ongoing temporal trends of
increased average age at death (Fig. 3d).

Following the first wave, overall registration rates once again fell
below pre-pandemic levels with registration age-patterns, again, con-
sistent with pre-pandemic levels. From late 2020, with the removal of
additional restrictions, registrations largely returned to pre-pandemic
patterns with the exception of registration surges coinciding with the
Beta and Delta COVID-19 waves. Beta-wave registrations peaked at 434
per week in January 2021 and reached 449 per week during the last
week of recorded data in June 2021 (mid-Delta wave), approximately
50% higher than the pre-pandemic median. These increases were
similarly driven by sharp rises inolder-aged registrations, peaking at an
average age at death of 45.9 and 51.1 years during these
respective waves.

When burial registrations were disaggregated by sex, males were
disproportionately represented throughout the time-period (con-
sistent with higher male mortality in Zambia57), but essentially no
gendered differences are seen in relative registration changes
throughout the pandemic compared with the pre-pandemic median
(Supplementary Fig. 1).

Estimating excess mortality in Lusaka during 2020 to mid-2021
The inherent burial registration data volatility limits the utility of
basing any predictive model of age-specific mortality trends on the
absolute numbers of burial registrations at a given timepoint (Fig. 4a).
Instead, we developed a statistical model that attempted to base such
predictions on the age-distribution of deaths within those registered
for burial. We cross-validated this model, showing that it could gen-
erate accurate predictions of the age-distribution of registrations
during 2018–2019, stratified by 5-year age groups, (see Supplementary
Methods and Supplementary Fig. 2). We then used it to generate
predictions, based upon the total weekly U5 burial registrations, of the
expected numbers of weekly burial registrations in all other age
groups (5+) during January 2020–June 2021 (Fig. 4b). These predic-
tions were compared with the observed data to estimate the excess
number of 5+ burial registrations (Fig. 4c). To account for potential
differential changes in U5 registration rates (i.e., if neonatal death
registrations were differentially affected compared with older age
groups), we repeated this process using registration rates from the 5 to
14 year age group to obtain a supplementary set of predictions.

Our approach showed that total and age-specific registration
declines during the implementation of NPIs followed a predictable
pattern based upon U5 registration declines in the same time-period.
However, a clear pattern of higher-than-expected 5+ registration
became apparent following the lifting of restrictions. Increased excess
registration subsequently followed the three known waves of the
pandemic contemporary with our data, with a non-linear per-capita

increasewith age (Fig. 4c). This approach produced an estimated 2332
(95% Credible Interval (CrI): 1719–2924) excess 5+ burial registrations
during January 2020-June 2021, of which 1651 (95% CrI: 1209–2078)
occurred during 2020. These estimates correspond with 644.1 (95%
CrI: 471.6–810.7) and 909.7 (95% CrI: 670.6–1140.7) excess registra-
tions per million total population during 2020 and during January
2020–June 2021 respectively. The estimates also represent 10.3% (95%
CrI: 7.6–12.9%) and 10.5% (95% CrI: 7.7–13.3%) of median pre-pandemic
burial registrations burial registrations during 2020–June 2021 and
2020, respectively (Table 1). Our supplementary analysis, using regis-
tration trends in 5–14 year olds to estimate expected trends in older
ages, produced similar results (Supplementary Figure 3).

We then applied a weekly scaling factor, equivalent to the relative
difference between reported U5 weekly mortality and the median U5
registration rate during 2018–2019, to these estimates to account for
our posited most plausible assumption (i.e., temporary changes in
burial registration are primarily driven by registration process factors,
rather than underlying changes in non-COVID-19 deaths) (Fig. 4d, e).
This scaling produced cumulative estimated excess deaths of 2898
(95% CrI: 2031–3953) during 2020 and 3977 (95% CrI: 2931–5205)
during 2020–June 2021 within the pre-pandemic proportion of the
Lusakan population whose deaths would typically be regis-
tered (Fig. 4f).

These numbers therefore correspond to the most optimistic
registration system assumptions (i.e., a 100% pre-pandemic regis-
tration rate), yielding 1551.5 (95% CrI: 1090.0–2097.2) deaths per
million Lusakans throughout the study period. Though accurately
quantifying this system coverage, herein referred to as ‘capture rate’,
is impossible with available data, we make a baseline assumption,
using local knowledge and census-based total mortality projections
in Zambia, that approximately 90% of pre-pandemic deaths were
registered (Fig. 4e, f). With this assumption, we estimate a total
excess mortality of 3220 (95% CrI: 2256–4393) during 2020 and 4419
(95% CrI: 3257–5783) during 2020–June 2021, corresponding to
1256.2 (95% CrI: 880.1–1713.8) and 1723.9 (95% CrI: 1270.6–2256.0)
deaths per million total population, respectively. A more pessimistic
assumption of burial registration population coverage yields corre-
spondingly more pessimistic excess mortality estimates (e.g.,
assuming 80% coverage produces an estimated 4971 (95% CrI:
3664–6506) excess deaths throughout the study period, Table 1).
Our excess death estimates represented 18.5% (95% CrI: 13.0–25.2%)
and 17.6% (95% CrI: 13.0–23.0%) of pre-pandemic burial registrations
for the two respective time-periods, exceeding 50% of 2018–2019
median registrations (Supplementary Fig. 4, approaching 150% when
filtered to deaths over 50 years) during the peaks of all three waves,
are robust to this registration coverage uncertainty. Finally, we used
these estimates to calculate DVWI values, finding that all these values
exceeded comparative values based on WHO excess mortality esti-
mates, with median excess mortality estimates (i.e., using the scaling
factor) over twice as large as comparative WHO median for any
capture rate (Fig. 4g).

SARS-CoV-2 transmission and COVID-19 severity during the
first wave
We developed a Bayesian inferential framework that allowed us to fit
an existing model of SARS-CoV-2 transmission dynamics58, para-
meterised to Zambia’s demographic structure, to our estimates of
mortality patterns and available data on infection prevalence within
Lusaka during the first pandemic wave. The model was fit to burial
registry data by combining our non-COVID-19 baseline registration
estimates with modelled COVID-19 deaths, scaling those modelled
deaths using weekly U5 registrations relative to their 2018–2019
median, and using a default assumption of 90% capture of deaths
within the Lusaka registration system. The model was also fit to post-
mortem PCR prevalence by age and week27, accounting for likely
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patterns of PCR positivity in individuals whose deaths were not caused
by COVID-19, and to population-based PCR prevalence and ser-
oprevalence survey data37. We fitted a time-varying reproduction
number (R0ðtÞ) at two-week intervals, as well as the start date of the
epidemic. Using our current globally-derived estimates of age-specific
IFR42, we obtained a qualitatively good fit to the data, with the model

largely able to replicate burial registration patterns while maintaining
infection levels consistent with population survey andmortuary-based
post-mortem sample data (Fig. 5a–e). The relatively flat population-
based spread by age within the model is also, to the extent it can be
given the small sample sizes due to age-stratification, supported by the
data (Supplementary Fig. 5).
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Transmissibility through time is given in Fig. 5f, with modelled
estimates of time-varying basic reproduction number (Rt) analogues:
R0ðtÞ and Reff (shown at 50% and 95% credible intervals). R0ðtÞ is a
measure of secondary infections that would occur in a wholly sus-
ceptible population, only capturing contact rate changes throughout
the epidemic. Reff additionally incorporates population immunity
effects on transmission such that Reff > 1 indicates a growing epidemic.
These results show that R0ðtÞ and Reff trends begin at around three
before the first epidemic wave, falling to below one in mid-July 2020
(Fig. 5f), consistent with the gradual post-mortemprevalence decrease
through time. R0ðtÞ and Reff remain close to one another for the
remainder of the study period, suggesting a limited role of population-
level immunity role in reducing transmission, with an estimated 24%
attack rate by October 2020 (Fig. 5c).

We then assessed the model goodness of fit under differing age-
gradient and overall COVID-19 IFR assumptions during Lusaka’s first
epidemicwave (Fig. 6a, b). The log average posteriormodel fit to these
data proved more sensitive to the IFR age-gradient than the overall
Lusaka population-level IFR assumed, but centred largely upon esti-
mates similar to our default model assumptions (Fig. 6c–e), with
anything beyond a halving or doubling of either parameter producing
quantitatively and qualitatively worse fits to the data (Supplementary
Fig. 6). Where Zambia’s demography-weighted IFR under default
assumptions is 0.11%, this range (80–167% of default overall IFR
assumptions) corresponds with an overall population IFR between
0.088 and 0.183%.

We tested our assumptions through several sensitivity analyses
(Supplementary Table 1, Supplementary Fig. 7). These included ver-
ifying thatour resultswerenot sensitive to theunexpectedlyhighpost-
mortem prevalence during 13th–19th July, 2020, compared with pre-
ceding and succeeding weekly prevalence (Supplementary Fig. 7b).
Our default fits, which assume near-zero COVID-19 U5 mortality, pro-
duced lower-than-observed U5 mortuary prevalence; a sensitivity
analysis excluding U5 mortuary prevalence demonstrated fits

favouring marginally higher IFRs in the remaining 5+ population
(Supplementary Fig. 7c). To assess the sensitivity of our results to our
assumptions around declines in overall burial registration rates, we
also refitted our model to our excess mortality estimates without
applying the scaling factors used in our default approach and cen-
soring data during acute burial registration service disruption during
6th–19th July, 2020. We found this approach favoured marginally
higher IFRs than our default set of assumptions (Supplemen-
tary Fig. 7d).

We found limited sensitivity of our results to duration between
infection and death, though an increase in duration again favoured
marginally higher IFRs (Supplementary Fig. 7e, f). Furthermore, we
conducted a sensitivity analysis of our underlying assumption that the
pre-pandemic relative rates of 5+ baseline non-COVID-19 mortality
remained consistent with U5 mortality during the pandemic. We did
this by varying the rates of estimated pre-pandemic non-COVID-19-
relatedmortality in 5+ relative to U5s by ±10% (e.g., either a differential
reduction in U5mortality greater than would occur if all deaths due to
respiratory illness in U5 fell to zero or a differential reduction in 5+
mortality greater than all deaths from injuries in 5+ falling to zero56)
and by ±20% (e.g., either a differential reduction in U5 mortality
greater thanwould occur if all deaths due to respiratory and diarrhoeal
illness or a differential reduction in 5+ mortality greater than deaths
from injuries and HIV falling to zero56).We found that a 10% rate
increase or decrease produced only nuanced impact upon the dis-
tribution of the fit to different IFR patterns, with our default para-
meters remaining well within the envelope of best-fitting values
(Supplementary Fig. 7g, h). Meanwhile, a 20% decrease in relative non-
COVID-19 5+ mortality produced substantially higher IFR estimates,
excluding our default IFR assumptions and including a fit with flatter
IFR age-gradient (Supplementary Fig. 7i). A 20% increase produced
lower estimates (although still solidly encompassing our default IFR
patterns) and included produced best-fitting scenario with a steeper
IFR age-gradient (Supplementary Fig. 7j). Finally, we varied our 90%

Table 1 | Excess burial registrations and mortality estimates in Lusaka

2020 2020–June 2021

Median 95% CrI Median 95% CrI

Excess

Burial Registrationsa 1651 1209–2078 2332 1719–2924

Mortalityb: 100% capturec 2898 2031–3953 3,977 2931–5205

Mortality: 90% capture 3220 2256–4393 4419 3257–5783

Mortality: 80% capture 3622 2538–4942 4971 3664–6506

Excess per million

Burial Registrations 644.1 471.6–810.7 909.7 670.6–1140.7

Mortality: 100% capture 1130.5 792.3–1542.1 1551.5 1143.4–2030.5

Mortality: 90% capture 1256.2 880.1–1713.8 1723.9 1270.6–2256.0

Mortality: 80% capture 1413.0 990.1–1713.8 1939.3 1429.4–2538.1

% of increase in registrations/deaths relative to pre-pandemic levels

Burial Registrations 10.5 7.7–13.3 10.3 7.6–12.9

Mortality (irrespective of capture) 18.5 13.0–25.2 17.6 13.0–23.0

DVWI

Burial Registrations 0.589 0.431–0.742 0.832 0.613–1.043

Mortality: 100% capture 1.034 0.725–1.411 1.419 1.046–1.857

Mortality: 90% capture 1.149 0.805–1.568 1.577 1.162–2.064

Mortality: 80% capture 1.293 0.906–1.763 1.774 1.308–2.322
a‘Burial registration’ refers to our estimates of excess registration in older ages (5+ years), calculated relative to expected baseline registrations derived from weekly registration patterns in the <5
years agegroup, assuming that thesebaseline estimates reflect underlying non-COVID-19 deaths across all ages. b‘Mortality’ refers to our estimates of excessmortality assuming changes in <5 years
mortality are driven by changes in the likelihood that deaths are reported rather than underlying changes in non-COVID-19 deaths. c‘Capture’ refers to the proportion of deaths in Lusaka typically
captured within the system prior to the pandemic. *refers to the percentage of all registrations/deaths within a given time-period which were deemed excess. Highlighted in bold and/or italics are
results using our default assumptions that 90% of underlying mortality is captured by pre-pandemic burial registration.
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burial registration capture rate assumption, again finding nuanced
differences, with a small increase in severity with 80% burial registra-
tion capture (Supplementary Fig. 7k–l).

Within the best-fitting-model envelope (Supplementary Fig. 8),
infection spread and transmissibility estimates are similar to those of
the default model (Fig. 4), suggesting a reproduction number well
above two during May-June 2020 but falling progressively to below
one by late July 2020 as the epidemic peaked. Our estimates suggest
that this transmission decline occurred despite population-level
immunity remaining low, with our cumulative attack rate estimates
(the% of the population infected at any point during thewave) ranging
between 15 and 30% during the first wave.

Discussion
Uncertainty in mortality patterns in Africa throughout the pandemic is
one of the leading contributors to the remaining uncertainty in the
impact of the pandemic globally33,59–61. While the findings presented
here are not readily extrapolated to a wider region due to substantial
heterogeneity between countries33, our COVID-19 impact estimates in
Lusaka represent a substantial narrowing of uncertainty in one of the
many countries in Africa where current estimates of impact are largely
uninformative and where age demographics are amongst the most
favourable globally in terms of reducing the average likelihood of
severe disease upon infection.

Our results strongly suggest that thefirstCOVID-19wave in Lusaka
had a direct and heavy impact, shifting the age-distribution of mor-
tality towards older ages in amanner highly characteristic of COVID-19
severity patterns observed elsewhere. Assuming U5 burial registration
declines represent registration process rather than underlying

mortality changes, our estimates of 3220 (95% CrI: 2256–4393) excess
deaths in 2020 represent a per-capita rate of 1256.2 (95% CrI:
880.1–1713.8) excess deaths per million, approaching the highest
affectedAfrica-region countries (South Africa: 920 (95%CI: 830–1000)
per million, and Algeria: 1270 (95% CI: 1210–1340) per million). After
accounting for the protective effect of Lusaka’s young population,
these estimates far exceeded those measured for Europe and the
Americas (DVWI: 1.149 (95% CrI: 0.805–1.568) compared with 0.171
(95% CI: 0.167–0.176) and 0.240 (95% CI: 0.233–0.248), respectively).
Assuming, instead, that registration declines are driven by underlying
mortality changes decreased our excess 2020 mortality estimates by
48.7%, although estimates accounting for Lusaka’s population demo-
graphic remained well above those in the aforementioned countries
(DVWI:0.589 (95%CrI:0.431–0.742)). In contrast, our default estimates
may be conservative if, for example, disruptions to burial registrations
were mirrored by, and subsequently mask any impact thereof, any
disruption to maternal and neonatal services62. U5 registration pat-
terns, however, correlated well with older children and younger adults
(despite having different typical mortality causes) and were highly
predictive of trends across all age groups when NPIs were imple-
mented, with similar results using the 5–14 year age group as a refer-
ence category, suggesting that mortality changes due to behavioural
factors may have been relatively nuanced in the short term.

Using a transmission model parameterised by IFR patterns esti-
mated from available global 2020 data42, we show that these mortality
patterns correspond well to community and post-mortem mortuary
prevalence data, with these IFR patterns well within the range of our
best-fitting models. Consequently, we find no evidence that age-
specific severity was markedly different from estimates in other

Fig. 5 | SARS-CoV-2 transmission in June–October 2020. Transmission model fit
to burial registrations by a week and b 5-year age group during 15th June–4th
October 2020, c Lusaka population-level polymerase chain reaction (PCR) pre-
valence and seroprevalence (sero) surveys, and post-mortem PCR prevalence at
UTH with 95% binomial confidence intervals by d week and e 5-year age group
during 15th June–4thOctober 2020, showing total positive (+ve) deaths, delineated

by causal and non-causal COVID-19 deaths. Lines and ribbons in panels (a–e) show
median and 95% credible intervals of 100 samples. Transmissibility through time is
given in f with the time-varying reproduction number R0ðtÞ, and effective repro-
duction number Reff as a comparable measure incorporating the impact of popu-
lation immunity (shown at 50% and95%credible intervals of 100 samples) such that
a value greater than one indicates a growing epidemic.
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geographies, or any support for a so-called “Africa paradox”12,16,17. Our
results do not, however, preclude relatively nuanced IFR differences in
Lusaka relative to those observed elsewhere, with our results showing
a plausible relative severity range between 50 and 250% of our default
assumptions across numerous sensitivity analyses. Indeed, given the
high non-hospital death prevalence27, we might expect to see greater
severity in Lusaka compared with estimates from settings with high
hospital access under the same intrinsic disease pathogenicity
assumptions. IFRpatterns toward our uncertainty interval’s higher end
would also bring our estimates more in line with others from low- and
middle-income settings outside of Africa29,36. Alternatively, IFR pat-
terns toward the interval’s lower end could suggest relatively nuanced
intrinsic severity differences in Lusaka that remain unexplained.
However, given the widespread low hospital-care access across large
parts of Africa, such an observation would not support a low direct
pandemic impact across the continent. Meanwhile, COVID-19 treat-
ment advances throughout 202063, largely benefitting high-income-
country patients, are likely to mean that, even at the most optimistic
end of our uncertainty, prioritising prevention efforts in higher-
income-setting individuals over equivalently-aged Lusakans could
have no equitable justification.

Our default IFR assumptions are based on results from Brazeau
et al.42, calculated using data matching our main study period time-
frame (i.e., prior to the emergence of new variants of possible differing
severity). Aswith all severity studies during the initial pandemic stages,
this study includeddata representing a trade-off between study-design
quality and the representation of a wide range of contexts, leading to
data inclusion with some potential measurement error. Bias may
therefore be present in some population exposure data (i.e., data
collected through convenience sampling including shopping centre
attendees and blood donors) and COVID-19 mortality data (i.e., where
confirmed COVID-19 mortality use can underestimate total attribu-
tablemortality). However, the included data come from countries with
strong testing systems, and crude IFR estimates from convenience-
sample sources are not dissimilar to other included estimates. Other

studies have suggested a higher IFR for very young children relative to
older children64–66, whichmight account for thehighobservedU5post-
mortem prevalence, though at levels (<0.01%) that would make neg-
ligible difference to the fit of our model to the data. A plausible
explanation for this U5 prevalence, though not one quantifiable in our
framework, could be comparatively extensive SARS-CoV-2 spread
within communities of high non-COVID-19-associated infant mortality.
Overall, Brazeau et al. IFR estimates are central within the range of
other estimates42. Thus, it seems plausible that an ensemble approach
could broaden our uncertainty but would be unlikely to alter our
central conclusion that, when analysing one of the best-characterised
epidemics in sub-Saharan Africa, there is no evidence to support any
substantial differences between innate COVID-19 severity in Lusaka
relative to estimates from other parts of the world.

When considering SARS-CoV-2 spread, our estimates suggest that
the potential transmissibility in Lusaka was comparable to estimates
from earlier epidemics in China, Europe and America67–71 but that initial
dynamics were comparable to those in South Africa72, with NPIs
implemented at a very nascent stage in the epidemic, delaying the
emergence of a first observable wave until restriction relaxation began
in mid-2020. Following this initial exponential growth period, our esti-
mates suggest that control of the epidemic was re-established around
August 2020, showing patterns that closely resemble trends in Mala-
wian prevalence data73. As a result, whilst our estimates suggest sub-
stantial direct pandemic impact, they also suggest that greater potential
impact was mitigated by measures taken by the Lusakan population
throughout 2020, despite the relaxation of official restrictions48–51.

Unfortunately, our estimates suggest that by the year’s end most
of the population remained entirely immune-naïve, suggesting that
Lusakans remained highly vulnerable to future waves, even in the
absence of the variants that subsequently emerged. Our estimates of
subsequent peaks in excess mortality suggest that many gains
achieved by control measures during 2020, similarly implemented in
many African countries74, were lost later in 2020 and 2021. Given
vaccine availability delays in Zambia throughout 202175,76, maintaining

Fig. 6 | Inference of age-gradient and scale of severity. a, b are infographics to
show how the infection fatality ratio (IFR) curve changes when the intercept or
slope is altered on a standard andb log scales. Each plot shows the default IFR from
Brazeau et al.42 as a solid line, with relative overall severities of 20% and 500% of
thosedefault values or relative age-gradient of 20%and250%of the slopeon the log

scale, maintaining the overall severity of the default. The heatmap c shows the log
of the average posterior model fit over 100 samples. d, e show all assessed IFR
curves, coloured by posterior fit as found in c, and where default IFR assumptions
are highlighted in black, plotted on d standard and e log scales.
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these early gains would have involved maintaining costly suppression
measures well beyond the duration they needed to be maintained in
higher-income countries where vaccine distribution was prioritised.
The unsubstantiated perception of a low COVID-19 severity across
Africa seems unlikely to have helped advocacy for equitable vaccine
access, nor combat vaccine hesitancy in many African countries when
vaccines were introduced77,78. In this context, a global inequity in our
ability to measuremortality patterns and disease spread in 2020 likely
contributed substantially to global inequity in the impact of the
pandemic.

Methods
WHO estimates of excess mortality in Zambia in 2020
Estimates of excess mortality during 2020 were sourced from the
WHO33 and plotted per million population with 95% confidence inter-
vals at global and WHO-region level, and at national level within the
Africa WHO region. Confirmed WHO COVID-19 mortality data for
countries and regions are plotted alongside for ref. 2.

Population-weighted country and region specific overall IFR were
calculated and plotted using 100,000 samples from the age-specific
IFR distribution, derived by Brazeau et al.42 (without seroreversion),
whichweweighted by the specified population structure and summed
to generate an overall value with 95% credible intervals. Population
demographic estimates were sourced from the UN World Population
Prospects79 and grouped into 5-year age brackets, then summarised at
the global, regional and country level (consistent with excessmortality
estimates).

DVWI was defined as the cumulative population attack rate
required to directly generate the estimated excess mortality impact,
given the median global, region or country-specific overall IFR and
assuming an even spread of infection by age (for negative values of
excess mortality this DVWI was set to 0). We calculated these DVWI
values by dividing estimates of excess mortality by median overall
area-specific IFR estimates to generate a population infection level
reflective of area demography and mortality.

Model framework and fitting
Estimating excessmortality in Lusaka usingburial registration data.
Official reported deaths for Lusaka Province were obtained from the
Zambia COVID-19 Dashboard43, while details of NPIs were obtained
from situation reports from the Zambia National Public Health Insti-
tute website80 and governmental statements on the COVID-19
pandemic44–51. Calculations involving Lusaka population size and
demographywereobtained from theZambia Statistics Agency81, which
are recently updated census-based projections.

Excess mortality in 2020–2021 was estimated by comparing age-
stratified all-cause weekly burial registrations, which dataset begins in
mid-2017 and ends in mid-2021, sourced from the UTH burial permit
office39 with predictions of baseline registration basedonpre-pandemic
registrations (2018–2019). Although the burial registration dataset
begins in 2017, we found that registrations in 2017 increase from low
numbers, only reaching greater stability and reliability from 2018, and
therefore censored registrations during 2017 in our analysis. Based
upon local knowledge of the study team, estimates from the
literature53,54 and a comparison of recorded burials in 2019 with census-
based projections81 we made a default assumption of a 90% burial
registration rate (with sensitivity analyses of 80–100% registration rate
around this estimation in our transmission modelling). We used a
Bayesian framework and Metropolis-Hastings Markov chain Monte
Carlo (MCMC) to model baseline registrations as a function of weekly
2020–2021 registrations in the youngest age group and age-specific
relative rates of registration trained on 2018–2019 data, using the
drjacoby R package82. We assume that non-COVID-19 related registra-
tions in each age-week group follow a Poisson distribution, verifying no
better fit could be obtained using a Negative Binomial distribution with

various assumed levels of over-dispersion (Supplementary Fig. 9), with
mean equal to the product of weekly U5 registration, with a uniform
prior, and the age-specific rate for each age group, relative to the U5
reference category and otherwise given a diffuse log-normal prior
centred around one in order to give equal prior weight to an increase or
decrease. We also estimated parameters for U5 registration for each
week in 2020–2021, again assuming a Poisson distribution with a uni-
form prior on registrations. Following a burn-in of 5000, we drew
3000 samples fromeach offive chains for eachparameter. By assuming
that COVID-19 had little impact on U5 mortality and that age-specific
rates of deaths are constant through changes in total mortality
(see Supplementary Methods, Supplementary Fig. 2), we multiplied
these relative age-specific rates by weekly U5 registration rates in
2020–2021 to obtain baseline predictions of registration. To account
for deficiencies in burial registration data, we scaled estimated excess
registrations by the ratio of total U5 registrations in that week to the
median weekly U5 registrations from 2018 to 2019 and assuming that
90% of deaths in Lusaka are registered. We also tested our dependence
on theU5 age group as abaseline by conducting the same analysis using
the 5–14 years age group (Supplementary Fig. 3).

Modelling SARS-CoV-2 transmission. SARS-CoV-2 transmission in
Lusaka’s firstwave of the pandemic (June-October 2020)wasmodelled
using an age-structured SARS-CoV-2 SEIR model58 (Supplementary
Figure 10) with age-specific population estimates for Lusaka District
obtained from the Zambia Statistics Agency81. In the absence of locally
collected data on social contact patterns we used a social contact
matrix generated from data collected in Manicaland, Zimbabwe, the
nearest geographical location in the literature with a matrix that
describes contacts across all ages of interest, filtering to only include
data from the peri-urban region (Nyanga) within the dataset83. As is
generally the case in data collected from lower-incomecountries84, this
matrix produces attack rates throughout an epidemic which aremuch
flatter by age then any equivalent simulation using data from higher-
income settings. For validation, PCR prevalence and seroprevalence
patterns by age as observed in the population-based survey in Lusaka
were compared with those estimated contemporaneously by the
model. We also adjusted standard parameterisation to account for
some uncertainties in treatment access in Lusaka (see Supplementary
Methods, Supplementary Table 2).

The model was fitted to age-specific weekly post-mortem PCR
prevalence, collected at UTH during the first pandemic wave (June
15th-October 4th, 2020) and shared by the COVID-19 extension of the
ZPRIME study27, age-specific weekly burial registrations (described
above, limited to the same dates as the post-mortem PCR prevalence
study, June 15th-October 4th 2020) and Lusaka-specific population
level PCR prevalence and seroprevalence surveys in July, 2020, shared
by the Centers for Disease Control and Prevention, Lusaka, Zambia37.

We again assume that all-cause burial registrations follow a Pois-
son distribution (with lambda equal to the sum of model predicted
COVID-19deaths, scaled toburial registry level asdescribed above, and
estimated baseline burial registrations, integrated over 4000 baseline
estimation samples). We also assume that post-mortem PCR pre-
valence follows a binomial distribution (with probability equal to the
modelled prevalence of PCR positive deaths and samples equal to the
number of tests conducted) and that positive population-level PCR
and serological tests both follow Binomial distributions (with prob-
abilities equal to the average respective modelled PCR prevalence and
seroprevalence over the data collection time, incorporating changes in
test detection probability as function of time since infection, Supple-
mentary Figure 11). We used a Bayesian framework with Metropolis-
Hastings MCMC based sampling scheme, drawing 30,000 parameter
sets from each of eight MCMC chains that were used to simulate the
epidemic wave (with the first 10,000 discarded as burn-in, see Sup-
plementary Table 3 for priors used).
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Inferring COVID-19 severity in Lusaka. Severity of COVID-19 was
inferred by adjusting the default IFR values. Default IFR inputs are taken
from Brazeau et al.42 and follow a log-linear relationship. We varied the
log-linear curve by intercept (to increase and decrease overall IFR) and
by slope (to change the age-gradient of IFRswhilemaintaining the same
overall IFR value). For each intercept-slope combination, we ran our
model fitting as described above, comparing the mean likelihood and
posterior values of 100 draws from eight chains, each of 30,000MCMC
samples (with the first 10,000 discarded), to identify the combination
that allowed the best fit to the data. A range of sensitivity analyses (see
Supplementary Table 1) were then performed to assess the influence of
key outlying datapoints, our assumptions around the delay distribu-
tions between infection and deaths and our assumptions around the
translation of burial registration data to excess deaths, namely: i)
removing our scaling factor (i.e., assuming that changes in U5 regis-
trations reflect changes in underlying non-covid mortality rather than
disruption to registration processes); ii) assuming different levels of
shifts (either ±10% or ±20%) in the ratio between U5 and 5+ non-COVID-
related mortality relative to that observed prior to the pandemic; iii)
varying the pre-pandemic registration rate between assuming 80% and
100% of all deaths in Lusaka.

Additional details of methods are given in Supplementary
Information.

Ethics and inclusion statement
The collaboration underpinning this analysis began after PGTW was
approached by a journalist looking to understand the impact of Covid-
19 in Africa who then suggested that they speak to LM and CJG whose
team had recently published a study looking at the prevalence of the
virus within themainmorgue of Lusaka.Meetings between PGTW, LM,
CJG and OJW then began after LM expressed an interested in under-
standing whether dynamical modelling could help to provide insight
into the observed patterns within the mortuary data. Subsequently,
the analysis plan was developed through regular calls and updates
between investigators with the implementation of several skill-sharing
activities. This includedRJS travelling to Lusaka tomeet the study team
and to engage in collaboration with researchers from Zambia National
Public Health Institute (ZNPHI) and to contribute to a two-week
modelling course designed to help support Zambian-based research-
ers to conduct their own modelling analyses. Most recently, SLC has
visited the Department of Infectious Disease Epidemiology at Imperial
College to share insights into the impact of COVID-19 more broadly
across Zambia and to promote further collaboration in the form of
twice-monthly meetings between study teams on an ongoing basis.

We are not aware of any restrictions or prohibitions that have
applied to the work of local researchers in this analysis.

Ethical oversight for ZPRIME and the COVID-19 expansion that
generated post-mortem PCR prevalence data from UTH27 were pro-
vided by the institutional review boards at Boston RESEARCH Uni-
versity and the University of Zambia. Written informed consent was
obtained from the deceased’s family members or representatives.

The population level SARS-CoV-2 prevalence study37 was
approved by the Zambia National Health Research Authority and the
University of Zambia Biomedical Research Ethics Committee. The
studywas reviewed in accordancewith the Centers forDiseaseControl
and Prevention (CDC) human research protection procedures and was
determined to be non-research. Written informed consent was
obtained for adults (aged ≥18 years) and emancipatedminors, parental
consent was obtained for participants aged 17 years and younger, and
assent was obtained for participants aged 7–17 years, before the study.

The work was granted approval via Imperial’s Research Govern-
ance Integrity framework on the basis of the above pre-existing ethics
approvals.

We are not aware of any personal risks to participants, but we are
eternally grateful to them. In particular, we are grateful to the families

who consented to the collection of post-mortem samples from loved
ones during some of the hardest times imaginable and to these data
being used within secondary analyses such as ours.

This analysis prominently cites and builds directly upon, world-
leading locally-generated research, already published in leading peer-
reviewed journals and would not have been possible without it.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WHO excess mortality data and UN World Population Prospects
demographic data that support the findings of this study are available
from https://www.who.int/data/sets/global-excess-deaths-associated-
with-covid-19-modelled-estimates and https://population.un.org/
Dataportal/ (accessed 11th May 2022), respectively, and may be
found in the project repository along with the IFR estimates used to
generate Fig. 2, the Nyanga contact matrix and aggregated (by week
and age group) versions of the burial registration, post-mortem pre-
valence, and population survey datasets. Full burial registration and
post-mortem prevalence data may be shared in full, on the basis of a
request through a formal data sharing agreement between relevant
authors. Deidentified population survey participant data used for this
analysis can be requested from the Zambian Ministry of Health, along
with the unpublished demography estimates for Lusaka used in this
study (interested researchers must submit a research proposal for
consideration by the original study investigators. If approved, the
requestormust sign a data use agreement). All data requests should be
directed to the corresponding author who will facilitate the initiation
of relevant processes within two weeks.

Code availability
All the included data and code with instructions for the reproduction
of these results can be found at https://github.com/RJSheppard/
COVID.IFR.Lusaka (https://doi.org/10.5281/zenodo.7963552).
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