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Stochastic representation of many-body
quantum states

Hristiana Atanasova 1, Liam Bernheimer 1 & Guy Cohen 1,2

The quantum many-body problem is ultimately a curse of dimensionality: the
state of a system with many particles is determined by a function with many
dimensions, which rapidly becomes difficult to efficiently store, evaluate and
manipulate numerically. On the other hand, modernmachine learningmodels
like deep neural networks can express highly correlated functions in extremely
large-dimensional spaces, including those describing quantum mechanical
problems. We show that if one represents wavefunctions as a stochastically
generated set of sample points, the problem of finding ground states can be
reduced to one where the most technically challenging step is that of per-
forming regression—a standard supervised learning task. In the stochastic
representation the (anti)symmetric property of fermionic/bosonic wavefunc-
tion can be used for data augmentation and learned rather than explicitly
enforced. We further demonstrate that propagation of an ansatz towards the
ground state can then be performed in a more robust and computationally
scalable fashion than traditional variational approaches allow.

The state of a quantum system is encoded in thewavefunction, a high-
dimensional object that cannot generally be represented or manipu-
lated using a classical computer. Yet, the challenge of experimentally
characterizing and theoretically predicting the ground states of
many-body systems remains central in the physical sciences1–5. His-
torically, some of the most successful computational approaches
have relied on variational principles6. One assumes an approximate,
parameterized functional form for the n-body wavefunction in terms
of a set of parameters ϑ: that is, Ψ r1, . . . ,rn

� � ’ Φϑ r1, . . . ,rn
� �

. Given
this ansatz, in order to find the ground state one then attempts to

minimize ε ϑð Þ � Φϑh ∣Ĥ∣Φϑi
Φϑh ∣Φϑi with respect to ϑ.

Early variational approaches to quantum mechanics, like the pio-
neering work of Hylleraas on the Helium atom7, date back almost a
century. These methods rely on very simple ansatzes that generate
analytical expressions for the energy, and their extensions8 remain the
most accurate algorithms to date for this problem9. Later approaches
include variational Monte Carlo (VMC) techniques that allow much
more general functional forms by evaluating and optimizing ε ϑð Þ
stochastically10–14. In a recent surge of activity, modern deep artificial
neural networks (NNs) andothermachine learning (ML)models15,16 have

emerged at the forefront of such studies17. These ideas have been
applied to both phenomenological spin/lattice models18–25, and real-
space fermionic or bosonic models used in, e.g., quantum chemistry
and nuclear physics26–32. The rapid stream of advancements has culmi-
nated in impressive and technically sophisticated new approaches that
are already competitive with established methods in some ways33–37.

A variety of restrictions have so far been placed on the ansatzes.
Perhaps most notably, with respect to the real-space models, a small
number of permanents or determinants has typically been used to
express the wavefunction. This explicitly enforces the symmetry or
antisymmetry characterizing wavefunctions of identical bosons and
fermions, respectively. It also enables taking full advantage ofmean-field
solutions as a starting point22,33,34. However, the universal nature of deep
neural networks as estimators for correlated multidimensional
functions38, together with their successful employment in a variety of
seemingly disparate fields15, suggests that dramatic improvements may
be in reach if unrestricted networks could be used directly. This would
also enable the use of promising modern probabilistic models like
autoregressive networks23,39. Furthermore, most quantum chemistry
methods rely on representing electronic wavefunctions as linear com-
binations of determinants. Since the number of relevant determinants
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grows exponentially with system size and the cost of evaluating each
determinant grows cubically, the computational cost of high-accuracy
methods increases rapidly with the number of electrons, though recent
models have been able to circumvent at least some of these scaling
issues33,34. Finally, optimization has often presented difficulties. This led
most researchers to employ relatively expensive optimization schemes
like the stochastic reconfiguration/natural gradient descentmethod40–42,
which are more expensive than normal gradient descent to scale to
models with a large number of parameters. Recent work hasmade great
progress in exceeding such limitations43–46, but they remain important.

In some cases, the Schrödinger equation canbe recast in stochastic
form. For example, in diffusion Monte Carlo (DMC)14,47–49, quantum
properties can be extracted from the simulated stochastic dynamics of
a set of N walkers Ri

� �
, with i 2 1, . . . ,Nf g denoting a walker index and

Ri≡ r1,i⊕…⊕ rn,i containing the coordinates of all n particles in walker
i. It is never necessary to store or evaluate wavefunctions explicitly.
However, the DMC algorithm breaks down when the wavefunction has
nodal surfaces: it exhibits a sign problem47,50, meaning that the variance
of the stochastic estimator (and therefore the error) grows exponen-
tiallywith the system’s size.. Theerrorsdue to the signproblemcanonly
be controlled when an accurate and efficiently evaluated expression for
the location of the nodal surfaces is known48,51. This suggests that one
could improve the precision of aDMC calculation by preceding it with a
variational calculation, which would then be used to estimate the
location of the nodes. The overall accuracy is then limited by that of the
variational ansatz Φϑ and the optimization procedure. In practice,
therefore, DMC is most often employed as the final step of a VMC
calculation, providing a small correction and enhancing the accuracy.
This is not a problem specific to DMC: in fermionic systems, sign pro-
blemsgenerically afflictMonteCarlomethods that circumvent theneed
to enumerate wavefunctions52.

Here, we propose an intermediate approach that allows for full
utilization of the expressive power of advanced ML models, without
sacrificing either computational scaling or systematic optimization.
Importantly, in our method the (anti)symmetry of fermions and
bosons becomes an advantage rather than a drawback; and the sign
problem is controlled.

Results
Stochastic representation of the wavefunction
Here, we present the main idea of this work: stochastic representation
of wavefunctions. Instead of representing the wavefunction by a den-
sity of walkers Ri

� �
, wavefunction samples R jð Þ

i ,Ψ jð Þ
s Ri

� �� �n o
are used

as our representation in iteration j. The steps are as follows:
1. Obtain samples fðRð0Þ

i ,Ψð0Þ
s ðRiÞÞ; e.g., from a non-interacting, per-

turbative or VMC/DMC calculation, and set j = 1.
2. Perform stochastic projection (defined below) of samples

fðRðj�1Þ
i ,Ψðj�1Þ

s ðRiÞÞg onto the symmetric or antisymmetric sub-
space, represented respectively by the operator P̂S=A.

3. Perform regression: use the projected samples fðRð j�1Þ
i ,Ψð j�1Þ

s ðRiÞÞg
to train an ML model expressing a projected continuous trial
function P̂S=AΦ

j�1ð Þ
ϑ r1, . . . ,rn

� �
.

4. Given the trial function, generate a new set of sample coordinates
fRðjÞ

i g, and perform imaginary time propagation over interval Δτ
on thewavefunction at the sample coordinateswith respect to the
Hamiltonian Ĥ.

5. Repeat steps 2–4 until converged.Steps 2–4 can also be expressed
in the succinct form:

Ψ jð Þ
s R jð Þ

i

� �
= e�ΔτĤ P̂S=AΦ

j�1ð Þ
ϑ Rð Þ∣

R =R jð Þ
i

: ð1Þ

They can be repeated as many times as needed to find the closest
possible approximation to the ground state given the ansatz, which
(up to a normalization factor) is given by limn!1 e�ΔτĤ P̂S=A

� �n
Φϑ Ri

� �
.

The procedure outlined above and described in greater detail
below is related and complementary to both VMC and DMC, but is
clearly distinct from both. For example, the samples need not be dis-
tributed with respect to ∣Ψ Ri

� �
∣2, as walkers in DMC do—though, it is

usually helpful for the sake of importance sampling to have at least part
of themdistributed thus. Themachine learning optimization procedure
includes no reference to the variational energy ε ϑð Þ or its gradient
▽ϑε ϑð Þ, as inVMC.Theenergy is calculated fromΦϑ Rð Þ only if andwhen
it is desired as an observable, using standard Monte Carlo techniques.
Instead of being set for the entire calculation as in VMC, the ansatz
Φϑ Rð Þ can be replaced by a completely different parametrization as
many times as desired between timepropagation steps. This can be very
useful when starting with an ansatz that greatly differs from the ground
state wavefunction the algorithm will eventually converge to. The net-
work required to obtain a good fit of thewavefunction, the learning rate
and the number of samples can all change as the wavefunction evolves.

Stochastic projection
Generically, a spatial wavefunction with some stochastic component
that undergoes imaginary time evolution will go to its bosonic ground
state, which is symmetric to particle exchanges. For the algorithm to
be useful in electronic problems, it is crucial that we be able to target
both symmetric/bosonic states and antisymmetric/fermionic states. A
very useful property of the stochastic representation is that it is pos-
sible to project out the undesired components by directly acting on
the data. This obviates the need for explicitly enforcing symmetry
conditions within the ansatz. Alternatively, symmetric ansatzes can
still be used instead.

Themain idea is that, given the set of samples Ri,Ψs Ri

� �� �� �
, one

can—at negligible expense—take advantage of the exchange sym-
metry/antisymmetry to generate some or all of the new samples

PRi, ± 1ð Þsign Pð ÞΨs PRi

� �� �n o
: ð2Þ

Here, P is one of the n! possible permutation operators that can act
on then single-particle coordinates r1,i,…, rn,i composingRi; sign Pð Þ is its
parity; and the value ± 1 is used for bosons and fermions, respectively.
For example, in a fermionic three particle system and for P = 3 2 1

� �
,

sample r1,i � r2,i � r3,i,Ψs r1,i,r2,i,r3,i
� �� �

produces the new sample
r3,i � r2,i � r1,i,�Ψs r1,i,r2,i,r3,i

� �� �
. Since the number of possible new

samples grows factorially with the number of particles in the system, it
will generally bebetter togenerate a randomsubset of themas required,
rather than obtaining and storing them all. The set of original samples,
together with the new samples, describes a function with more particle
exchange symmetry or antisymmetry, depending on the choice of sign
and compared to the original samples alone. Therefore, when stochastic
projection is performedbefore every timepropagation step, it drives the
algorithm to converge to a solutionwith the desired exchange property.

Regression
As formulated here, regression is a fundamental supervised learning
task at which NNs excel. Given an ansatz Φϑ Rð Þ and a set of samples

Ri,Ψs Ri

� �� �� �
representing our prior knowledge of the true wave-

function at some points in space, we want to find the best value of ϑ.
Perhaps the simplest approach is to minimize the sum of squared
residuals:

J ϑð Þ=
X
i

∣Φϑ Ri

� ��Ψs Ri

� �
∣2: ð3Þ

To express the ansatz itself, we use a NN. Our architecture is very
minimal andhasnot been tuned for efficiency: theNNsweused consist
of a sequence of dense layerswith tanh activation functions, andfinally
a linear output layer. This is in some cases be followed by an optional
layer enforcing analytically known boundary and/or cusp conditions

Article https://doi.org/10.1038/s41467-023-39244-4

Nature Communications |         (2023) 14:3601 2



bymultiplying the output of theNNwith a hand-chosen parameterized
function of the coordinates, such as the asymptotic solution at large
distances from the origin. Technical details are provided in the
Methods section.

The top panel of Fig. 1 shows what this looks like for a single
particle in 1D, where the process is easy to visualize. For an arbitrary
initial state (top left panel) and the ground state (top right panel) of a
1D harmonic oscillator, a series of samples and the resulting NN-based
regression curves are shown. In the insets of the panel below, an
analogous visualization is shown for 2D cuts across 4D wavefunctions
of two interacting fermions in a 2D harmonic potential.

Imaginary time propagation
A well-known trick for finding ground states relies on the fact that any
wavefunction ∣Ψi can be formally described as a superposition
∣Ψi=Pαcα ∣Ψα

�
, where Ĥ∣Ψα

�
= Eα ∣Ψα

�
and α denotes a complete set

of quantum numbers. We then have:

e�τĤ ∣Ψi=
X
α

cαe
�τEα ∣Ψα

�
∼ ∣Ψ0

�
+
X
α>0

cα
c0

e�τ Eα�E0ð Þ∣Ψα

�
:

ð4Þ

Here, ∣Ψ0

�
and E0 < Eα≠0 denote the ground state (or any state in

its degenerate manifold). When τ→∞, the last term is exponentially
suppressed and—up to a normalization constant—we are left with the
ground state. In each iteration of the calculation, marked with the
index j, we perform a time propagation step at a sampled set of points
R jð Þ

i over an imaginary time interval of length Δτ (see Eq. (1)). Impor-
tantly, we do not actually propagate the ansatz: only a set of samples
after propagation R jð Þ

i ,Ψ jð Þ
s Ri

� �� �n o
need be obtained. These will be

fitted with a new ansatz by regression in the next iteration, after
undergoing stochastic projection.

Suppose we are given the trial function from the previous
iteration, Φ R, j � 1ð ÞΔτð Þ � P̂S=AΦ

j�1ð Þ
ϑ r1, . . . ,rn

� �
; and a sample

coordinate Ri. If we can obtain the wavefunctionΦ Ri,jΔτ
� �

=Ψ jð Þ
s Ri

� �
,

we will have a sample for the next iteration. By definition,
Φ Ri,jΔτ
� �

= e�ΔτĤΦ R, j � 1ð ÞΔτð Þ
h i

∣
R =Ri

. For small Δτ, this can be
approximated by an Euler step:

Φ Ri,jΔτ
� � ’ 1� ΔτĤ

� �
Φ R, j � 1ð ÞΔτð Þ

h i
∣
R =Ri

=Φ Ri, j � 1ð ÞΔτ� �
� Δτ ĤΦ R, j � 1ð ÞΔτð Þ

h i
∣
R =Ri

:

ð5Þ

We therefore need to evaluate the result of applying the Hamil-
tonian to the trial function at the points Ri, which typically requires
taking its Laplacian with respect to the coordinates R. The overall
computational cost of this step scales as O Nnnp

� �
, i.e., linearly with

theproductof thenumber of samplesN; the number of particlesn; and
the number of parameters np. It is important to note that while the
Euler step is convenient and simple, it is by no means a unique choice:
for example, one could also evaluate the samples by stochastic path
integration, thus avoiding the need to take gradients.

By contrast, in VMC with stochastic reconfiguration time propa-
gation is applied to the ansatz itself, obtaining a new ansatz for
e�τĤΦ R, j � 1ð ÞΔτð Þ at a cost that scales like the cube of the number of
parameters: OðNnnp +n

3
pÞ. This, because a matrix of gradients in para-

meter space needs to be inverted. Storing this matrix also requires
presently expensive GPU memory that scales as O n2

p

� �
, which can also

end up being a limiting factor; As we noted earlier, alternatives exist
with improved scaling in terms of both memory and computation43–46.
VMC based on standard gradient descent has an analogous but sub-
stantially less expensive update that is defined in the parameter space:
ϑ ! ϑ� η▽ϑ

Φh ∣Ĥ∣Φi
Φh ∣Φi . This procedure has the same computational

scaling as the method proposed here; however, the gradient descent
trajectory does not correspond directly to imaginary time propagation
and is not as robust at finding the ground state. Furthermore, for fer-
mionic VMCwhere antisymmetry is enforced byway of determinants in
the ansatz, the scaling with the number of particles n becomes cubic;
this additional factor is avoided by stochastic projection. We note in
passing that the supervised, stochastic approach to natural gradient
descent we’ve introduced here, which scales linearly with np, may have
implications in a much wider domain within machine learning.

Harmonic oscillator
To investigate how well the method performs in practice, we first
consider two particles trapped in a 2D harmonic potential

V rð Þ= 1
2mω2∣r∣2. To simplify the various plots, they are presented in

units whereℏ =ω =m = 1. Figure 2 shows 2Dcuts through the 4D ansatz
wavefunctions Φ r1,r2,τ

� �
at different imaginary times τ (vertical

panels), obtained by setting y1 = y2 = 0 and plotting the dependence on
x1 and x2. The NN has 3 hidden layers with 128 neurons, followed by a
linear output layer and aboundary layer thatmultiplies theoutputwith

a Gaussian e�
∣r1 ∣

2 + ∣r2 ∣
2

σ having an adjustable width σ. In all cases, the
wavefunctions arenormalized such that theirmaximumabsolute value

Fig. 1 | Propagation towards the ground state in a harmonic potential.
a Different steps in the propagation towards the ground state of a particle of mass
m= 1 in a 1D harmonic oscillator with frequencyω= 1, with ℏ= 1. The green line is the
function fitted by the neural network to a finite set of samples (black dots on the x
axis) and their corresponding values (connected by a black line). Starting with an
asymmetric guess (τ=0), the function converges towards the correct solution (dot-
ted orange line) at the center of the trap and acquires the right symmetry (τ= 3).
b Extension of the upper system to two fermions in two spatial dimensions. The
energy is estimated by Monte Carlo sampling with error bars showing the standard
error, andconverges to thegroundstate valueofE0 = 3.010 ±0.007,which results in a
relative error of 0.35%with respect to the exact value of Eexact

0 = 3:0. The inset shows a
cut through the wavefunction. Source data are provided as a Source Data file.
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is 1. To show some nontrivial propagation, the initial guess (τ =0) for
the trial function in all three columns is chosen to be the non-
interacting bosonic solution with an offset potential,

V rð Þ= 1
2
mω2 r�

ffiffiffiffiffiffiffiffi
_

mω

r
u













2

, ð6Þ

where u = (1.5, −1.5).
In the left column, we choose a bosonic solution in the stochastic

projection, and theparticles forma condensate at the center of the trap.
In the central column we introduce a repulsive Coulomb interaction
V r1, r2
� �

= U
∣r1�r2 ∣

into the Hamiltonian; as expected, this suppresses
condensationwithout affecting symmetry. In the right panel we turn off
the interaction again, but stochastically project onto the fermionic
subspace. Even thoughweuse abosonic initial guess, the systemrapidly
converges to the correct antisymmetric solution. This is due to the
stochastic projection, which filters out the symmetric component and
effectively enhances the antisymmetric one in every propagation step.

The lower panel of Fig. 1 displays the corresponding energies
for the fermionic time propagation. During the first few iterations
the wavefunction is almost random, and the energy jumps to arbi-
trary values. Since antisymmetry is not strictly enforced and the
bosonic solution always has a lower energy than the fermionic one,
the variational theorem does not preclude energies that are too low,
and indeed some appear (see left inset and arrow). Eventually,
however, the NN learns the correct symmetry and converges expo-
nentially to the exact value E0 = 3ℏω. The standard deviation of the
energy, shown here as error bars, provides an additional indepen-
dent estimator for how close a trial function is to an eigenstate, and
also exhibits rapid convergence.

Helium atom
We finally consider a more realistic model that is difficult to solve by
brute-force numerical diagonalization, but still has highly accurate,
experimentally verified benchmarks from specialized variational
techniques8,53. Figure 3 shows the energy for a Helium atom propa-
gated to either its bosonic ground state (purple dots); or its fer-
mionic/triplet first excited state (green dots). The initial condition in
both cases is the corresponding non-interacting solution. To avoid
numerical issues stemming from the divergence of the Coulomb
potential, we follow ref. 54 and multiply the output of the NN by a

coulomb cusp function Ψcusp r12
� �

= c+ 2 ln 1 + e
r12
a0

� �
� r12

a0
� 2 ln 2ð Þ,

where r12 = ∣r1 � r2∣. The values obtained after only 4 and 6 time

steps, Eboson
0 ≈� 2:894±0:003 and Efermion

0 ≈ 2:175 ±0:006, are con-
sistent with the benchmarks, shown as dashed horizontal lines. The
relative errors with respect to the exact energies are 0.31% for the
bosonic and 0.009% for the fermionic state. For the calculation of
the ground state we used a NN comprising one hidden layer with
1000 neurons, while for the excited state we used 5 hidden layers
with 50 neurons each. The maximum number of samples used
was ~106.

Discussion
We proposed and tested a machine learning algorithm capable of
finding the ground states of both fermionic and bosonic quantum
systems. The basic object in our algorithm is a set of samples: random
coordinates, and the value of the wavefunction at each coordinate.
Unlike VMC, which in ML terms is an unsupervised algorithm, our
algorithm is a supervised learning technique built around regression.
The ground state is foundby imaginary timepropagation rather thanby
directly minimizing the energy of the ansatz through gradient descent;
but without the cubic computational scaling in the number of para-
meters associated with (full) stochastic reconfiguration, or the cubic
scaling in the number of particles associatedwith determinant ansatzes.
On the other hand, unlike DMC, there is neither a fixed node approx-
imation nor an uncontrollable sign problem. Stochastic projection
allows us to drive the algorithm to learn symmetries rather than expli-
citly enforcing themon either the ansatz or the initial guess. In principle
the model can learn a generic trial function without any guidance, but
the method allows for including physical knowledge (such as asymp-
totics, nodes or Jastrow factors) to accelerate convergence.

We considered a very basic andminimal machine learningmodel.
Future work will explore whether the stochastic representations
method can improve the accuracy of VMC with more advanced
architectures, explicitly symmetric or otherwise. It would be of great
interest to find whether the procedure proposed here can either (a)
correctly optimize an ansatz like FermiNet in a casewhere VMC fails to
converge; or (b) show that anunrestricted ansatz can outperform it for
some practical problem.

The method presented here can be used on its own, or as an
intermediate step in compound VMC/DMC procedures where
increasingly complex models are needed in later steps. Its greatest
promise is in enabling the application of state-of-the-art, large-scale
unrestricted neural models to the challenges of many-body quantum
mechanics.

Fig. 3 | Energies during imaginary time propagation for the (bosonic) ground
state and the (fermionic) first excited state of the Helium atom. Insets show a
cut through the wavefunction where one electron is placed at the origin. Error bars
indicate the standard error from the Monte Carlo sampling. Source data are pro-
vided as a Source Data file.

Fig. 2 | Wavefunction of two particles in a 2D harmonic trap under imaginary
time propagation. In all three cases the initial state (τ =0) is bosonic. Depending
on the projection and interaction, it then converges as imaginary time increases
(τ = 1.0) to the ground state of non-interacting bosons (left column), bosons with
coulomb interaction U = 2ℏω (middle column) and non-interacting fermions (right
column). Source data are provided as a Source Data file.
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Methods
Regression parameters
In the examples shown, 80% of samples at iteration j are generated
from the probability distribution ∣Φj�1

ϑ Ri

� �
∣
2
of the previous step

(which is the initial guess when j = 1) by importance sampling using the
Metropolis algorithm. Note that this does not require the wavefunc-
tion to be normalized. Another 20% are uniformly distributed in a large
domain around the wavefunction, helping to ensure that the wave-
function is suppressed where it should be. The size of the domain in
which the samples are distributed is chosen such that it covers all
features of the wavefunction. In order to estimate how large that area
needs to be, we can consider the (usually analytically tractable)
asymptotic behavior and choose a cutoff where the wavefunction is
sufficiently suppressed. For all harmonic oscillator cases, we chose a
domain where all coordinates are between −5 and 5. The restriction of
the domain affects the uniformly distributed samples as well as those
we generate through importance sampling. Since we obtain the
majority of the samples through importance sampling, theywillmostly
be concentrated in areas where the wavefunction has large absolute
values.

All calculations use stochastic gradient decent in the optimization
process and a simple network structure with 1–5 hidden layers, each
layer consisting of up to 2048 neurons. This proves to be expressive
enough even formore complicatedwavefunctions. The learning rate is

the hyperparameter we focused on most during optimization. To find
its optimal value, we start with a high learning rate and gradually
decrease its initial value until the learning curve declines within the
first 10 epochs. As a criterion for an accuratefit, we use amean squared
error below 10−4, which is relatively small compared to the maximal
absolute value of the wavefunction (normalized to 1). Our data is
divided into a training set and a validation set, and in order to avoid
overfitting we always verify that the validation loss does not deviate
from the training loss.

Comparison to VMC
To better judge the effectiveness of our method, we compare our
results to calculations performedwith VMC. To compare VMC to our
technique in a general manner, without resorting to additional ad-
hoc assumptions like the use of linear combinations of Slater
determinants with Jastrow factors, one can employ dual gradient
descent in order to enforce the correct symmetry as a constraint. In
dual gradient descent the loss function, which is minimized during
training, comprises two terms. One is the energy, and the second
includes an asymmetry function A Rf g,ϑð Þ that attains its minimal
value of 0 when the ansatz respects some symmetry. To enforce
fermionic exchange, we chose

A Rf g, ϑð Þ=
Φϑ Rð Þ � �1ð Þsign Pð ÞΦϑ P̂R

� �h i2
∣ Φϑ Rð Þ� �

∣2

* +
, ð7Þ

where in each epoch a random permutation P̂ is selected for each
sample. When using samples from the distribution Rf g∼ ∣Φϑ Rð Þ∣2

n o
the loss has the form

J ϑð Þ= Φϑ
�

∣Ĥ∣Φϑ
�

Φϑ
�

∣Φϑ
�

* +
+ λ � A Rf g, ϑð Þ: ð8Þ

We used VMC for two and three noninteracting fermions in a 1D
harmonic potential, with a similar network size to that used in our
stochastic representation technique. The results are shown in Fig. 4.
For two fermions both the symmetry and energy rapidly converge to
the correct value and stabilize there, at a computational expense far
below what is needed to obtain converged results using the
stochastic representation. For three fermions, however, we failed
to obtain converged results with VMC. The stochastic representa-
tion technique, on the other hand, easily and reliably solves this
problem.

Permutations
Next, we explore the impact of the number of randomly selected
permutations on convergence of the energy for two and three fer-
mions in a non-interacting harmonic oscillator in one spatial dimen-
sion. The upper panel of Fig. 5 shows that with two fermions, including
both permutations for every sample in each time step leads to a cor-
rect asymmetric state, while the inclusion of only a single (random)
permutation results in convergence to the symmetric state. For three
fermions, the lower panel shows that the procedure converges to the
fermionic state if a random subset of at least two permutations is
chosen for each sample in each step. This suggests that when the data
includes enough sample pairs exhibiting exact particle exchange
antisymmetry, the model is able to learn this property with a reason-
able degree of efficiency.

Symmetry and scaling
Not explicitly incorporating symmetry or antisymmetry into the
ansatz comes at a cost: the need to learn all features of a large
permutation group explicitly. We now consider how the number of

Fig. 4 | Evolution of the energy towards the ground state of two and three
noninteracting fermions in a 1D harmonic potential. a Performed by variational
Monte Carlo with a relative error for two fermions 0.004% and three fermions
10.34% respectively. b Using the stochastic representation introduced here with a
relative error for two fermions 0.002% and for three fermions 0.004%. The initial
guess (τ =0) for the trial wavefunction is chosen to be the noninteracting fermionic
solution with the potential in Eq. (6) and offsets u = (−1.0, 1.0) for two fermions and
u = (0.8, 0.0, −0.8) for three fermions. Source data are provided as a Source
Data file.
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samples scales with the dimension of the wavefunction being fitted,
at least for relatively small system sizes. We emphasize that this is a
property of the regression alone, and is unrelated to the time pro-
pagation or any other aspect of our method. Figure 6 shows how the
number of samples needed to obtain a reasonable fit (defined below)
scales with the number of noninteracting fermions, for the ground
state of the noninteracting harmonic oscillator at various spatial
dimensions. We optimized the same neural network to fit a variety of
Slater determinants; the different data points differ only in the
learning rate, which we tuned for speed. Figure 6 shows that one and
two particle wavefunctions are very easy to fit, mostly because the
boundary function constituting the last layer in our neural network
rather closely approximates the correct solution. For more complex
wavefunctions, more samples are needed, but the growth appears
approximately linear rather than exponential. For more particles,
interactions and more complex potentials, a larger network is
eventually needed.

Implementation
The code is implemented using Google’s TensorFlow library55.

Data availability
Source data are provided with this paper. The model and wave-
function data are available under restricted access due to their large
size and limited utility given that equivalent data can be easily
generated from the publicly available code. Access can be obtained

by contacting the corresponding author. Source data are provided
with this paper.

Code availability
The source code used to generate this study is open and publicly
available in a permanent repository56.
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