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A data-driven approach for predicting the
impact of drugs on the human microbiome

Yadid M. Algavi 1 & Elhanan Borenstein 1,2,3

Many medications can negatively impact the bacteria residing in our gut,
depleting beneficial species, and causing adverse effects. To guide persona-
lized pharmaceutical treatment, a comprehensive understanding of the
impact of various drugs on the gut microbiome is needed, yet, to date,
experimentally challenging to obtain. Towards this end, we develop a data-
driven approach, integrating information about the chemical properties of
each drug and the genomic content of eachmicrobe, to systematically predict
drug-microbiome interactions. We show that this framework successfully
predicts outcomes of in-vitro pairwise drug-microbe experiments, as well as
drug-induced microbiome dysbiosis in both animal models and clinical trials.
Applying thismethodology,we systematicallymap a large array of interactions
between pharmaceuticals and human gut bacteria and demonstrate that
medications’ anti-microbial properties are tightly linked to their adverse
effects. This computational framework has the potential to unlock the devel-
opment of personalized medicine and microbiome-based therapeutic
approaches, improving outcomes and minimizing side effects.

Our gastrointestinal tract harbors a flourishing anddiverse community
of microorganisms, collectively known as the human gut microbiome.
Over the past decade, we came to appreciate how this microbiome
governs individualized responses to diet and susceptibility to a wide
array of diseases such as diabetes and cancer1. Importantly, however,
microbiome research has also revealed complex and bidirectional
interactions between themicrobiome and numerous pharmaceuticals.
On the one hand, many gut-dwelling microbes metabolize drugs,
potentially affecting their toxicological, pharmacokinetic, and phar-
macodynamic properties2–6. On the other hand, many small-molecule
drugs alter the taxonomic composition of the microbiome and
potentially give rise to various gastrointestinal side effects. Indeed,
population-wide case-control studies in the UK and Netherlands have
identified many commonly used drugs, including atypical anti-
psychotics, NSAIDs, and statins, as influential modulators of the
intestinal microbiota7–9. Additionally, for specific medications, long-
itudinal clinical studies uncovered temporal variation following drug
administration. For example, metformin—an oral glucose-lowering
drug used to treat type 2 diabetes—was demonstrated to shift the

microbial population in the gut, increasing the prevalenceof beneficial
short-chain fatty acid-producing species10. At the same time, metfor-
minwas also shown to increase the abundance of virulent E. coli strains
that can cause diarrhea, bloating, and nausea— frequent adverse
effects in metformin-treated patients. While such clinical studies pro-
vide some perspective on drug effects, they cannot be performed on a
large number of drugs.

As an alternative approach, a complementary in vitro methodol-
ogy can be used to explore the potential impact of non-antibiotic
drugs on gut microbes. Maier et al.11, for example, conducted a high-
throughput screen of more than 1000 common drugs against 40
representative gut bacteria under anaerobic conditions. They mea-
sured the growth of each species optically over time and showed that
24% of the drugs with human targets inhibit the growth of at least one
species. Similarly, others have tested 43 compounds against five dif-
ferent microbial communities and quantified, using mass spectro-
metry, the absolute bacterial abundance and proteome alterations
following drug exposure12. This new understanding of how drugs
impact the microbiome offers a novel way to improve pharmaceutical
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treatment as well as minimize side effects13. Although such recent
studies have cast light on many interactions of interest, a compre-
hensive and complete understanding ofmicrobiome-drug interactions
is still lacking, and the incorporation of pharmacomicrobiomics into
clinical practice is accordingly yet out of reach14.

To address this challenge, we integrate chemical and micro-
biological knowledge with a computational, data-driven, systems
approach, aiming to predict the impact of a large set of drugs on the
growth of microbiome members. Such computational approaches
have been successfully applied to predict other types of microbiome-
drug relationships (e.g., drug biotransformation15), and could thus be
similarly effective in facilitating large-scale characterization of
drug–microbiome interactions. To demonstrate its conceptually
broad applicability, we show that this approach successfully identifies
the effect of pharmaceuticals on microbial strains in vitro and can be
further applied to predict drug-induced community changes in long-
itudinal animal models and clinical studies. Moreover, this methodol-
ogy allows us to systematically map the influence of thousands of
drugs on numerous microbial strains, uncover drug and microbial
properties that underlie anti-commensal activity, and explore the
connection between drug-induced microbiome compositional chan-
ges and side effects.

Results
Development of a machine learning model for predicting the
impact of drugs on the microbiome in vitro
We first set out to develop a random forest model that can predict the
influence of any drug on any microbial species. Our model takes as
input two vectors of features: one representing a specific microbial
taxon and the other representing a selected drug—and aims to predict
the impact of that drug on that microbe. Specifically, we characterize
eachmicrobe by the set of biochemical pathways its genome encodes
and each drug by its physical-chemical properties. Overall, our model
uses 148 microbial features (describing the number of genes in its
genome from each KEGG pathway; Methods), and 92 drug features
(properties obtained from the drug’s SMILES representation; Meth-
ods). The complete set of features used can be found in Supplemen-
tary Data 1. The model then aims to predict a continuous numerical
value between 0 and 1 (that we will term throughout the paper as
“impact score”), which describes the likelihood that the drug causes
growth inhibition (Fig. 1A; see Methods for complete details).

Given this representation, we then trained our model using a
large-scale dataset describing a set of in vitro experiments where 40
culturedmicrobial strainswere each exposed to an array of 1197 drugs,
determining whether each drug inhibits the growth of each strain
(“0”—no effect; “1”—growth inhibition; throughout this work, strains
are defined as the specific representatives used in the above in vitro
experiment)11. We limited the analysis to strains with available gen-
omes (39 out of 40 strains) and compounds included in the DrugBank
database (1066 out of 1197, see Methods—Machine-learning model,
data, and evaluation). While most drugs were assayed against the
complete panel of strains, some of the possible 41,574 combinations
(39 strains × 1066 drugs) were missing from the published dataset,
resulting in a total of 41,519 drug–microbe interactions. We tested our
approach using tenfold cross-validation across this set of interactions.
The model demonstrated excellent predictive performance in pre-
dicting newdrug–microbe interactions in vitrowith an area-under-the-
receiver-operator curve (ROC AUC) of 0.972 (Fig. 1B). While ROC AUC
is clearly an informative metric for assessing the overall predictive
power of the model, we further report here (and throughout the
paper) the area-under-the-precision-recall curve (PR AUC), which
provides valuable information about predictive ability in cases of
extensive class imbalance. Indeed, here, even though such class
imbalance exists in the dataset (ratio of 1:6.1, in favor of “0” interac-
tions), the model PR AUC performance is 0.907, indicating that the

model correctly captures both types of interactions (Fig. 1C). To con-
firm the robustness of our approach, we conducted 100 iterations of
the tenfold cross-validation procedure described above, finding only
minimal variance in precision, sensitivity, and specificity across itera-
tions (Supplementary Fig. S1). Similarly, we extensively examined
other machine learning models, validated that the results cannot be
attributed to statistical noise or artifacts in the data, and systematically
benchmarked the model against a naive null model (see Supplemen-
tary Text 1).

Since often the impact of a given drug is relatively consistent (i.e.,
it either impacts most microbes or does not impact most microbes),
and hence predicting a specific drug–microbe interaction when the
impact of that same drug onothermicrobes has been used for training
may not be challenging, next, we set out to examine the model’s pre-
dictive power on new drugs using a leave-one-drug-out approach. We
found that while the model performance was slightly lower in these
settings, it was still able to successfully predict the impactof newdrugs
on various microbial strains (ROC AUC of 0.913 and PR AUC of 0.739;
Fig. 1B, C). Notably, even after excluding antibiotics and other non-
human-targeted compounds, the model can still distinguish between
human-targeted drugs with antimicrobial activity and those without
(ROC AUC 0.86), suggesting that it does not merely distinguish anti-
biotics vs. non-antibiotic compounds. Furthermore, to confirm that
our predictions are not solely based on identifying chemically similar
drugs (which accordingly have similar bioactivity), we evaluate the
degree of molecular similarity between each pair of drugs using
Tanimoto coefficients (TC)16. TC, also known as the Jaccard index,
quantifies the similarity between pairs of compounds in the range of 0
(low similarity) to 1 (high similarity) basedon theirmolecular structure.
In chemical literature, a TC of 0.85 is commonly considered a good
predictor for similar bioactivity. In our dataset of 1066 tested drugs,
themean pairwise TCwas0.20, and themeanTC similarity to themost
similar drug was 0.671, suggesting thatmost drugs have only relatively
distantly related drugs in the dataset and hence cannot easily and
naively rely on structural similarity for learning. To better estimate the
influence of molecular similarity on the model performance, we
repeated the leave-one-drug-out approach above while excluding all
compounds that are similar to the predicted drug using several simi-
larity thresholds spanning the complete range (1 > TC>0, Fig. 1D).
Indeed, removing all drugswith high structural similarity (according to
the above-mentioned cutoff of TC =0.85), there was only a mild
decrease in performance, with a 2.6% decrease in ROC AUC and a 13%
decrease in PR AUC. This indicates that the model retains excellent
predictive power even when the most relevant examples are removed
from the training set. In fact, the performances remained reasonable
even at much lower cutoffs, where prediction is performed based on
highly different compounds. For example, even when using TC simi-
larity as low as 0.3, which corresponds to having a training set that
includes only drugs with very different bioactivity, the model retained
a reasonable level of predictive power with a ROC AUC of 0.73 and PR
AUC of 0.3.

Further, using an analogous leave-one-microbe-out approach, we
inspected the model’s capabilities in predicting the response of new
microbial strains. The model demonstrates significant predictive
power with a ROC AUC of 0.966 and PR AUC of 0.88 (Fig. 1B, C).
Examining the prediction accuracy of our model for strains of various
phyla, we further confirm accurate predictions for the twomain phyla
of the human gut microbiome, Bacteroidetes, and Firmicutes (ROC
AUC 0.974, 0.966, PR AUC 0.91, 0.899, respectively). As expected, the
model performance improves when phylogenetically similar strains
are included in the training set, indicating that phylogenetic similarity
translates to related drug response (Fig. 1E). To further determine the
robustness of the model, drug response was predicted separately for
each microbe when excluding all other microbes from the same phy-
lum from the training set. Even under these conditions, performance
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Fig. 1 | Machine-learning model prediction of in vitro drug–microbe interac-
tions. A A scheme of our computational framework. B Receiver operating char-
acteristic (ROC) curve for three learning settings: new drug–microbe interactions,
new microbes, and new drugs. C Precision recall (PR) curve for the three learning
settings as in panelB.DThe upper panel displays the distribution of distances from
the test compound to the nearestmolecule in each cross-validation training set as a
function of the TC distance cutoffs. The middle plot shows the distribution of the
number of compounds in the training set. The lower panel illustrates the ROCAUC

(yellow) and PR AUC (purple) for new drug prediction as a function of the TC
distance cutoffs. E ROC AUC and PR AUC scores for the leave-one-microbe-out
model as a function of phylogenetic distance (with Pearson correlation of −0.574,
p = 5 × 10−4 for ROC AUC and −0.648, p = 8.23 × 10−6 for PR AUC, error bands show
standard error). The color indicates the strain’s phyla. F Decrease in ROC AUC and
PR AUC score when all strains for the same phylum are removed from the training
set. The phyla Verrucomicrobia and Fusobacteria were discarded from this analysis
as each contains only a single strain.
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remains robust with all strains achieving a ROC AUC above
0.92 (Fig. 1F).

Lastly, to further validate ourmodel’s predictions on independent
datasets, we evaluated its performances on additional in vitro
screening results. First, we utilized data describing 25% inhibitory
concentration values (IC25) for 25 human-targeted medications
against selected microbial strains11. For each drug, we compared our
model prediction for that drug’s impact on each strain against the
measured IC25.Of the 25 drugs tested, we found a negative correlation
between the strain’s impact score and the measured IC25 values in 21
compounds, with FDR-corrected p <0.2 for ten drugs (Spearman
correlation test; Supplementary Fig. S2A and Supplementary Data 2).
Second, we used an independent dataset describing the impact of 43
drugs on ex-vivo human fecal samples12. Evaluating the prediction
accuracyof our trainedmodel on this new validationdataset, we found
that it exhibits good transferability in predicting specific
drug–microbe interactions, with a ROC AUC of 0.70 (Supplementary
Fig. S2B). While the prediction accuracy in the second dataset was
somewhat lower, it should be noted that both the screening metho-
dology and the drug concentration range used in this second dataset
were fundamentally different from those used in the main dataset.
Considering these differences, the obtained performances suggest
that our model’s predictive power is not database- or technology-
specific but potentially universal. We also estimated the predictions on

new drugs and new microbes using a leave-one-out approach as
before, finding only a minor loss in performance (2–3% decrease in
ROC AUC; Supplementary Fig. S2B). These findings confirm that the
model successfully predicts drug–microbe interactions on various
microbial strains, even when applied to datasets obtained from dif-
ferent experimental setups.

Structural andmicrobial features that influence drug impact on
the microbiome
We next examined the features that contributed most to our model’s
predictions to further reveal intriguing and valuable insights into the
factors that impact drug–microbe interactions. To this end, we used a
permutation importance method to calculate the statistical sig-
nificance and contribution of each feature17. Briefly, this widely used
approach estimates the importance of a given feature vector and how
different its contribution is from its contribution when the data is
shuffled (see Methods for details). We first examined which drug fea-
tures are most informative for predicting antimicrobial activity. We
found thatmeasures of compound lipophilicity (MolLogP) and charge
distribution (PEOE) are the most significant contributors to predicting
antimicrobial activity (all features with FDR-corrected p <0.05, Fig. 2A
and SupplementaryData 3). These are known factors that influence the
permeability of bacterial membranes18,19. Similarly, surface charge
properties (such as total polar surface area—TPSA), hydrogenbonding,
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Fig. 2 | Themodel’s drug andmicrobial feature importance scores. AThe top 20
drug features with the highest feature importance score are colored according to
the drug feature category. B The top 20microbial features with the highest feature
importance score are colored according to KEGG categories. All features included

in these plots are statistically significant (p values calculated by permutation
importance method, all values with FDR-corrected p <0.05, exact values are pro-
vided in Supplementary Data 3).

Article https://doi.org/10.1038/s41467-023-39264-0

Nature Communications |         (2023) 14:3614 4



and topological features (such as Kappa and Chi connectivity indices)
were also found to be contributing to prediction, and are indeed
important for binding and passing through porins and other mem-
branous tunnels, with high importance, especially in gram-negative
bacteria18,20. Likewise, topological drug descriptors of compound
shape and geometry (such as Kappa1) were also found to be infor-
mative, and indeed such features are known to be relevant for anti-
biotic accumulation inside bacteria21. Additionally, we examined
whether the relative importance of drug features varies between dif-
ferentmicrobes, training themodel on one strain at a time, calculating
feature significance for each such model, and using a principal com-
ponent analysis (PCA) to explore variation in these feature importance
sets. We found that strain-specific drug feature importance scores
cluster according to both phylum and gram stain (Supplementary
Fig. S3A, B; PERMANOVA p = 1 × 10−3 and p =0.017 for phylum and
gram stain, respectively). Interestingly though, the main difference in
feature importance scores betweenmicrobial strains is observed in the
topological, charge, and lipophilicity descriptors (Supplementary
Fig. S3C),while kappa1,molecularweight, and thenumberofhydrogen
bonding acceptors further differentiate between gram-positive and
gram-negative strains (all with FDR p <0.05; t-test). Indeed, hydrogen
bonding and size have been reported to differ between gram-positive
and negative antibacterial compounds18. We also examined the feature
importance obtained for a model trained only on human-targeted
drugs as these drugs, unlike antibiotics, werenot optimized for cellular
penetrance. Comparison between the two lists of important drug
features revealed increased importance of topological features in
human-targeted drugs (p = 0.031), with a general positive correlation
between the two lists (Pearson correlation 0.523, p = 1.7 × 10−6).

We further investigated in a similar manner which microbial fea-
tures contributed most to the prediction of drug–microbe interac-
tions. Interestingly, we found that 54 biochemical pathways from 16
KEGG categories significantly contributed to the model (with FDR
p <0.05, Fig. 2B). Significant microbial features include known cellular
processes that are essential for antibiotic resistance. For example,
indole—one of the main byproducts of tryptophan metabolism, and
the top-ranking feature in this list, is known to cause antibiotic toler-
ance in bacteria22. Similarly, another product of tryptophan metabo-
lism, indole-3-acetic acid, is recognized as a defense mechanism
against various formsof stress23,24. Furthermore, co-factor biosynthesis
pathways such as ubiquinone production and folate biosynthesis are
known to regulate oxidative stress25,26. Not surprisingly, features that
encode for membranal structure and transport, lipopolysaccharide
biosynthesis, and ABC transporters were also found to have high
importance19. We also examined potential differences in the abun-
dance of these features across the various phyla (Supplementary
Fig. S3D), and indeed, found that many of these features are enriched
in members of the more drug-resistance phyla. For example, ABC
transporters are more abundant among proteobacteria, whereas
tryptophan metabolic capacities are abundant among gram-negative
strains.We further found that themicrobial features that contribute to
the original model and those that contribute to a model trained on
only human-targeted drugs are highly correlated (Pearson correlation
0.904, p = 2.2 × 10−16), suggesting that similar genomic components
might be utilized for resistance against antibiotics and non-antibiotic
drugs, reinforcing previous findings11.

Predicting drug–microbe interactions on a large scale and
identifying determinants of drug impact and microbial
sensitivity
Having established and benchmarked our model using available data
on a drug–microbe interactions in vitro, we set out to explore the
complete landscape of interactions between drugs and members of
the human gut microbiota. Toward this aim, we collected all clinically
approved small-molecule drugs from the DrugBank database (n = 2585

compounds)27 and calculated their physio-chemical properties. Simi-
larly, to represent the diversity of the intestinal bacterial community,
we used metagenomic data from a representative, healthy western
population28 (see Methods for details). Notably, although these sam-
pleswereobtained froma relatively limitedpopulation, they are drawn
from an extremely well-characterized healthy population of fecal
microbiota transplant donors that were not exposed to antibiotics or
other drug treatment. We then trained our model on the complete
in vitro data described previously and systematically predicted the
impact of each of the 2585 drugs on 409 humanmicrobiota members,
resulting in a rich catalog of 1,057,265 drug–microbe interactions
(Supplementary Data 4). Notably, more than 62% of the drugs and 90%
of the microbial taxa have not been tested in vitro before.

Using this catalog, we first sought to identify patterns in the
drug–microbe interaction landscape, andhighlight drug- andmicrobe-
specific determinants of such interactions. Examining the predicted
impact of each drug on the various taxa revealed that, perhaps not
surprisingly, antibiotics cause the most impact on the microbiome.
Likewise, pharmaceuticals whose targets are non-human, such as
antivirals, antifungals, and antiparasitic drugs, also impact many taxa
(Fig. 3A, Kruskal–Wallis test p = 8.2 × 10−127, E2 = 0.138). These com-
pounds were designed to penetrate through the cellular membrane
and disrupt vital biochemical pathways that could be shared among
organisms. As drugs with overlapping pharmacological and ther-
apeutic properties frequently share bioactivity, it is interesting to
compare the antimicrobial properties of human-targeted drugs with
different pharmacological classifications. To this end, we obtained the
Anatomical Therapeutic Chemical (ATC) classification of each drug in
our analysis and focused specifically on the information concerning
the physiological system that the drug targets. Indeed, this analysis
revealed that drugs with antineoplastic activity show the highest
lethality, followed by drugs that act on blood-forming organs, and the
alimentary tract. In contrast, medications affecting the sensory, geni-
tourinary, and respiratory systems show the lowest average activity
(Fig. 3B, Kruskal–Wallis test, p = 2.17 × 10−64, E2 = 0.102). Considering
specifically the top 20 drugs (in terms of their mean impact on
microbial taxa) that have not been screened in the original database,
we found several compounds with reported in vivo anti-commensal
activity such as the immunosuppressants Sirolimus29 and Tacrolimus30

and the antineoplastic agents Somatostatin31 and Eribulin32.
Next, we used the above catalog to examine differences in drug

sensitivity (which we define as mean impact score across all com-
pounds) across the phylogeny of human gut microbes included in our
analysis (Fig. 3C). We found that microbiome members from the Ver-
rucomicrobia and Proteobacteria phyla showed generally higher
resistance to drugs. This resistance could be attributed to their rich
capacity for drugmetabolismand the lowpermeability of double-layer
membranes33. Comparing the sensitivity of the two main phyla of the
human microbiome, Firmicutes and Bacteroidetes, whose ratio is
known to be associated with multiple lifestyles and clinical factors34,
has alsoexhibited intriguingpatterns. Specifically, while bothphyla are
predicted to be drug-sensitive, over 80% of the drugs have some
specificity for one or the other (Wilcoxon rank-sum test, FDR p <0.05).
While antiparasitic, respiratory, andnervous systemdrugs have amore
specific impact on Bacteroidetes, hormonal preparations are more
specific toward Firmicutes (Wilcoxon rank-sum test, FDR p <0.05).
Moreover, inspecting these dominant phyla, we identified genus-level
differences in drug resistance. Specifically, Firmicutes, Roseburia, and
Blautia show relatively high sensitivity, whereas Clostridium and
Oscillospira exhibit higher resistance (Supplementary Fig. S4A and
Supplementary Data 5). Similarly, in Bacteroidetes, Alistipes has the
highest resistance, followed by Bacteroides, Parabacteroides, and Pre-
votella (Supplementary Fig. S4B).

Lastly, it is worth noting, that our computational framework
could, in principle, pinpoint potential drugs’ modes of action. As a
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proof-of-concept, we compared the impact scores of microbes with
and without various homologs to recognized drug targets retrieved
from the DrugBank database (seeMethods for details), identifying 201
putative drug-target interactions (Supplementary Text 2 and Supple-
mentary Data 6). These included both previously known targets, as
well as candidates for novel targets, highlighting the potential of our
computational model for future studies of drug–microbiome
interactions.

Prediction of in vivo drug-induced dysbiosis
Next, we set out to evaluate the ability of our computational frame-
work to predict the impact of various drugs on the microbiome
community in vivo. Extending previous validation11, here we aimed to
test the impact of specific drugs, both on the much larger set of
microbes included in our model’s predictions and in terms of the
observed variation in the complete microbiome composition profile
following drug administration. Although the intestinal ecological
dynamics are far more complex than those of single-strain in vitro
experiments, we hypothesized that taxa predicted to be strongly
impacted by a given drug would exhibit reduced abundances after
pharmacological intervention with that drug. Toward this aim, we

collected metagenomic sequences from longitudinal studies in which
subjects were sampled before and after pharmaceutical treatment
(Supplementary Table 1). This study design allows direct evaluation of
the impact of the drug on intestinal bacteria while minimizing other
confounding factors that canarise in case-control studies such as inter-
individual variability in the microbiome baseline composition.
Although these datasets have been produced using 16s rRNA sequen-
cing and hence are limited to analysis at an ASV level, they may still
capturebroader patterns ofmodulationof themicrobiome inducedby
drugs. To examine our hypothesis, we comparedmodel predictions of
each taxonwith the change in their relative abundance after treatment
(see Methods).

First, we examined the model’s ability to predict microbiome
alteration in human clinical trials. Omeprazole is a common proton-
pump inhibitor used in the treatment of gastroesophageal reflux dis-
ease and is associated with decreased diversity of intestinal species
and increased risk for Clostridium difficile infections35. Comparing
microbiome composition before and after Omeprazole treatmentwith
our model’s predicted impact has demonstrated that our model cor-
rectly captures the effect of this drug on the microbiome, assigning a
higher impact score to taxa whose relative abundances were reduced

Drug 
sensitive

Drug 
resistance

A.

Increased ImpactDecreased Impact

C.

Phylum:

Mean
impact score

B.

Fig. 3 | The landscape of drug impact on microbiome members. A Box plots
describing the difference in impact scores between human target drugs and drugs
targeting various microorganisms (pairwise comparison by Wilcoxon rank-sum
test). A Kruskal–Wallis test further shows that the differences between ATC cate-
gories are statistically significant, p = 8.22 × 10−127, E2 = 0.138. A line across the box
indicates the median. The whiskers are lines extending from Q1 and Q3 to end-
points that are defined as the most extreme data points within Q1 − 1.5 × IQR and
Q3+ 1.5 × IQR, respectively (Exact values are provided in Supplementary Data 5a).
B The differences in impact scores between human-targeted drugs according to
anatomical therapeutic chemical (ATC) classifications. The symbols above each

label indicate the statistical significance in comparison with themean impact score
and the black points indicate the category means (pairwise comparison by Wil-
coxon rank-sum test, exact values are provided in Supplementary Data 5b). A
Kruskal–Wallis test further shows that the differences between ATC categories are
statistically significant, p = 2.17 × 10−64, E2 = 0.102. C Phylogenetic tree for 409
microbiome members constructed based on their 16s rRNA gene. The outer circle
denotes the drug sensitivity index, and the inner circle denotes the phylum. Taxa
marked with green dots are those included in the in vitro screen (n = 39). ns not
significant; *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001.
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following omeprazole administration (Fig. 4A). Importantly, although
we trained the model on merely 39 strains, it was able to predict the
impact on a microbiome community of 153 different taxa, of which
only 15% were tested in vitro against omeprazole while the rest
represent novel predictions of the model. Moreover, repeating this
analysis while separating taxa tested in vitro from those that were not,
we found that the statistical significance reported above is primarily
driven by those members of the microbiota not yet tested (Supple-
mentary Fig. S5A).We further applied ourmodel to data available from
two pre-clinical animal models treated with Paclitaxel (also known as
Taxol), a chemotherapy used to treat various solid cancers36, and
Methotrexate, the first-line therapy for rheumatoid arthritis37. In both
cases, our model successfully predicted the drug-induced changes in
the gut microbiota (Fig. 4B, C). As for Omeprazole, most of the taxa
were previously unscreened in vitro and are driving for statistical sig-
nificance of these analyses (Supplementary Fig. S5B, C). The additional
analysis further confirmed that in all cases above, the results cannot be
attributed merely to statistical noise since the randomization of fea-
tures resulted in total statistical significance loss (Methods; Supple-
mentary Fig. S5D, E).

Comparing predicted drug–microbe interactions to observed
population-wide trends
Following our analysis of longitudinal data from animal models and
clinical trials reported above, we sought to explore the agreement
between our model’s predictions and patterns observed in broad
human populations. Put differently, whereas our analysis of data from
longitudinal studies above examined our model using directly mea-
sured drug impact (controlling for other confounding factors such as
disease, age, etc.), here, we aim to test our predictions in a diverse,
large-scale, real-world cohort.

To this end, we obtained summary statistics data from the Life-
lines Dutch microbiome project, which comprehensively character-
ized the gut microbiome of 8202 individuals along several clinical
phenotypes38 Specifically, among the data publicly available for this
project, is a list of identified negative and positive associations
between drugs and microbes, allowing us to compare our model’s
predictions concerning the negative impact of drugs on microbial
growth to observed patterns across this cohort (measured by the
treatment effect size, see Methods). We found a moderate, yet statis-
tically significant agreement between our model and these data
(Fig. 5), with taxa predicted by our model to be more drug-sensitive
exhibiting strong negative effect by drugs across Lifelines individuals
(Pearson correlation −0.41, p = 1 × 10−4, Spearman correlation −0.39,
p = 8 × 10−4; Fig. 5A), and drugs predicted to have a strong impact on
average by our model, showing a strong impact on microbes’

abundances (Pearson correlation −0.32, p =0.012, Spearman correla-
tion −0.39, p = 0.048; Fig. 5B). This suggests that our model correctly
identifies taxa that aremore drug-sensitive and drugs that have amore
pronounced modulation of the microbiome.

Lastly, we focused on drugs that cause particularly drastic
microbiome perturbation (associated with the abundance of >30 taxa
in the Lifelines dataset) and examined whether our model can distin-
guish taxa resistant to these drugs (and hence exhibit positive asso-
ciationwith the drug in the Lifelines cohort) vs. those that are sensitive
to the drug and exhibit negative association. In two drug groups,
proton-pump inhibitors and osmotic laxatives, we identified this
expected statistically significant difference, with markedly higher
predicted impact scores in taxa with a negative association with these
drugs compared to taxa with positive association (Wilcoxon rank-sum
test; Fig. 5C, D). Taken together, the above results from both a
population-wide cohort and longitudinal studies demonstrate the
model’s in vivo applicability.

Characterizing links between adverse drug reactions and anti-
commensal activity
Lastly, we examined whether the antimicrobial properties of drugs
may be related to their side effects. Specifically, following previous
studies that highlighted a link between drug-induced dysbiosis and
side effects in a handful of medications, we wondered whether using
our model’s predictions we can observe this link on a much larger
scale. To this aim, we collected and curated side effects reports from
the Side Effect Resource (SIDER)database39 for all non-antibiotic small-
molecule drugs (n = 771 compounds). Then, we predicted the impact
of each of these drugs on the representative microbiome community
described above and calculated the mean impact score of each drug
across all taxa. Comparing the drugs’ impact scores with their cata-
loged side effects, we found that both gastrointestinal and infection-
related adverse effects were strongly associatedwith the drug’s impact
on the microbiome. Specifically, non-antibiotic medications with a
high incidence of these side effects exhibited a significantly higher
impact score compared to those with a low incidence of these side
effects (Fig. 6A, B), suggesting that perhaps similarly to antibiotics11,
drugs with an extensive impact on the intestinal community might
facilitate gastrointestinal side effects and colonization of pathogenic
bacteria.

Based on this finding, we next examined whether specific dys-
biosis patterns might be associated with various adverse effects.
Above, we found that each drug tends to affect mostly strains for one
of the two main phyla of the human microbiome, Firmicutes or Bac-
teroidetes, with a smaller effect on strains from the other. Here, we
compared for each drug the difference in its impact on these twophyla

Omeprazole Methotrexate Paclitaxel
.C.B.A

Fig. 4 | Prediction of in vivo drug-induced dysbiosis. Violin plots illustrating the
difference in predicted impact scores between taxa with significantly increased vs.
decreased abundance following drug administration of A Omeprazole (human
clinical trial, n = 153 taxa), B Paclitaxel (mouse model, n = 120 taxa), and

C Methotrexate (rat model, n = 149 taxa). Statistics were calculated by a two-sided
Wilcoxon rank-sum test. A line across the box indicates the median. The whiskers
are lines extending from Q1 and Q3 to endpoints that are defined as the most
extreme data points within Q1 − 1.5 × IQR and Q3 + 1.5 × IQR, respectively.
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(as a measure of its specificity) and calculated the association between
each side effect and this drug’s specificity. We found that diarrhea is
significantly more common in patients receiving drugs that are more
harmful to Firmicutes than to Bacteroidetes, with a ~66% increase in
incidence rate (ANOVA, p = 5 × 10−3, Fig. 6C). Interestingly, in line with
our findings, stool consistency was positively associated with Bacter-
oidetes: Firmicutes ratio in a healthy woman population40. Based on
those findings, we hypothesize that the mode of drug-induced dys-
biosis may explain the patterns of certain adverse effects.

Discussion
In this study, we developed a machine-learning approach that inte-
grates chemical properties and genomic content to predict the impact
of drugs on microbiome taxa. We demonstrated the utility of this
approach in a range of in vitro and in vivo settings, from pairwise
microbe–drug experiments, through animal models, to clinical trials.
We specifically focused on mouse and human longitudinal data to
support our findings. This analysis design enables direct evaluation of
the drug’s impact on intestinal bacteria, while minimizing other con-
founding factors that can impact case-control or population-wide

studies. Importantly, beyond its ability to predict the impactof specific
drugs on specific microbes, this approach uncovers the determinants
behind the interactions between pharmaceuticals and microbes and
systematically maps the interactions between every drug and all
representative members of the human microbiome. Given this exten-
sive large-scale catalog, we were able to further reveal strong asso-
ciations between the anti-commensal properties of drugs and
gastrointestinal side effects.

Throughout this work, we made a substantial effort to validate
obtained predictions via experimental data using an extensive collec-
tion of in vitro experiments, longitudinal clinical studies, and large-
scale population cohorts. Unfortunately, however, the current state of
research limits our ability to perform a more comprehensive exam-
ination of computational predictions, as the number of microbe–drug
interaction studies is still relatively low, and the number of studies that
make such data (and specifically shotgun metagenomic data) publicly
available for analysis is even more restricted. Furthermore, even when
data were available, technical variations between studies often make
comparison and validation challenging. For example, our attempt to
benchmark our model’s predictive performances using data from a

Fig. 5 | Comparison between model predictions and drug-induced dysbiosis in
the Lifelines cohort. A Correlation between the average predicted impact per
microbial genus and the taxa-averaged observed negative impact in the Lifelines
cohort. (n = 84 taxa; error bands show standard error) B Correlation between the
average predicted impact per drug group and drug-averaged observed impact in
the Lifelines cohort. (n = 40 drugs; error bands show standard error)
C,D Differences in predicted impact scores between taxa with positive vs negative

association with two common drug groups, proton-pump inhibitors (C, Two-sided
Wilcoxon rank-sum test, effect size 0.425, n = 66 taxa) and osmotic laxatives
(D, Two-sidedWilcoxon rank-sum test, effect size = 0.466,n = 45 taxa). A line across
the box indicates the median. The whiskers are lines extending from Q1 and Q3 to
endpoints that are defined as the most extreme data points within Q1 − 1.5 × IQR
and Q3 + 1.5 × IQR, respectively.
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different lab experiment was complicated given the different approa-
ches used (optical density vsmass spectrometry). Still, the fact that our
model retained a reasonable predictive power in the face of such
variation in methodologies indicates that it captures real, non-study-
or method-specific aspects of drug–microbiome interactions. While
the validation of many such interactions is an avenue for future stu-
dies, we believe that the translation of in vitro experiments to clinical
settings using machine learning frameworks offers a powerful
innovation.

Despite these advances, our approach is not without drawbacks
and relies on several main simplifications. First, the anti-commensal
effect of a given drug clearly depends on its bioavailability in the site of
action, yet ourmodel relies ondata fromahigh-throughput screen in a
fixed concentration. Although the authors demonstrated that this
concentration is within an order of magnitude from the intestinal
concentration for most drugs, it might be lower or higher for some
compounds and could be influenced by both host and microbial fac-
tors. Furthermore, as our method and analysis here utilize a single
strain as a representative of each species, it is important to note that it
may overlook certain strain-specific variations in response to drugs.
Such a variationmay include factorswith a well-documented influence
on antimicrobial and anti-drug resistance, such as the presence of
specific xenobiotic-metabolizing enzymes and multidrug resistance
transporters41,42. While considering such strain-level resolution can be
crucial for accurate prediction of drug response in various settings, the
lack of available multi-strain data for model training currently limits
our ability to incorporate these details. Nonetheless, as shown above,
our model is capable of distinguishing higher-level phylogenetic pat-
terns, while supporting potential future extensions to include strain-
level resolution as more data become available. Lastly, rich ecological
dynamics between microbiome community members and their inter-
actions with epithelial and immune cells along the gastrointestinal
tract could markedly alter the impact of various drugs on the
microbiome43.

Importantly, while high-throughput experiments provide many
important definitive insights into complex biological systems,machine
learning methods can be used to complement such experiments and
to allow researchers to further identify trends or extrapolate observed
patterns. Even though future high-throughput screens will likely pro-
vide additional valuable information on drug–microbiome interac-
tions, the scale of this space is already vast, and it is unlikely that

experimental methods will be able to keep up with the rapid devel-
opment of new compounds and with the pace at which newmicrobial
strains are discovered and sequenced. Moreover, such in vitro
experiments often require that assayed microbes be isolated and cul-
tured, which is often challenging or not feasible, especially for gas-
trointestinal, host-associated species. We, therefore, believe that
computational prediction of drug–microbe interactions is not only of
value but a crucial component of future research on the interactions
between drugs and the human microbiome, with numerous
applications.

Looking forward, dissecting the plethora of interactions between
drugs, microbes, and the host holds great promise for clinical
applications5,13. For example, the ability to successfully predict
drug–microbiome interactions in vivo can facilitate future efforts to
predict microbiome-wide drug sensitivity across global, healthy
populations, and for generating novel population-level hypotheses
concerning drug–microbiome interactions. In the last decade,
researchers have characterized the cardinal role of the human micro-
biome on pharmaceutical treatment, highlighting various processes
such as biotransformation to inactive or even toxic compounds44–46,
alternation of pharmacokinetics and pharmacodynamic properties3,
and adverse reactions associated with drug-induced dysbiosis47,48.
Excitingly, such observations are currently being translated into new
clinical intervention protocols, optimizing treatment outcomes by
developing inhibitors for drug-metabolizing enzymes49–51, and manip-
ulating the microbial community using prebiotics and fecal micro-
biome transplants52. Our methodology could substantially
complement these efforts, guiding future drug development attempts
by providing crucial information about potential personal alterations
to the microbiome following pharmaceutical treatment and identify-
ing possible mechanistic explanations for the anti-commensal activity
and side effects. The use of this and other computational tools15 could
accordingly benefit future efforts in pharmacological andmicrobiome
research, paving the way for personalized pharmaceutical therapy and
tailored microbial interventions.

Methods
Machine-learning model, data, and evaluation
We implemented a machine learning model (see detailed below) to
estimate the impact of each drug on each microbiome member. The
model represents each drug–microbe pair as a vector of features.

Fig. 6 | Association of anti-commensal activity and adverse drug reactions. Box
plots illustrate the difference inpredicted impact scores betweendrugswithA high
vs. low frequency of gastrointestinal drug adverse effects and B high vs. low fre-
quency of infectious drug adverse effects. C Difference in diarrhea frequency
between drugs with impact specificity to Firmicutes and Bacteroidetes, as well as

drugs without specificity to any phyla (n = 771 drugs, two-sidedWilcoxon rank-sum
test). A line across the box indicates the median. The whiskers are lines extending
from Q1 and Q3 to endpoints that are defined as the most extreme data points
within Q1− 1.5 × IQR and Q3+ 1.5 × IQR, respectively.
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Drugs are described by a set of physical-chemical and structural
properties, obtained from SMILES representation, using RdKit, an
open-source chemoinformatic program53. Each microbe is described
by its KEGGpathways’ scores based on its genomic content, calculated
using a previously publishedmethod54. Briefly, the score of each KEGG
pathway represents the number of KEGG orthology groups (KOs) in
that pathway (with KOs associated with several pathways being parti-
tioned between these pathways). The list of all drug and microbe
features is available in Supplementary Data 1.

To train and validate our model, we utilized data previously
published by ref. 11. In brief, the data describes an in vitro screen of
1197 compounds against 40 microbial strains. For 36 of the 40 tested
microbial strains, we obtained KEGG KO annotation from the IMG
GOLD database55. The genomes of three strains (Ruminococcus gnavus
VPI C7-9, Bacteroides fragilis enterotoxigenic 20656-2-1, and Rumino-
coccus torques VPI B2-51), whose KO annotations were not available in
IMG, were downloaded from NCBI and annotated using BlastKOALA56.
We discarded one strain (Clostridium perfringens C36) from further
analysis as its genome wasn’t publicly available. Out of the
1197 screened drugs, we matched 1066 compounds to the DrugBank
database27 by mapping their IDs to stitch5 IDs and curating this map-
pingmanually (unmatched drugs weremostly non-pharmaceuticals or
veterinary drugs). A binary interaction score (“0”—no interaction; “1”—
growth inhibition) was given to each microbe–drug pair according to
the definition in ref. 11.

Given these data, we trained severalMLmodels including random
forest (RF), supported vectormachine (SVM)with either polynomial or
radial basis function (RBF) kernels, and three regularized logistic
regression models (ridge, lasso, and elastic net) with default hyper-
parameter. We intentionally focused on relatively simple and com-
monly usedmodels to avoid the risk of overfitting. Theperformanceof
each model was estimated using tenfold cross-validation and eval-
uated by ROC AUC and PR AUC. The abovemodels were implemented
in R version 4.0.257, using “tidymodels” package suite58 (version 0.14).
Specifically, we used “ranger” for the RF model (version 0.13.1)59,
“keranlab” (version 0.9-30) for SVM algorithms60, and “glmnet” (ver-
sion 4.1-4) for logistic regression models61. The model’s performances
were visualized using ggplot2 (version 3.3.5).

Evaluation of model performance on new microbes and new
drugs was carried out using a leave-one-out cross-validation strategy.
To determine how phylogenic and molecular similarities affect new
microbe and drug predictions, we used phylogenic distance based on
the 16S rRNA gene obtained via the Qiime2 fragment insertion plugin62

and molecular similarity based on Tanimoto coefficients on RDKit
fingerprints.

To verify the robustness of various model predictions we con-
ducted extensive analysis, comparing themachine learning techniques
listed above to various naïve models and controlling for statistical
noise (see full details in Supplementary Text 1).

Feature importance
We calculated model feature importance using the method published
by ref. 17, using the implementation in the “ranger” package59. This
approach allows the calculation of importance scores with statistical
significance measures. To estimate the per-strain feature importance
we trained the RFmodel with a single strain at a time and extracted the
feature importance using the above method. To illustrate strain-
specific differences in feature importance score, we use a principal
component analysis (PCA) and demonstrated statistically significant
clustering by PERMANOVA (using the “vegan” package63, version
2.6-2).

Metagenomic data pre-processing
Weacquired 16S rRNAamplicon sequencingdata from threepublished
studies with metagenomic longitudinal sampling obtained before and

after drug treatment35–37, as well as from a healthy western population
cohort28. For consistency, we processed and analyzed each dataset in a
similar way. Specifically, we obtained raw fastq files from public
repositories (NCBI Sequence Read Archive or European Nucleotide
Archive) and processed these data using Qiime2 version 2019-164. We
demultiplexed the data using the Qiime2 demux plugin, applied
DADA265 to denoise the data, and trimmed reads in each dataset to the
first position with a median quality score under 30. Since the reverse
reads were of low quality, these reads were discarded. To assign ASVs
to taxonomy, we trained a Naive Bayes classifier per dataset using
Qiime2’s feature-classifier plugin66. Classifiers were trained on reads
extracted from the SILVA 99-OTU database67, according to the specific
16S hypervariable region used in each dataset. In each dataset, we
removed samples with less than 1000 reads. We further removed rare
and low abundance taxa, leaving those with abundance >0.5% in at
least 0.5% of the samples. Read counts were normalized to sum to 1
within each sample, resulting in a table of relative abundances. When
multiple timepoints were available, we averaged all before or after
samples. Lastly, we calculated the change in relative abundance after
treatment for each ASV using t-statistics.

Predicting drug–microbe interactions
To predict a rich landscape of interactions between drugs and
microbes, we processed metagenomic reads from a representative
healthy western population (n = 90, mean age = 28)28. We used a single
random metagenomic sample from each donor. We included in the
analysis all ASV’s that appear in relative abundance above 0.5%
resulting in 409 taxa in total. In parallel, we extracted from drugbank
SMILES representations of all organic small-molecule drugs with ATC
annotations (indicating that the drug is indeed in clinical use). To
maintain the credibility of predictions, we focused on small-molecule
drugs, removingproteins and inorganic compounds. Lastly, we trained
our model on the full in vitro database and predicted the new
interactions.

Identifying protein of targets for human drugs
We extracted known, manually curated, protein targets of drugs from
the drugbank database. We then mapped those proteins to KEGG KOs
via the Uniprot ID and catalogs the taxa that encode these KO in their
genome. Lastly, we compared the impact score of taxawith andwithout
the presence of the KO using theWilcoxon rank-sum test. Although this
is not necessarily an accurate measure of structural identity, it reflects
the overall functional similarity between the proteins.

In vivo prediction
As before, the impact of each drug on each microbiome member was
predicted using our model. The drug features were calculated as
described above. The microbial features for each ASV were obtained
from intermediate files of PICRUST2 that list KEGG KO annotation
estimation68. Based on the full in vitro data, the model predicted the
sensitivity of each ASV in the sample (i.e., the impact of the given drug
on that ASV, normalized in a range of 0 to 1). We compared the model
scores for ASV with decreased relative abundance (negative t-statis-
tics) vs. those with increased relative abundance (positive t-statistics)
by theWilcoxon rank-sum test. To further verify that the results cannot
be attributed to statistical noise,we repeated this analysis on randomly
shuffled data.

Analysis of lifelines data
Since raw data from this cohort is not publicly available, we utilized
available summary statistics from the latest Lifelines publication38.
Briefly, among other analyses, this publication applied a linear
regression model (adjusting for confounding factors such as sex, BMI,
and technical variables) to determine the impact of various drugs on
microbiome composition. Following this analysis, they provided a list
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of identified negative and positive significant associations (with FDR-
corrected p values <0.1) between microbes and drugs, along with a
measure of drug impact (i.e., effect size). For our analysis, we calcu-
lated the observed impact of each drug in this cohort as the mean
negative effect size across all microbes, and the observed microbial
sensitivity of each taxon in this cohort, as themeannegative effect size
across all drugs. As associations were frequently reported for a
grouped drug class or higher taxonomical levels, we averaged the
predicted impact score across all members of the group (for example,
across several drugs in the given ATC code). For drugs with >30 drug-
taxon associations, we compared the predicted impact score between
microbes with negative and position effect sizes using the Wilcoxon
rank-sum test.

Associations between side effects and drug impact
We retrieved drug side effects from the SIDER database39. We selected
side effects according to the MedDRA preferred term and all drugs
with ATC annotation. Rare side effects that have been reported for less
than 50 drugs were discarded. For each drug, we calculated side effect
incidence frequency based on the mean frequency across all the data
sources in the database and subtracted the incidence frequency of the
placebo-treated groups. We grouped side effects of interest into sev-
eral broader categories. Specifically, we grouped constipation,
abdominal pain, diarrhea, gastrointestinal disorder, gastrointestinal
pain, vomiting, nausea, abdominal discomfort, dyspepsia, flatulence,
and abdominal pain upper into “Gastrointestinal side effects”. Simi-
larly, we grouped infection, urinary tract infection, pneumonia, sto-
matitis, and upper respiratory tract infection into “Infection side
effects”. We next, calculated themean frequency across all side effects
within each category. We then calculated the mean impact score of
each drug across all microbes and compared this mean impact score
for drugs above vs. below 1% side effect frequency.

Lastly, we explored the association between the dysbiosis pattern
of drugs and their side effects. We calculated for each drug the dif-
ference in impact score between Bacteroidetes and Firmicutes. Based
on this measure, we partitioned the drugs into four quartiles. Drugs in
the fourth quartile were classified as firmicutes specific, drugs in the
first quartile were classified as bacteroidetes specific, and drugs in the
middle two quartiles were classified as not specific to any phyla.

Statistics and reproducibility
Statistical calculations were conducted in R (version 4.0.2). We have
used the “tidyveres” package for general data handling and cleaning
(version 2.00), visualized results using “ggplot2” (version 3.3.5), and
conducted statistical calculations using “vegan” (version 2.6-2). Since
this work relies on previously published and available data, no statis-
tical method was used to predetermine the sample size, no data were
excluded from the analyses, and the experiments were not rando-
mized and the investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this work, we relied on previously published and publicly available
datasets. Specifically, we collected SMILES representations, ATC
classification, and recognized protein targets from the Drugbank
database (version April 2020, ref. 27, https://go.drugbank.com/).
Similarly, to describe specific microbial strains, we downloaded the
KEGG KO annotation of 36 genomes from IMGGOLD (ref. 55, https://
img.jgi.doe.gov/). Further, three strains whose KO annotations were
not available in IMG were downloaded manually from NCBI
Sequence Read Archive as further described in the Methods section,

using accession codes ASM169987v1 (https://www.ncbi.nlm.nih.
gov/assembly/GCF_001699875.1/), ASM983137v1 (https://www.
ncbi.nlm.nih.gov/assembly/GCF_009831375.1/) and ASM15392v1
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000153925.1/). To
train and validate our in vitro machine learning model, we used
supplementary information data previously published by ref. 11 and
by ref. 12. To describe the community structure in a healthy human
population, we downloaded raw sequences from ref. 28. We further
downloaded from NCBI SRA and/or European Nucleotide Archive
raw sequencing data to predict drug impact in vivo as described in
Supplementary Data 4 refs. 35–37. We accessed summary statistics
data from the Lifelines Dutch microbiome project as published in
the Supplementary Data in ref. 38. Lastly, we obtained adverse effect
information from the SIDER database (ref. 39, SIDER version 4.1,
http://sideeffects.embl.de/).

Code availability
We used RDKit with Python API to calculate chemoinformatic prop-
erties and molecular similarity (https://www.rdkit.org/) and Blas-
tKOALA (https://www.kegg.jp/blastkoala/) to annotate genomes
according to KEGG KOs.

Rawmetagenomicdatawereprocessedbyqiime2 (https://qiime2.
org/, version 2019-1), and denoised by DADA2. Similarly, the qiime2
fragment insertion algorithm was used to calculate phylogenetic
relationships and PICRUST2 was used to predict functional abundance
per ASV.

Data analysis was conducted in R version 4.02 using the packages
“tidyveres” (version 2.00, general data handling and cleaning), “tidy-
models” (version 0.14, machine learning pipelines), “ranger” (version
0.13.1, RF model), “keranlab” (version 0.9-30, SVM algorithms),
“glmnet” (version 4.1-4, logistic regressionmodels), vegan (version 2.6-
2, statistical analysis), and ggplot2 (version 3.3.5, visualization).

Custom analysis code used in this study can be found on GitHub
at: https://github.com/borenstein-lab/drug_microbiome.
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