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Ultra-fast and accurate electron ionization
mass spectrum matching for compound
identification with million-scale in-silico
library

Qiong Yang1,3, Hongchao Ji2,3, Zhenbo Xu1, Yiming Li1, Pingshan Wang 1,
Jinyu Sun1, Xiaqiong Fan1, Hailiang Zhang1, Hongmei Lu 1 &
Zhimin Zhang 1

Spectrummatching is themost commonmethod for compound identification
in mass spectrometry (MS). However, some challenges limit its efficiency,
including the coverage of spectral libraries, the accuracy, and the speed of
matching. In this study, a million-scale in-silico EI-MS library is established.
Furthermore, an ultra-fast and accurate spectrummatching (FastEI) method is
proposed to substantially improve accuracy using Word2vec spectral
embedding and boost the speed using the hierarchical navigable small-world
graph (HNSW). It achieves 80.4% recall@10 accuracy (88.3% with 5 Da mass
filter) with a speedup of twoorders ofmagnitude comparedwith the weighted
cosine similarity method (WCS). When FastEI is applied to identify the mole-
cules beyond NIST 2017 library, it achieves 50% recall@1 accuracy. FastEI is
packaged as a standalone and user-friendly software for common users with
limited computational backgrounds. Overall, FastEI combined with a million-
scale in-silico library facilitates compound identification as an accurate and
ultra-fast tool.

Mass spectrometry (MS) is a convenient, highly sensitive, and reliable
method for the analysis of complex mixtures, which is vital for life
sciences fields such as metabolomics and proteomics, and organic
synthesis in chemistry1. High throughput identification of compounds
in these complex samples is enabled byMS generation of thousands to
millions of spectra, from which many thousands of compounds are
typically identified by matching the experimental MS spectra against
libraries containing a list of known molecular masses and fragmenta-
tion patterns. However, the vast majority of compounds in an MS
experiment cannot be identified due to limited coverage in existing
libraries. For example, only approximately 20% of compounds based
on gas chromatography-mass spectrometry (GC-MS) can be identified

by spectrum matching with current libraries2. If the sample contains
compounds that are absent from spectral libraries, the correct iden-
tification of them is nearly impossible because of false negatives. For
false positives, some additional information can be used for effective
filtering, such as molecular weight, retention index, and domain
knowledge. By contrast, there are seldomremedies for a false negative.
Therefore, it can be said that the cost of making a false negative is
much higher than a false positive when identifying compounds. The
coverage of the libraries needs to be increased as much as possible to
avoid false negatives.

Many efforts have been made to solve this problem. Common
methods include acquiring experimental spectra of standards and
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generating in-silico spectra. The quantum chemistry electron ioniza-
tion MS (QCEIMS) is a typical method that combines Born-
Oppenheimer molecular dynamics (BOMD) with statistical sampling
to predict mass spectra3. However, the experiment and quantum
chemistry strategy are costly and time-consuming to generate spectra
for thousands of molecules. As a matter of fact, there are >111 million
molecules with structures in PubChem4 and two million bioactive
molecules in ChEMBL5. There are only 0.27 million compounds with
electron ionization mass spectra in NIST 2017 library6. Recently, the
molecule structure information combined with machine learning has
become a burgeoning alternative for predicting in-silico spectra. For
example, competitive fragmentation modeling for electron ionization
(CFM-EI) applies a probabilistic generative model to predict the elec-
tron ionization mass spectrum (EI-MS) from SMILES7. The neural
electron-ionization mass spectrometry (NEIMS) method takes the
extended circular fingerprints (ECFPs) of molecules as inputs and
applies fully connected neural networks to predict the spectra8. It can
quickly and easily generate large-scale in-silico spectra frommolecular
structures, thus extending the chemical space and immensely
increasing the coverage compared to experimental and quantum
chemistry methods.

With a large-scale in-silico library, another challenge is how to
rapidly match query spectra with millions or even tens of millions of
spectra while ensuring the accuracy of compound identification. The
accuracy of spectrummatching partly depends on whether the metric
correctly reflects the similarity between the query spectrum and
reference spectrum9,10. The weighted cosine similarity (WCS) is the
most commonmethod in mass spectrometry10. Other metrics are also
employed, including Euclidian or Hamming distance, probability-
basedmatching9, weighted average ratio11, and neutral-lossmatching12.
Matyushin et al. utilize a convolutional neural network (CNN) to search
the EI-MS library and achieve better accuracy than the default method
of NIST MS Search software13. The above methods can be regarded as
the exact nearest neighbor search (NNS) methods. They are particu-
larly time-consuming for matching large-scale libraries because of the
scalability issue14. When searching a large-scale library, the approx-
imate nearest neighbor search (ANNS) methods are preferred,

including hierarchical navigable small world graphs14, inverted file15,
locality-sensitive hashing16, and product quantization17. These meth-
ods achieve significantly improved speedup by allowing a small num-
ber of errors in the searching procedure.

Here, we develop a strategy to expand the coverage of spectral
libraries and propose an efficient method to search large-scale librar-
ies. The overview of the proposed method is illustrated in Fig. 1. The
2,146,690 molecular structures come from the f-NIST and f-ChEMBL,
which are obtained by filtering and deduplicating the NIST 2017 and
ChEMBL 285,18, respectively (Supplementary Fig. 1a). The predicted EI-
MS spectra of these 2,146,690 molecules included in the in-silico
library (Supplementary Fig. 1b) are generated by NEIMS using their
molecular ECFPs as inputs. An ultra-fast and accurate spectrum
matching (FastEI) was proposed to match the million-scale in-silico
library efficiently. It consists of Word2vec spectral embedding for
better accuracy and the hierarchical navigable small-world graph
(HNSW) for faster spectrum matching14. We have demonstrated the
performance of FastEI in terms of identification accuracy and spec-
trum matching speed on a test set and an extra test set. Over ten
thousandmeasured spectra of molecules in the test set were collected
from NIST 2017. The extra test set includes ten synthetic organic
compoundswithmeasured spectra,which are not included in theNIST
2017. In general, FastEI is promising for compound identification along
with the large-scale in-silico library.

Results
Million-scale in-silico EI-MS library
To solve the coverage problem in compound identification, a million-
scale in-silico librarywas generated usingNEIMS to get predicted EI-MS
spectra from molecular ECFPs. The NEIMS model was downloaded
from its official repository without any further operations.

Firstly, to evaluate the predictive performance of NEIMS, the
weighted cosine similarity (WCS) distribution between the predicted
and experimental spectra in the test set is shown in Supplementary
Fig. 2. The similarities between predicted and experimental spectra of
78% of molecules are greater than 0.7. It demonstrates that NEIMS can
accurately predict the EI-MS spectra for molecules. Meanwhile, Fig. 2a
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Fig. 1 | Flowchartof FastEI andWCSmethods.First, a large-scale in-silico library is
generated from the NIST and ChEMBL datasets. For the querying of spectra, FastEI
(top branch) uses Word2vec to transform the spectrum into spectral embeddings.
These embeddings are given a Hierarchical Navigable Small-world Graph (HNSW)

index, which is used for retrieving similar candidates from the library. Compara-
tively, classical binning methods (bottom branch) divide the spectra in bins and
compare them with the ones in the library, most commonly using the weighted
cosine similarity (WCS) as the measure.
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shows the classes ofmolecules in the test set predicted by ClassyFire19.
It demonstrates that the test set covers vast chemical structures. On
the other hand, to validate the applicability of the NEIMS model for
predicting mass spectra of molecules in f-ChEMBL, the uniform
manifold approximation and projection (UMAP)20,21 was used to
visualize the extended circular fingerprints (ECFPs) of molecules from

the training set and f-ChEMBL. A total of 240,000 molecules (about
12%) were randomly sampled from the f-ChEMBLdataset to reduce the
computational cost without losing representativeness. Then, RDKit22

was used to calculate the ECFPs of these molecules. The high-
dimensional ECFPs (1024 bits) were transformed into two-
dimensional representations by UMAP for visualization. As shown in
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Fig. 2 | Information of datasets and performance of FastEI. a The molecule
classes predicted by ClassyFire for the test set. b The visualization of the ECFPs of
240,000 molecules randomly selected from f-CHEMBL and 232,826 molecules
from the training set by UMAP. c The spectrum matching time of FastEI and WCS
on libraries with different sizes. d The contribution of Word2vec embeddings and

HNSW to FastEI (WCS weighted binning + cosine similarity, EC embeddings +
cosine similarity, BH weighted binning +HNSW, FastEI embeddings +HNSW).
e The performance of FastEI and WCS on the test set in terms of recall rates at
different top x levels. Source data are provided as a Source Data file.
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Fig. 2b, the training set completely covers the molecules randomly
sampled from f-ChEMBL in the chemical space. Therefore, it is rea-
sonable to apply the NEIMS model to predict the mass spectra of
molecules in the f-ChEMBL. Finally, 2,146,690 predicted spectra were
generated to build the in-silico library, adopting ECFPs of molecules
from f-NIST and f-ChEMBL as inputs of the NEIMS model (Supple-
mentary Fig. 1b).

Spectrum matching performance of FastEI
The accuracy and speed of FastEI were compared with WCS (Supple-
mentary Note 1) on the test set. The measured spectra of the test set
were collected from the NIST 2017 main library. The comparison
results of FastEI andWCS are shown in Table 1.We can find that the run
time of FastEI is 0.0042 s per query spectrum, and that of WCS is
2.4849 s per query spectrum. FastEI is about 592 times faster thanWCS
when matching one spectrum.

In analyzing complex systems, suchas untargetedmetabolomics23

and environmental science, it is necessary to quickly identify unknown
compounds in bulk based on mass spectrometry. For such cases, the
speed of spectrum matching methods becomes more critical, espe-
cially if the in-silico library is large too. A total of 11,499 experimental
spectra in the test set werematchedwith the in-silico library at once by
FastEI andWCSmethods. As shown in Fig. 1, only 2.9 s were needed to
get the matching results by FastEI. In contrast, about 11.2min were
required by WCS. FastEI is 232 times faster than WCS in large-scale
spectrum matching. For the matching accuracy (Table 1), FastEI
achieves a matching result with 36.7% recall@1 and 80.4% recall@10.
After applying a 5Da mass filter to the spectrum matching result,
FastEI achieves 45.3% recall@1 and 88.3% recall@10. By contrast, the
matching accuracy of FastEI is better than WCS with 6.5 and 6.9 per-
centage points at recall@1 and recall@10, respectively, when without
themass filter.With the 5 Damass filter, the difference in thematching
accuracy of the two methods (FastEI and WCS) is 8.2 and 6.7 percen-
tage points in recall@1 and recall@10, respectively. In short, the FastEI
method outperforms the WCS method in matching speed and accu-
racy. In practice, this mass filter could be set according to the practical
requirement24.

In order to verify the impact of the library size on the spectrum
matching speed, one mass spectrum was randomly selected from the
test set to calculate the matching time of FastEI and WCS methods on
the libraries with different sizes. The results are shown in Fig. 2c. It can
be seen that the matching time of WCS linearly increases with the
number of spectra in the library, and the timeof FastEI hardly increases
with the library size. As the number of spectra in the in-silico library

increases, this advantage becomesmore andmore apparent.When the
number goes up to ~2,000,000, the matching speed of FastEI is five
hundred times faster than WCS. This unique characteristic should be
attributed to the hierarchical graph structure of HNSW for efficient
graph traversal.

Contribution of Word2vec embeddings and HNSW
As shown in Fig. 2d, a comprehensive study is conducted to demon-
strate the contribution of Word2vec embeddings and HNSW in the
FastEI method. Speed in Fig. 2d is defined as how many mass spectra
per second can be identified. Accuracy is the recall@1 of the identified
spectra in the test set. FastEI canmatch 36.7% spectra with recall@1 at
238 spectra per second speed. It can be seen from Fig. 2d that FastEI is
the best in terms of both speed and accuracy.Meanwhile, the accuracy
of the EC (embeddings + cosine similarity) method, which is formed
from the binning in WCS replaced by embeddings, is improved to a
level comparable to that of FastEI, but with a similarmatching speed to
WCS. The matching speed of BH (weighted binning +HNSW) method,
which is formed from the cosine similarity in WCS replaced by HNSW,
is improved partly with the same accuracy as WCS. Results show that
the Word2vec embeddings mainly improve accuracy. Meanwhile, the
HNSWboosts thematching speed. TheHNSW index is an efficient data
structure (the hierarchically multi-layer graph) to store and organize
data. It can significantly improve the speed of ANNS. In brief, the FastEI
method achieves high accuracy and speed by combining Word2vec
embeddings and HNSW.

Applicability of FastEI to spectra from different sources
To evaluate the generalizability to different mass spectral sources and
qualities, the spectra of the test set were collected from two different
sources, the NIST 2017 main library (mainlib) and replicate library
(replib). The spectra of the mainlib test set are from mainlib, a col-
lection of the “best spectrum” for each compound based on human
evaluation. In contrast, the spectra in the replib test set are from the
NIST 2017 replicates library, which is a collection of noisier spectra due
to inconsistency of sources, such as instrument type, experiment
condition, and laboratory. The spectrummatching performance of the
FastEI and WCS methods was evaluated by the mainlib test set and
the replib test set. As shown in Fig. 2e, the spectral matching perfor-
mance of FastEI significantly outperforms WCS by an average of 6
percentage points in recall rates at different top x levels. Thematching
results of the replib spectra are basically the same as those of the
mainlib spectra. It indicates that FastEI is a robust method.

Incremental expansion of the library
In practical application, mass spectral libraries often need to be
expanded due to the introduction of new compounds. It is easy to
implement by predicting the mass spectra of these new compounds
using the existing NEIMS model and adding them to the in-silico
library. The predicted spectra are converted into spectral embeddings
by the trained Word2vec model. Then, these spectral embeddings are
added to the original HNSW index to build the expanded HNSW index.
This simple operation can complete the update of FastEI with the
expansion of the mass spectral library.

A total of 106,526 predicted spectra of new molecules from f-
HMDB and the extra test set were added into the in-silico library to get
the expanded library (Supplementary Fig. 1b). The expanded library
includes 2,253,216 molecules and their predicted spectra. The experi-
mental spectra (collected from the NIST 2017 main library) of mole-
cules in the test set were used again to evaluate the identification
performance of FastEI and WCS on the expanded library. As shown in
Table 2, the recall@1 and recall@10 of FastEI are 36.4% and 79.9%,
respectively. The recall@1 and recall@10 of WCS are 29.5% and 72.9%,
respectively. It can be seen from Tables 1 and 2 that expanding the in-
silico library with nearly 100,000 molecules reduces the recall rate of

Table 1 | The spectrummatching performance on the in-silico
library

Method Recall@1 (%) Recall@10 (%) Matching speed (s per
query spectrum)

FastEI 36.7 80.4 0.0042

WCS 30.2 73.5 2.4849

FastEI +mass
filtera

45.3 88.3 –

WCS+mass filtera 37.1 81.6 –

aThe mass filter was set to 5 Da of the query molecule’s mass.

Table 2 | The matching performance on the expanded library

Method Recall@1 (%) Recall@10 (%) Matching speed (s per query
spectrum)

FastEI 36.4 79.9 0.0046

WCS 29.7 72.9 2.6368
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0.3% of recall@1 and 0.5% of recall@10 in the FastEI method, respec-
tively. It reduces the recall rate of 0.5% of recall@1 and 0.6% of
recall@10 in the WCS method, respectively. The average run time (s)
for matching one molecule against the expanded library of FastEI and
WCS is 0.0046 s and 2.6368 s, respectively. The results in Table 2
indicate that the expansion of the in-silico library with nearly 100,000
molecules slightly reduces the accuracy of the matching performance
and slightly increases the matching time. The slight decrease in the
matching accuracy should be attributed to the expanded library hav-
ing more compound structures than the in-silico library. As shown in
Supplementary Figs. 3, 7 new classes (ClassyFire) of compounds
appear in the expanded library compared to the in-silico library. For a
given query spectrum, there are more compounds with similar struc-
tures or similar spectra to the target compound in the expanded
library. In short, the expansion of the in-silico library is simple and has
little impact on the performance of FastEI.

Unknown compound identification
GC-MS is often used tomonitor the reaction progress25,26 and analyze
reaction samples27 to identify reactants, reaction intermediates, and
products in organic synthesis. However, it is difficult to identify
compounds absent from the NIST 2017 library through spectrum
matching due to the limited compound coverage. To demonstrate
the advantage of themillion-scale in-silico library and the accuracy of
FastEI, 10 compounds beyond the NIST 2017 library were collected
from an organic laboratory. Their structures are shown in Fig. 3a.
Compounds 1, 2, 4, and 5 are common aromatic compounds with
different substituents on the benzene rings. If these 10molecules are
identified by matching the NIST 2017 library directly, the correct
result cannot be achieved. Because there are no correct molecules in
the NIST 2017 library, and all the candidates are false positives. With
the aid of the large-scale in-silico library, these compounds can be
mostly identified by FastEI. Their ranks are shown in Fig. 3a. It can be
seen that their top 1 accuracy is 50%, and the top 10 accuracy can
reach 70%. The compound with a rank >100 is only compound 10,
which has a 12-carbon long-chain substituted on the benzene ring. Its
MS spectrum is shown in Fig. 3b. It can be seen that most peaks are
concentrated in m/z < 200. Many chain alkanes candidates are
ranked before the target compound, possibly due to the existence of
a long-chain structure (Fig. 3c). Overall, these results show that FastEI
with the large-scale in-silico library can achieve good identification
results for molecules beyond the NIST 2017 library. Expanding the
spectra library by machine learning-based methods is beneficial to
compound identification through reducing the proportion of false
negatives.

FastEI software
We provide an integrated spectrum matching software with the in-
silico library andmatching algorithms. The core functions of FastEI are
implemented with Python programming languages, and the graphical
user interface (GUI) is based on the Qt framework. The software can
run onWindows 7, 10, and 11 operating systems. As shown in Fig. 4, the
user interface is simple and friendly. For the universality, when the
software is opened, the expanded library is loaded by default (Fig. 4a).
Meanwhile, it can switch between different libraries without restarting
the software. Researchers can also build tailored libraries according to
their research aims.

Users can click the Query button to select experimental spectra
for identification. As shown in Fig. 4b, the query spectra are loaded.
The library matching results are available immediately after the query
spectra are loaded. Users can click on any query spectrum to see its
candidates list in the upper part of Fig. 4c. Then, users can click any
compound in the candidate list to show its spectrum in the in-silico
library against themeasuredquery spectrum in the lower part of Fig.4c
along with its molecular structure. Figure 4d is a bar that displays the

progress of data loading and spectrum matching. The installation
packageof FastEI is available at https://github.com/Qiong-Yang/FastEI/
releases. Overall, FastEI is a convenient and easy-to-use software for
searching a million-scale in-silico library quickly and accurately.

Discussion
Spectrummatching is one of the vital steps for identifying compounds
in metabolomics, organic synthesis, biology, and others. In this study,
an ultra-fast and accurate spectrum matching method, FastEI, was
proposed. Firstly, a million-scale in-silico spectral library was included
in FastEI to improve EI-MS-based compound identification. The in-
silico library with predicted spectra of large-scale molecules can
extend the chemical space and immensely increase the coverage
compared to experimental libraries. By increasing the number of
compounds in the in-silico library to more than two million in FastEI,
the false negative rate can be significantly reduced during compound
identification. It can be seen from the identification results of 10
compounds in the extra test set. Without improving the coverage, all
these 10 molecules cannot be identified by matching the NIST 2017.
After improving the coverage, its recall@1 is 50%, recall@10 is 70%,
and recall@20 is 90% by FastEI, respectively.

Secondly, the high accuracy of FastEI depends on the Word2vec
spectral embedding. The mass spectra contain structural information.
However, it cannot be entirely extracted by the cosine similarity based
on the spectral binning vectors. Not all molecules with high structural
similarity have a high cosine similarity based on spectral binning vec-
tors. Cross-correlation can improve the correlation between spectral
and structural similarity by shifting the fragment peaks in mass
spectra28. On the other hand, it is possible to transform the mass
spectra appropriately so that the cosine similarity between the trans-
formed spectra ismore relevant to the structural similarity. Inspired by
the Word2vec technique in natural language processing29, the Spec2-
Vec method has been developed for tandemmass spectra (MS/MS). It
can learn the co-occurrence of molecular fragments in large-scale
spectra and represent highly related fragments by vectors in similar
directions30. As shown in Supplementary Fig. 4 and Fig. 5, the Word2-
vec model successfully mines important features that are efficient for
structure “discrimination” and improves the accuracy of true/false
candidate selection. There are 1413 target molecules in the test set
ranked top1 by FastEI but ranked outside of the top1 by WCS. After
Word2vec spectral embeddings, the samemolecules have high cosine
similarity, and different molecules have low cosine similarity. The
possible explanation for these performance improvements is that the
conversion of spectral bins to embeddings by Word2vec successfully
re-scales the chemical space. At the same time, the model removes
noisy bins that may interfere with the possible discrimination (i.e.,
noisy bins weaken the power of the discrimination). Therefore, the
Word2vec spectral embedding improves the accuracy of compound
identification.

Thirdly, the high speed of FastEI depends on the HNSW-based
spectrum matching. The HNSW provides an efficient way to find the
approximate nearest spectral embeddings of a query spectral
embedding. Because of the hierarchical graph structure and the effi-
cient graph traversal method of HNSW, the number of spectra to be
matched is reduced by several orders of magnitude compared to tra-
ditional methods.

Lastly, FastEI was packaged as a standalone and user-friendly
software for users without programming backgrounds. The users can
quickly and accurately identify the compound by simply loading raw
measured mass spectra in FastEI.

Overall, FastEI has shown excellent accuracy and speed for spec-
trum matching. Furthermore, we believe that FastEI can be extended
to other instruments that require spectrum matching against large
spectral libraries, such as tandem mass spectrometry, nuclear mag-
netic resonance spectroscopy, infrared spectroscopy, and Raman
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spectroscopy. In summary, FastEI is an integrated and user-friendly
tool with GUI for ultra-fast and accurate compound identification.

Methods
Datasets for building the libraries
Four datasets were used to build the in-silico and the expanded
libraries. They are NIST 2017, ChEMBL 28, HMDB 5.031, and the extra
test set. Since the GC-MS technique is only suitable for analyzing

volatile small molecules, five filtering steps (Supplementary Fig. 6)
are applied to the molecules in these four datasets to obtain rea-
sonable datasets. They are: (1) molecular mass is less than 1000Da;
(2) molecules only contain 11 common elements H, C, O, N, P, S, Cl, F,
Br, I, Si; (3)molecules are not ionic compounds; (4)molecular LogP is
within the range from −12 to 24; (5) repeating molecules was dedu-
plicated within the dataset. After filtering, the deduplication was
strictly conducted among all four datasets to ensure the uniqueness

a

Rank 1 spectrum

Query spectrum

b

Compound 10 candidates:c

Fig. 3 | The performance of FastEI on compounds beyond NIST 2017. a The
molecular structures of 10 compounds outside the NIST 2017 library, and their
identification results by FastEI. Rank 1 means the target molecule is ranked first in
the candidate list.bThe red spectrum represents thequery spectrumof compound

10. The blue spectrum represents the spectrum of the molecule ranked first in the
candidate list. Rank 1means the target molecule is ranked first in the candidate list.
c Molecular Structure display of the top ten candidates of target compound 10.
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of themolecules in the library. The detailed information on excluded
molecules by data filtering and deduplicating is displayed in Sup-
plementary Data 1.
(a) NIST 2017. The SMILES strings of the NIST 2017 were downloaded

from the NEIMS GitHub repository (https://github.com/brain-
research/deep-molecular-massspec/tree/main/training_splits). It
consists of three datasets, the NEIMS_training set (237,108), the
NEIMS_ validation set (11,499), and the NEIMS_test set (11,600)
set8. Using the five filtering rules (Supplementary Fig. 6), these
three datasets were filtered to get the training set (232,826),
validation set (11,496), and test set (11,499). The f-NIST (255,821)
was obtainedbycombining the training set, the validation set, and
the test set.

(b) ChEMBL 28. The gzipped structure-data file (SDF) of ChEMBL 28
was downloaded from https://ftp.ebi.ac.uk/pub/databases/
chembl/ChEMBLdb/releases/chembl_28/chembl_28.sdf.gz
(accessed on February 6th, 2022). The SMILES strings of
molecules were read by RDKit (v2022.03.3). There are 2,066,376
molecules in the SDF file withmol files, of which 2,066,374 can be
read using RDKit. After filtering with five rules and deduplicating
with f-NIST, the number of remainingmolecules is 1,890,869. The
resulting library is called f-ChEMBL.

(c) HMDB 5.0. The zip archive of the SDF file of HMDB 5.0 was
downloaded from its official website https://hmdb.ca/system/
downloads/current/structures.zip (accessed on February 23rd,
2022). The SMILES strings of 217,759 molecules were read using
RDKit (v2022.03.3). After filtering and deduplication with f-NIST
and f-ChEMBL, the resulting library is called f-HMDB with 106,516
molecules.

(d) Extra test set. All small molecules in the extra test set were
obtained from the organic synthesis laboratory of Prof. Pingshan
Wang. These molecules are important raw materials, inter-
mediates, or products in organic synthesis. The Bromo-
substituted compounds in the extra test set, like 2, 3, 4, 5, 6,
and 10, play an important role as intermediates in producing
adsorbentmaterials and pharmaceuticals32. The ChEMBL includes
many drug-like bioactive compounds, in which 4% of the
molecules contain the element bromine. Compound 3, methyl
6-bromohexanoate, is a useful intermediate for synthesizing drug
carriers33,34 and adsorbents for dye-sensitized solar cells35.
Compound9 is oftenused to synthesizemetal-organic framework
(MOF), which is a famous class of coordination materials36,37.
Other oxyaromatic compounds (1, 7, 8) have been proven to be
promising modifying agents for nylons to improve their physico-
mechanical properties38. These ten molecules are beyond NIST
2017 and absent from f-ChEMBL and f-HMDB. Therefore, this
dataset does not need to be deduplicated.

With the above data filtering and deduplicating, there are no
duplicate molecules between these four datasets (f-NIST, f-ChEMBL, f-
HMDB, and the extra test set). All the molecular structure information
in the f-NIST, f-ChEMBL, f-HMDB, and the extra test set are prepared as
the inputs of the NEIMS model to generate the predicted spectra.

Datasets for FastEI
Four datasets were used to train the Word2vec model, optimize the
hyperparameters of the Word2vec model, and evaluate the perfor-
mance of the FastEI, respectively.

Loading library, index and model

Loading query spectra

Displaying matched candidates

a

b

c

d Progress bar

Library

Index

Model

Query

Data/the expanded library

Data/HNSW_index.bin

Data/Word2vec.model

E/FastEI/data/query spectra/1.csv

E/FastEI/data/query spectra/2.csv

E/FastEI/data/query spectra/3.csv

E/FastEI/data/query spectra/4.csv

E/FastEI/data/query spectra/5.csv

E/FastEI/data/query spectra/6.csv

E/FastEI/data/query spectra/7.csv

E/FastEI/data/query spectra/8.csv

E/FastEI/data/query spectra/10.csv

E/FastEI/data/query spectra/9.csv

Results

Fig. 4 | Screenshot of FastEI. a loading library, index, and model. b loading query spectra. c displaying the matched candidates d a progress bar showing the matching
progress.
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(a) Word2vec training set. The predicted spectra of molecules in the
training set (232,826) and f-ChEMBL (1,890,869) were merged
into theWord2vec training set (Supplementary Fig. 1c). It consists
of 2,123,695 predicted spectra.

(b) Validation set. TheWord2vec is a self-supervised learningmethod
and cannot be validated and tested directly. The measured
spectra of the validation set were collected from the NIST 2017
library. It consists of 11,496 measured spectra. It was used to
optimize the hyperparameters of the Word2vec model according
to its matched results of FastEI.

(c) Test set. Themeasured spectra of the test set were collected from
theNIST2017 library. It consists of 11,499measured spectra. Itwas
used to evaluate the performance of FastEI.

(d) Extra test set. The experimental spectra of the extra test set were
measured on a ShimadzuGC-2010 gas chromatography coupled
with a Shimadzu QP2010Ultra mass spectrometer (Shimadzu,
Japan), equipped with an autosampler GL 221-34618. It consists
of 10measured spectra. It was used to evaluate the performance
of FastEI for molecules beyond the NIST 2017 library. The
detailed experimental condition can be seen in Supplemen-
tary Note 2.

Prediction of spectra by NEIMS and construction of the in-silico
and expanded libraries
The ECFPs of all molecules in f-NIST, f-ChEMBL, f-HMDB, and the extra
test set were fed into the NEIMSmodel to obtain their predicted mass
spectra. The NEIMSmodel was downloaded from its official repository
(https://storage.googleapis.com/deep-molecular-massspec/massspec_
weights/massspec_weights.zip) without re-training. The input of
NEIMS is the ECFPs, and the RDKit package is used to calculate the
ECFPs from SMILES strings. The output of the NEIMS model is a
spectral vector representing the intensity at each m/z. As shown in
Supplementary Fig. 1b, the predicted spectra of molecules in f-NIST
and f-ChEMBL were used to build the in-silico library, which included
2,146,690 molecules and their predicted spectra. The predicted
spectra of molecules in f-HMDB and the extra test set were added to
the in-silico library to build the expanded library, which included
2,253,216 molecules and their predicted spectra.

Word2vec model building and spectral embedding
Two methods were used to represent mass spectra in this study, the
binning vectors and the Word2vec embeddings. For the binning vec-
tors, mass spectra were represented as m-dimensional vectors repre-
senting the intensity at each m/z. For the embedding method, the
Word2vec model was adapted to learn meaningful representations
from mass spectra and get d-dimensional embeddings. By comparing
Supplementary Fig. 7a, b theWord2vec embeddings aremore relevant
to the chemical superclasses than the spectral binning vectors.

As shown in Supplementary Fig. 1c, the Word2vec model was
trained using the Word2vec training set based on gensim39, a Python
library. The Word2vec model trained on peaks in the mass spectra
(Fig. 5a) differs significantly from typical natural language processing
(NLP) applications in several aspects, and somecritical hyperparameters
of the model also differ from the default settings. All the hyperpara-
meters of Word2vec are listed in Supplementary Table 1. First, peaks in
themass spectra have noparticular order comparable to thewordorder
in a document. Moreover, larger windows tend to capture more topic/
domain information40. Smaller windows tend to capture more about a
specific word itself. An individual peak in mass spectra is meaningless.
The combination of all peaks is meaningful in mass spectra. Hence, the
window size was set to 1000. There are two ways to implement word
embeddings using Word2vec: skip-gram and continuous bag of words
(CBOW). The latter was observed to perform better for the embedding
of mass spectra. All previously mentioned hyperparameters were
adjusted according to the spectrummatching performance of FastEI on
the validation set. The other hyperparameters were set as followings: (1)
word vector dimension = 500, (2) negative sampling (negative = 5), (3)
initial learning rate =0.025, (4) learning ratedecayper epoch =0.00025,
(5) epoch =60. Commonly, training with a large epoch can improve the
results of a Word2vec model in NLP tasks. However, this rule is not
suitable for the embedding of mass spectra. When the epoch exceeds
60, the performance does not increase anymore.

Then, with the optimized hyperparameters of the Word2vec
model, all the predicted spectra were transformed into low-
dimensional embeddings by summing the peak embedding to build
the HNSW index for library matching. The measured query spectra
were also transformed into low-dimensional embeddings using the

HNSW

a b

Layer 0

Layer 1

Layer 2
(entry layer) Entry point

Nearest 
neighbor

Query vector

Word2vec

Spectral embedding

Fragments: words

Peak@453

Peak@89 

Peak@173
Peak@251

Peak@185
Peak@210

Fig. 5 | Word2vec and HNSW. a Transforming the spectra into low-dimensional
spectral embeddings using the Word2vec model. The Word2vec model is trained
on fragments in the mass spectra. Each fragment is represented by a word that
contains its position up to a defined integer precision (Peak@xx). For example, a
fragment at m/z 89 translates into the word “Peak@89”. b Approximate nearest
neighbor search based on the hierarchical navigable small-world graph. The top

layer is the entry point and contains only the longest links. As moving down the
layers, the link lengths become shorter and more numerous. The search process is
as follows: traversing edges in each layer; greedily moving to the nearest vertex
untilfinding a localminimum in the current layer; repeating the above process until
finding the nearest neighbors of the query vector in the bottom layer (layer 0).
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trained Word2vec model to match the library through the
HNSW index.

HNSW-based spectrum matching
HNSW is an ANNS method based on the hierarchical graph structure
and the graph traversal method. HNSW indices have no learnable
parameters and do not need to be trained with data. Essentially, the
HNSW index is anefficient data structure (the hierarchicallymulti-layer
graph) to store and organize data. It can be used to improve the speed
of ANNS significantly. Traditional spectrummatchingmethods need to
calculate the similarities between the query spectrum vector and all
the spectral vectors in a library. They can be calculated by the Eucli-
dean distance between two normalized vectors using
faiss.IndexFlatL241. The spectrum matching time of these methods is
acceptable for experimental libraries with hundreds of thousands of
spectra. But for in-silico libraries withmillions of spectra, the spectrum
matching time grows significantly and affects the efficiency of com-
pound identification. The ANNS methods are good solutions to
improve the spectrum matching efficiency for large libraries. They
relax the exact solution of NNS by allowing a small number of errors.
The ANNS methods accelerate the spectrum matching process by
efficient indexing techniques, such as locality-sensitive hashing
(LSH)42,43, space partition (tree)44,45, and graph traversal14,46–50. Essen-
tially, these indexing techniques are highly efficient approaches to
retrieving candidates similar to the query spectrum. Then, the squared
L2 norm is calculated only between the query spectrum and these
candidates. If the indexing method is good enough, the results based
on these candidates will be almost as good as those based on all the
spectra in the library. Here, HNSW was chosen because of its fast
speed, excellent recall rate, and high-quality implementations.

Building an index and searchingwith the index are twonecessary
steps for an ANNS-based spectrum matching method. To build an
HNSW index, twomost important techniques, the probability skip list
and the navigable small-world graphs (NSW), are commonly used.
The probability skip list consists of several additional layers of linked
lists built upon an original linked list. The layers to add elements are
randomly selected with an exponentially decaying probability dis-
tribution. NSW is a proximity graph with both long-range and short-
range links. Due to using the greedy routing algorithm, the searching
time of NSW is polylogarithmic complexity. The HNSW method can
be obtained by replacing the linked lists in the probability skip list
with proximity graphs, and it can also be regarded as the introduc-
tion of hierarchy into NSW. The hierarchically multi-layer graph
architecture of HNSW is shown in Fig. 5b. For a spectral vector s to be
added into HNSW with L + 1 layers, its layer level l is randomly
selected with an exponentially decaying probability distribution. A
search-layer algorithm is implemented to find ef (size of the dynamic
candidate list) nearest neighbors to s. It starts at the top layer (layer L)
and ends until reaching the local minimum of a layer. Then, it moves
down to the next layer and performs a similar search procedure with
the nearest neighbor of the previous layer as an entry point. This
process is repeated until reaching layer l + 1. From layerlto layer 0,
the vector s will be added to each layer. More nearest neighbors can
be obtained by increasing the ef parameter in the search-layer algo-
rithm from 1 to efConstruction. After adding s to this layer,M nearest
neighbors to s will establish bidirectional links with s. The above
addition process is repeated until layer 0. Then, the vector s is suc-
cessfully added to HNSW. The above steps are repeated for each
spectral vector in the spectral library to add them to HNSW. After
adding all spectral vectors, the HNSW index of this spectral library is
built. With the built index, the nearest neighbors to the query spec-
tral vector q can be found efficiently. From layer L to layer 1, each
layer is searched by the search-layer algorithm with ef = 1, and the
nearest neighbor in the previous layer is used as the entry point for
the next layer. For layer 0, it is searched by the search-layer algorithm

with ef set by users, and K nearest neighbors in the dynamic candi-
date list are returned as results.

With 500 elements in each spectral embedding and more than
twomillion spectra in the in-silico library, the efConstructionwas set to
600. The other parameters (M, ef) are determined by the results shown
in Supplementary Fig. 8. The HNSW index of FastEI was created by
spectral embeddings of the in-silico library using hnswlib (https://
github.com/nmslib/hnswlib) with M = 64, efConstruction = 600,
and ef = 300.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The in-silico spectral library, the Word2vec model, and the index file
generated in this study have been deposited in the Zenodo database
under accession code 7476120. Source data are provided with
this paper.

Code availability
All code of FastEI is released under the Apache 2.0 license at https://
github.com/Qiong-Yang/FastEI. This repository includes detailed
instructions on how to install and run FastEI51.
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