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Arylcarboxylation of unactivated alkenes
with CO2 via visible-light photoredox
catalysis

Wei Zhang1,2, Zhen Chen1, Yuan-Xu Jiang1, Li-Li Liao3, Wei Wang1,
Jian-Heng Ye1 & Da-Gang Yu 1,4

Photocatalytic carboxylation of alkenes with CO2 is a promising and sustain-
able strategy to synthesize high value-added carboxylic acids. However, it is
challenging and rarely investigated for unactivated alkenes due to their low
reactivities. Herein, we report a visible-light photoredox-catalyzed arylcar-
boxylation of unactivated alkenes with CO2, delivering a variety of
tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic
acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids inmoderate-
to-good yields. This reaction features high chemo- and regio-selectivities, mild
reaction conditions (1 atm, room temperature), broad substrate scope, good
functional group compatibility, easy scalability and facile derivatization of
products. Mechanistic studies indicate that in situ generation of carbon
dioxide radical anion and following radical addition to unactivated alkenes
might be involved in the process.

Carbon dioxide (CO2), which is inexpensive, non-toxic, and recyclable,
has been regarded as an ideal one-carbon feedstock to engage in
chemical transformations for the synthesis of high value-added
chemicals1–4. As carboxylic acids are a privileged functional group in
biochemistry and polymer chemistry, it is highly important to develop
direct and flexible methods for carboxylation with CO2

5–9. In recent
years, visible-light photocatalytic carboxylation with CO2 has attracted
much attention as an efficient, versatile, and sustainable strategy10–15.
As alkenes are common functional group in organic compounds and
bulk chemicals in industry, visible-light photocatalytic carboxylation
of alkenes with CO2 is of particular interest16–29. Notably, visible-light
photoredox-catalyzed difunctionalizing carboxylation of alkenes with
CO2 has recently emerged as an important access to valuable car-
boxylic acids with diverse functionality and high step economy22–29.
Many groups, including Martin, Wu, Li, Xi, and our group, have
reported visible-light photoredox-catalyzed 1,2-difunctionalizing car-
boxylation of alkenes with CO2 under mild conditions in high chemo-
and regio-selectivities (Fig. 1a)22–29. However, thesemethods aremainly

limited to activated alkenes, such as styrenes and acrylates. The pho-
tocatalytic 1,2-difunctionalizing carboxylation of unactivated alkenes
with CO2 has not been disclosed yet.

As well known, unactivated alkenes aremore abundant and easily
available in nature and industry than activated alkenes. However, it is
challenging for unactivated alkenes to undergo photocatalytic car-
boxylations with CO2

30–33, arising from high reductive potentials of
both starting materials34–39 and sluggish radical addition onto unac-
tivated alkenes to generate alkyl carbon radicals40–49, which are less
stable than those from activated alkenes. Inspired by our recent work
on hydrocarboxylation of unactivated alkenes with CO2

33, we further
challenged us whether we could tune the chemoselectivity from C−H
to C−Cbonds formation based on similar carbon radical intermediates
(Fig. 1b). We hypothesized the in situ generation of CO2 radical anion
(CO2

•−) and following radical addition to unactivated alkenes would
result in unstabilized alkyl carbon radicals, which could be further
trapped by arenes to generate the C−C bonds. Final rearomatization
could give the desired arylcarboxylation products. If successful, it will
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realize 1,2-difunctionalizing carboxylation of unactivated alkenes with
CO2. Moreover, as it is redox-neutral and atom-economic based on the
C−H functionalization, it will also provide a practical and sustainable
strategy to access a wide range of polycyclic carboxylic acids, which

are highly important but not easy to obtain via other methods (Fig. 2).
Nevertheless, many challenges remain. For example, it is challenging
for conversion of CO2 into CO2

•− due to the high reduction potential of
CO2 [E1/2 (CO2/CO2

•−) = −2.21 V vs SCE]50. Moreover, the addition of
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Fig. 1 | Visible-light photocatalytic 1,2-difunctionalizing carboxylation of alkenes with CO2. a Visible-light photocatalytic 1,2-difunctionalizing carboxylation of
activated alkenes with CO2. b Visible-light photocatalytic arylcarboxylation of unactivated alkenes with CO2. PC photocatalyst, EWGs electron-withdrawing groups.
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Fig. 2 | Selected biologically active carboxylic acids and derivatives bearing polycyclic structures. Examples of biologically active compounds possessing polycyclic
acids and derivatives motifs.
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nucleophilic CO2
•− to electron-rich unactivated alkenes is a polarity-

mismatched process51. In addition, hydrocarboxylation, arylthiolation,
and other competitive side reactions would also hamper the desired
difunctionalizing carboxylation.

Herein, we report our success in realizing the visible-light pho-
toredox-catalyzed arylcarboxylation of unactivated alkenes with CO2

(Fig. 1b). A variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-
ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and
thiochroman-4-ylacetic acids are generated in high selectivities and
moderate-to-good yields.

Results
Screening of reaction conditions
As carboxylic acids with polycyclic structures are widely found in
natural products, drugs and bioactive compounds (Fig. 2)52–56, we
initiated our project with 1a as standard substrate to generate
tetrahydronaphthalen-1-ylacetic acid 2a as the desired product
(Table 1). In the presence of fac-Ir(ppy)3 (Ir-1) as photocatalyst, 4-tert-
butylthiophenol (T1) as hydrogen atom transfer (HAT) catalyst and
Cs2CO3 as base (Please see the Supplementary Tables 1–5 in Supple-
mentary Information (SI) for more details), the desired

arylcarboxylation product 2a was obtained in 66% yield with high
selectivity (Entry 1). Control experiments revealed that photocatalyst,
thiol catalyst, Cs2CO3, visible light, and CO2 all played essential roles in
the reaction (Entries 2–6). The use of p-tBuC6H4SK (T2) instead of
p-tBuC6H4SH (T1) provided 2a in comparable yield (Entry 7). To our
delight, PhMe2SiH turned tobea goodadditive that enhanced the yield
of 2a to 86%, probably owing to the promotion of the CO2

•− generation
in the reaction (Entry 8)57. A variety of reaction conditions with other
photocatalysts, solvents, HAT catalysts, bases, and silanes were also
tested to give lower conversions and yields (Entries 9–14).

Substrate scope
Having established the optimized reaction conditions, we investigated
the substrate scope (Fig. 3). Awide variety of electron-donating groups
(EDGs) and EWGs were tolerant at the para-positions of the arene
moiety, providing the desired products 2a–2n in moderate-to-good
yields. Substrates containing various functional groups, such as tri-
fluoromethoxyl group (2d), fluoro (2g), amines (2i–2k), thioether (2l)
and amide (2m), were smoothly converted to the corresponding
products, thus allowing for downstream transformations. The effi-
ciency of this protocol was not hampered by the ortho substituents on

Table. 1 | Optimization of reaction conditionsa

Entry Variations Yield (%)b

1 none 66 (62)

2 w/o Ir-1 n.d.

3 w/o T1 n.d.

4 w/o Cs2CO3 n.d.

5 w/o light n.d.

6 N2 instead of CO2 n.d.

7 T2 instead of T1 62

8 PhMe2SiH as an additive 86 (83)

9c Ir-2 instead of Ir-1 60

10c 4CzIPN instead of Ir-1 n.d.

11c DMF instead of DMSO 55

12c tBuSH instead of T1 74

13c K2CO3 instead of Cs2CO3 68

14c PMHS instead of PhMe2SiH 82

n.d.not detected,DMSOdimethyl sulfoxide,DMFN,N-dimethylformamide, ppy 2-phenylpyridine, dtbbpy4,4’-di-tert-butyl-2,2’-bipyridine, 4CzIPN 2,4,5,6-tetra(carbazol-9-yl)isophthalonitrile, PMHS
poly(methylhydrosiloxane).
aReaction conditions: 1a (0.2mmol, 1.0 equiv), Ir-1 (1mol%), T1 (20mol%), Cs2CO3 (3.0 equiv.), DMSO (2mL), irradiation by 30W blue LEDs at room temperature (rt) under CO2 (1 atm) for 24 h.
bYield determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard. Isolated yields in parentheses.
cPhMe2SiH (1.0 equiv.) was used.
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the phenyl ring, giving the corresponding arylcarboxylation products
2o–2p in moderate-to-good yields. Substrates with different sub-
stituents on the aliphatic chain were also suitable for such a transfor-
mation, furnishing products 2q–2t in 53–81% yields. When no ester
group was present in the substrate, the carboxylative cyclization pro-
duct 2u could also be obtained. To our delight, substrate 1v with tert-
butyl group at the meta-position of the phenyl ring was tested in this
reaction to give product 2v in 73% yield and sole regioselectivity owing
to the steric hindrance effect. The substrate 1w bearing di-methoxyl
groups also underwent the reaction smoothly to afford the arylcar-
boxylation product 2w in 77% yield. We were delighted to find that
5-exo cyclization process could also occur under such conditions,
giving the indan-1-ylacetic acids 2x–2z in moderate-to-good yields. We
next turned our attention to 1,1-disubstituted unactivated alkenes as
CO2 coupling partners, which have rarely been used for photocatalytic
cyclization reactions58. To our delight, this system also accomplished
the 6-exo cyclizations to furnish carbocycles 2aa-2ad containing the
quaternary carbon centers in 48–63% yields.

As indoline derivatives are privileged structural motifs found in
alkaloids59 and clinical drugs60, seeking an efficient and simple
approach for the construction of indolines is of continuous interest.
Encouraged by the above results, we further turned our attention to
selective carboxylation of N-protected allylanilines 3 with CO2 to
afford indolin-3-ylacetic acid derivatives 4 (Fig. 4). Mono-substituents
on the aromatic ring had a negligible impact on these reactions, as the
corresponding indoline derivatives 4a–4g were obtained in satisfac-
tory yields. Further investigations of the substrate scope showed that
di- or tri-substituted N-protected allylanilines also delivered the

corresponding indolin-3-ylacetic acid derivatives 4h and 4i in syn-
thetically useful yields.

Inspired by above results, we wondered whether other kinds of
valuable polycyclic carboxylic acids could be formed using this strat-
egy. As chromanes and thiochromanes arewidely distributed in nature
and display a broad range of biological and pharmaceutical
activities61–63, we further tested phenol- and thiophenol-derived
alkenes 5 under standard reaction conditions. Fortunately, these sub-
strates were also reactive to furnish the desired chroman-4-ylacetic
acid and thiochroman-4-ylacetic acid derivatives 6a–6d in 21–65%
yields (Fig. 5).

Synthetic applications
In order to demonstrate the utility of this method, a gram-scale reac-
tion and product derivatizations were performed (Fig. 6). The product
2a was obtained in 84% yield and gram scale, demonstrating the facile
scalability of this reaction (Fig. 6a). Then, we carried out the derivati-
zation of 2a to illustrate potential synthetic applications (Fig. 6b).
Selective reduction of product 2a by using NaBH4 produced the
alcohol 7 in 92% yield64. Condensation between 2a and methyl glyci-
nate hydro-chloride gave cyclic amide 8 in an excellent yield65. A
practical decarboxylation of primary carboxylic acid 2a via synergistic
photoredox andHATcatalysis was achieved in excellent yield66. And 2a
could also participate in decarboxylative trifluoromethylation to give
compound 10 in moderate yield67. Notably, compound 2a was easily
transformed to the redox-active ester 1168, whichunderwent C−P andC
−S bonds formation through decarboxylative phosphination69 and
arylthiolation70, respectively.
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Mechanistic investigations
To gain more insight into this reaction, a series of control experiments
were conducted (Fig. 7). When the reaction was performed in the pre-
sence of various radical scavengers, such as 2,2,6,6-tetramethyl-1-
piperidiny-1-oxy (TEMPO) or diphenyldiselenide (PhSeSePh), the for-
mationofproduct2awascompletely inhibitedwith almost full recovery
of 1a, indicating that radical process might be involved (Fig. 7a). As the
formation of reduction product 1a’ was not observed under nitrogen
atmosphere,webelieved that unactivated alkenes couldnot be reduced
in the reaction (Fig. 7b). The results of detecting of formate (HCO2

−) in
the presence or absence of unactivated alkenes indicated that CO2

•−

could be generated from single electron reduction of CO2 in the reac-
tion (Fig. 7c). Moreover, Stern-Volmer fluorescence quenching experi-
ments showed that the excited state of the photocatalyst was quenched
by the thiolate rather than unactivated alkenes (Fig. 7d).

Based on the control experiments and previous studies71–73, a
possible mechanism for the overall transformation of 1a is proposed
(Fig. 8). The irradiation of photocatalyst fac-IrIII(ppy)3 generates excited
fac-*IrIII(ppy)3 (E1/2*III/II = +0.31 V vs SCE), which can be reductively quen-
ched by a catalytic thiolate to furnish fac-IrII(ppy)3 and a thiyl radical.

Then, the IrII species (E1/2
III/II = −2.19 V vs SCE)72 may engage in reducing

CO2 [E1/2 (CO2/CO2
•−) = −2.21 V vs SCE]50 via SET event to deliver CO2

•−

along with regeneration of fac-IrIII(ppy)3 to close the photoredox cata-
lytic cycle. The in situ generated CO2

•− then undergoes radical addition
to the C=C double bond of unactivated alkene of 1a to form an alkyl
carbon radical A30,33, which is supposed to be quickly captured via
cyclization to form the radical intermediate B. Finally, the carboxylate
could be obtained via a HAT process of radical intermediate B with the
thiyl radical, along with regeneration of the thiol catalyst74. The proto-
nationduringworkupwould afford the final product 2a. Meanwhile, the
intermediate Bmight also undergo intermolecular HAT to deliver anti-
Markovnikov hydrocarboxylation byproduct C33. In addition, we reason
that the silane can serve as an additive to promote the generation of
CO2

•− from an alternative pathway (Please see Supplementary Fig. 18
in SI) 57. At this stage, we could not exclude other alternative pathways
(Please see SI for details)75,76.

Discussion
In summary,we have developed the visible-light photoredox-catalyzed
arylcarboxylation of unactivated alkenes with CO2. This protocol
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provides an efficient and facile approach to an array of high-valued
polycyclic carboxylic acids, such as tetrahydronaphthalen-1-ylacetic
acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-
ylacetic acids and thiochroman-4-ylacetic acids. This reaction fea-
tures mild reaction conditions, broad substrate scope, and good
functional group compatibility. Moreover, the derivatization of pro-
ducts could afford diverse valuable polycyclic compounds, which are
difficult to access viaother protocols. Further applications of CO2

•− and
difunctionalizing carboxylation of unactivated alkenes are undergoing
in our group.

Methods
Synthesis of 2a-2z
To an oven-dried Schlenk tube (25mL) equipped with a magnetic stir
bar was added the unactivated alkenes (0.2mmol, 1.0 equiv. for solid
substrates) and fac-Ir(ppy)3 (1mol%). The tube was moved into the
glovebox where was added the Cs2CO3 (0.6mmol, 195.5mg, 3.0
equiv.). The tube was sealed and removed from the glovebox, then
evacuated and back-filled with CO2 atmosphere for three times. liquid
alkenes were added under CO2 atmosphere followed by anhydrous
DMSO (2mL), PhMe2SiH (0.2mmol, 27.3mg, 31μL, 1.0 equiv.), 4-tert-
butylthiophenol (0.04mol, 6.7mg, 7.0μL, 20mol%), and the tube was

sealed at atmospheric pressureofCO2 (1 atm). The reactionwas stirred
and irradiatedwith a 30Wblue LED lamp (1 cmaway,with a cooling fan
to keep the reaction temperature at 25–30 °Cand keeping the reaction
region located in the center of LEDs lamp) for 24 h. Upon completion
of the reaction, the reaction mixture was diluted with 3mL ethyl ester
(EA) and quenched by 3mL 2N HCl. After adding 10mL of H2O, the
mixture was extracted by EA for five times and the combined organic
phases were concentrated in vacuo. The residue was purified by silica
gel flash column chromatography (Petroleum/EA/AcOH 10/1/ ~ 5/1 ~ /5/
10.2%) to give the pure desired product.

Synthesis of 2aa-2ad
To an oven-dried Schlenk tube (25mL) equipped with a magnetic stir
bar was added the unactivated alkenes (0.2mmol, 1.0 equiv. for solid
substrates) and fac-Ir(ppy)3 (1mol%). The tube was moved into the
glovebox where was added the Cs2CO3 (0.6mmol, 195.5mg, 3.0
equiv.). The tube was sealed and removed from the glovebox, then
evacuated and back-filled with CO2 atmosphere for three times. liquid
alkenes were added under CO2 atmosphere followed by anhydrous
DMSO (2mL), PhMe2SiH (0.2mmol, 27.3mg, 31μL, 1.0 equiv.), 4-tert-
butylthiophenol (0.04mol, 6.7mg, 7.0μL, 20mol%), and the tube was
sealed at atmospheric pressureofCO2 (1 atm). The reactionwas stirred
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and irradiatedwith a 30Wblue LED lamp (1 cmaway,with a cooling fan
to keep the reaction temperature at 25–30 °Cand keeping the reaction
region located in the center of LEDs lamp) for 24 h. Upon completion
of the reaction, the reaction mixture was diluted with 3mL EA and
quenched by 3mL2NHCl. After adding 10mLof H2O, themixturewas
extracted by EA for five times and the combined organic phases were
concentrated in vacuo. The residue was purified by silica gel flash
column chromatography (Petroleum/EA/AcOH 10/1/ ~ 5/1 ~ /5/10.2%) to
give the pure desired product.

Synthesis of 4a-4i
To an oven-dried Schlenk tube (25mL) equipped with a magnetic stir
bar was added the unactivated alkenes (0.2mmol, 1.0 equiv. for solid
substrates) and fac-Ir(ppy)3 (1mol%). The tube was moved into the
glovebox where was added the Cs2CO3 (0.6mmol, 195.5mg, 3.0
equiv.). The tube was sealed and removed from the glovebox, then
evacuated and back-filled with CO2 atmosphere for three times. liquid
alkenes were added under CO2 atmosphere followed by anhydrous
DMSO (2mL), PhMe2SiH (0.2mmol, 27.3mg, 31μL, 1.0 equiv.), 4-tert-
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butylthiophenol (0.04mol, 6.7mg, 7.0μL, 20mol%), and the tube was
sealed at atmospheric pressureofCO2 (1 atm). The reactionwas stirred
and irradiatedwith a 30Wblue LED lamp (1 cmaway,with a cooling fan
to keep the reaction temperature at 25–30 °Cand keeping the reaction
region located in the center of LEDs lamp) for 24 h. Upon completion
of the reaction, MeI (0.4mmol, 25μL, 2.0 equiv.) was added, the
mixture was stirred at 65 oC for 3 h and then cooled to room tem-
perature. The crude reaction mixture was diluted with 3mL EA. After
adding 10mL of H2O, the mixture was extracted by EA for five times
and the combined organic phases were concentrated in vacuo. The
residue was purified by silica gel flash column chromatography (Pet-
roleum/EA 60/1/ ~ 20/1) to give the pure desired product.

Synthesis of 6a–6d
To an oven-dried Schlenk tube (25mL) equipped with a magnetic stir
bar was added the unactivated alkenes (0.2mmol, 1.0 equiv. for solid
substrates) and fac-Ir(ppy)3 (1mol%). The tube was moved into the
glovebox where was added the Cs2CO3 (0.6mmol, 195.5mg, 3.0
equiv.). The tube was sealed and removed from the glovebox, then
evacuated and back-filled with CO2 atmosphere for three times. liquid
alkenes were added under CO2 atmosphere followed by anhydrous
DMSO (2mL), PhMe2SiH (0.2mmol, 27.3mg, 31μL, 1.0 equiv.), 4-tert-
butylthiophenol (0.04mol, 6.7mg, 7.0μL, 20mol%), and the tube was
sealed at atmospheric pressureofCO2 (1 atm). The reactionwas stirred
and irradiatedwith a 30Wblue LED lamp (1 cmaway,with a cooling fan
to keep the reaction temperature at 25–30 °Cand keeping the reaction
region located in the center of LEDs lamp) for 24 h. Upon completion
of the reaction, MeI (0.4mmol, 25μL, 2.0 equiv.) was added, the
mixture was stirred at 65 oC for 3 h and then cooled to room tem-
perature. The crude reaction mixture was diluted with 3mL EA. After
adding 10mL of H2O, the mixture was extracted by EA for five times
and the combined organic phases were concentrated in vacuo. The
residue was first purified by silica gel flash column chromatography
(Petroleum/EA 150/1/ ~ 60/1) to give the mixture and the yields were
determined with CH2Br2 as an internal standard. The desired arylcar-
boxylation products were further purified by preparative HPLC.

Data availability
The authors declare that the data supporting the findings of this study
are available within the article and its Supplementary Information files.
Extra data are available from the author upon request. The Cartesian
coordinates for the calculated structures are available within the
Supplementary Data 1.
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