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Hypoxia induced responses are reflected in
the stromal proteome of breast cancer

Silje Kjølle 1, Kenneth Finne 1, Even Birkeland1, Vandana Ardawatia 1,
Ingeborg Winge1, Sura Aziz 1,2, Gøril Knutsvik1,2, Elisabeth Wik 1,2,
Joao A. Paulo 3, Heidrun Vethe 1, Dimitrios Kleftogiannis 1,4 &
Lars A. Akslen 1,2

Cancers are often associated with hypoxia and metabolic reprogramming,
resulting in enhanced tumor progression. Here, we aim to study breast cancer
hypoxia responses, focusing on secreted proteins from low-grade (luminal-
like) and high-grade (basal-like) cell lines before and after hypoxia. We
examine the overlap between proteomics data from secretome analysis and
lasermicrodissected humanbreast cancer stroma, andwe identify a 33-protein
stromal-based hypoxia profile (33P) capturing differences between luminal-
like and basal-like tumors. The 33P signature is associated with metabolic
differences and other adaptations following hypoxia. We observe that mRNA
values for 33P predict patient survival independently of molecular subtypes
and basic prognostic factors, also among low-grade luminal-like tumors. We
find a significant prognostic interaction between 33P and radiation therapy.

Reduced oxygen availability is a tumor microenvironment (TME)
condition promoting cancer progress1. Hypoxia-inducible factor
1-alpha (HIF-1α) accumulates and leads to a range of adaptive pro-
cesses, such as metabolic changes, tumor plasticity, immune evasion,
angiogenesis, and metastasis2. Multiple target genes for HIF-1α have
been reported, although cells may respond to hypoxia not exclusively
through HIFs3. The complexity of hypoxia responses in human cancer
tissues is not well studied at the proteomic level.

Intra-tumoral hypoxic regions often emerge as tumors outgrow
their vascular supply, and hypoxia can trigger mechanisms like meta-
bolic reprogramming and angiogenesis in the TME4–6. As an example,
tumor vascular proliferation is linked tomore aggressive subgroups of
breast cancer7. Thus, hypoxia might represent a master regulator of
several programs involved in tumor progression.

We investigate hypoxia responses in the breast cancer TME by
combining cell secretomes (in vitro) with the tumor stromal pro-
teome (in vivo), with particular attention to differences between
luminal-like and basal-like tumor subtypes. This integrated approach
of secretome and stromal analysis reveals distinct proteomic
patterns.

Results
To study the hypoxia response in breast cancer, we first analyzed the
secretomes of four selected breast cancer cell lines (BCCL) derived
from the two phenotypes (luminal-like, basal-like) by mass
spectrometry-based proteomics (Fig. 1a). In the secretomes, we iden-
tified a total of 1787 secreted proteins, across all cell lines and oxygen
conditions (Supplementary Fig. 1; see Supplementary Information and
Supplementary Table 1 for details on selected cell lines).

Secretomes are different between breast cancer subtypes at
normoxia
We compared the luminal-like and basal-like secretomes at normoxia
in the discovery BCCL panel (n = 4). The distribution and number of
secreted proteins were similar for cells at normoxia and hypoxia (1211
and 1245 proteins, respectively) (Fig. 2a, b). At baseline, 331 proteins
showed significantly higher levels from basal-like cell lines compared
with luminal-like cells. Conversely, 133 proteins had significantly
higher abundance in the luminal-like secretome.

Bygene set enrichment analysis (GSEA), processes associatedwith
more aggressive cancer, including metabolic changes, angiogenesis,
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Fig. 1 | Schematic overviewof studywith laboratory anddata analysis.Methods
workflow for proteomics experiments of breast cancer cell line (BCCL) conditioned
media (a) and formalin-fixed paraffin-embedded (FFPE) tumor samples (b). From
hypoxic BCCL secretome experiments, 150 proteins showed hypoxia-increased
secretion (Hx). From microdissected FFPE material, 283 proteins showed subtype
differences only in the stromal compartment (basal-like (BL) vs. luminal-like (LL)
subtypes). The 33-protein hypoxia stromal signature (33P) was generated from the
overlapping proteins between the 150 hypoxia-increased proteins (BCCL secre-
tome experiments) and the 283 proteins showing stroma-exclusive subtype dif-
ferences (microdissected breast cancer patient material) (c). The hypoxia response
proteins and 33P signature were validated using bioinformatic analysis and
experimental validation (d). The hypoxia response proteins were investigated with
bioinformatic analyses (gene ontology analysis (GO), gene set enrichment analysis

(GSEA), ingenuity pathway analysis (IPA), network biology analysis using Cytos-
cape). The 33P signature was explored bioinformatically (GSEA, connectivity map
analysis (CMAP), Cibersort, Search-Based Exploration of Expression Compendium
(SEEK)) and validated with external clinical validation (METABRIC-Discovery,
n = 852; KMplotter merged cohorts) for survival analysis and permutation test, and
with extended cell line validation (BCCLs; LL n = 6, BL n = 6). 33P: 33-protein
hypoxia stromal signature. BCCL breast cancer cell line. BL basal-like breast cancer
subtype. CMAP Connectivity map analysis. ELISA enzyme-linked immunosorbent
assay. FFPE formalin-fixed paraffin-embedded tissue. GO gene ontology analysis.
GSEA gene set enrichment analysis. Hx hypoxia. IHC immunohistochemistry. LL
luminal-like breast cancer subtype. MS mass spectrometry. Nx normoxia. SEEK
search-based exploration of expression compendium.
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inflammation, immune responses, tissue remodeling and develop-
ment, and cellular proliferation, were significantly enriched in the
basal-like secretome compared with the luminal-like subtype (all
FDR <0.05) (Supplementary Data 1). This is in line with previously
described differences at baseline between luminal-like and basal-like
subtypes, based on mRNA and selected individual proteins8–10.

Additionally, three of the PAM50 proteins (EGFR, CDH3,
SLC39A6) were in commonwith the proteins separating basal-like and
luminal-like secretomes at baseline. Of relevance for secretome stu-
dies, we found that 40 of the PAM50 signature genes/proteins have
been reported in serum or plasma (plasma proteome database; PPD:
http://www.plasmaproteomedatabase.org/)11,12 and/or the Human
Protein Atlas—blood protein (Human Protein Atlas proteinatlas.org)13.

Distinct hypoxia responses in breast cancer cells
We focused on secreted proteins being increased by hypoxia (hypox-
ome) (Fig. 2c, d); overall 150 proteins were significantly increased as
compared to normoxia: 128 in luminal-like and 29 in basal-like cells
(Supplementary Data 2). Only 7 proteins overlapped and showed
increased abundance in both subtypes after hypoxia: CTSB, GAPDH,
HNRNPF, RCN1, RNPEP, SDCBP, and VEGFA. The low number of
hypoxia-upregulated proteins in common between the two breast
cancer subtypes indicates that luminal-like and basal-like cells have
distinct hypoxia responses.

Comparing the proteins separating basal-like and luminal-like
secretomes under hypoxia, only one protein was overlapping with the
PAM50 gene set (EGFR), indicating that the PAM50 classifier may be
lacking hypoxic information for subtype stratification.

As we observed several intracellular proteins in our secretomes,
we investigated cell viability and found this to be high, with no sig-
nificant difference between cells conditioned at hypoxia and normoxia
(average viability at hypoxia: 92.2%; normoxia: 93.9%), in either the
luminal-like (hypoxia: 95.9%; normoxia: 96.5%; p=ns) or basal-like cell
lines (hypoxia: 88.5%; normoxia 91.4%; p = ns; Mann–Whitney U test).
Further, gene ontology analysis of our secretome proteins showed
significant enrichment of proteins in the extracellular region com-
pared to random (GO:0005576; all proteins, FDR = 1.16 × 10−229).

We then searched for key upstream transcription factors of the
combined hypoxia response (luminal-like and basal-like) by the Inge-
nuity Pathway Analysis (IPA) program. Notably, HIF1A is associated
with acute hypoxia response, whereas HIF2A is stabilized in chronic
hypoxia14. Among the top five transcriptional regulators associated
with the 150 hypoxia-induced proteins, we found MYC, TP53, ARNT,
HNF4A, andHIF1A (ranked by strength of association) (Supplementary

Data 3).We found 15 of the 150 hypoxia-increased proteins to be HIF1A
targets.

Next, using the IPA database combined with literature mining, we
found that of the 150 hypoxia-increased proteins, Putative phospho-
lipase B-like 2 (PLBD2) have not been previously associated with can-
cer. Based on sequence similarity, PLBD2 is a putative phospholipase,
and probably involved in fatty acid metabolism. Studies are needed to
elucidate the role of PLBD2 in cancer.Moreover, 40 of the 150proteins
have not been previously associated with breast cancer.

When IPAwasperformed separately for luminal-like and basal-like
hypoxia responses (upregulated proteins), we found that MYC, TP53,
HNF4A and ARNT were the top-ranked upstream transcriptional reg-
ulators for the luminal-like response, whereas TP53, ARNT and HIF1A
were top-ranked for the basal-like response. Among the top five tran-
scriptional regulators for each subtype, NRF2, encoded by the NFE2L2
gene, was only found in the luminal-like hypoxic secretome, whereas
TFEB and BCL6B were exclusively found for the basal-like response
(Supplementary Data 3). Our findings indicate differences in luminal-
like and basal-like hypoxia responses, and that these responses are not
exclusively regulated by hypoxia-inducible factors (HIFs).

Next, we investigated a STRING-generated15 interaction network
for the 150 hypoxia-increased proteins, and found higher number of
interactions and/or associations compared to a random reference set
(PPI enrichment p-value < 1.0 × 10−16) (Fig. 3; Supplementary Data 2);
125 of the 150proteinswereassociated to at leastone other protein in a
large main network; the 125 proteins showed overrepresentation of
proteins involved in metabolic processes (GOID 8152, p = 8.9 × 10−18)
and included angiogenesis (e.g., VEGFA, ANG, ANGPTL4; GOID 1525,
p = 6.6 × 10−4) (Supplementary Data 4). The network showed sub-
clusters associated with metabolic processes such as glycolysis (e.g.,
GAPDH, LDHA, MDH2; GOID 6096, p = 1.2 × 10−4) and TCA cycle (e.g.,
IDH2, MDH1, ACO1; GOID 6099, p = 5.8 × 10−9) (Supplementary
Table 2).

Hypoxia-secretomes are enriched in proteins associated with
energy metabolism
We explored differences in the hypoxia response (upregulated pro-
teins) within luminal-like and basal-like subtypes separately. The
luminal-like hypoxome was mainly enriched in processes related to
metabolism, such as glycolysis (21 of 62 gene set proteins, p = 0.02),
TCA cycle (12 of 32 gene set proteins, p = 0.04), and oxidative
phosphorylation (9 of 35 gene set proteins, p = 0.05) (Fig. 4a–f;
Supplementary Data 5). Lactate dehydrogenase (LDHA), a key
enzyme in anaerobic glycolysis, was significantly increased in the
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Fig. 2 | Distribution of secreted proteins between oxygen conditions and
subtypes in breast cancer cell secretomes. Relative distribution of secreted
proteins between the luminal-like (n = 2) and basal-like cell lines (n = 2) under
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hypoxic secretome of luminal-like cells, but not in basal-like cell lines
(Supplementary Data 2). Whereas we did not observe significant
hypoxia-induced differences in energy metabolism among basal-like
cells, these cells still showed 1.9-fold higher levels of LDHA at nor-
moxia compared to the luminal-like hypoxic secretome (p = 0.002).
In contrast, the basal-like hypoxome showed enrichment related to
tissue development, immune responses, inflammation and secretion
(Supplementary Data 6). Our findings suggest that luminal-like cells
have a stronger hypoxia response, while basal-like cells may have
adapted to a hypoxic environment in vivo, as hypoxic and necrotic

regions are more frequent in rapidly growing tumors, such as basal-
like breast cancers.

Hypoxia-secretomes are enriched in proteins associated with
angiogenesis
Hypoxia is associated with expression and/or secretion of angiogenic
proteins being targets of HIFs4. We compared angiogenic proteins
between hypoxic and normoxic conditions and observed that the
global basal-like secretome (normoxic and hypoxic) included 52
angiogenesis-related proteins (GOID 1525), while the luminal-like
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secretome revealed 32 proteins involved in angiogenesis (Fig. 4g, h).
Of the 32 luminal-like matches, 28 were in common with the 52 basal-
like angiogenic proteins. The luminal-like, but not the basal-like
secretome, showed significant hypoxia-induced enrichment of
angiogenesis-related proteins (luminal-like: p =0.043; basal-like:
p =0.33). However, several of the basal-like angiogenic proteins were
already higher at baseline, compared with hypoxia-increased luminal-
like angiogenic proteins, including ANG, NCL, PRCP and VEGFA (Sup-
plementary Data 2).

We then compared angiogenic proteins in luminal-like and basal-
like secretomes, both at normoxia and after hypoxia (Fig. 4i, j) and
found enrichment of angiogenic proteins in the basal-like secretomes
in both oxygen conditions (normoxia: p < 0.001; hypoxia: p <0.001).
These data indicate discrete angiogenic responses within luminal-like
and basal-like cells following hypoxia.

Among the 150 hypoxia-increased proteins, only 8 were asso-
ciated with angiogenesis (Table 1). Notably, vascular endothelial
growth factor A (VEGFA) was the only angiogenesis-related protein
that was increased by hypoxia in both luminal-like and basal-like cells.
VEGFA showed 3.7-fold higher abundance in normoxic basal-like
secretomes compared with hypoxic luminal-like secretomes
(p = 0.01); this difference was validated by enzyme-linked immuno-
sorbent assay (ELISA) (Supplementary Fig. 2) (see also Fig. 1d). Lyso-
somal Pro-X carboxypeptidase (PRCP), a key regulator of vascular
homeostasis, was significantly increased in luminal-like secretomes
only, but showed 7.4-fold higher secretion from normoxic basal-like
cells compared with hypoxic luminal-like cells (p < 0.001).
Angiopoietin-like 4 (ANGPTL4) and myosin-9 (MYH9) were the only
two angiogenic proteins that were hypoxia-increased only in the
basal-like cell lines (Table 1). Secretome levels of ANGPTL4 were
evaluated by ELISA for validation and showed the same patterns as in
MS data (Supplementary Fig. 2).

Further, cathepsin B (CTSB), being connected to angiogenesis16,
showedhigher levels of secretion frombaseline basal-like compared to
hypoxic luminal-like cell lines, as well as being hypoxia-increased in
both subtypes (Supplementary Data 2). This was validated by ELISA
and showed similar patterns for different cell lines when examined
separately. The luminal-like levels of CTSBwere not detected by ELISA,
being consistent with the lower secretion from luminal-like than basal-
like cells (Supplementary Fig. 2).

Taken together, our data indicate differences in the secretion of
angiogenic proteins following hypoxia between luminal-like and basal-
like cells, with only VEGFAoverlapping between subtypes. Luminal-like
cells increase their secretion of angiogenesis-promoting factors after
hypoxia to a greater extent compared with basal-like cells, although

several of the basal-like proteins were considerably higher at baseline.
This might suggest that basal-like cancer cells are already in an acti-
vated angiogenic-like state at baseline.

Integrated proteomics analysis of cell line secretomes and
microdissected tumor stroma from human breast cancer
Our data indicate that luminal-like and basal-like cells have distinct
hypoxia responses, and that basal-like cells may be characterized by
more features related to hypoxia present at baseline. As secreted and
released proteins from tumor cells are part of the TME in vivo and
important in promoting aggressive TME characteristics, we predicted
that such proteins might be identified in the stromal compartment of
human breast tumors. We separated tumor stroma and tumor epi-
thelium by laser capture microdissection of formalin-fixed paraffin-
embedded luminal-like and basal-like breast cancer samples, followed
by shotgun proteomics analysis of the extracted proteins (Fig. 1b). In
the tumor cell compartment, 4157 proteins were detected, compared
to 2150 proteins in stromal samples (Supplementary Fig. 1).

Among stromal proteins, the majority were also found in tumor
epithelium. We then focused on proteins that were significantly dif-
ferent between luminal-like and basal-like tumor stroma. Proteins dif-
fering significantly between the luminal-like and basal-like subtypes in
the tumor epithelium were then subtracted from the set of proteins
that differed in the tumor stroma compartment. This resulted in 283
proteins that represented significant and unique differences between
the subtypes in the stromal compartment; 202 proteins with sig-
nificantly higher abundance in basal-like stroma; 81 proteins with sig-
nificantly higher abundance in luminal-like stroma.

Of interest, six proteins (FOXA1, ERBB2, MAPT, NAT1, PHGDH,
KRT5) and one protein (PHGDH) overlapped between PAM50 and the
differentially expressed proteins between basal-like and luminal-like
subtypes in microdissected tumor epithelium and stroma, respec-
tively. This illustrates that the PAM50 signature is mainly tumor epi-
thelial cell-based.

When exploring the 283 proteins by gene ontology analysis, we
found a significant overrepresentation of proteins in the cellular
components ‘Extracellularmatrix’ (GOID 31012, FDR = 6.60 × 10−15) and
‘Extracellular space’ (GOID 5615, FDR = 1.37 × 10−57), as well as invol-
vement in processes of ‘Extracellular matrix organization’ (GOID
30198, FDR = 5.03 × 10−5) and ‘Collagen fibril organization’ (GOID
30199, FDR = 7.81 × 10−4).

We cross-referenced the 283 proteins with the 150 hypoxia-
upregulated proteins from our secretome studies, revealing 33 over-
lapping proteins that were differentially abundant in both datasets
(Fig. 1c). This protein setwas termed the 33Phypoxia stromal signature
(33P) (Supplementary Table 3). As reflected by the 150 hypoxia-
upregulated proteins, 33P was also overrepresented by proteins
involved in glycolysis (GOID 6096, FDR =0.0136), TCA cycle (GOID
6099, FDR =0.0132), and other carbohydrate metabolic processes
(FDR <0.05).

To examine the uniqueness of this 33P signature compared to a
random selection of 33 proteins from a pool of the 150 and 283 pro-
teins (above), we performed a random selection permutation analysis
and found that 33P was significantly stronger than expected by ran-
dom chance (p < 0.0001) (Supplementary Fig. 3) (see also Fig. 1d).

Further, to illuminate potential associations between 33P and
specific cell types in the TME, we used Cibersort17 to deconvolute bulk
transcriptomic data from METABRIC-Discovery (n = 852). We inferred
the immune cell abundance for a subset of patients with basal-like and
triple-negative breast cancer18. Basal-like tumors were stratified using
the 33P signature score (Q1–Q3 vs. Q4), and we observed lower num-
ber of B-cells and CD8-cells in the worse outcome (Q4) subgroup of
33P, indicating potential immune suppression (Supplementary Fig. 4).
Notably, we found fewer restingmast cells and an increase in activated
mast cells associated with higher 33P. Our findings indicate an

Table 1 | Angiogenesis-related proteins upregulated by
hypoxia in breast cancer cell lines

Gene name Protein name Fold change after hypoxia

Luminal-like Basal-like

ANG Angiogenin 2.9a 1.7

ANGPTL4 Angiopoietin-like 4 1.6 6.1a

MYH9 Myosin-9 2.3 2.0a

NCL Nucleolin 5.5a 0.8

PDCD6 Programmed cell death pro-
tein 6

2.0a 2.1

PRCP Lysosomal pro-X
carboxypeptidase

2.4a 1.1

VEGFA Vascular endothelial growth
factor-A

5.5a 1.9a

WARS Tryptophan--tRNA ligase 2.6a 1.7
aSignificantly increased in response to hypoxia (two-sided Student’s t test, significance
level 0.05).
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association between 33P and immune cell levels within the basal-like
subtype.

As one of the main strengths of secretome studies is the potential
presence of such proteins in serum or plasma, we examined the 33P in
the PPD11,12 and found 32 of the 33 signature proteins (not in PPD:
COPE). We further explored the Human Protein Atlas—blood protein13

and found all signature proteins to be detected in plasma by MS
analysis.

High 33P mRNA score associates with aggressive breast cancer
features
We explored whether features of tumor cell hypoxia reflected in the
stroma, as indicated by 33P, were associated with aggressive breast
cancer phenotypes and patient outcome. For this, we included 852
patients diagnosedwith luminalA, luminal B or basal-like breast cancer
in the METABRIC-Discovery cohort and extracted normalized expres-
sion values (mRNA) of genes corresponding to 33P proteins. High 33P
mRNA score (by upper quartile) associated with large tumor size, high
histologic grade, lymph node metastases, ER negative tumors, and a
basal-like phenotype (Supplementary Fig. 5).

In a recently published proteomics cohort (n = 209)19, the 33P
score was significantly associated with molecular breast cancer sub-
types (Supplementary Fig. 5). High 33P was associated with high his-
tologic grade (p <0.001; grade 3 vs. 1-2) and high tumor cell
proliferation by Ki67 expression (p <0.001).

In addition to basic prognostic factors, 33P correlated with inde-
pendent signatures and gene sets for tissue hypoxia20–22 (Supplemen-
tary Fig. 6); correlations were also significant after removing
overlapping proteins (all p < 0.001) (Supplementary Table 4) with
similar Spearman’s rank correlation coefficients (Halle: ρ =0.35, pre-
viously ρ =0.40; Eustace: ρ =0.59, previously ρ =0.64). Strong corre-
lationswith other hypoxia signatures support that 33P reflects hypoxic
features being present in the stromal compartment.

A high 33P mRNA score was associated with signatures for
proliferation23,24, glycolysis (Hallmark glycolysis, MSigDB), angiogen-
esis by vascular proliferation25,26, epithelial-to-mesenchymal transition
(EMT)27, and stemness28–30 (see below, and Supplementary Fig. 6).

We applied the search-based exploration of expression compen-
dium (SEEK) and found that 33P associated with triple-negative phe-
notype (p = 0.0006) andhigh-grade breast cancer (p <0.00001) in two
datasets (GSE45255.GPL96 and GSE4922.GPL96), as well as p53 muta-
tions (GSE22093.GPL96; p = 0.038); the p53 associationwas also found
in METABRIC-Discovery, including among luminal A cases (p =0.02).

33P was higher in tumor tissue compared with normal tissue
(GSE15852.GPL96) (p =0.001).

High 33P mRNA score associates with reduced patient survival
High 33Pwas associatedwith decreased breast cancer-specific survival
(log-rank test, p-value < 0.001) (Fig. 5a), also when stratifying by
molecular subtype (Fig. 5b, c). Notably, stratificationof the luminal-like
category showed that high 33P was associated with reduced survival
within the luminal A category (log-rank test, p-value = 0.02). Con-
versely, basal-like tumors were significantly stratified by 33P, with
clearly better survival for those with lower values (Q1-3). Notably, high
33P was associated with shorter survival in the merged cohorts from
KMplotter, and when stratified by subtypes (Supplementary Fig. 7).

By multivariate survival analysis, 33P demonstrated independent
prognostic valuewhen adjusting formolecular subtype (luminal-like or
basal-like; by PAM50), as well as the basic prognostic factors tumor
diameter, histologic grade and lymph node status (Cox’ regression,
Wald test, p = 0.001) (Table 2), and also when stratifying the cohort by
molecular subtype (Supplementary Table 5).

Relation between 33P and treatment
To explore the potential interaction between 33P and various treat-
ments, we applied the retrospective observational METABRIC-
Discovery cohort (n = 852) with information on endocrine treatment,
chemotherapy, and radiation therapy.We initially performed stratified
survival analyses (with/without treatment), andwe foundnodifference
for endocrine treatment or chemotherapy with respect to 33P, while
different survival patterns were present for radiation therapy (yes vs.
no) (Fig. 6a, b). For those treated with radiotherapy, low 33P (lower
quartile) was associated with significantly better survival than high
values (upper quartile). Statistically, we found a significant interaction
with radiotherapy for the prognostic value of 33P (p =0.02; HR = 1.93
[1.21–3.30]), also after adjustment for basic factors (tumor diameter,
histologic grade, lymph node status). The diverging effect of radio-
therapy was significant also in patients with luminal A breast cancer
(Fig. 6c, d). Whether 33P might be applied to stratify patients for
radiotherapy, would need to be studied in a prospective randomized
clinical trial for verification. Of note, patients having radiotherapy had
significantly higher histologic grade, and weremore often ER negative
and lymph node positive.

We then asked whether any of the 33 proteins were more
important than others in terms of their impact on patient survival.
Using the METABRIC-Discovery dataset (n = 852), we applied a
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Fig. 5 | Survival plots in breast cancer patients scored by 33P hypoxia stromal
signature (METABRIC-Discovery cohort). Kaplan–Meier of breast cancer specific
survival in patients diagnosed with luminal-like and basal-like breast cancer
(n = 852) (a), only luminal-like subtype (n = 734) (b), and only basal-like subtype
(n = 118) (c) in the METABRIC-Discovery cohort. The patients are divided into

quartiles depending on 33P signature score (33P-low, Q1 in blue; 33P-high, Q4 in
red). The plots show a significant association between high 33P scores (Q4) and
poor survival for patients diagnosed with luminal-like and basal-like breast cancer.
Survival differences between groups were evaluated with a two-sided log-rank test.
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reduction algorithm, assuming that not all proteins in 33P would be
equally strong. The 33P signature was reduced by recursively leaving
one gene/protein out and then testing the predictive strength of the
remaining N-1 genes/proteins in a survival analysis (Q1-3 vs. Q4). The
strongest N-1 signature (lowest log-rank p-value) was retained, and the
process was repeated until only one gene remained. The reduced
version of 33P with the strongest effect on survival (p = 4.3 × 10−17,
compared to baseline 33P p = 1.0 × 10−8) was these 18 proteins: CDC37,
COL5A1, CTSB, GAPDH, GRB2, HNRNPA1, HNRNPD, HNRNPF, HSPA4,
HSPA9, IDH1, LDHA, MYL6, P4HB, PGK1, RRBP1, SET, VASP (Supple-
mentary Fig. 8). These 18 proteins showed a strong separation of the
upper quartile patients (Q4) in the luminal A subgroup, and this

prognostic impact was validated in KMplotter (p < 1.0×10−16; n = 2032),
also in the luminal A subgroup (p = 0.00015; n = 631).

Signatures reflecting metabolic processes, vascular
proliferation and cellular plasticity are increased in 33P-high
breast cancer
To investigate and validate the ability of the 33P signature to reflect
metabolic reprogramming of the TME, GSEA was performed on the
METABRIC-Discovery cohort, with proteins ranked from 33P-high to
33P-low. Gene sets reflecting glycolysis and other metabolic processes
were significantly enriched in 33P-high tumors (all FDR <0.05). Gly-
colysis was overrepresented among 33P proteins (GOID6096,
p =0.0009), and a gene set reflecting glycolysis was top ranked and
significantly enriched in 33P-high tumors by GSEA (rank 2, FDR <
0.0002, Hallmark glycolysis, MSigDB) and significantly correlated
with 33P in the METABRIC-Discovery cohort (Supplementary Fig. 6).

A gene set reflecting VEGF signaling was significantly enriched by
GSEA in 33P-high tumors (MSigDB, C6 oncogenic signature VEG-
F_A_UP.V1_DN, FDR <0.0001), and validated by independent sig-
natures reflecting VEGF and vascular proliferation (Supplementary
Fig. 6). Further, 33P significantly correlated with signatures reflecting
epithelial-mesenchymal transition and stemness features, including a
signature for high Nestin expression27–29. Notably, 33P correlated
positively with a mammary stem cell score and a luminal progenitor
signature, and negatively with a mature luminal signature30 (Supple-
mentary Fig. 6). Our findings suggest that hypoxia is related to more
stem-like features.

We expanded the characterization of 33P by performing a
STRING-analysis (string-db.org)15, and found very strong connectivity
between the proteins; 29 of 33 proteins (88%) were included in one
large network (Supplementary Fig. 9). The 150 hypoxia proteins that
33P is derived from also showed high connectivity (83% in one large
network) (Fig. 3). Notably, we found that 9 of the 33P proteins were
associated with the ‘VEGFA-VEGFR2 signaling pathway’ (WikiPath-
ways, p <0.001).

Regarding angiogenesis, we have validated our findings using an
in-house breast cancer tissue cohort and found that 33P (by MS-pro-
teomics) was positively associatedwith vascular proliferation by IHC, a
marker of activated angiogenesis7 (n = 42; p = 0.05).

Gene expression propose compounds with potential relevance
to 33P-high breast cancer
To search for biologically relevant targets in 33P-highbreast cancer, we
queried the drug signature database Connectivity Map (CMAP version
02)31 for compound-related gene expression profiles negatively enri-
ched in 33P-high tumors, as such compounds may contribute to
decrease some of the features associated with high 33P scores. Among
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Fig. 6 | Interaction between the 33P signature and radiotherapy (METABRIC-
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n= 852); the right panels include only luminal A patients (n = 466) (c,d). The patients
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Survival differences between groups were evaluated with a two-sided log-rank test.

Table 2 | Multivariate survival analysis (proportional hazards
regression model) of breast cancer patients (METABRIC-
Discovery cohort)

Variable n Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Tumor size

< 20 mm 263 1.00 <0.0005 1.00 0.006

> 20 mm 589 2.05
(1.47–2.86)

1.62
(1.15–2.28)

Histologic grade

1-2 443 1.00 <0.0005 1.00 0.070

3 409 1.86
(1.41–2.46)

1.33
(0.98–1.80)

Lymph node status

Negative 453 1.00 <0.0005 1.00 <0.0005

Positive 399 2.25
(1.70–2.98)

1.83
(1.38–2.45)

PAM50 subtype a

Luminal-
likeb

734 1.00 <0.0005 1.00 NS

Basal-like 118 1.91
(1.37–2.68)

1.26
(0.87–1.82)

33P hypoxia stromal signature

Q123 639 1.00 <0.0005 1.00 0.001

Q4 213 2.120
(1.60–2.81)

1.67
(1.23–2.27)

Statistical test: Two-sided Wald test. Adjustment for multiple testing was not performed.
CI confidence interval, HR hazard ratio, n number of patients, NS not significant.
aOnly patients with luminal A, luminal B and basal-like breast cancers were included (n=852,
METABRIC-Discovery cohort).
bLuminal-like: patients with luminal A and luminal B breast cancer subtypes.
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1309 small molecules represented in CMAP, expression profiles from
compounds with properties promoting attenuation of tumor effects
from hypoxia were top ranked (Supplementary Data 7). Previous stu-
dies on many of these compounds have demonstrated anti-hypoxia
effects in cancer (e.g., resveratrol32, sirolimus33). Several of the top-
ranked compounds have also been shown to have antioxidant effects
and/or effects on the transcription factor NRF2 (nuclear factor ery-
throid 2-related factor 2), encoded by the NFE2L2 gene (e.g.,
apigenin34). NRF2, found in our IPA analysis of upstream transcription
factors for luminal-like hypoxia response proteins, is a known reg-
ulator of genes containing antioxidant response elements35,36.

In stratified CMAP analyses (luminal-like and basal-like sepa-
rately), gene expression profiles of compounds with PI3K/mTOR
inhibitory properties were top-ranked and negatively enriched in 33P-
high tumors (Supplementary Data 7). Adding to this, signatures
reflecting PI3K/AKT/mTOR activation were top-ranked and sig-
nificantly enriched in tumors with high 33P (mRNA) score (GSEA/
MSigDB; H and C6 subsets; FDR <0.05). Taken together, results from
CMAP analyses, used as a hypothesis-generating/supporting tool,
propose a biological relevance of NRF2 activating and/or PI3K/mTOR
inhibitory compounds to 33P-high tumors.

Immunohistochemical expression of NRF2 in tumor tissue
Based on results from IPA and CMAP analyses, IHC was performed to
examine NRF2 expression in the tumor stromal and epithelial com-
partments using a breast cancer cohort of 42 cases with tissue pro-
teomics information and 33P status. Stromal NRF2 expression
(Supplementary Fig. 10) was found to be significantly correlated to the
33P signature scores (ρ =0.56, p <0.001), supporting our IPA findings
(above); epithelial NRF2 expression was not associated with 33P.

Validation of 33P by expanded cell line experiments
To validate 33P derived from the original 4 cell lines (2 luminal-like, 2
basal-like), we added 8 additional cell lines (4 luminal-like, 4 basal-like)
in a new validation experiment that included all 12 cell lines (Supple-
mentary Fig. 11; Fig. 1d). We predicted that this expansion would
implicate awiderbiologic spectrumwith increaseddiversity andbetter
coverage of hypoxia responses. First, we performed a discovery ana-
lysis on the validation experiment (12 cell lines), similar to the initial
discovery, which resulted in a set of 36 proteins (36P) that correlated
significantly with 33P (correlation coefficient 0.70; p <0.001; Pearson)
(Supplementary Fig. 12); the correlation was significant also when
overlapping proteins (n = 10) were omitted from 36P (correlation
coefficient 0.50; p <0.001; Pearson).

Next, we investigated the expression of the 33P proteins in our
new dataset (12 cell lines) and found (by GSEA) that 33P was sig-
nificantly associated with hypoxia (Supplementary Fig. 13). When
examining individual proteins from 33P in the validation dataset, 13 of
these proteins were significantly altered in either the luminal-like or
basal-like cell lines (Supplementary Table 3). A subscore consisting of
these 13 proteins (13P) was generated in the METABRIC-Discovery
cohort (mRNA data), showing significant association with tumor sub-
types and patient survival among all luminal-like or basal-like breast
cancers (n = 852), as well as in the luminal A category (n = 466) (Sup-
plementary Fig. 14). This result is similar to what was observed in the
initial proteomic discovery data (resulting in 33P), indicating that 13P
represents a consistent subset of hypoxia-altered proteins across the
entire and expanded cell line panel (n = 12). Notably, 13P was slightly
stronger than 33P when directly compared in amultivariate analysis of
patient survival (METABRIC-Discovery) (Supplementary Data 8), in
particular among luminal A cases, indicating that 13P is capturing a
broader range of hypoxia responses and might reflect a wider set of
aggressive stromal characteristics. The 13P score (Q4, upper quartile)
was also associated with reduced survival in the KMplotter dataset
(Supplementary Fig. 14), and 13P was significantly associated with

response to radiation therapy (p =0.035, test for interaction). Our data
support the validity of the original 33P signature. At the same time, the
13P signature, based on the extended experiments, showed slightly
stronger prognostic impact.

Discussion
Hypoxia is a master driver of tumor progression1,2, and extensive work
has been performed on hypoxia-inducible factors (HIFs) and their
target genes. However, less is known about the hypoxia responses at
the global proteomic level in cancer, and whether these are relevant in
a clinical context. Although hypoxia has been investigated using MS-
based proteomics, the main focus has been on cellular proteins and
pathways37. Even with an increasing number of cancer secretome stu-
dies, also including hypoxic secretomes38,39, many of these have con-
centrated on extracellular vesicles and their role in metastasis40,41.

Here, we explored secretome proteins from breast cancer cells
and response patterns following hypoxia, with particular attention to
differences between luminal-like and basal-like subtypes. We found
almost completely discrete hypoxia responses between these sub-
groups. Whereas luminal-like cells showed a marked response with
increased secretion of proteins related to metabolic changes and
angiogenesis activation, basal-like cells were less affected, possibly
because of higher levels of hypoxia-associated proteins present at
normoxia. Our data suggest that basal-like cells might have a chronic
hypoxia-like phenotype compared to luminal-like cells.

In the luminal-like secretome, metabolic processes in particular,
and angiogenesis, were enriched after hypoxia. The luminal-like
hypoxome showed enrichment of proteins related to glycolysis, the
TCA cycle, and oxidative phosphorylation, compared to the normoxic
secretome. Also, LDHAwas significantly elevated.Ourfindings support
an increased reliance of glycolysis in luminal-like breast cancer cells in
adapting to hypoxic conditions42 and reinforce the importance of the
Warburg effect43,44. In the basal-like hypoxome, proteins involved in
tissue development, immune responses and inflammation were enri-
ched. In line with this, basal-like cells are prone to cellular plasticity, as
also seen during tissue and organ development, with increased cell
migration and immune evasion45,46. These cells are more likely to dis-
seminate when exposed to hypoxia30, parallel to the more aggressive
disease behavior observed among patients with such tumors47. Whe-
ther a baseline hypoxic phenotype among basal-like cells can be
reversed, is not clear48,49.

Hypoxia induces increased secretion of angiogenic factors from
tumor cells50,51, and angiogenesis is higher in basal-like than in luminal-
like tumors8,52. Here, luminal-like cells showed a significant enrichment
of secreted angiogenesis-related proteins under hypoxic conditions,
whereas most such factors already showed higher levels in the basal-
like secretome at normoxia.

In our cell line experiments, we observed several of the secretome
proteins that are normally found in the intracellular compartment.
Although this could potentially reflect cell death, we found high via-
bility with no significant difference between hypoxic and normoxic
conditions when stratified by luminal-like and basal-like subtypes.
Notably, intracellular cytosolic proteins may be contained in extra-
cellular vesicles, and intracellular proteins may have extracellular
functions. Also, secretion modes may be different in cancer cells
compared to non-cancerous cells, and this could possibly explain why
we detect intracellular proteins in our secretome data53.

By using an integrative design combining global proteomics
information from hypoxic cell line secretomes in vitro with micro-
dissected human breast cancer stroma, to interrogate hypoxic
responses in the TME in vivo,we identified a 33-protein signature (33P)
that indicated more high-grade stromal features within subgroups of
breast cancer. The 33P score was associated with reduced patient
survival beyond that of tumor cell-based PAM50 breast cancer classi-
fication. Even among luminal A tumors, 33P defined a subgroup of
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more aggressive cancers, indicating that hypoxia and “high-grade
stroma” can evolve in some luminal-like tumors which are most often
low-grade by other classifiers.

We asked whether 33P was related to treatmentmodalities. Based
on the retrospective and observational METABRIC-Discovery cohort,
33P showed a significant interaction with radiation, and prognostic
separation was observed among patients receiving radiotherapy.
Apparently, cases with low levels of 33P had improved prognosis fol-
lowing radiation treatment. This differential effect of radiotherapywas
also significant in patients with luminal A breast cancer. Whether 33P
can be applied to stratify breast cancer patients for radiotherapy,
should be further studied in randomized clinical trials for verification.
Our data is in line with studies demonstrating reduced effect of
radiation therapy in hypoxic cancers54,55.

Based on our extended cell line experiment, we found that a
subset of the 33 proteins, 13P, was also prognostically significant and
slightly stronger compared with 33P, in particular among luminal A
cases. This might indicate that 13P reflects a somewhat broader set of
aggressive stromal features associated with hypoxia. Notably, 13P
showed a similar interaction with radiation therapy. This shorter sig-
naturemay bemore easily translated to a clinical assay, for example by
using mRNA values from whole tissue specimens, similar to our vali-
dation studies.

NRF2, considered a master regulator of cellular antioxidant
response35, was identified as an upstream regulator of luminal-like
hypoxia response (by IPA analysis), and stromal NRF2 protein
expression by IHC was associated with high 33P in our breast cancer
cohort. Using the CMAP database for drug response and repurposing
exploration, NRF2 (by activation) and PI3K (by inhibition) were poin-
ted out as potential targets in hypoxic tumors56. Fromour IPA analysis,
we would expect inhibition of upstream transcription factors of our
hypoxia-increased proteins, including NRF2, and it is not clear how to
explain our results. Regarding the PI3K/mTOR pathway, also indicated
by our CMAP exploration, only few clinical trials have tested PI3K and/
or mTOR inhibitors in advanced triple negative breast cancer, with
published data from one trial so far (i.e., NCT00499603), and with no
change in response rate (at 12 weeks) following downregulation of
mTOR57. Whether stratification by 33P would have provided more
information, is not known.

There are some limitations to the present study. Although our
findings indicate that hypoxia responses reflected in the stroma
associate with aggressive tumor features, the involved mechanisms
must be explored in more detail, including the role of NRF2. This also
relates to targets for anti-hypoxia treatment, and whether hypoxia-
associated features could be reversed or blocked. Regarding protein
distribution, many aspects would need to be clarified, like the role of
vesicular transport and true secretion in cancer cells, in addition to
other mechanisms. Finally, our finding that 33P relates to radiation
therapy should be followed up in clinical trials for verification.

Taken together, our findings at the proteomic level suggest that
hypoxia profiling in human breast cancer reveals distinct responses of
metabolic and other adaptive changes, and that differences are pre-
sent between tumor subgroups. Importantly, 33P should be further
explored in relation to radiotherapy.

Methods
Selection of breast cancer cell lines
Selection of breast cancer cell lines (BCCL) for the discovery phase (4
BCCLs; luminal-like n = 2, basal-like n = 2) and the extended validation
experiments (8 additional BCCLs; luminal-like n = 4, basal-like n = 4)
was based on literature studies and bioinformatic mapping58,59. By
combining mapping of existing literature information with in-house
bioinformatics analyses (below), we provide stronger evidence on the
molecular suitability of candidate cell lines, for the selection of cell
lines and for extended validation experiments. This information is

summarized in Supplementary Table 1. The initially selected luminal-
like cell lines are both ER and PR positive, and both selected basal-like
cell lines are triple-negative. These cell lines were selected with a bal-
ance between primary andmetastatic source (Supplementary Table 1).
The selected cell lines are widely used and included in several large
studies investigating breast cancer cells in vitro60–65. All selected cell
lines are part of at least one of American Type Culture Collection
(ATCC)’s cell line panels for breast cancer or triple-negative breast
cancers, and none of the included cell lines are among the cell lines
with debated subtype or characteristics (e.g., SKBR3, previously clas-
sified as luminal60,62, and later classified as HER2-enriched61).

To identify representative cell lines for the validation panel, we
performed an unbiased exploratory analysis using publicly available
transcriptomic (n = 54) and proteomic (n = 28) data from the Cancer
Cell Line Encyclopedia (CCLE)58,59. For both transcriptomic and pro-
teomic datasets, we used the available gene expression and protein
expression matrices as input. The cell lines were projected into the 2D
space using multidimensional scaling (MDS) (Supplementary Fig. 11).

The cell lines formed clusters, and the clusters were strongly
driven by their molecular subtype identity. This information was used
as a guide to assess differences in the expression profiles of the
available cell lines (n = 4), and unbiasedly select new candidate cell
lines to cover the observed 2D space (validation cell lines, n = 8). We
believe that the original four cell lines were neither outliers nor
expressing very different transcriptomic or proteomic profiles from all
other cell lines. Instead, they were quite representative in the 2D
subtype space, as were the additional 8 cell lines that we subsequently
selected.

Expanding the cell line panel of luminal-like cell lines, we decided
to include aHER2-positive cell line consistent with the luminal B tumor
subtype, and three cell lines with hormone receptor status patterns
corresponding to luminal A tumors. Importantly, regarding the HER2-
positive cell lines included in our study (initial: BT-474; additional: ZR-
75-30); these cell lines are hormone receptor positive and have luminal
characteristics, and belong to the luminal category of cell lines.

Expanding the cell line panel of basal-like cell lines, three basal A
cell lines andonebasal B and claudin-low cell linewere included to also
have a balance between basal A and basal B cell lines in follow-up
experiments. Importantly, all six basal-like cell lines were triple-
negative. The basal A cell lines were included as this category is cor-
responding closely with the basal-like tumor subtype9,66, and the basal
B category of cell lines were included since these are more similar to
the triple-negative tumors.

When selecting cell lines for the validation experiment, we care-
fully selected cell lines with similar media and supplements to ensure
that there was no obvious external metabolic bias between the luminal
and basal-like subtypes.

All cell lines were provided from American Type Culture Collec-
tion (ATCC) with certificate of analysis. All cell lines tested negative for
mycoplasma contamination.

Selection of patients and study approval
For the in-house human tumor samples used in our study (for micro-
dissection and proteomics, n = 24; for immunohistochemistry, n = 42;
see below), the protocol was approved by the Western Regional
Committee for Medical and Health Research Ethics, REC West (REK
#2014/1984). The informed consent was waived by the REC West
Committee, based on national guidelines, as well as the age and size of
the full cohort covered by the approval. However, the actual patients
included were informed about the research project and the possibility
to withdraw. All studies were performed in accordancewith guidelines
and regulations by the University of Bergen and REK, and in accor-
dance with the Declaration of Helsinki Principles.

Tumor tissues (n = 24) were collected from female patients (aged
50–69 years) diagnosed with breast carcinoma NST (no special type)
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during 1996–2003, as part of a prospective and population-based
screening program. Sexwas defined by the national andunique 11-digit
personal identification number. Tissue sections from 24 primary
tumors (12 basal-like, 6 luminal A, 6 luminal B) were included for
microdissection; tumor categories were based on the St Gallen 2013
classification67. All basal-like samples were also triple-negative, and all
luminal samples were estrogen and progesterone positive, and HER2-
negative. The luminal B tumors displayed more than 15% Ki67-positive
nuclei68.

Cell cultures
For the discovery experiments, BT-474 (ATCC® HTB-20™) was grown
in RPMI medium, MCF7 (ATCC® HTB-22™) and Hs 578T (ATCC®
HTB-126™) were grown in DMEM medium and MDA-MB-231 (ATCC®
HTB-26™) cells were grown in F-12 medium. All cell lines were
supplemented with 10% fetal bovine serum (FBS), 1% penicillin strep-
tomycin (PS) and 1% L-glutamine. In addition, MDA-MB-231 were
supplemented with 1% glucose. For the extended validation panel of
BCCLs, the additional cell lines (HCC1428 (ATCC® CRL-2327™),
T47D (ATCC® HTB-133™), ZR751 (ATCC® CRL-1500™), ZR-75-30
(ATCC® CRL-1504™), MDA-MB-468 (ATCC® HTB-132™), HCC1143
(ATCC® CRL-2321™), HCC1187 (ATCC® CRL-2322™), BT-549 (ATCC®
HTB-122™)) were cultured according to recommended protocols from
ATCC. The cell lines were maintained at 37 °C in a humidified atmo-
sphere with 5% CO2, and all work was performed in a sterile environ-
ment. Cells were sub-cultured at approximately 80% confluency by
washing with PBS and incubation with trypsin (0.25%) and dividing
into new cell culture flasks with fresh medium. Number of cells and
viability were calculated using Countess™ Automated Cell Counter
(Invitrogen).

Conditioned media
The cell lines were grown to approximately 80% confluency in 175 cm2

flasks, washed with PBS three times, and covered with basic medium
without additives. The cells were incubated in normal conditions for
1 h, before the washing procedure was repeated. Then, 15mL basic
mediumwas added (no additives) and the cells were incubated for 24 h
at either normoxia (21%O2, 5% CO2) or hypoxia (1.2%O2, 5% CO2). After
24 h, the conditioned medium was transferred to tubes and cen-
trifuged at 3000 g for 5min to remove cell debris, and the supernatant
was stored at –80 °C.

Enzyme-linked immunosorbent assay
ELISA was performed on conditioned media for validation of the MS
data on vascular endothelial growth factor A (VEGF-A; Quantikine®
ELISA Human VEGF Immunoassay, R&D Systems™, DVE00),
angiopoietin-like 4 (ANGPTL4; DuoSet® ELISA Development system
Human Angiopoietin-like 4, R&D Systems™, DY3485), and cathepsin B
(CTSB; DuoSet® ELISADevelopment systemHumanTotal Cathepsin B,
R&D Systems™, DY2176). ELISA analysis was performed after the
manufacturer’s protocol, and results were normalized to total protein
concentrations.

Microdissection of human breast cancer samples
Ten micrometers thick formalin-fixed paraffin-embedded (FFPE) sec-
tions were deparaffinized, rehydrated and stained with hematoxylin.
Breast cancer epithelium and tumor stroma (adjacent non-epithelial
tissue) were laser capture microdissected (PALM MicroBeam, Zeiss)
and pressure catapulted into a tube cap (AdhesiveCap 500 opaque,
Zeiss). Tumor epithelium and tumor stroma areas were selected under
supervision of an experienced breast pathologist (L.A.A), using digital
high-resolution images of parallel sections stained with hematoxylin-
eosin.Dependingon availability (0.5–1.9) × 107 µm3 tissuewasobtained.

Subsequently, to estimate the purity of microdissected samples,
we compared the intensities of the epithelial marker cytokeratin-8 in

the tumor epithelial and the tumor stromal samples after proteomics
analysis (Supplementary Fig. 15). We found on average 62-fold higher
intensities of cytokeratin-8 in the tumor epithelium compared to the
tumor stroma fraction, respectively (basal-like: 68-fold, p = 3.2e−7;
luminal-like: 56-fold, p = 7.5e−12). By estimation, on average, only 1.6%
(median: 1.7%) epithelial tissues were present in the stromal samples.
The low levels of epithelium in microdissected stroma were true for
both basal-like and luminal-like samples; the luminal-like samples had
on average 6.1-fold higher content of cytokeratin-8 compared to basal-
like samples in tumor epithelium (p = 3.9e−5). This was as expected
since cytokeratin-8 is higher in luminal compared with basal-like
epithelial cells.

Sample preparation and mass spectrometry analysis
Conditioned media samples were concentrated using 3 kDa Amicon®
Ultra-15 Centrifugal Filter Units (Merck, Kenilworth, NJ, USA) and lyo-
philized using a vacuum concentrator. The protein pellet was dis-
solved in 8M urea/20mM methylamine solution and protein
concentration was estimated using QubitTM Protein Assay Kit (Thermo
Fisher Scientific). For secretome samples, 10 µg protein from each
sample was prepared and total volume was adjusted. Reduction of
proteins was performed by adding 4 µL of 100mMdithiotreitol (DTT),
incubating 1 h, room temperature (RT). Followed by alkylation by
adding 5 µL of 200mM iodoacetamide (IAA), incubating for 1 h, RT, in
dark. Proteins were digested using a 1:50 ratio of trypsin to protein
concentration and incubated overnight at 37 °C. The trypsin reaction
was stopped by adding 15 µL of 10% formic acid (FA) to each sample.
The microdissected patient tissue were prepared with the filter-aided
sample preparation (FASP) protocol69. In short, the microdissected
patient tissue was lysed in 4% SDS, 100mMDTT and 100mM Tris/HCl
pH8. The lysate was then centrifuged to remove cellular debris and the
protein sample was loaded onto a Microcon 30 kDa centrifugal filter
unit (Merck Millipore, MA, USA). The samples were washed (8M Urea,
0.1M Tris PH 8.5), alkylated (0.1M IAA) and washed again, first with
urea, then three timeswith 50mMammoniumbicarbonate. Finally, the
proteins were digested on the filter unit using trypsin in a ratio 1:50
trypsin:protein. The resulting peptides were collected by centrifuga-
tion. After digestion, all samples were desalted using Oasis HLB μElu-
tion plates (Waters, Milford, MA, USA), and lyophilized. Prior to mass
spectrometry analysis, conditioned medium samples for discovery
experiments were dissolved in 0.1% FA solution, patient samples in 2%
acetonitrile (ACN)/0.1% FA solution, and conditionedmedium samples
for extended validation experiments were dissolved in 5% ACN/5% FA.
The peptide concentration of the conditioned media samples was
estimated using NanoDropTM.

LC-MS/MS analysis
Conditioned media samples from the discovery BCCL panel were
analyzed during a 60min gradient on an LTQ-Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) coupled
to a Dionex Ultimate 3000 RSLC system. The peptides were separated
on a 15 cm × 75 µm analytical column (Acclaim PepMap 100 ID nano-
Viper column) packed with 2 µm C18 beads. The microdissected sam-
ples were analyzed in their entirety during a 180min gradient on a
Q-ExativeHFmass spectrometry (ThermoFisher Scientific), coupled to
a Dionex Ultimate NCR-3500 RSLC system. The peptides were sepa-
rated on a 25 cm× 75 µmanalytical column (PepMap RSLC, EASY-spray
column) packed with 2 µm C18 beads). The MS was operated in data-
dependent acquisition (DDA) mode. Raw data were acquired through
the Xcalibur software (Thermo Fisher Scientific).

Mass spectrometry data for conditioned media samples from the
validation BCCL panel were collected using the Exploris 480 mass
spectrometer (Thermo Fisher Scientific, San Jose, CA) coupled with a
Proxeon 1200 Liquid Chromatograph (Thermo Fisher Scientific).
Peptides were separated on a 100 μm inner diameter microcapillary
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column packed with ~25 cm of Accucore C18 resin (2.6 μm, 150 Å,
Thermo Fisher Scientific). We loaded ~1μg onto the column.

Peptides were separated using a 90min gradient of 3 to 25%
acetonitrile in 0.125% formic acid with a flow rate of 520 nL/min. The
scan sequencebeganwith anOrbitrapMS1 spectrumwith the following
parameters: resolution 120,000, scan range 350–1350 Th, automatic
gain control (AGC) target “standard”, maximum injection time “auto”,
RF lens setting 40%, and centroid spectrum data type. We selected the
top twenty precursors for MS2 analysis which consisted of HCD high-
energy collision dissociation with the following parameters: resolution
15,000, AGC was set at “standard”, maximum injection time “auto”,
isolation window 1.2 Th, normalized collision energy (NCE) 28, and
centroid spectrum data type. In addition, unassigned and singly
charged species were excluded from MS2 analysis and dynamic
exclusion was set to 90 s.

Computational analysis of proteomics data
Raw MS files from discovery BCCL panel secretomes and micro-
dissected tissues were analyzed using MaxQuant70 (v1.5.3.30 for con-
ditionedmediumsamples and v1.6.0.16 for patient samples)with label-
free quantification and “match between runs” enabled. The precursor
ion tolerance for total protein level profiling was set to 20 pmm, and
product ion tolerance to 0.5 Da. Carbamidomethylation of cysteines
was set as fixed modifications, and oxidation of methionines and
N-terminal acetylation was set as variable modifications. The false
discovery rate (FDR) for peptide and protein identification was set to
1%. MS/MS spectra were searched in the Andromeda search engine
against the forward and reverse Human UniProt database.

The validation BCCL panel secretomes, raw data were processed
using the FragPipe (v18) proteomics pipeline software, wherein pep-
tide identification was performed with MSFragger (v3.5)71 with pre-
cursor and fragment mass tolerance in peak matching was set to
20 ppm. Peptide validation was performed with Percolator (v3.05)72,
and protein inference was done by ProteinProphet from the Philoso-
pher toolkit (v4.4.0)73. MS1 quantification was performed using Ion-
Quant (v1.8)74 with the “Match between runs” option enabled. MaxLFQ
protein intensity algorithm was selected, and intensities were nor-
malized between experiments. Mass-to-charge (m/z) ratio tolerance
were set to 10 ppm.

The identified proteins were analyzed using Perseus75 (v1.6.0.2 for
the discovery BCCL panel secretomes and microdissected tissue, and
v2.0.7.0 for validation panel BCCL secretomes); the datawere grouped
into luminal-like or basal-like, and in addition hypoxia or normoxia for
conditionedmedium samples. Proteinswith valid quantification in less
than 50% of samples in at least one groupwere removed for analysis of
the discovery panel of BCCL and patient samples. Non-filtered data
from the extendedBCCLpanelwas used for validation. Imputationwas
used to replace missing values (from a normal distribution: width 0.3,
downshift 1.8) for secretome samples in the discovery panel. A two-
sample Student’s t test was performed to compare the groups, and a
p-value significance threshold was set to 0.05.

Gene ontology analyses were performed using Panther Classifi-
cation System76 (PANTHER14.0, Overrepresentation Test, GO Ontol-
ogy database released 2019-01-01). Gene sets significantly enriched in
the hypoxic secretome were explored by applying the Gene Set
Enrichment Analysis (GSEA; www.broadinstitute.org/gsea)77 and sig-
natures from Molecular Signatures Database (MSigDB; www.
broadinstitute.org/gsea/msigdb), using the fgsea (version 1.15.0)
R-package78.

Protein network analyses were performed using StringDB15,
Cytoscape79 (v3.5.1), and the Cytoscape add-on MCODE80 (v1.4.2).
Subcluster analysis was done in MCODE with the following settings:
network scoring: include loops: false, degree cutoff: 2; cluster finding:
node score cutoff: 0.2, haircut: true, fluff: false, K-Core: 2, max. depth
from seed: 100.

The upstream regulator analysis was generated by QIAGEN’s
Ingenuity Pathway Analysis program (IPA®, QIAGEN Redwood City,
www.qiagen.com/ingenuity). Settings for IPA were as follows: Expres-
sion Analysis with ´Exp Log Ratio´ values, Reference set (Ingenuity
Knowledge Base, Genes Only), Confidence (Experimentally Observed),
and for Node Type, Data Source, Species, Tissue & Cell Lines and
Mutations, we selected all.

Signature discovery
The signature proteins were derived from integrated analysis of
secretomes from discovery BCCL and microdissected stromal tissue
proteomics data. The proteins that were in common for the hypoxia-
increased proteins (hypoxia vs. normoxia) and the stroma-exclusive
subtype differences (basal-like vs. luminal-like) were extracted as the
protein signature (see Fig. 1c). The signature proteins were validated in
the extended validation panel of BCCLs.

Signature scoring
Each signature gene was normalized by subtraction, i.e., the average
gene expression value (all patient samples) was subtracted from the
expression value of each patient sample. The signature score was
calculated by summing the normalized expression values for each
signature gene.

Gene expression analysis of patient cohorts
For the exploration of gene expression patterns related to the 33P
signature score in breast cancer, the signature wasmapped to publicly
available mRNA datasets with additional information on clinico-
pathologic and follow-up data and molecular tumor subtypes,
defined by the PAM50 algorithm81 (METABRIC-Discovery cohort82,
n = 852; HER2 and normal-like subtypes were excluded). The online
database “KM plotter” (www.kmplot.com)83 was also applied to eval-
uate the 33P mRNA score in relation to recurrence-free breast cancer
survival in a merged dataset of 3951 (updated n = 4934) breast cancer
cases. The cut-off point for analyses (upper quartile) with dichot-
omized 33P mRNA score values was defined after considering fre-
quency distributions and survival pattern of quartiles.

Gene sets significantly enriched in cases with high 33P mRNA
score were explored by applying the Gene Set Enrichment Analysis
(GSEA; www.broadinstitute.org/gsea)77 and signatures fromMolecular
Signatures Database (MSigDB; www.broadinstitute.org/gsea/msigdb),
using J-Express (version 2012)84. Multiple probes covering the same
gene were collated according to max probe77. Genes differentially
expressed between tumors of high versus low 33P mRNA score were
identified based on Significance Analysis of Microarrays85.

For comparisons, we analyzed separate signature scores reflect-
ing effects of hypoxia20–22, scores reflecting proliferation23,24, glycolysis
(MSigDB, HALLMARK_GLYCOLYSIS), angiogenesis by vascular
proliferation25,26, epithelial-mesenchymal transition (EMT)27, sig-
natures reflecting stemness features28,29, and luminal progenitor and
mature luminal signature scores30.

Connectivity Map analysis of drug signatures
We explored correlations between the global gene expression pattern
of breast cancers with high 33PmRNA score and drug signatures in the
Connectivity Map (CMAP) database86 (METABRIC-Discovery cohort).
As a basis for the CMAP analyses, we included genes differentially
expressed (FDR <0.006; fold change ≥1.5 or ≤−1.5) between tumor
subsets of low and high 33P mRNA scores (cut-off point upper
quartile).

Proteomic analysis of external patients
We downloaded the recently published proteomic dataset on breast
cancer by Asleh and colleagues19 to explore associations between 33P
and clinico-pathologic features (luminal-like and basal-like cancers
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only; n = 209)19. The 33P signature was scored as described above. The
heatmap was generated using the ComplexHeatmap R-package
(v2.15.1)87. Boxplots were generated using ggplots2.

Immunohistochemical staining
Immunohistochemistry detection of NFR2 expression in tissue sam-
ples was performedmanually on 4–5 µm thick tissuemicroarray (TMA)
sections from formalin-fixed paraffin-embedded tumor tissue from an
in-house cohort of breast cancer patients (n = 42; luminal-like 23, basal-
like 19) with MS-proteomics information in parallel. Briefly, target
retrieval for NRF2 was performed in Ventana BenchmarkUltra staining
platform (Roche Tissue Diagnostics, Ventana Medical Systems, USA)
withCell Conditioning (CC1, #06414575001, Roche TissueDiagnostics,
Ventana Medical Systems, USA) (pH9) at 95 °C for 48min before
endogenous peroxidases were blocked with Inhibitor CM (from DAB-
kit #5266645001, Roche Tissue Diagnostics, VentanaMedical systems)
at 37 °C 4min. Slides were incubated with a monoclonal rabbit anti-
body against NRF2 (Clone EP1808Y, ab62352, Abcam, USA, diluted
1:100) for 60min, followed by incubation with EnVision rabbit HRP
(#K400311-2, Agilent, USA) for 30min. To addcolor at the site of target
antigen recognized by the primary antibody, DAB chromogen
(#K346811-2, Agilent, USA) was applied for 10min. Finally, sections
were rinsed in distilled water and counterstained with Haematoxilin
(#S330130-2, Agilent, USA).

NRF2 staining was recorded using a semi-quantitative and sub-
jective grading system, considering the intensity of staining (none = 0,
weak = 1, moderate = 2, and strong = 3) in tumor stromal and epithelial
areas separately88. The NRF2 antibody was validated by the manu-
facturer in both positive and negative cells (HELA) and tissue samples
(human pancreatic carcinoma and human kidney cancer tissue) with
known localization patterns to confirm specificity and sensitivity, and
in-house breast cancer and placenta tissues were established as posi-
tive controls.

Statistical analyses of patient data
Data were analyzed using SPSS (Statistical Package of Social Sciences),
Version 25.0 (Armonk, NY, USA; IBMM, Corp). A two-sided p-value less
than 0.05 was considered statistically significant. A p-value of
0.05–0.10 was considered to be of borderline statistical significance
(trend). Categories were compared using Pearson’s chi-square or
Fisher’s exact tests when appropriate. Non-parametric correlations of
bivariate continuous variables were tested by Spearman’s rank corre-
lation test. Spearman’s rank correlation coefficient (ρ) is reported.
Mann–Whitney U and Kruskal–Wallis tests were used for comparing
continuous variables between groups. Odds ratios (OR) and their 95%
confidence intervals were calculated by the Mantel–Haenszel method.

For survival analyses, the endpoint was death from breast cancer.
Follow-up time was defined as the time from the date of diagnosis to
the date of death or last follow-up. Univariate survival analysis by the
Kaplan-Meier method was performed using the log-rank test. Patients
who died of other causes or who were alive at last date of follow-up
were censored. The influence of co-variates on breast cancer-specific
survival was analyzed by Cox’ proportional hazards multivariate
method and tested by the Enter method. All variables were tested by
log-minus-log plots to determine their ability to be incorporated in
multivariate modeling. When categorizing continuous variables, cut-
off points were based on median or quartile values, also considering
the distribution profile, the size of subgroups, and number of events in
survival analyses.

Cibersort analysis
CIBERSORT17 is a tool that uses gene expression data to estimate the
cell type abundances in a mixed cell population. In our study, we used
deconvoluted immune cell type abundances from METABRIC cohort
performed by/generated by Craven and colleagues18.

SEEK analysis
Search-Based Exploration of Expression Compendium (SEEK)89 is a
search engine for transcriptomic data, providing thousands of
expression datasets from published studies. SEEK implements a com-
putational method that takes as an input a set of queries, genes, and
returns a robust ranking of co-expressed genes whilst it ranks and
prioritizes relevant expression datasets. In our study, we used SEEK
with the 33P signature as input. We explored the top-ranked datasets,
and we used the available information for extra validations of our
findings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have
been deposited to the ProteomeXchange Consortium90 via the PRIDE
partner repository91 (http://www.ebi.ac.uk/pride). The secretome data
for the discovery panel of BCCLs are available via ProteomeXchange
with the dataset identifier PXD027136. The microdissected patient
material data are available via ProteomeXchange with identifier
PXD027012. The secretome data for validation panel of BCCLs are
available via ProteomeXchange with identifier PXD040532. Mass
spectrometry data were searched against the forward and reverse
Human UniProt database (https://www.uniprot.org/proteomes/
UP000005640; downloaded/accessed 2016-01-08 (discovery BCCL
panel), 2022-11-21 (validation BCCL panel), 2017-10-22 (microdissected
patient material)). Clinical data on patients used for tissue micro-
dissection might be made available for researchers on a request that
does not include revelation of identifiable patient information, upon
completion of a Data Transfer Agreement and confirmation of ethical
approval. This study included analysis of data from the publicly avail-
able METABRIC-Discovery cohort82 (available from the European
Genome-Phenome Archive, Dataset ID: EGAD00010000210; unique
identifier: https://doi.org/10.1038/nature10983), and the proteomic
dataset from Asleh et al. Nature Communications (2022)19 available
from the supplementary information (unique identifier: https://doi.
org/10.1038/s41467-022-28524-0). Survival analysis for hypoxia sig-
natures was performed using the online KMplotter analysis platform
(https://kmplot.com/analysis/)83. Publicly available data from the
CancerCell Line Encyclopedia (CCLE)was used in this study. Processed
transcriptomic data from breast cancer cell lines are available from
CCLE58 and they are accessible via the depmapportal (https://depmap.
org/portal/download/all/). CCLE proteomic data59 are available from
https://gygi.hms.harvard.edu/publications/ccle.html. CIBERSORT
analysis data from Craven et al. 18 are available from https://github.
com/kelgalla/tnbctils or https://doi.org/10.5281/zenodo.4542590. The
SEEK89 database (https://seek.princeton.edu/seek/) was used for
search-based exploration of the identified proteins (publicly available
datasets: GSE45255.GPL9692, unique identifier: https://doi.org/10.1186/
gb-2013-14-4-r34; GSE4922.GPL9693, unique identifier: https://doi.org/
10.1158/0008-5472.CAN-05-4414; GSE22093.GPL9694,95, unique identi-
fiers: https://doi.org/10.1093/jnci/djq524, https://doi.org/10.1371/
journal.pone.0049529; GSE15852.GPL9696, unique identifier: https://
doi.org/10.1016/j.prp.2009.11.006). The remaining data are available
within the article, supplementary information and source data
file. Source data are provided with this paper.
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